

SLVSD61A-JULY 2016-REVISED JULY 2016

DRV8837C 1-A Low-Voltage H-Bridge Driver

Technical

Documents

Sample &

Buy

1 Features

- H-Bridge Motor Driver
 - Drives a DC Motor or Other Loads
 - Low MOSFET On-Resistance: HS + LS 1 Ω
- 1-A Maximum Drive Current
- 0- to 11-V Operating Supply-Voltage Range
- Standard PWM Interface (IN1/IN2)
- Low-Power Sleep Mode With 120-nA Maximum Sleep Current
 - nSLEEP pin
- Small Package and Footprint
 - 8 WSON (With Thermal Pad)
 - 2.0 × 2.0 mm
- Protection Features
 - VCC Undervoltage Lockout (UVLO)
 - Overcurrent Protection (OCP)
 - Thermal Shutdown (TSD)

2 Applications

- Cameras
- DSLR Lenses
- Consumer Products
- Toys
- Robotics
- Medical Devices

3 Description

Tools &

Software

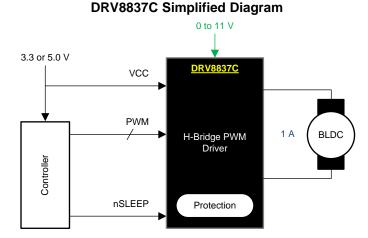
The DRV8837C device provides an integrated motor driver solution for cameras, consumer products, toys, and other low-voltage or battery-powered motion control applications. The device can drive one DC motor or other devices like solenoids. The output driver block consists of N-channel power MOSFETs configured as an H-bridge to drive the motor winding. An internal charge pump generates needed gate drive voltages.

Support &

Community

20

The DRV8837C device can supply up to 1 A of output current. The device operates on a motor power supply voltage from 0 to 11 V, and control logic can operate on 1.8-V to 5-V rails.


The DRV8837C device has a PWM (IN/IN) input interface.

Internal shutdown functions are provided for overcurrent protection, short circuit protection, undervoltage lockout, and overtemperature.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
DRV8837C	WSON (8)	2.00 mm × 2.00 mm	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2016, Texas Instruments Incorporated

2

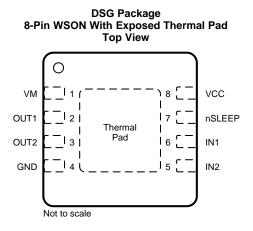
Table of Contents

1	Feat	tures 1						
2	Арр	lications1						
3	Description 1							
4	Revision History 2							
5	Pin Configuration and Functions							
6	Spe	cifications 4						
	6.1	Absolute Maximum Ratings 4						
	6.2	ESD Ratings 4						
	6.3	Recommended Operating Conditions 4						
	6.4	Thermal Information 4						
	6.5	Electrical Characteristics 5						
	6.6	Timing Requirements 6						
	6.7	Typical Characteristics 7						
7	Deta	ailed Description 8						
	7.1	Overview 8						
	7.2	Functional Block Diagram 8						
	7.3	Feature Description9						
	7.4	Device Functional Modes 10						

Application and Implementation 11					
8.1	Application Information 11				
8.2	Typical Application 11				
Pow	er Supply Recommendations 12				
	Bulk Capacitance 12				
Laye	out 14				
	Layout Guidelines 14				
10.2	Layout Example 14				
10.3	Power Dissipation 14				
Dev	ice and Documentation Support 15				
11.1	Documentation Support 15				
11.2	Receiving Notification of Documentation Updates 15				
11.3	Community Resources 15				
11.4	Trademarks 15				
11.5	Electrostatic Discharge Caution 15				
11.6	Glossary 15				
	hanical, Packaging, and Orderable mation				
	8.1 8.2 Pow 9.1 Layo 10.1 10.2 10.3 Dev 11.1 11.2 11.3 11.4 11.5 11.6 Mec				

