

# Quad-Channel Digital Isolators, 5 kV ADuM2400/ADuM2401/ADuM2402

#### **FEATURES**

Low power operation **5 V operation** 1.0 mA per channel max @ 0 Mbps to 2 Mbps 3.5 mA per channel max @ 10 Mbps 31 mA per channel max @ 90 Mbps **3 V operation** 0.7 mA per channel max @ 0 Mbps to 2 Mbps 2.1 mA per channel max @ 10 Mbps 20 mA per channel max @ 90 Mbps **Bidirectional communication** 3 V/5 V level translation High temperature operation: 105°C High data rate: dc to 90 Mbps (NRZ) Precise timing characteristics 2 ns max pulse-width distortion 2 ns max channel-to-channel matching High common-mode transient immunity: > 25 kV/µs **Output enable function** Wide body SOIC 16-lead package Safety and regulatory approvals (pending) UL recognition: 5000 V rms for 1 minute per UL 1577 CSA component acceptance notice #5A: IEC 60950-1: 600 V rms (reinforced) IEC 60601-1: 250 V rms (reinforced) VDE certificate of conformity DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01 DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000 VIORM = 848 V peak

### APPLICATIONS

Rev. 0

General-purpose, high voltage, multichannel isolation Medical equipment Motor drives Power supplies

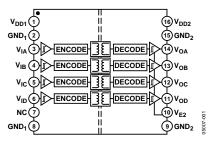



Figure 1. ADuM2400 Functional Block Diagram

### FUNCTIONAL BLOCK DIAGRAMS

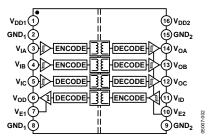



Figure 2. ADuM2401 Functional Block Diagram

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 © 2005 Analog Devices, Inc. All rights reserved.

### **GENERAL DESCRIPTION**

The ADuM240x are 4-channel digital isolators based on Analog Devices' *i*Coupler<sup>®</sup> technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives, such as optocoupler devices.

By avoiding the use of LEDs and photodiodes, *i*Coupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple *i*Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discretes is eliminated with these *i*Coupler products. Furthermore, *i*Coupler devices run at one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM240x isolators provide four independent isolation channels in a variety of channel configurations and data rates (see Ordering Guide). The ADuM240x models operate with the supply voltage of either side ranging from 2.7 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. In addition, the ADuM240x provide low pulse-width distortion (<2 ns for CRWZ grade) and tight channel-tochannel matching (<2 ns for CRWZ grade). Unlike other optocoupler alternatives, the ADuM240x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/powerdown conditions.

V<sub>DD1</sub> 16 V<sub>DD2</sub> 15 GND2 GND (2 3 ENCODE DECODE -(14) VOA ENCODE 35 <u>пэ</u>v<sub>ов</sub> VIR DECODE THDECODE 38 ENCODE Voc (12) VIC ENCODE DECODE ί(π) v<sub>id</sub> Von  $V_{E1}$ \_\_\_\_\_V<sub>E2</sub> GND1(8) (9) GND<sub>2</sub>

Figure 3. ADuM2402 Functional Block Diagram

## TABLE OF CONTENTS

| Features                                                                     |
|------------------------------------------------------------------------------|
| Applications                                                                 |
| General Description                                                          |
| Functional Block Diagrams                                                    |
| Revision History                                                             |
| Electrical Characteristics                                                   |
| 5 V Operation                                                                |
| 3 V Operation                                                                |
| Mixed 5 V/3 V or 3 V/5 V Operation                                           |
| Package Characteristics1                                                     |
| Regulatory Information (Pending)1                                            |
| Insulation and Safety-Related Specifications1                                |
| DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation<br>Characteristics (Pending)14 |
| Recommended Operating Conditions14                                           |

| Absolute Maximum Ratings                         |
|--------------------------------------------------|
| ESD Caution15                                    |
| Pin Configurations and Pin Function Descriptions |
| Typical Performance Characteristics              |
| Application Information                          |
| PC Board Layout 20                               |
| Propagation Delay-Related Parameters             |
| DC Correctness and Magnetic Field Immunity       |
| Power Consumption                                |
| Insulation Lifetime                              |
| Outline Dimensions                               |
| Ordering Guide                                   |

### **REVISION HISTORY**

9/05—Revision 0: Initial Version

## **ELECTRICAL CHARACTERISTICS**

### **5 V OPERATION<sup>1</sup>**

 $4.5 \text{ V} \le V_{DD1} \le 5.5 \text{ V}, 4.5 \text{ V} \le V_{DD2} \le 5.5 \text{ V}.$  All min/max specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at  $T_A = 25^{\circ}$ C,  $V_{DD1} = V_{DD2} = 5 \text{ V}.$ 

| Parameter                                                  | Symbol                                                                 | Min                                          | Тур  | Max  | Unit | Test Conditions                                                                                                                                                                     |
|------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DC SPECIFICATIONS                                          |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| Input Supply Current, per Channel, Quiescent               | I <sub>DDI (Q)</sub>                                                   |                                              | 0.50 | 0.53 | mA   |                                                                                                                                                                                     |
| Output Supply Current, per Channel, Quiescent              | IDDO (Q)                                                               |                                              | 0.19 | 0.21 | mA   |                                                                                                                                                                                     |
| ADuM2400, Total Supply Current, Four Channels <sup>2</sup> |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| DC to 2 Mbps                                               |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| V <sub>DD1</sub> Supply Current                            | I <sub>DD1 (Q)</sub>                                                   |                                              | 2.2  | 2.8  | mA   | DC to 1 MHz logic signal free                                                                                                                                                       |
| V <sub>DD2</sub> Supply Current                            | IDD2 (Q)                                                               |                                              | 0.9  | 1.4  | mA   | DC to 1 MHz logic signal free                                                                                                                                                       |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| VDD1 Supply Current                                        | IDD1 (10)                                                              |                                              | 8.6  | 10.6 | mA   | 5 MHz logic signal freq.                                                                                                                                                            |
| V <sub>DD2</sub> Supply Current                            | I <sub>DD2 (10)</sub>                                                  |                                              | 2.6  | 3.5  | mA   | 5 MHz logic signal freq.                                                                                                                                                            |
| 90 Mbps (CRWZ Grade Only)                                  |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| V <sub>DD1</sub> Supply Current                            | I <sub>DD1 (90)</sub>                                                  |                                              | 76   | 100  | mA   | 45 MHz logic signal freq.                                                                                                                                                           |
| VDD2 Supply Current                                        | IDD2 (90)                                                              |                                              | 21   | 25   | mA   | 45 MHz logic signal freq.                                                                                                                                                           |
| ADuM2401, Total Supply Current, Four Channels <sup>2</sup> |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| DC to 2 Mbps                                               |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| VDD1 Supply Current                                        | IDD1 (Q)                                                               |                                              | 1.8  | 2.4  | mA   | DC to 1 MHz logic signal free                                                                                                                                                       |
| VDD2 Supply Current                                        | IDD2 (Q)                                                               |                                              | 1.2  | 1.8  | mA   | DC to 1 MHz logic signal free                                                                                                                                                       |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| VDD1 Supply Current                                        | IDD1 (10)                                                              |                                              | 7.1  | 9.0  | mA   | 5 MHz logic signal freq.                                                                                                                                                            |
| V <sub>DD2</sub> Supply Current                            | IDD2 (10)                                                              |                                              | 4.1  | 5.0  | mA   | 5 MHz logic signal freq.                                                                                                                                                            |
| 90 Mbps (CRWZ Grade Only)                                  |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| VDD1 Supply Current                                        | DD1 (90)                                                               |                                              | 62   | 82   | mA   | 45 MHz logic signal freq.                                                                                                                                                           |
| VDD2 Supply Current                                        | IDD2 (90)                                                              |                                              | 35   | 43   | mA   | 45 MHz logic signal freq.                                                                                                                                                           |
| ADuM2402, Total Supply Current, Four Channels <sup>2</sup> |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| DC to 2 Mbps                                               |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current        | Idd1 (Q),<br>Idd2 (Q)                                                  |                                              | 1.5  | 2.1  | mA   | DC to 1 MHz logic signal free                                                                                                                                                       |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current        | Idd1 (10),<br>Idd2 (10)                                                |                                              | 5.6  | 7.0  | mA   | 5 MHz logic signal freq.                                                                                                                                                            |
| 90 Mbps (CRWZ Grade Only)                                  |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current        | I <sub>DD1 (90)</sub> ,<br>I <sub>DD2 (90)</sub>                       |                                              | 49   | 62   | mA   | 45 MHz logic signal freq.                                                                                                                                                           |
| For All Models                                             |                                                                        |                                              |      |      |      |                                                                                                                                                                                     |
| Input Currents                                             | I <sub>IA</sub> , I <sub>IB</sub> , I <sub>IC</sub> ,<br>IID, IE1, IE2 | -10                                          | 0.01 | 10   | μΑ   | $\label{eq:VIA} \begin{split} 0 &\leq V_{IA},  V_{IB},  V_{IC},  V_{ID} \leq V_{DD1} \text{ or } \\ V_{DD2},  0 &\leq V_{E1},  V_{E2} \leq V_{DD1} \text{ or } V_{DD2} \end{split}$ |
| Logic High Input Threshold                                 | VIH, VEH                                                               | 2.0                                          |      |      | V    |                                                                                                                                                                                     |
| Logic Low Input Threshold                                  | $V_{IL}, V_{EL}$                                                       |                                              |      | 0.8  |      |                                                                                                                                                                                     |
| Logic High Output Voltages                                 | Voah, Vobh,<br>Voch, Vodh                                              | V <sub>DD1</sub> /<br>V <sub>DD2</sub> – 0.1 | 5.0  |      | V    | $I_{\text{Ox}} = -20 \; \mu\text{A}, V_{\text{Ix}} = V_{\text{IxH}}$                                                                                                                |
|                                                            |                                                                        | V <sub>DD1</sub> /<br>V <sub>DD2</sub> – 0.4 | 4.8  |      | V    | $I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$                                                                                                                                          |
| Logic Low Output Voltages                                  | VOAL, VOBL,                                                            |                                              | 0.0  | 0.1  | V    | $I_{\text{Ox}} = 20 \; \mu\text{A}, V_{\text{Ix}} = V_{\text{IxL}}$                                                                                                                 |
|                                                            | $V_{OCL}, V_{ODL}$                                                     |                                              | 0.04 | 0.1  | V    | $I_{\text{Ox}}{=}400~{\mu}\text{A},V_{\text{Ix}}{=}V_{\text{IxL}}$                                                                                                                  |
|                                                            |                                                                        |                                              | 0.2  | 0.4  | V    | $I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$                                                                                                                                           |

| Parameter                                                                   | Symbol                              | Min | Тур  | Max  | Unit    | Test Conditions                                                             |
|-----------------------------------------------------------------------------|-------------------------------------|-----|------|------|---------|-----------------------------------------------------------------------------|
| SWITCHING SPECIFICATIONS                                                    |                                     |     |      |      |         |                                                                             |
| ADuM240xARWZ                                                                |                                     |     |      |      |         |                                                                             |
| Minimum Pulse Width <sup>3</sup>                                            | PW                                  |     |      | 1000 | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Maximum Data Rate <sup>4</sup>                                              |                                     | 1   |      |      | Mbps    | C <sub>L</sub> = 15 pF, CMOS signal levels                                  |
| Propagation Delay <sup>5</sup>                                              | tphl, tplh                          | 50  | 65   | 100  | ns      | C <sub>L</sub> = 15 pF, CMOS signal levels                                  |
| Pulse-Width Distortion,  t <sub>PLH</sub> – t <sub>PHL</sub>   <sup>5</sup> | PWD                                 |     |      | 40   | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Propagation Delay Skew <sup>6</sup>                                         | t <sub>PSK</sub>                    |     |      | 50   | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Channel-to-Channel Matching <sup>7</sup>                                    | tpskcd/od                           |     |      | 50   | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| ADuM240xBRWZ                                                                |                                     |     |      |      |         |                                                                             |
| Minimum Pulse Width <sup>3</sup>                                            | PW                                  |     |      | 100  | ns      | C <sub>L</sub> = 15 pF, CMOS signal levels                                  |
| Maximum Data Rate <sup>4</sup>                                              |                                     | 10  |      |      | Mbps    | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Propagation Delay <sup>5</sup>                                              | tphl, tplh                          | 20  | 32   | 50   | ns      | C <sub>L</sub> = 15 pF, CMOS signal levels                                  |
| Pulse-Width Distortion,  t <sub>PLH</sub> – t <sub>PHL</sub>   <sup>5</sup> | PWD                                 |     |      | 3    | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Change vs. Temperature                                                      |                                     |     | 5    |      | ps/°C   | C <sub>L</sub> = 15 pF, CMOS signal levels                                  |
| Propagation Delay Skew <sup>6</sup>                                         | t <sub>PSK</sub>                    |     |      | 15   | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Channel-to-Channel Matching,<br>Co-Directional Channels <sup>7</sup>        | <b>t</b> pskcd                      |     |      | 3    | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Channel-to-Channel Matching,<br>Opposing-Directional Channels <sup>7</sup>  | t <sub>PSKOD</sub>                  |     |      | 6    | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| ADuM240xCRWZ                                                                |                                     |     |      |      |         |                                                                             |
| Minimum Pulse Width <sup>3</sup>                                            | PW                                  |     | 8.3  | 11.1 | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Maximum Data Rate <sup>4</sup>                                              |                                     | 90  | 120  |      | Mbps    | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Propagation Delay <sup>5</sup>                                              | t <sub>PHL</sub> , t <sub>PLH</sub> | 18  | 27   | 32   | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Pulse-Width Distortion, $ t_{PLH} - t_{PHL} ^{5}$                           | PWD                                 |     | 0.5  | 2    | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Change vs. Temperature                                                      |                                     |     | 3    |      | ps/°C   | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Propagation Delay Skew <sup>6</sup>                                         | t <sub>PSK</sub>                    |     |      | 10   | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Channel-to-Channel Matching,<br>Co-Directional Channels <sup>7</sup>        | t <sub>pskcd</sub>                  |     |      | 2    | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Channel-to-Channel Matching,<br>Opposing-Directional Channels <sup>7</sup>  | <b>t</b> pskod                      |     |      | 5    | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| For All Models                                                              |                                     |     |      |      |         |                                                                             |
| Output Disable Propagation Delay<br>(High/Low to High Impedance)            | t <sub>PHZ</sub> , t <sub>PLH</sub> |     | 6    | 8    | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Output Enable Propagation Delay<br>(High Impedance to High/Low)             | tpzh, tpzl                          |     | 6    | 8    | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Output Rise/Fall Time (10% to 90%)                                          | t <sub>R</sub> /t <sub>F</sub>      |     | 2.5  |      | ns      | $C_L = 15 \text{ pF}$ , CMOS signal levels                                  |
| Common-Mode Transient Immunity at<br>Logic High Output <sup>8</sup>         | CM <sub>H</sub>                     | 25  | 35   |      | kV/μs   | $V_{Ix} = V_{DD1}/V_{DD2}, V_{CM} = 1000 V,$<br>transient magnitude = 800 V |
| Common-Mode Transient Immunity at Logic Low Output <sup>8</sup>             | CM⊾                                 | 25  | 35   |      | kV/μs   | $V_{Ix} = 0 V, V_{CM} = 1000 V,$<br>transient magnitude = 800 V             |
| Refresh Rate                                                                | fr                                  |     | 1.2  |      | Mbps    | -                                                                           |
| Input Dynamic Supply Current, per Channel <sup>9</sup>                      | IDDI (D)                            |     | 0.19 |      | mA/Mbps |                                                                             |
| Output Dynamic Supply Current, per Channel <sup>9</sup>                     | I <sub>DDO (D)</sub>                |     | 0.15 |      | mA/Mbps |                                                                             |

<sup>1</sup> All voltages are relative to their respective ground.

- <sup>2</sup> Supply current values are for all four channels combined running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 14 for total lpp1 and lpp2 supply currents as a function of data rate for ADuM2400/ADuM2401/ADuM2402 channel configurations.
- <sup>3</sup> The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.
- <sup>4</sup> The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.
- <sup>5</sup> t<sub>PHL</sub> propagation delay is measured from the 50% level of the falling edge of the V<sub>Ix</sub> signal to the 50% level of the falling edge of the V<sub>Ox</sub> signal. t<sub>PLH</sub> propagation delay is measured from the 50% level of the rising edge of the V<sub>Ix</sub> signal to the 50% level of the rising edge of the V<sub>Ox</sub> signal.
- <sup>6</sup> t<sub>PSK</sub> is the magnitude of the worst-case difference in t<sub>PHL</sub> or t<sub>PLH</sub> that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
- <sup>7</sup> Co-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
- $^{8}$  CM<sub>H</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining V<sub>0</sub> > 0.8 V<sub>DD2</sub>. CM<sub>L</sub> is the maximum common-mode voltage slew rate than can be sustained while maintaining V<sub>0</sub> < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
- <sup>9</sup> Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

### **3 V OPERATION<sup>1</sup>**

 $2.7 \text{ V} \le V_{DD1} \le 3.6 \text{ V}, 2.7 \text{ V} \le V_{DD2} \le 3.6 \text{ V}$ . All min/max specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at  $T_A = 25^{\circ}\text{C}, V_{DD1} = V_{DD2} = 3.0 \text{ V}$ .

| Parameter                                                  | Symbol                                                  | Min                           | Тур  | Max  | Unit | Test Conditions                                                                                                   |
|------------------------------------------------------------|---------------------------------------------------------|-------------------------------|------|------|------|-------------------------------------------------------------------------------------------------------------------|
| DC SPECIFICATIONS                                          |                                                         |                               |      |      |      |                                                                                                                   |
| Input Supply Current, per Channel, Quiescent               | IDDI (Q)                                                |                               | 0.26 | 0.31 | mA   |                                                                                                                   |
| Output Supply Current, per Channel, Quiescent              | DDO (Q)                                                 |                               | 0.11 | 0.14 | mA   |                                                                                                                   |
| ADuM2400, Total Supply Current, Four Channels <sup>2</sup> |                                                         |                               |      |      |      |                                                                                                                   |
| DC to 2 Mbps                                               |                                                         |                               |      |      |      |                                                                                                                   |
| V <sub>DD1</sub> Supply Current                            | IDD1 (Q)                                                |                               | 1.2  | 1.9  | mA   | DC to 1 MHz logic signal free                                                                                     |
| V <sub>DD2</sub> Supply Current                            | I <sub>DD2 (Q)</sub>                                    |                               | 0.5  | 0.9  | mA   | DC to 1 MHz logic signal free                                                                                     |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        |                                                         |                               |      |      |      |                                                                                                                   |
| V <sub>DD1</sub> Supply Current                            | I <sub>DD1 (10)</sub>                                   |                               | 4.5  | 6.5  | mA   | 5 MHz logic signal freq.                                                                                          |
| V <sub>DD2</sub> Supply Current                            | IDD2 (10)                                               |                               | 1.4  | 2.0  | mA   | 5 MHz logic signal freq.                                                                                          |
| 90 Mbps (CRWZ Grade Only)                                  |                                                         |                               |      |      |      |                                                                                                                   |
| V <sub>DD1</sub> Supply Current                            | DD1 (90)                                                |                               | 42   | 65   | mA   | 45 MHz logic signal freq.                                                                                         |
| V <sub>DD2</sub> Supply Current                            | I <sub>DD2 (90)</sub>                                   |                               | 11   | 15   | mA   | 45 MHz logic signal freq.                                                                                         |
| ADuM2401, Total Supply Current, Four Channels <sup>2</sup> |                                                         |                               |      |      |      |                                                                                                                   |
| DC to 2 Mbps                                               |                                                         |                               |      |      |      |                                                                                                                   |
| V <sub>DD1</sub> Supply Current                            | DD1 (Q)                                                 |                               | 1.0  | 1.6  | mA   | DC to 1 MHz logic signal free                                                                                     |
| V <sub>DD2</sub> Supply Current                            | I <sub>DD2 (Q)</sub>                                    |                               | 0.7  | 1.2  | mA   | DC to 1 MHz logic signal free                                                                                     |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        |                                                         |                               |      |      |      | 5 5                                                                                                               |
| V <sub>DD1</sub> Supply Current                            | I <sub>DD1 (10)</sub>                                   |                               | 3.7  | 5.4  | mA   | 5 MHz logic signal freq.                                                                                          |
| V <sub>DD2</sub> Supply Current                            | DD2 (10)                                                |                               | 2.2  | 3.0  | mA   | 5 MHz logic signal freq.                                                                                          |
| 90 Mbps (CRWZ Grade Only)                                  |                                                         |                               |      |      |      |                                                                                                                   |
| V <sub>DD1</sub> Supply Current                            | DD1 (90)                                                |                               | 34   | 52   | mA   | 45 MHz logic signal freq.                                                                                         |
| V <sub>DD2</sub> Supply Current                            | DD2 (90)                                                |                               | 19   | 27   | mA   | 45 MHz logic signal freq.                                                                                         |
| ADuM2402, Total Supply Current, Four Channels <sup>2</sup> |                                                         |                               |      |      |      | 5 5 1                                                                                                             |
| DC to 2 Mbps                                               |                                                         |                               |      |      |      |                                                                                                                   |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current        | I <sub>DD1</sub> (Q),<br>I <sub>DD2</sub> (Q)           |                               | 0.9  | 1.5  | mA   | DC to 1 MHz logic signal free                                                                                     |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        | (2)                                                     |                               |      |      |      |                                                                                                                   |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current        | I <sub>DD1</sub> (10) <b>,</b><br>I <sub>DD2</sub> (10) |                               | 3.0  | 4.2  | mA   | 5 MHz logic signal freq.                                                                                          |
| 90 Mbps (CRWZ Grade Only)                                  | 1002 (10)                                               |                               |      |      |      |                                                                                                                   |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current        | I <sub>DD1 (90)</sub> ,                                 |                               | 27   | 39   | mA   | 45 MHz logic signal freq.                                                                                         |
|                                                            | IDD1 (90),                                              |                               |      |      |      |                                                                                                                   |
| For All Models                                             |                                                         |                               |      |      |      |                                                                                                                   |
| Input Currents                                             | Iia, Iib, Iic,<br>Iid, Ie1, Ie2                         | -10                           | 0.01 | 10   | μΑ   | $0 \le V_{IA}, V_{IB}, V_{IC}, V_{ID} \le V_{DD1}$ or<br>$V_{DD2}, 0 \le V_{E1}, V_{E2} \le V_{DD1}$ or $V_{DD2}$ |
| Logic High Input Threshold                                 | VIH, VEH                                                | 1.6                           |      |      | v    |                                                                                                                   |
| Logic Low Input Threshold                                  | VIL, VEL                                                |                               |      | 0.4  |      |                                                                                                                   |
| Logic High Output Voltages                                 | V <sub>OAH</sub> , V <sub>OBH</sub> ,                   | V <sub>DD1</sub> /            | 3.0  |      | v    | $I_{0x} = -20 \ \mu A$ , $V_{1x} = V_{1xH}$                                                                       |
|                                                            | V <sub>OCH</sub> , V <sub>ODH</sub>                     | $V_{DD2} - 0.1$<br>$V_{DD1}/$ | 2.8  |      | v    | $I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$                                                                        |
|                                                            |                                                         | $V_{DD1}$ – 0.4               | 2.0  |      | ľ    |                                                                                                                   |
| Logic Low Output Voltages                                  | VOAL, VOBL,                                             |                               | 0.0  | 0.1  | v    | $I_{Ox} = 20 \ \mu A, V_{Ix} = V_{IxL}$                                                                           |
|                                                            | Vocl, Vodl                                              |                               | 0.04 | 0.1  | V    | $I_{0x} = 400 \ \mu A, V_{1x} = V_{1xL}$                                                                          |
|                                                            |                                                         |                               | 0.2  | 0.4  | V    | $I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$                                                                         |