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (July 2016) to Revision A				
•	Changed the device status from Product Preview to Production Data	1		

www.ti.com

DRV8837C SLVSD61A – JULY 2016–REVISED JULY 2016

5 Pin Configuration and Functions

Pin Functions

PIN NAME NO.		ТҮРЕ	DESCRIPTION		
		ITPE			
POWER AND	GROUND				
GND	4	PWR	Device ground This pin must be connected to the PCB ground.		
VCC	8	PWR	Logic power supply Bypass this pin to the GND pin with a 0.1-µF ceramic capacitor rated for VCC.		
VM	1	PWR	Motor power supply Bypass this pin to the GND pin with a 0.1-µF ceramic capacitor rated for VM.		
CONTROL					
IN1	6	I	IN1 input		
IN2	5	I	IN2 input		
nSLEEP			Sleep mode input When this pin is in logic low, the device enters low-power sleep mode. The device operates normally when this pin is logic high. The pin has an internal pulldown resistor to GND.		
OUTPUT					
OUT1	2	0	Motor output		
OUT2	3	0	Connect this pin to the motor winding.		

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
Motor power-supply voltage	VM	-0.3	12	V
Logic power-supply voltage	V _{CC}	-0.3	7	V
Control pin voltage	IN1, IN2, nSLEEP	-0.5	7	V
Peak drive current	Peak drive current OUT1, OUT2 Internally limited		y limited	Α
Operating virtual junction tempe	erature, T _J	-40	150	°C
Storage temperature, T _{stg}		-60	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground pin.

6.2 ESD Ratings

			VALUE	UNIT
	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{VM}	Motor power-supply voltage	0	11	V
V _{CC}	Logic power-supply voltage	1.8	7	V
I _{OUT}	Motor peak current	0	1	А
f _{PWM}	Externally applied PWM frequency	0	250	kHz
V _{LOGIC}	Logic level input voltage	0	5.5	V
T _A	Operating ambient temperature	-40	85	°C

6.4 Thermal Information

over operating free-air temperature range (unless otherwise noted)

		DRV8837C	
	THERMAL METRIC ⁽¹⁾	DSG (WSON)	UNIT
		8 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	60.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	71.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	32.2	°C/W
ΨJT	Junction-to-top characterization parameter	1.6	°C/W
Ψјв	Junction-to-board characterization parameter	32.8	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	9.8	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

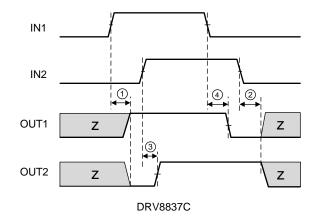
6.5 Electrical Characteristics

 $T_A = 25^{\circ}C$, over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	SUPPLIES (VM, V _{CC})	· · · · · · · · · · · · · · · · · · ·				
V _{VM}	VM operating voltage		0		11	V
	VM operating augustus	$V_{VM} = 5 V; V_{CC} = 3 V;$ No PWM		40	100	μA
I _{∨M}	VM operating supply current	V _{VM} = 5 V; V _{CC} = 3 V; 50 kHz PWM		0.8	1.5	mA
I _{VMQ}	VM sleep mode supply current	$V_{VM} = 5 V; V_{CC} = 3 V;$ nSLEEP = 0		30	95	nA
V _{CC}	V _{CC} operating voltage		1.8		7	V
	V _{CC} operating supply current	$V_{VM} = 5 V; V_{CC} = 3 V;$ No PWM		300	500	μA
I _{VCC}	VCC operating supply current	V _{VM} = 5 V; V _{CC} = 3 V; 50 kHz PWM		0.7	1.5	mA
IVCCQ	$V_{\mbox{\scriptsize CC}}$ sleep mode supply current	$V_{VM} = 5 V; V_{CC} = 3 V;$ nSLEEP = 0		5	25	nA
CONTRO	DL INPUTS (IN1/PH, IN2/EN, nSLEE	P)				
V _{IL}	Input logic-low voltage				$0.25 \times V_{CC}$	V
VIH	Input logic-high voltage		$0.5 \times V_{CC}$			V
V _{HYS}	Input logic hysteresis			$0.08 \times V_{CC}$		V
I _{IL}	Input logic-low current	$V_{INx} = 0 V$	-5		5	μA
I _{IH}	Input logic-high current	V _{INx} = 3.3 V			50	μA
R _{PD}	Pulldown resistance			100		kΩ
MOTOR	DRIVER OUTPUTS (OUT1, OUT2)					
R _{DS(ON)}	HS + LS FET on-resistance	$V_{VM} = 5 V; V_{CC} = 3.3 V;$ $I_O = 200 mA; T_J = 25^{\circ}C$		1000		mΩ
I _{OFF}	Off-state leakage current	$V_{OUTx} = 0 V$	-200		200	nA
PROTEC	CTION CIRCUITS					
V		V _{CC} falling			1.7	V
V _{UVLO}	V _{CC} undervoltage lockout	V _{CC} rising			1.8	V
I _{OCP}	Overcurrent protection trip level		1.2			А
t _{DEG}	Overcurrent deglitch time			1		μS
t _{RETRY}	Overcurrent retry time			1		ms
T _{TSD} ⁽¹⁾	Thermal shutdown temperature	Die temperature T _J	150	160	180	°C