| Parameter                                                                   | Symbol                              | Min | Тур  | Max  | Unit    | Test Conditions                                                             |
|-----------------------------------------------------------------------------|-------------------------------------|-----|------|------|---------|-----------------------------------------------------------------------------|
| SWITCHING SPECIFICATIONS                                                    |                                     |     |      |      |         |                                                                             |
| ADuM240xARWZ                                                                |                                     |     |      |      |         |                                                                             |
| Minimum Pulse Width <sup>3</sup>                                            | PW                                  |     |      | 1000 | ns      | C <sub>L</sub> = 15pF, CMOS signal levels                                   |
| Maximum Data Rate <sup>4</sup>                                              |                                     | 1   |      |      | Mbps    | C <sub>L</sub> = 15pF, CMOS signal levels                                   |
| Propagation Delay <sup>5</sup>                                              | tphl, tplh                          | 50  | 75   | 100  | ns      | C <sub>L</sub> = 15pF, CMOS signal levels                                   |
| Pulse-Width Distortion,  t <sub>PLH</sub> − t <sub>PHL</sub>   <sup>5</sup> | PWD                                 |     |      | 40   | ns      | C <sub>L</sub> = 15pF, CMOS signal levels                                   |
| Propagation Delay Skew <sup>6</sup>                                         | t <sub>PSK</sub>                    |     |      | 50   | ns      | $C_L = 15 pF$ , CMOS signal levels                                          |
| Channel-to-Channel Matching <sup>7</sup>                                    | tpskcd/od                           |     |      | 50   | ns      | C <sub>L</sub> = 15pF, CMOS signal levels                                   |
| ADuM240xBRWZ                                                                |                                     |     |      |      |         |                                                                             |
| Minimum Pulse Width <sup>3</sup>                                            | PW                                  |     |      | 100  | ns      | C <sub>L</sub> = 15pF, CMOS signal levels                                   |
| Maximum Data Rate <sup>4</sup>                                              |                                     | 10  |      |      | Mbps    | $C_{L} = 15 pF$ , CMOS signal levels                                        |
| Propagation Delay <sup>5</sup>                                              | tphl, tplh                          | 20  | 38   | 50   | ns      | C <sub>L</sub> = 15pF, CMOS signal levels                                   |
| Pulse-Width Distortion,  t <sub>PLH</sub> − t <sub>PHL</sub>   <sup>5</sup> | PWD                                 |     |      | 3    | ns      | $C_{L} = 15 pF$ , CMOS signal levels                                        |
| Change vs. Temperature                                                      |                                     |     | 5    |      | ps/°C   | C <sub>L</sub> = 15pF, CMOS signal levels                                   |
| Propagation Delay Skew <sup>6</sup>                                         | t <sub>PSK</sub>                    |     |      | 22   | ns      | $C_{L} = 15 pF$ , CMOS signal levels                                        |
| Channel-to-Channel Matching,<br>Co-Directional Channels <sup>7</sup>        | <b>t</b> pskcd                      |     |      | 3    | ns      | $C_L = 15$ pF, CMOS signal levels                                           |
| Channel-to-Channel Matching,<br>Opposing-Directional Channels <sup>7</sup>  | t <sub>PSKOD</sub>                  |     |      | 6    | ns      | $C_L = 15 pF$ , CMOS signal level                                           |
| ADuM240xCRWZ                                                                |                                     |     |      |      |         |                                                                             |
| Minimum Pulse Width <sup>3</sup>                                            | PW                                  |     | 8.3  | 11.1 | ns      | $C_L = 15 pF$ , CMOS signal level                                           |
| Maximum Data Rate <sup>4</sup>                                              |                                     | 90  | 120  |      | Mbps    | C <sub>L</sub> = 15pF, CMOS signal level                                    |
| Propagation Delay <sup>5</sup>                                              | t <sub>PHL</sub> , t <sub>PLH</sub> | 20  | 34   | 45   | ns      | $C_L = 15 pF$ , CMOS signal level                                           |
| Pulse-Width Distortion,  tplh – tphl  <sup>5</sup>                          | PWD                                 |     | 0.5  | 2    | ns      | $C_L = 15 pF$ , CMOS signal level                                           |
| Change vs. Temperature                                                      |                                     |     | 3    |      | ps/°C   | $C_L = 15 pF$ , CMOS signal level                                           |
| Propagation Delay Skew <sup>6</sup>                                         | t <sub>PSK</sub>                    |     |      | 16   | ns      | $C_L = 15 pF$ , CMOS signal levels                                          |
| Channel-to-Channel Matching,<br>Co-Directional Channels <sup>7</sup>        | <b>t</b> <sub>PSKCD</sub>           |     |      | 2    | ns      | $C_L = 15 pF$ , CMOS signal level                                           |
| Channel-to-Channel Matching,<br>Opposing-Directional Channels <sup>7</sup>  | <b>t</b> pskod                      |     |      | 5    | ns      | $C_L = 15 pF$ , CMOS signal level                                           |
| For All Models                                                              |                                     |     |      |      |         |                                                                             |
| Output Disable Propagation Delay<br>(High/Low to High Impedance)            | t <sub>PHZ</sub> , t <sub>PLH</sub> |     | 6    | 8    | ns      | $C_L = 15 pF$ , CMOS signal level                                           |
| Output Enable Propagation Delay<br>(High Impedance to High/Low)             | tpzн, tpzl                          |     | 6    | 8    | ns      | $C_L = 15 pF$ , CMOS signal level                                           |
| Output Rise/Fall Time (10% to 90%)                                          | t <sub>R</sub> /t <sub>F</sub>      |     | 3    |      | ns      | C <sub>L</sub> = 15pF, CMOS signal level                                    |
| Common Mode Transient Immunity at<br>Logic High Output <sup>8</sup>         | CM <sub>H</sub>                     | 25  | 35   |      | kV/μs   | $V_{lx} = V_{DD1}/V_{DD2}, V_{CM} = 1000 V,$<br>transient magnitude = 800 V |
| Common Mode Transient Immunity at<br>Logic Low Output <sup>8</sup>          | CM∟                                 | 25  | 35   |      | kV/μs   | $V_{lx} = 0 V, V_{CM} = 1000 V,$<br>transient magnitude = 800 V             |
| Refresh Rate                                                                | fr                                  |     | 1.1  |      | Mbps    |                                                                             |
| Input Dynamic Supply Current, per Channel <sup>9</sup>                      | IDDI (D)                            |     | 0.10 |      | mA/Mbps |                                                                             |
| Output Dynamic Supply Current, per Channel <sup>9</sup>                     | I <sub>DDO (D)</sub>                |     | 0.03 |      | mA/Mbps |                                                                             |

- <sup>1</sup> All voltages are relative to their respective ground.
- <sup>2</sup> Supply current values are for all four channels combined running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 14 for total I<sub>DD1</sub> and I<sub>DD2</sub> supply currents as a function of data rate for ADuM2400/ADuM2401/ADuM2402 channel configurations.
- <sup>3</sup> The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.
- <sup>4</sup> The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.
- <sup>5</sup> t<sub>PHL</sub> propagation delay is measured from the 50% level of the falling edge of the V<sub>Ix</sub> signal to the 50% level of the falling edge of the V<sub>ox</sub> signal. t<sub>PLH</sub> propagation delay is measured from the 50% level of the rising edge of the V<sub>Ix</sub> signal to the 50% level of the rising edge of the V<sub>ox</sub> signal.
- <sup>6</sup> t<sub>PSK</sub> is the magnitude of the worst-case difference in t<sub>PHL</sub> or t<sub>PLH</sub> that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
- <sup>7</sup> Co-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
- $^{8}$  CM<sub>H</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining V<sub>0</sub> > 0.8V<sub>DD2</sub>. CM<sub>L</sub> is the maximum common-mode voltage slew rate than can be sustained while maintaining V<sub>0</sub> < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
- <sup>9</sup> Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

5 MHz logic signal freq.

### MIXED 5 V/3 V OR 3 V/5 V OPERATION<sup>1</sup>

3 V/5 V Operation

5 V/3 V operation:  $4.5 \text{ V} \le \text{V}_{\text{DD1}} \le 5.5 \text{ V}$ ,  $2.7 \text{ V} \le \text{V}_{\text{DD2}} \le 3.6 \text{ V}$ . 3 V/5 V operation:  $2.7 \text{ V} \le \text{V}_{\text{DD1}} \le 3.6 \text{ V}$ ,  $4.5 \text{ V} \le \text{V}_{\text{DD2}} \le 5.5 \text{ V}$ . All min/max specifications apply over the entire recommended operation range, unless otherwise noted.

All typical specifications are at  $T_A = 25^{\circ}$ C;  $V_{DD1} = 3.0$  V,  $V_{DD2} = 5$  V; or  $V_{DD1} = 5$  V,  $V_{DD2} = 3.0$  V.

| Parameter                                                  | Symbol    | Min | Тур        | Мах  | Unit    | Test Conditions               |
|------------------------------------------------------------|-----------|-----|------------|------|---------|-------------------------------|
| DC SPECIFICATIONS                                          |           |     | -71-       |      |         |                               |
| Input Supply Current, per Channel, Quiescent               | IDDI (Q)  |     |            |      |         |                               |
| 5 V/3 V Operation                                          | IDDI (Q)  |     | 0.50       | 0.53 | mA      |                               |
| 3 V/5 V Operation                                          |           |     | 0.26       | 0.31 | mA      |                               |
| Output Supply Current, per Channel, Quiescent              | IDDO (Q)  |     | 0.20       | 0.51 | 1117 (  |                               |
| 5 V/3 V Operation                                          | 1000 (Q)  |     | 0.11       | 0.14 | mA      |                               |
| 3 V/5 V Operation                                          |           |     | 0.11       | 0.14 | mA      |                               |
| ADuM2400, Total Supply Current, Four Channels <sup>2</sup> |           |     | 0.15       | 0.21 | 1117 (  |                               |
| DC to 2 Mbps                                               |           |     |            |      |         |                               |
| V <sub>DD1</sub> Supply Current                            | DD1 (Q)   |     |            |      |         |                               |
| 5 V/3 V Operation                                          | IDDT (Q)  |     | 2.2        | 2.8  | mA      | DC to 1 MHz logic signal free |
| 3 V/5 V Operation                                          |           |     | 1.2        | 1.9  | mA      | DC to 1 MHz logic signal free |
| V <sub>DD2</sub> Supply Current                            | DD2 (Q)   |     | 1.2        | 1.2  | 1117 (  |                               |
| 5 V/3 V Operation                                          | IDD2 (Q)  |     | 0.5        | 0.9  | mA      | DC to 1 MHz logic signal free |
| 3 V/5 V Operation                                          |           |     | 0.9        | 1.4  | mA      | DC to 1 MHz logic signal free |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        |           |     | 0.9        | 1.4  |         |                               |
| V <sub>DD1</sub> Supply Current                            | 1004 (10) |     |            |      |         |                               |
| 5 V/3 V Operation                                          | DD1 (10)  |     | 8.6        | 10.6 | mA      | 5 MHz logic signal freq.      |
| 3 V/5 V Operation                                          |           |     | 8.0<br>4.5 | 6.5  | mA      | 5 MHz logic signal freq.      |
| V <sub>DD2</sub> Supply Current                            | 1         |     | 4.5        | 0.5  | IIIA    | 5 MHZ logic signal freq.      |
| 5 V/3 V Operation                                          | DD2 (10)  |     | 1.4        | 2.0  | mA      | 5 MHz logic signal freq.      |
| 3 V/5 V Operation                                          |           |     | 2.6        | 3.5  | mA      | 5 MHz logic signal freq.      |
| 90 Mbps (CRWZ Grade Only)                                  |           |     | 2.0        | 5.5  |         | 5 miliziogie signal neq.      |
| V <sub>DD1</sub> Supply Current                            | 1         |     |            |      |         |                               |
| 5 V/3 V Operation                                          | DD1 (90)  |     | 76         | 100  | mA      | 45 MHz logic signal freq.     |
| 3 V/5 V Operation                                          |           |     | 70<br>42   | 65   | mA      | 45 MHz logic signal freq.     |
| V <sub>DD2</sub> Supply Current                            | 1         |     | 42         | 05   | mA      | 45 MHZ logic signal freq.     |
| 5 V/3 V Operation                                          | DD2 (90)  |     | 11         | 15   | mA      | 45 MHz logic signal freq.     |
| -                                                          |           |     | 21         | 25   |         |                               |
| 3 V/5 V Operation                                          |           |     | 21         | 25   | mA      | 45 MHz logic signal freq.     |
| ADuM2401, Total Supply Current, Four Channels <sup>2</sup> |           |     |            |      |         |                               |
| DC to 2 Mbps                                               |           |     |            |      |         |                               |
| $V_{DD1}$ Supply Current                                   | DD1 (Q)   |     | 1.0        | 2.4  |         |                               |
| 5 V/3 V Operation                                          |           |     | 1.8        | 2.4  | mA      | DC to 1 MHz logic signal free |
| 3 V/5 V Operation                                          |           |     | 1.0        | 1.6  | mA      | DC to 1 MHz logic signal free |
| V <sub>DD2</sub> Supply Current                            | DD2 (Q)   |     | 0.7        | 1 2  |         |                               |
| 5 V/3 V Operation                                          |           |     | 0.7        | 1.2  | mA      | DC to 1 MHz logic signal free |
| 3 V/5 V Operation                                          |           |     | 1.2        | 1.8  | mA      | DC to 1 MHz logic signal free |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        |           |     |            |      |         |                               |
| $V_{DD1}$ Supply Current                                   | DD1 (10)  |     | 71         | 0.0  |         |                               |
| 5 V/3 V Operation                                          |           |     | 7.1        | 9.0  | mA      | 5 MHz logic signal freq.      |
| 3 V/5 V Operation                                          |           |     | 3.7        | 5.4  | mA      | 5 MHz logic signal freq.      |
| V <sub>DD2</sub> Supply Current                            | DD2 (10)  |     |            |      |         |                               |
| 5 V/3 V Operation                                          |           |     | 2.2        | 3.0  | mA      | 5 MHz logic signal freq.      |
|                                                            |           |     | 4 1        | E 0  | 1 100 1 |                               |

4.1

5.0

mΑ

| Parameter                                                  | Symbol                           | Min                                          | Тур                                      | Max        | Unit | Test Conditions                                                                      |
|------------------------------------------------------------|----------------------------------|----------------------------------------------|------------------------------------------|------------|------|--------------------------------------------------------------------------------------|
| 90 Mbps (CRWZ Grade Only)                                  |                                  |                                              |                                          |            |      |                                                                                      |
| V <sub>DD1</sub> Supply Current                            | IDD1 (90)                        |                                              |                                          |            |      |                                                                                      |
| 5 V/3 V Operation                                          |                                  |                                              | 62                                       | 82         | mA   | 45 MHz logic signal freq.                                                            |
| 3 V/5 V Operation                                          |                                  |                                              | 34                                       | 52         | mA   | 45 MHz logic signal freq.                                                            |
| V <sub>DD2</sub> Supply Current                            | IDD2 (90)                        |                                              |                                          |            |      | 5 5 1                                                                                |
| 5 V/3 V Operation                                          |                                  |                                              | 19                                       | 27         | mA   | 45 MHz logic signal freq.                                                            |
| 3 V/5 V Operation                                          |                                  |                                              | 35                                       | 43         | mA   | 45 MHz logic signal freq.                                                            |
| ADuM2402, Total Supply Current, Four Channels <sup>2</sup> |                                  |                                              |                                          |            |      |                                                                                      |
| DC to 2 Mbps                                               |                                  |                                              |                                          |            |      |                                                                                      |
| V <sub>DD1</sub> Supply Current                            | IDD1 (Q)                         |                                              |                                          |            |      |                                                                                      |
| 5 V/3 V Operation                                          |                                  |                                              | 1.5                                      | 2.1        | mA   | DC to 1 MHz logic signal freq                                                        |
| 3 V/5 V Operation                                          |                                  |                                              | 0.9                                      | 1.5        | mA   | DC to 1 MHz logic signal freq                                                        |
| V <sub>DD2</sub> Supply Current                            | I <sub>DD2 (Q)</sub>             |                                              |                                          |            |      |                                                                                      |
| 5 V/3 V Operation                                          | (2)                              |                                              | 0.9                                      | 1.5        | mA   | DC to 1 MHz logic signal freq                                                        |
| 3 V/5 V Operation                                          |                                  |                                              | 1.5                                      | 2.1        | mA   | DC to 1 MHz logic signal freq                                                        |
| 10 Mbps (BRWZ and CRWZ Grades Only)                        |                                  |                                              |                                          |            |      |                                                                                      |
| V <sub>DD1</sub> Supply Current                            | I <sub>DD1 (10)</sub>            |                                              |                                          |            |      |                                                                                      |
| 5 V/3 V Operation                                          | 551 (10)                         |                                              | 5.6                                      | 7.0        | mA   | 5 MHz logic signal freq.                                                             |
| 3 V/5 V Operation                                          |                                  |                                              | 3.0                                      | 4.2        | mA   | 5 MHz logic signal freq.                                                             |
| V <sub>DD2</sub> Supply Current                            | IDD2 (10)                        |                                              |                                          |            |      |                                                                                      |
| 5 V/3 V Operation                                          | 1002 (10)                        |                                              | 3.0                                      | 4.2        | mA   | 5 MHz logic signal freq.                                                             |
| 3 V/5 V Operation                                          |                                  |                                              | 5.6                                      | 7.0        | mA   | 5 MHz logic signal freq.                                                             |
| 90 Mbps (CRWZ Grade Only)                                  |                                  |                                              |                                          |            |      | ·······                                                                              |
| V <sub>DD1</sub> Supply Current                            | I <sub>DD1 (90)</sub>            |                                              |                                          |            |      |                                                                                      |
| 5 V/3 V Operation                                          | 221 (30)                         |                                              | 49                                       | 62         | mA   | 45 MHz logic signal freq.                                                            |
| 3 V/5 V Operation                                          |                                  |                                              | 27                                       | 39         | mA   | 45 MHz logic signal freq.                                                            |
| V <sub>DD2</sub> Supply Current                            | DD2 (90)                         |                                              |                                          |            |      |                                                                                      |
| 5 V/3 V Operation                                          | 1002 (50)                        |                                              | 27                                       | 39         | mA   | 45 MHz logic signal freq.                                                            |
| 3 V/5 V Operation                                          |                                  |                                              | 49                                       | 62         | mA   | 45 MHz logic signal freq.                                                            |
| For All Models                                             |                                  |                                              |                                          |            |      |                                                                                      |
| Input Currents                                             | IIA, IIB, IIC,                   | -10                                          | 0.01                                     | 10         | μA   | $0 \leq V_{IA}, V_{IB}, V_{IC}, V_{ID} \leq V_{DD1} \text{ or } V_{DD}$              |
| Logic High Input Throshold                                 | IID, IE1, IE2<br>Vih, Veh        |                                              |                                          |            |      | $0 \leq V_{\text{E1}}, V_{\text{E2}} \leq V_{\text{DD1}} \text{ or } V_{\text{DD2}}$ |
| Logic High Input Threshold<br>5 V/3 V Operation            | VIH, VEH                         | 2.0                                          |                                          |            | v    |                                                                                      |
| 3 V/5 V Operation                                          |                                  | 2.0<br>1.6                                   |                                          |            | V    |                                                                                      |
| Logic Low Input Threshold                                  | V V                              | 1.0                                          |                                          |            | v    |                                                                                      |
| 5 V/3 V Operation                                          | $V_{IL}, V_{EL}$                 |                                              |                                          | 0.0        | v    |                                                                                      |
| 3 V/5 V Operation                                          |                                  |                                              |                                          | 0.8<br>0.4 | V    |                                                                                      |
| •                                                          | V V                              | V /                                          |                                          | 0.4        |      |                                                                                      |
| Logic High Output Voltages                                 | Voah, Vobh,<br>Voch, Vodh        | V <sub>DD1</sub> /<br>V <sub>DD2</sub> – 0.1 | $V_{DD1}/V_{DD2}$                        |            | V    | $I_{\text{Ox}} = -20 \ \mu\text{A}, V_{\text{Ix}} = V_{\text{IxH}}$                  |
|                                                            |                                  | V <sub>DD1</sub> /<br>V <sub>DD2</sub> – 0.4 | V <sub>DD1</sub> /V <sub>DD2</sub> - 0.2 |            | V    | $I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$                                           |
| Logic Low Output Voltages                                  | VOAL, VOBL,                      |                                              | 0.0                                      | 0.1        | V    | $I_{Ox} = 20 \ \mu A$ , $V_{Ix} = V_{IxL}$                                           |
| -                                                          | $V_{\text{OCL}}, V_{\text{ODL}}$ |                                              | 0.04                                     | 0.1        | V    | $I_{0x} = 400 \ \mu A, V_{1x} = V_{1xL}$                                             |
|                                                            |                                  |                                              | 0.2                                      | 0.4        | V    | $I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$                                            |