(1) Not tested in production; limits are based on characterization data

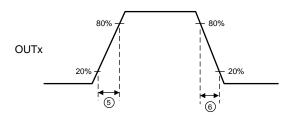
DRV8837C

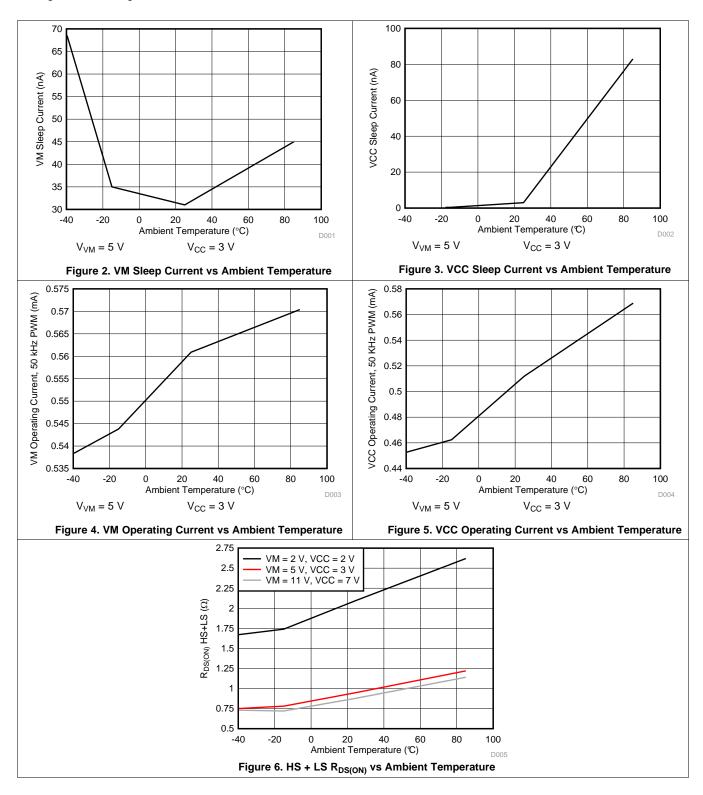

SLVSD61A -JULY 2016-REVISED JULY 2016

www.ti.com

6.6 Timing Requirements

$T_A = 25^{\circ}C, V_{VM} = 5 V, V_{CC} = 3 V, RL = 20 \Omega$								
NO.				MIN	MAX	UNIT		
1	t ₇	Output enable time			300	ns		
2	t ₈	Output disable time			300	ns		
3	t ₉	Delay time, INx high to OUTx high	See Figure 1		160	ns		
4	t ₁₀	Delay time, INx low to OUTx low	See Figure 1.		160	ns		
5	t ₁₁	Output rise time		20	188	ns		
6	t ₁₂	Output fall time		20	188	ns		
_	t _{wake}	Wake time, nSLEEP rising edge to part active			30	μS		




Figure 1. Input and Output Timing for DRV8837C

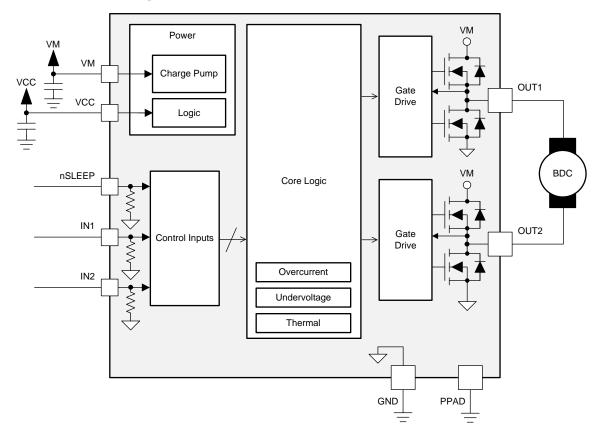
6 Submit Documentation Feedback

6.7 Typical Characteristics

Plots generated using characterization data.