| Parameter                                                                  | Symbol                              | Min | Тур  | Мах  | Unit    | Test Conditions                                                                    |
|----------------------------------------------------------------------------|-------------------------------------|-----|------|------|---------|------------------------------------------------------------------------------------|
| SWITCHING SPECIFICATIONS                                                   |                                     |     |      |      |         |                                                                                    |
| ADuM240xARWZ                                                               |                                     |     |      |      |         |                                                                                    |
| Minimum Pulse Width <sup>3</sup>                                           | PW                                  |     |      | 1000 | ns      | C <sub>L</sub> = 15pF, CMOS signal level                                           |
| Maximum Data Rate <sup>4</sup>                                             |                                     | 1   |      |      | Mbps    | $C_{L} = 15 pF$ , CMOS signal level                                                |
| Propagation Delay <sup>5</sup>                                             | tphl, tplh                          | 50  | 70   | 100  | ns      | C <sub>L</sub> = 15pF, CMOS signal level                                           |
| Pulse-Width Distortion,  tplh – tphl  <sup>5</sup>                         | PWD                                 |     |      | 40   | ns      | C <sub>L</sub> = 15pF, CMOS signal level                                           |
| Propagation Delay Skew <sup>6</sup>                                        | t <sub>PSK</sub>                    |     |      | 50   | ns      | $C_L = 15 pF$ , CMOS signal level                                                  |
| Channel-to-Channel Matching <sup>7</sup>                                   | t <sub>PSKCD/OD</sub>               |     |      | 50   | ns      | C <sub>L</sub> = 15pF, CMOS signal level                                           |
| ADuM240xBRWZ                                                               |                                     |     |      |      |         |                                                                                    |
| Minimum Pulse Width <sup>3</sup>                                           | PW                                  |     |      | 100  | ns      | C <sub>L</sub> = 15pF,CMOS signal levels                                           |
| Maximum Data Rate <sup>4</sup>                                             |                                     | 10  |      |      | Mbps    | $C_L = 15 pF$ , CMOS signal level                                                  |
| Propagation Delay <sup>5</sup>                                             | tphl, tplh                          | 15  | 35   | 50   | ns      | $C_L = 15 pF$ , CMOS signal level                                                  |
| Pulse-Width Distortion, $ t_{PLH} - t_{PHL} ^5$                            | PWD                                 | _   |      | 3    | ns      | $C_L = 15 pF$ , CMOS signal level                                                  |
| Change vs. Temperature                                                     |                                     |     | 5    |      | ps/°C   | $C_L = 15 \text{pF}$ , CMOS signal level                                           |
| Propagation Delay Skew <sup>6</sup>                                        | t <sub>PSK</sub>                    |     | J.   | 22   | ns      | $C_L = 15 \text{ pF}$ , CMOS signal level                                          |
| Channel-to-Channel Matching,                                               | t <sub>PSKCD</sub>                  |     |      | 3    | ns      | $C_L = 15 \text{pF}$ , CMOS signal leve                                            |
| Co-Directional Channels <sup>7</sup>                                       | CF SKCD                             |     |      | 5    | 115     |                                                                                    |
| Channel-to-Channel Matching,<br>Opposing-Directional Channels <sup>7</sup> | t <sub>PSKOD</sub>                  |     |      | 6    | ns      | $C_L = 15 pF$ , CMOS signal leve                                                   |
| ADuM240xCRWZ                                                               |                                     |     |      |      |         |                                                                                    |
| Minimum Pulse Width <sup>3</sup>                                           | PW                                  |     | 8.3  | 11.1 | ns      | $C_L = 15 pF$ , CMOS signal leve                                                   |
| Maximum Data Rate <sup>4</sup>                                             |                                     | 90  | 120  |      | Mbps    | C <sub>L</sub> = 15pF, CMOS signal leve                                            |
| Propagation Delay <sup>5</sup>                                             | t <sub>PHL</sub> , t <sub>PLH</sub> | 20  | 30   | 40   | ns      | $C_L = 15 pF$ , CMOS signal leve                                                   |
| Pulse-Width Distortion,  tplh – tphl  <sup>5</sup>                         | PWD                                 |     | 0.5  | 2    | ns      | C <sub>L</sub> = 15pF, CMOS signal leve                                            |
| Change vs. Temperature                                                     |                                     |     | 3    |      | ps/°C   | $C_L = 15 pF$ , CMOS signal leve                                                   |
| Propagation Delay Skew <sup>6</sup>                                        | <b>t</b> <sub>PSK</sub>             |     |      | 14   | ns      | C <sub>L</sub> = 15pF, CMOS signal leve                                            |
| Channel-to-Channel Matching,<br>Co-Directional Channels <sup>7</sup>       | t <sub>PSKCD</sub>                  |     |      | 2    | ns      | $C_L = 15 pF$ , CMOS signal leve                                                   |
| Channel-to-Channel Matching,<br>Opposing-Directional Channels <sup>7</sup> | <b>t</b> pskod                      |     |      | 5    | ns      | $C_L = 15 pF$ , CMOS signal leve                                                   |
| For All Models                                                             |                                     |     |      |      |         |                                                                                    |
| Output Disable Propagation Delay<br>(High/Low to High Impedance)           | tphz, tplh                          |     | 6    | 8    | ns      | C <sub>L</sub> = 15pF, CMOS signal leve                                            |
| Output Enable Propagation Delay<br>(High Impedance to High/Low)            | t <sub>PZH</sub> , t <sub>PZL</sub> |     | 6    | 8    | ns      | C <sub>L</sub> = 15pF, CMOS signal leve                                            |
| Output Rise/Fall Time (10% to 90%)                                         | t <sub>R</sub> /t <sub>f</sub>      |     |      |      |         | $C_L = 15 pF$ , CMOS signal leve                                                   |
| 5 V/3 V Operation                                                          |                                     |     | 3.0  |      | ns      |                                                                                    |
| 3 V/5 V Operation                                                          |                                     |     | 2.5  |      | ns      |                                                                                    |
| Common-Mode Transient Immunity at<br>Logic High Output <sup>8</sup>        | CM <sub>H</sub>                     | 25  | 35   |      | kV/μs   | $V_{lx} = V_{DD1}/V_{DD2}$ , $V_{CM} = 1000 V_{cm}$<br>transient magnitude = 800 V |
| Common-Mode Transient Immunity at<br>Logic Low Output <sup>8</sup>         | CM∟                                 | 25  | 35   |      | kV/μs   | $V_{Ix} = 0 V, V_{CM} = 1000 V,$<br>transient magnitude = 800 V                    |
| Refresh Rate                                                               | fr                                  |     |      |      |         |                                                                                    |
| 5 V/3 V Operation                                                          |                                     |     | 1.2  |      | Mbps    |                                                                                    |
| 3 V/5 V Operation                                                          |                                     |     | 1.1  |      | Mbps    |                                                                                    |
| Input Dynamic Supply Current, per Channel <sup>9</sup>                     | I <sub>DDI (D)</sub>                |     |      |      |         |                                                                                    |
| 5 V/3 V Operation                                                          |                                     |     | 0.19 |      | mA/Mbps |                                                                                    |
| 3 V/5 V Operation                                                          |                                     |     | 0.10 |      | mA/Mbps |                                                                                    |
| Output Dynamic Supply Current, per Channel <sup>9</sup>                    | DDI (D)                             |     | -    |      |         |                                                                                    |
| 5 V/3 V Operation                                                          |                                     |     | 0.03 |      | mA/Mbps |                                                                                    |
| 3 V/5 V Operation                                                          |                                     |     | 0.05 |      | mA/Mbps |                                                                                    |

- <sup>1</sup> All voltages are relative to their respective ground.
- <sup>2</sup> Supply current values are for all four channels combined running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 14 for total lpp1 and lpp2 supply currents as a function of data rate for ADuM2400/ADuM2401/ADuM2402 channel configurations.
- <sup>3</sup> The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.
- <sup>4</sup> The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.
- <sup>5</sup> te<sub>HL</sub> propagation delay is measured from the 50% level of the falling edge of the V<sub>Ix</sub> signal to the 50% level of the falling edge of the V<sub>ox</sub> signal. t<sub>PLH</sub> propagation delay is measured from the 50% level of the rising edge of the V<sub>Ix</sub> signal to the 50% level of the rising edge of the V<sub>ox</sub> signal.
- <sup>6</sup> t<sub>PSK</sub> is the magnitude of the worst-case difference in t<sub>PHL</sub> or t<sub>PLH</sub> that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
- <sup>7</sup> Co-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
- $^{8}$  CM<sub>H</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining V<sub>0</sub> > 0.8V<sub>DD2</sub>. CM<sub>L</sub> is the maximum common-mode voltage slew rate than can be sustained while maintaining V<sub>0</sub> < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
- <sup>9</sup> Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

### PACKAGE CHARACTERISTICS

| Table | 4. |
|-------|----|
|       |    |

| Parameter                                      | Symbol         | Min | Тур              | Max | Unit | Test Conditions             |
|------------------------------------------------|----------------|-----|------------------|-----|------|-----------------------------|
| Resistance (Input-Output) <sup>1</sup>         | RI-O           |     | 10 <sup>12</sup> |     | Ω    |                             |
| Capacitance (Input-Output) <sup>1</sup>        | CI-O           |     | 2.2              |     | pF   | f = 1 MHz                   |
| Input Capacitance <sup>2</sup>                 | Cı             |     | 4.0              |     | pF   |                             |
| IC Junction-to-Case Thermal Resistance, Side 1 | $\theta_{jci}$ |     | 33               |     | °C/W | Thermocouple located at     |
| IC Junction-to-Case Thermal Resistance, Side 2 | $\theta_{jco}$ |     | 28               |     | °C/W | center of package underside |

<sup>1</sup> Device considered a 2-terminal device: Pins 1, 2, 3, 4, 5, 6, 7, and 8 shorted together and Pins 9, 10, 11, 12, 13, 14, 15, and 16 shorted together. <sup>2</sup> Input capacitance is from any input data pin to ground.

#### **REGULATORY INFORMATION (PENDING)**

| Table 5.                                                         |                                                                                                               |                                                                                                                   |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| UL <sup>1</sup>                                                  | CSA                                                                                                           | VDE <sup>2</sup>                                                                                                  |
| Recognized under 1577 component recognition program <sup>1</sup> | Approved under CSA Component<br>Acceptance Notice #5A                                                         | Certified according to DIN EN 60747-5-2<br>(VDE 0884 Part 2): 2003-01 <sup>2</sup>                                |
| 5000 V rms isolation voltage                                     | Reinforced insulation per CSA 60950-1-03<br>and IEC 60950-1,600 V rms (848 V peak)<br>maximum working voltage | Basic insulation, 848 V peak                                                                                      |
|                                                                  | Approved per IEC 60601-1                                                                                      | Complies with DIN EN 60747-5-2 (VDE 0884 Part 2):<br>2003-01, DIN EN 60950 (VDE 0805): 2001-12;<br>EN 60950: 2000 |
|                                                                  | Reinforced insulation, 250 V rms maximum working voltage                                                      | Reinforced insulation, 560 V peak                                                                                 |

<sup>1</sup> In accordance with UL1577, each ADuM240x is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current leakage detection limit = 10 μA).
<sup>2</sup> In accordance with DIN EN 60747-5-2, each ADuM240x is proof tested by applying an insulation test voltage ≥ 1590 V peak for 1 second (partial discharge detection limit = 5 pC).

### INSULATION AND SAFETY-RELATED SPECIFICATIONS

#### Table 6.

| Parameter                                        | Symbol | Value     | Unit  | Conditions                                                                            |
|--------------------------------------------------|--------|-----------|-------|---------------------------------------------------------------------------------------|
| Rated Dielectric Insulation Voltage              |        | 5000      | V rms | 1-minute duration.                                                                    |
| Minimum External Air Gap (Clearance)             | L(I01) | 7.46 min  | mm    | Measured from input terminals to output terminals, shortest distance through air.     |
| Minimum External Tracking (Creepage)             | L(I02) | 8.10 min  | mm    | Measured from input terminals to output terminals, shortest distance path along body. |
| Minimum Internal Gap (Internal Clearance)        |        | 0.017 min | mm    | Insulation distance through insulation.                                               |
| Tracking Resistance (Comparative Tracking Index) | CTI    | >175      | V     | DIN IEC 112/VDE 0303 Part 1.                                                          |
| Isolation Group                                  |        | Illa      |       | Material Group (DIN VDE 0110, 1/89, Table 1).                                         |

### DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS (PENDING)

| Table 7.                                                                                         |                 |                |        |
|--------------------------------------------------------------------------------------------------|-----------------|----------------|--------|
| Description                                                                                      | Symbol          | Characteristic | Unit   |
| Installation classification per DIN VDE 0110                                                     |                 |                |        |
| For Rated Mains Voltage ≤ 300 V rms                                                              |                 | I-IV           |        |
| For Rated Mains Voltage ≤ 450 V rms                                                              |                 | 1-11           |        |
| For Rated Mains Voltage ≤ 600 V rms                                                              |                 | 1-11           |        |
| Climatic Classification                                                                          |                 | 40/105/21      |        |
| Pollution Degree (DIN VDE 0110, Table 1)                                                         |                 | 2              |        |
| Maximum Working Insulation Voltage                                                               | VIORM           | 848            | V peak |
| Input to Output Test Voltage, Method b1                                                          | V <sub>PR</sub> | 1590           | V peak |
| $V_{IORM} \times 1.875 = V_{PR}$ , 100% Production Test, $t_m = 1$ sec, Partial Discharge < 5 pC |                 |                |        |
| Input to Output Test Voltage, Method a                                                           | V <sub>PR</sub> |                |        |
| After Environmental Tests Subgroup 1                                                             |                 |                |        |
| $V_{IORM} \times 1.6 = V_{PR}$ , t <sub>m</sub> = 60 sec, Partial Discharge < 5p C               |                 | 1357           | V peak |
| After Input and/or Safety Test Subgroup 2/3                                                      |                 |                |        |
| $V_{IORM} \times 1.2 = V_{PR}$ , t <sub>m</sub> = 60 sec, Partial Discharge < 5p C               |                 | 1018           | V peak |
| Highest Allowable Overvoltage (Transient Overvoltage, $t_{TR} = 10$ sec)                         | V <sub>TR</sub> | 6000           | V peak |
| Safety-Limiting Values (Maximum value allowed in the event of a failure, also see Figure 4)      |                 |                |        |
| Case Temperature                                                                                 | Ts              | 150            | °C     |
| Side 1 Current                                                                                   | I <sub>S1</sub> | 265            | mA     |
| Side 2 Current                                                                                   | Is2             | 335            | mA     |
| Insulation Resistance at T <sub>s</sub> , $V_{IO} = 500 V$                                       | Rs              | >109           | Ω      |

These isolators are suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means of protective circuits.

"\*" marking on packages denotes DIN EN 60747-5-2 approval for 846 V peak working voltage.

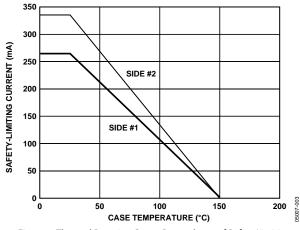



Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2

### **RECOMMENDED OPERATING CONDITIONS**

#### Table 8.

| Parameter                        | Symbol             | Min | Max  | Unit |
|----------------------------------|--------------------|-----|------|------|
| Operating Temperature            | TA                 | -40 | +105 | °C   |
| Supply Voltages <sup>1</sup>     | $V_{DD1}, V_{DD2}$ | 2.7 | 5.5  | V    |
| Input Signal Rise and Fall Times |                    |     | 1.0  | ms   |

<sup>1</sup> All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

### **ABSOLUTE MAXIMUM RATINGS**

#### Table 9.

| Parameter                                    | Symbol                              | Min  | Max                    | Unit  |
|----------------------------------------------|-------------------------------------|------|------------------------|-------|
| Storage Temperature                          | T <sub>ST</sub>                     | -65  | 150                    | °C    |
| Ambient Operating Temperature                | T <sub>A</sub>                      | -40  | 105                    | °C    |
| Supply Voltages <sup>1</sup>                 | V <sub>DD1</sub> , V <sub>DD2</sub> | -0.5 | 7.0                    | V     |
| Input Voltage <sup>1, 2</sup>                | VIA, VIB, VIC, VID, VE1, VE2        | -0.5 | V <sub>DDI</sub> + 0.5 | V     |
| Output Voltage <sup>1, 2</sup>               | Voa, Vob, Voc, Vod                  | -0.5 | $V_{DDO} + 0.5$        | V     |
| Average Output Current, Per Pin <sup>3</sup> |                                     |      |                        |       |
| Side 1                                       | lo1                                 | -18  | 18                     | mA    |
| Side 2                                       | I <sub>02</sub>                     | -22  | 22                     | mA    |
| Common-Mode Transients <sup>4</sup>          |                                     | -100 | +100                   | kV/μs |

<sup>1</sup> All voltages are relative to their respective ground.

 $^{2}$  V<sub>DDI</sub> and V<sub>DDO</sub> refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.

<sup>3</sup> See Figure 4 for maximum rated current values for various temperatures.

<sup>4</sup> Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating may cause latch-up or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Ambient temperature =  $25^{\circ}$ C, unless otherwise noted.

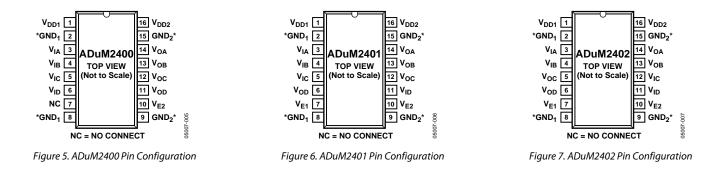
#### Table 10. Maximum Continuous Working Voltage<sup>1</sup>

| Parameter                     | Max | Unit            | Constraint                               |
|-------------------------------|-----|-----------------|------------------------------------------|
| AC Voltage, Bipolar Waveform  | 565 | V <sub>РК</sub> | 50-year minimum lifetime                 |
| AC Voltage, Unipolar Waveform | 848 | Vрк             | Maximum CSA/VDE approved working voltage |
| DC Voltage                    | 848 | V               | Maximum CSA/VDE approved working voltage |

<sup>1</sup> Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

| V <sub>IX</sub> Input <sup>1</sup> | V <sub>EX</sub> Input | V <sub>DDI</sub> State <sup>1</sup> | V <sub>DDO</sub> State <sup>1</sup> | Vox Output <sup>1</sup> | Notes                                                                                                                                                                                                                                               |
|------------------------------------|-----------------------|-------------------------------------|-------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н                                  | H or NC               | Powered                             | Powered                             | Н                       |                                                                                                                                                                                                                                                     |
| L                                  | H or NC               | Powered                             | Powered                             | L                       |                                                                                                                                                                                                                                                     |
| Х                                  | L                     | Powered                             | Powered                             | Z                       |                                                                                                                                                                                                                                                     |
| Х                                  | H or NC               | Unpowered                           | Powered                             | н                       | Outputs returns to input state within 1 $\mu$ s of V <sub>DDI</sub> power restoration.                                                                                                                                                              |
| Х                                  | L                     | Unpowered                           | Powered                             | Z                       |                                                                                                                                                                                                                                                     |
| Х                                  | x                     | Powered                             | Unpowered                           | Indeterminate           | Outputs returns to input state within 1 $\mu$ s of V <sub>DDO</sub> power restoration if V <sub>EX</sub> state is H or NC. Outputs returns to high impedance state within 8 ns of V <sub>DDO</sub> power restoration if V <sub>EX</sub> state is L. |

#### Table 11. Truth Table (Positive Logic)


<sup>1</sup> V<sub>IX</sub> and V<sub>OX</sub> refer to the input and output signals of a given channel (A, B, C, or D). V<sub>EX</sub> refers to the output enable signal on the same side as the V<sub>OX</sub> outputs. V<sub>DDI</sub> and V<sub>DDO</sub> refer to the supply voltages on the input and output sides of the given channel, respectively.