TEXAS INSTRUMENTS

7 Detailed Description


7.1 Overview

The DRV8837C device is an H-bridge driver that can drive one DC motor or other devices like solenoids. The outputs are controlled using a PWM interface (IN1/IN2).

A low-power sleep mode is included, which can be enabled using the nSLEEP pin.

This device greatly reduces the component count of motor driver systems by integrating the necessary driver FETs and FET control circuitry into a single device. In addition, the DRV8837C device adds protection features beyond traditional discrete implementations: undervoltage lockout, overcurrent protection, and thermal shutdown.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Bridge Control

The DRV8837C device is controlled using a PWM input interface, also called an IN/IN interface. Each output is controlled by a corresponding input pin.

Table 1 shows the logic for the DRV8837C device.

nSLEEP	IN1	IN2	OUT1	OUT2	FUNCTION (DC MOTOR)
0	Х	х	Z	Z	Coast
1	0	0	Z	Z	Coast
1	0	1	L	н	Reverse
1	1	0	Н	L	Forward
1	1	1	L	L	Brake

Table 1. DRV8837C Device Logic

7.3.2 Sleep Mode

If the nSLEEP pin is brought to a logic-low state, the DRV8837C device enters a low-power sleep mode. In this state, all unnecessary internal circuitry is powered down.

7.3.3 Power Supplies and Input Pins

The input pins can be driven within the recommended operating conditions with or without the VCC, VM, or both power supplies present. No leakage current path exists to the supply. Each input pin has a weak pulldown resistor (approximately 100 k Ω) to ground.

The VCC and VM supplies can be applied and removed in any order. When the VCC supply is removed, the device enters a low-power state and draws very little current from the VM supply. The VCC and VM pins can be connected together if the supply voltage is between 1.8 and 7 V.

The VM voltage supply does not have any undervoltage-lockout protection (UVLO). As long as $V_{CC} > 1.8$ V, the internal device logic remains active which means that the VM pin voltage can drop to 0 V, however, the load may not be sufficiently driven at low VM voltages.

7.3.4 Protection Circuits

The DRV8837C is fully protected against VCC undervoltage, overcurrent, and overtemperature events.

- VCC undervoltage lockout If at any time the voltage on the VCC pin falls below the undervoltage lockout threshold voltage, all FETs in the H-bridge are disabled. Operation resumes when the VCC pin voltage rises above the UVLO threshold.
- **Overcurrent protection (OCP)** An analog current-limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than t_{DEG}, all FETs in the H-bridge are disabled. Operation resumes automatically after t_{RETRY} has elapsed. Overcurrent conditions are detected on both the high-side and low-side devices. A short to the VM pin, GND, or from the OUT1 pin to theOUT2 pin results in an overcurrent condition.
- **Thermal shutdown (TSD)** If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled. After the die temperature falls to a safe level, operation automatically resumes.

FAULT	CONDITION	H-BRIDGE	RECOVERY
VCC undervoltage (UVLO)	VCC < 1.7 V	Disabled	VCC > 1.8 V
Overcurrent (OCP)	I _{OUT} > 1.2 A (MIN)	Disabled (retries automatically)	t _{RETRY} elapses
Thermal Shutdown (TSD)	T _J > 150°C (MIN)	Disabled (retries automatically)	T _J < 150°C

Table L. Fault Dellavio	Т	able	2.	Fault	Behavior
-------------------------	---	------	----	-------	-----------------

7.4 Device Functional Modes

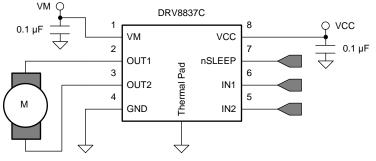
The DRV8837C device is active unless the nSLEEP pin is brought logic low. In sleep mode the H-bridge FETs are disabled Hi-Z. The DRV8837C device is brought out of sleep mode automatically if nSLEEP is brought logic high.