### **ESD CAUTION**

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



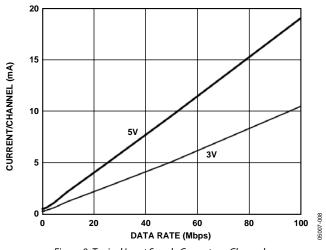
### **PIN CONFIGURATIONS AND PIN FUNCTION DESCRIPTIONS**

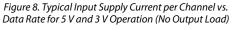


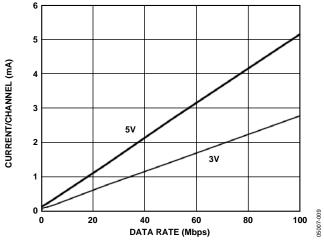
\*Pin 2 and Pin 8 are internally connected. Connecting both to GND<sub>1</sub> is recommended. Pin 9 and Pin 15 are internally connected. Connecting both to GND<sub>2</sub> is recommended. Output enable Pin 10 on the ADuM2400 may be left disconnected if outputs are always enabled. Output enable Pin 7 and Pin 10 on the ADuM2401/ADuM2401/ADuM2402 may be left disconnected if outputs are always enabled. In noisy environments, connecting Pin 7 (for ADuM2401 and ADuM2402) and Pin 10 (for all models) to an external logic high or low is recommended.

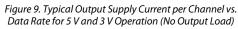
| Pin |                  |                                                                                                                                                                                                                                             |
|-----|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Mnemonic         | Function                                                                                                                                                                                                                                    |
| 1   | V <sub>DD1</sub> | Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.                                                                                                                                                                                         |
| 2   | GND <sub>1</sub> | Ground 1. Ground reference for isolator Side 1.                                                                                                                                                                                             |
| 3   | VIA              | Logic Input A.                                                                                                                                                                                                                              |
| 4   | V <sub>IB</sub>  | Logic Input B.                                                                                                                                                                                                                              |
| 5   | VIC              | Logic Input C.                                                                                                                                                                                                                              |
| 6   | VID              | Logic Input D.                                                                                                                                                                                                                              |
| 7   | NC               | No Connect.                                                                                                                                                                                                                                 |
| 8   | GND1             | Ground 1. Ground reference for isolator Side 1.                                                                                                                                                                                             |
| 9   | GND <sub>2</sub> | Ground 2. Ground reference for isolator Side 2.                                                                                                                                                                                             |
| 10  | V <sub>E2</sub>  | Output Enable 2. Active high logic input. $V_{OA}$ , $V_{OB}$ , $V_{OC}$ , and $V_{OD}$ outputs are enabled when $V_{E2}$ is high or disconnected. $V_{OA}$ , $V_{OB}$ , $V_{OC}$ , and $V_{OD}$ outputs are disabled when $V_{E2}$ is low. |
| 11  | VOD              | Logic Output D.                                                                                                                                                                                                                             |
| 12  | Voc              | Logic Output C.                                                                                                                                                                                                                             |
| 13  | V <sub>OB</sub>  | Logic Output B.                                                                                                                                                                                                                             |
| 14  | VOA              | Logic Output A.                                                                                                                                                                                                                             |
| 15  | GND <sub>2</sub> | Ground 2. Ground reference for isolator Side 2.                                                                                                                                                                                             |
| 16  | V <sub>DD2</sub> | Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.                                                                                                                                                                                         |

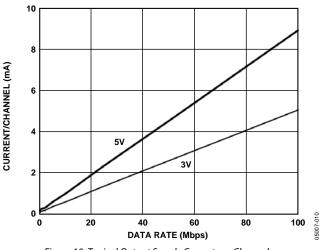
#### Table 12. ADuM2400 Pin Function Descriptions

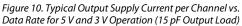

#### Table 13. ADuM2401 Pin Function Descriptions

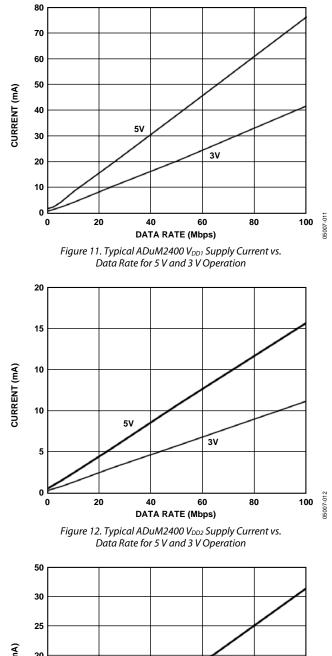

| 140        | able 15. AD all 2401 1 m 1 and ton Descriptions |                                                                                                                                                                                                                       |  |  |  |  |  |
|------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Pin<br>No. | Mnemonic                                        | Function                                                                                                                                                                                                              |  |  |  |  |  |
| 1          | V <sub>DD1</sub>                                | Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.                                                                                                                                                                   |  |  |  |  |  |
| 2          | GND1                                            | Ground 1. Ground reference for isolator Side 1.                                                                                                                                                                       |  |  |  |  |  |
| 3          | VIA                                             | Logic Input A.                                                                                                                                                                                                        |  |  |  |  |  |
| 4          | V <sub>IB</sub>                                 | Logic Input B.                                                                                                                                                                                                        |  |  |  |  |  |
| 5          | VIC                                             | Logic Input C.                                                                                                                                                                                                        |  |  |  |  |  |
| 6          | V <sub>OD</sub>                                 | Logic Output D.                                                                                                                                                                                                       |  |  |  |  |  |
| 7          | V <sub>E1</sub>                                 | Output enable 1. Active high logic input. $V_{OD}$ output is enabled when $V_{E1}$ is high or disconnected. $V_{OD}$ is disabled when $V_{E1}$ is low.                                                                |  |  |  |  |  |
| 8          | GND1                                            | Ground 1. Ground reference for isolator Side 1.                                                                                                                                                                       |  |  |  |  |  |
| 9          | GND <sub>2</sub>                                | Ground 2. Ground reference for isolator Side 2.                                                                                                                                                                       |  |  |  |  |  |
| 10         | V <sub>E2</sub>                                 | Output Enable 2. Active high logic input. $V_{OA}$ , $V_{OB}$ , and $V_{OC}$ outputs are enabled when $V_{E2}$ is high or disconnected. $V_{OA}$ , $V_{OB}$ , and $V_{OC}$ outputs are disabled when $V_{E2}$ is low. |  |  |  |  |  |
| 11         | V <sub>ID</sub>                                 | Logic Input D.                                                                                                                                                                                                        |  |  |  |  |  |
| 12         | Voc                                             | Logic Output C.                                                                                                                                                                                                       |  |  |  |  |  |
| 13         | V <sub>OB</sub>                                 | Logic Output B.                                                                                                                                                                                                       |  |  |  |  |  |
| 14         | VOA                                             | Logic Output A.                                                                                                                                                                                                       |  |  |  |  |  |
| 15         | GND <sub>2</sub>                                | Ground 2. Ground reference for isolator Side 2.                                                                                                                                                                       |  |  |  |  |  |
| 16         | V <sub>DD2</sub>                                | Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.                                                                                                                                                                   |  |  |  |  |  |
|            |                                                 |                                                                                                                                                                                                                       |  |  |  |  |  |


| Pin |                  |                                                                                                                                                                                                      |  |  |  |  |  |
|-----|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| No. | Mnemonic         | Function                                                                                                                                                                                             |  |  |  |  |  |
| 1   | V <sub>DD1</sub> | Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.                                                                                                                                                  |  |  |  |  |  |
| 2   | GND1             | Ground 1. Ground reference for isolator Side 1.                                                                                                                                                      |  |  |  |  |  |
| 3   | VIA              | Logic Input A.                                                                                                                                                                                       |  |  |  |  |  |
| 4   | VIB              | Logic Input B.                                                                                                                                                                                       |  |  |  |  |  |
| 5   | Voc              | Logic Output C.                                                                                                                                                                                      |  |  |  |  |  |
| 6   | Vod              | Logic Output D.                                                                                                                                                                                      |  |  |  |  |  |
| 7   | V <sub>E1</sub>  | Output Enable 1. Active high logic input. $V_{OC}$<br>and $V_{OD}$ outputs are enabled when $V_{E1}$ is high<br>or disconnected. $V_{OC}$ and $V_{OD}$ outputs are<br>disabled when $V_{E1}$ is low. |  |  |  |  |  |
| 8   | GND <sub>1</sub> | Ground 1. Ground reference for isolator Side 1.                                                                                                                                                      |  |  |  |  |  |
| 9   | GND <sub>2</sub> | Ground 2. Ground reference for isolator Side 2.                                                                                                                                                      |  |  |  |  |  |
| 10  | V <sub>E2</sub>  | Output Enable 2. Active high logic input. $V_{OA}$<br>and $V_{OB}$ outputs are enabled when $V_{E2}$ is high<br>or disconnected. $V_{OA}$ and $V_{OB}$ outputs are<br>disabled when $V_{E2}$ is low. |  |  |  |  |  |
| 11  | VID              | Logic Input D.                                                                                                                                                                                       |  |  |  |  |  |
| 12  | VIC              | Logic Input C.                                                                                                                                                                                       |  |  |  |  |  |
| 13  | Vob              | Logic Output B.                                                                                                                                                                                      |  |  |  |  |  |
| 14  | Voa              | Logic Output A.                                                                                                                                                                                      |  |  |  |  |  |
| 15  | GND <sub>2</sub> | Ground 2. Ground reference for isolator Side 2.                                                                                                                                                      |  |  |  |  |  |
| 16  | V <sub>DD2</sub> | Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.                                                                                                                                                  |  |  |  |  |  |