The H-bridge outputs are disabled during undervoltage lockout, overcurrent, and overtemperature fault conditions.

MODE	CONDITION	H-BRIDGE		
Operating	nSLEEP pin = 1	Operating		
Sleep mode	nSLEEP pin = 0	Disabled		
Fault encountered	Any fault condition met	Disabled (retries automatically)		

Table 3. Operation Modes

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DRV8837C device is device is used to drive one DC motor or other devices like solenoids. The following design procedure can be used to configure the DRV8837C device.

8.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 7. Schematic of DRV8837C Application

8.2.1 Design Requirements

Table 4 lists the required parameters for a typical usage case.

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE
Motor supply voltage	VM	9 V
Logic supply voltage	VCC	3.3 V
Target RMS current	I _{OUT}	0.8 A

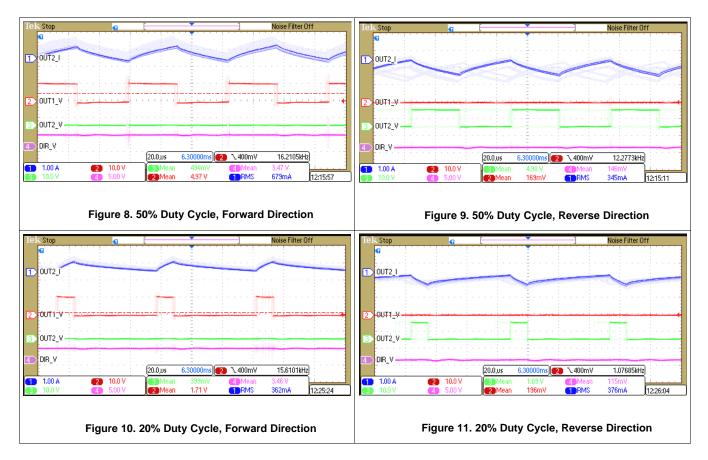
Table 4. System Design Requirements

8.2.2 Detailed Design Procedure

8.2.2.1 Motor Voltage

The appropriate motor voltage depends on the ratings of the motor selected and the desired RPM. A higher voltage spins a brushed dc motor faster with the same PWM duty cycle applied to the power FETs. A higher voltage also increases the rate of current change through the inductive motor windings.

8.2.2.2 Low-Power Operation


When entering sleep mode, TI recommends setting all inputs as a logic low to minimize system power.

DRV8837C SLVSD61A – JULY 2016 – REVISED JULY 2016

www.ti.com

8.2.3 Application Curves

9 Power Supply Recommendations

9.1 Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor-drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

- The highest current required by the motor system
- · The power-supply capacitance and ability to source current
- The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed dc, brushless dc, stepper)
- The motor braking method

The inductance between the power supply and motor drive system limits the rate at which current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate size of bulk capacitor.

Bulk Capacitance (continued)

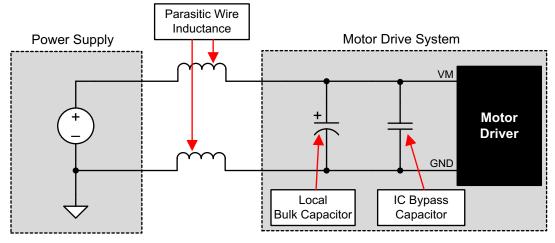


Figure 12. Example Setup of Motor Drive System With External Power Supply

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply

DRV8837C SLVSD61A – JULY 2016–REVISED JULY 2016

10 Layout

10.1 Layout Guidelines

The VM and VCC pins should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1 μ F rated for the VM and VCC supplies. These capacitors should be placed as close to the VM and VCC pins as possible with a thick trace or ground plane connection to the device GND pin. In addition bulk capacitance is required on the VM pin.

10.2 Layout Example

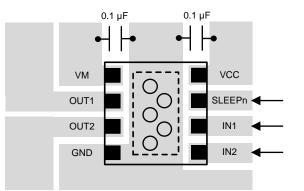


Figure 13. Simplified Layout Example

10.3 Power Dissipation

Power dissipation in the DRV8837C device is dominated by the power dissipated in the output FET resistance, or $R_{DS(ON)}$. Use Equation 1 to estimate the average power dissipation when running a brushed-DC motor.