## Table 14. ADuM2402 Pin Function Descriptions


### **TYPICAL PERFORMANCE CHARACTERISTICS**













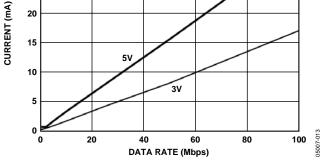




Figure 13. Typical ADuM2401  $V_{DD1}$  Supply Current vs. Data Rate for 5 V and 3 V Operation

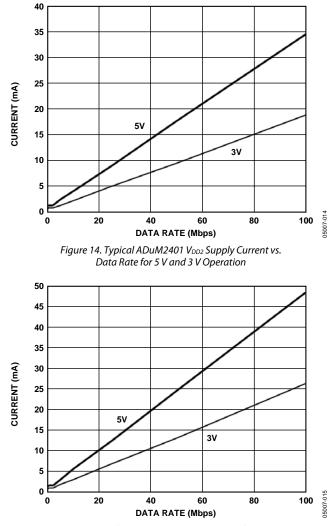
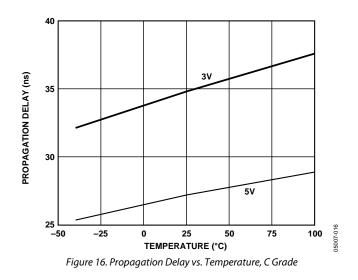




Figure 15. Typical ADuM2402  $V_{DD1}$  or  $V_{DD2}$  Supply Current vs. Data Rate for 5 V and 3 V Operation



### APPLICATION INFORMATION PC BOARD LAYOUT

The ADuM240x digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 17). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for  $V_{DD1}$  and between Pin 15 and Pin 16 for  $V_{DD2}$ . The capacitor value should be between 0.01 µF and 0.1 µF. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side are connected close to the package.

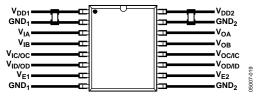
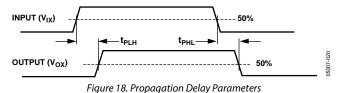




Figure 17. Recommended Printed Circuit Board Layout

In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the device's Absolute Maximum Ratings, thereby leading to latch-up or permanent damage.

### **PROPAGATION DELAY-RELATED PARAMETERS**

Propagation delay is a parameter that describes the length of time it takes for a logic signal to propagate through a component. The propagation delay to a logic low output may differ from the propagation delay to logic high.



Pulse-width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs among channels within a single ADuM240x component.

Propagation delay skew refers to the maximum amount the propagation delay differs among multiple ADuM240x components operated under the same conditions.

### DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow (~1 ns) pulses to be sent via the transformer to the decoder. The decoder is bistable and is therefore either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than 2  $\mu$ s, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than approximately 5  $\mu$ s, the input side is assumed to be without power or nonfunctional; in which case, the isolator output is forced to a default state (see Table 11) by the watchdog timer circuit.

The limitation on the ADuM240x's magnetic field immunity is set by the condition in which induced voltage in the transformer's receiving coil is large enough to either falsely set or reset the decoder. The analysis below defines the conditions under which this may occur. The 3 V operating condition of the ADuM240x is examined as it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V. The decoder has a sensing threshold at about 0.5 V, therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

 $V = (-d\beta/dt)\Sigma \prod r_n^2; n = 1, 2, ..., N$ 

where:

 $\beta$  is the magnetic flux density (gauss). *N* is the number of turns in the receiving coil.  $r_n$  is the radius of the n<sup>th</sup> turn in the receiving coil (cm).

Given the geometry of the receiving coil in the ADuM240x and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 19.

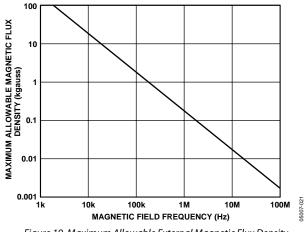
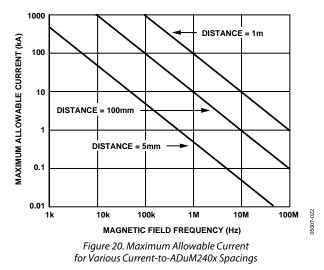




Figure 19. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from > 1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM240x transformers. Figure 20 expresses these allowable current magnitudes as a function of frequency for selected distances. As can be seen, the ADuM240x is extremely immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example noted, one would have to place a 0.5 kA current 5 mm away from the ADuM240x to affect the component's operation.



Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

#### **POWER CONSUMPTION**

The supply current at a given channel of the ADuM240x isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.

For each input channel, the supply current is given by:

| $I_{DDI}$ = | = I <sub>DDI (</sub> | Q)  |   |   |  | $f \le 0.5 f$ | r |
|-------------|----------------------|-----|---|---|--|---------------|---|
| T           | т                    | (2) | 0 | r |  | C. 0.5        | r |

 $I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)} \qquad f > 0.5f_r$ 

For each output channel, the supply current is given by:

$$\begin{split} I_{\rm DDO} &= I_{\rm DDO \, (Q)} & f \leq 0.5 f_{\rm r} \\ I_{\rm DDO} &= (I_{\rm DDO \, (D)} + (0.5 \times 10^{-3} \times C_{\rm L} V_{\rm DDO}) \times (2f - f_{\rm r}) + I_{\rm DDO \, (Q)} \\ & f > 0.5 f_{\rm r} \end{split}$$

where:

*I*<sub>DDI (D)</sub>, *I*<sub>DDO (D)</sub> are the input and output dynamic supply currents per channel (mA/Mbps).

 $C_L$  is output load capacitance (pF).

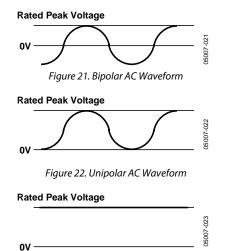
 $V_{DDO}$  is the output supply voltage (V).

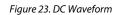
*f* is the input logic signal frequency (MHz, half of the input data rate, NRZ signaling).

 $f_r$  is the input stage refresh rate (Mbps).

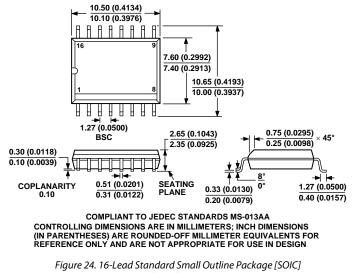
 $I_{DDI(Q)}$ ,  $I_{DDO(Q)}$  are the specified input and output quiescent supply currents (mA).

To calculate the total  $I_{DD1}$  and  $I_{DD2}$  supply current, the supply currents for each input and output channel corresponding to  $I_{DD1}$  and  $I_{DD2}$  are calculated and totaled. Figure 8 and Figure 9 provide per-channel supply currents as a function of data rate for an unloaded output condition. Figure 10 provides perchannel supply current as a function of data rate for a 15 pF output condition. Figure 11 through Figure 14 provide total  $I_{DD1}$ and  $I_{DD2}$  supply current as a function of data rate for ADuM2400/ADuM2401/ADuM2402 channel configurations.


### **INSULATION LIFETIME**


All insulation structures, subjected to sufficient time and/or voltage, are vulnerable to breakdown. In addition to the testing performed by the regulatory agencies, ADI has carried out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM240x.

These tests subjected populations of devices to continuous cross-isolation voltages. To accelerate the occurrence of failures, the selected test voltages were values exceeding those of normal use. The time to failure values of these units were recorded and used to calculate acceleration factors. These factors were then used to calculate the time to failure under normal operating conditions. The values shown in Table 10 are the lesser of the following two values:


- The value that ensures at least a 50-year lifetime of continuous use.
- The maximum CSA/VDE approved working voltage.

It should also be noted that the lifetime of the ADuM240x varies according to the waveform type imposed across the isolation barrier. The *i*Coupler insulation structure is stressed differently depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 21, Figure 22, and Figure 23 illustrate the different isolation voltage waveforms.





### **OUTLINE DIMENSIONS**



Wide Body (RW-16) Dimension shown in millimeters and (inches)

#### **ORDERING GUIDE**

| Model                        | Number of<br>Inputs,<br>V <sub>DD1</sub> Side | Number of<br>Inputs,<br>V <sub>DD2</sub> Side | Maximum<br>Data Rate<br>(Mbps) | Maximum<br>Propagation<br>Delay, 5 V (ns) | Maximum<br>Pulse-Width<br>Distortion (ns) | Temperature<br>Range | Package<br>Option <sup>1</sup> |
|------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------|-------------------------------------------|-------------------------------------------|----------------------|--------------------------------|
| ADuM2400ARWZ <sup>2, 3</sup> | 4                                             | 0                                             | 1                              | 100                                       | 40                                        | -40°C to +105°C      | RW-16                          |
| ADuM2400BRWZ <sup>2, 3</sup> | 4                                             | 0                                             | 10                             | 50                                        | 3                                         | –40°C to +105°C      | RW-16                          |
| ADuM2400CRWZ <sup>2, 3</sup> | 4                                             | 0                                             | 90                             | 32                                        | 2                                         | –40°C to +105°C      | RW-16                          |
| ADuM2401ARWZ <sup>2, 3</sup> | 3                                             | 1                                             | 1                              | 100                                       | 40                                        | -40°C to +105°C      | RW-16                          |
| ADuM2401BRWZ <sup>2, 3</sup> | 3                                             | 1                                             | 10                             | 50                                        | 3                                         | –40°C to +105°C      | RW-16                          |
| ADuM2401CRWZ <sup>2, 3</sup> | 3                                             | 1                                             | 90                             | 32                                        | 2                                         | –40°C to +105°C      | RW-16                          |
| ADuM2402ARWZ <sup>2, 3</sup> | 2                                             | 2                                             | 1                              | 100                                       | 40                                        | -40°C to +105°C      | RW-16                          |
| ADuM2402BRWZ <sup>2, 3</sup> | 2                                             | 2                                             | 10                             | 50                                        | 3                                         | –40°C to +105°C      | RW-16                          |
| ADuM2402CRWZ <sup>2, 3</sup> | 2                                             | 2                                             | 90                             | 32                                        | 2                                         | –40°C to +105°C      | RW-16                          |

 $^{1}$  RW-16 = 16-lead wide body SOIC.

<sup>2</sup> Tape and reel is available. The addition of an -RL suffix designates a 13" (1,000 units) tape and reel option.

 $^{3}$  Z = Pb-free part.

## NOTES



www.analog.com

 $^{\odot}$  2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05007–0–9/05(0)

Rev. 0 | Page 24 of 24