 $P_{TOT} = R_{DS(ON)} \times (I_{OUT(RMS)})^2$

where

- P_{TOT} is the total power dissipation
- R_{DS(ON)} is the resistance of the HS plus LS FETs
- I_{OUT(RMS)} is the RMS or DC output current being supplied to the load

(1)

The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and heatsinking.

NOTE

The value of $R_{\text{DS}(\text{ON})}$ increases with temperature, so as the device heats, the power dissipation increases.

The DRV8837C device has thermal shutdown protection. If the die temperature exceeds approximately 150°C, the device is disabled until the temperature drops to a safe level.

Any tendency of the device to enter thermal shutdown is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature.

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Calculating Motor Driver Power Dissipation (SLVA504)
- DRV8837C Evaluation Module User's Guide (SLVUAS3)
- Understanding Motor Driver Current Ratings (SLVA505)

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

19-Aug-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DRV8837CDSGR	ACTIVE	WSON	DSG	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	837C	Samples
DRV8837CDSGT	ACTIVE	WSON	DSG	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	837C	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

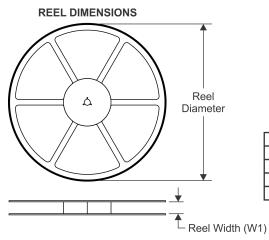
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

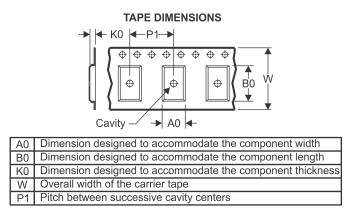
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

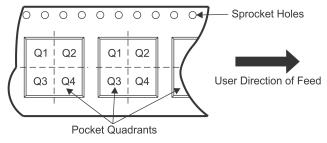
19-Aug-2016


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

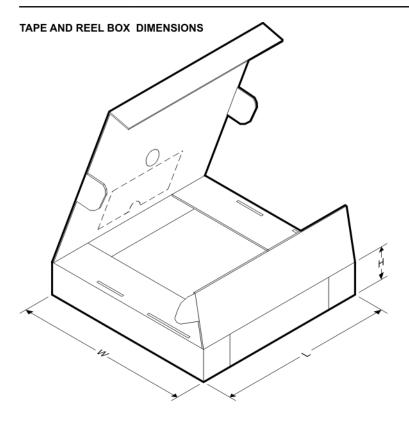

www.ti.com

Texas Instruments


TAPE AND REEL INFORMATION

*All dimensions are nominal

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

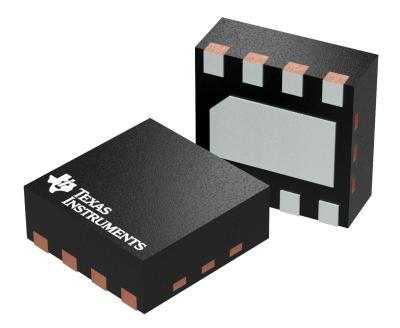

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DRV8837CDSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
DRV8837CDSGT	WSON	DSG	8	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

10-Jan-2018



*All dimensions are nominal

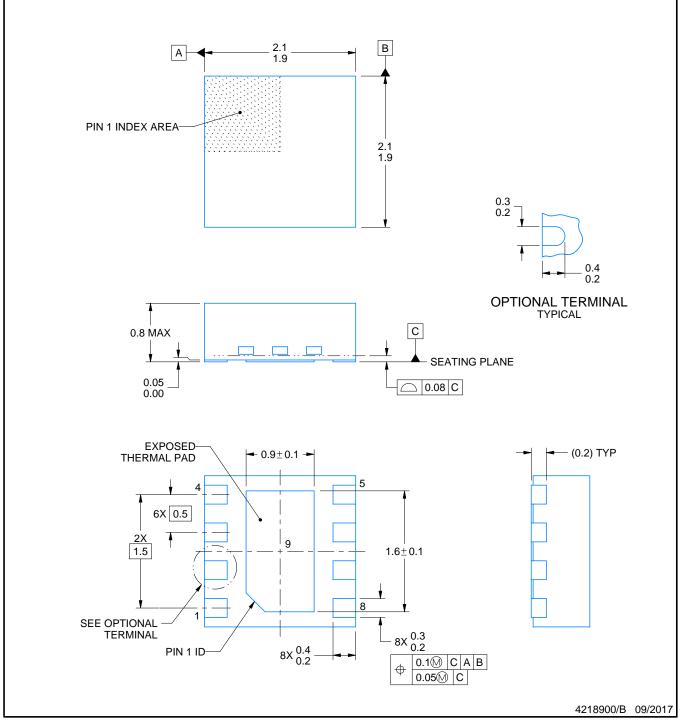
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DRV8837CDSGR	WSON	DSG	8	3000	210.0	185.0	35.0
DRV8837CDSGT	WSON	DSG	8	250	210.0	185.0	35.0

GENERIC PACKAGE VIEW

WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4208210/C


DSG0008A

PACKAGE OUTLINE

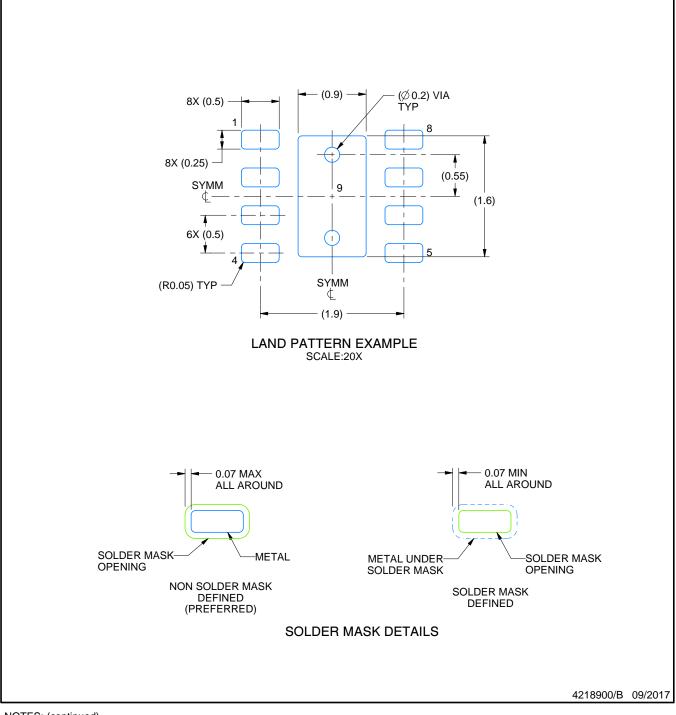
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



DSG0008A

EXAMPLE BOARD LAYOUT

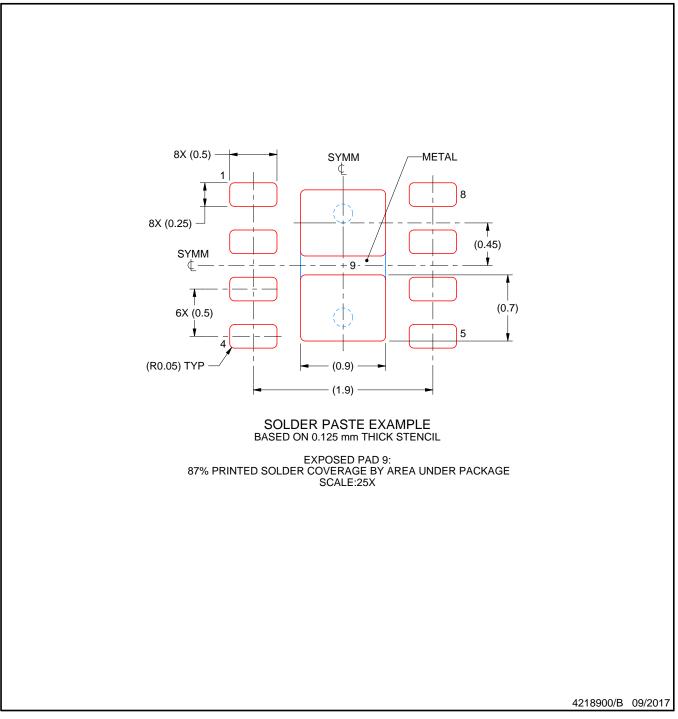
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



DSG0008A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated