TPS61087 650-kHz,1.2-MHz, 18.5-V Step-Up DC-DC Converter With 3.2-A Switch

1 Features

- 2.5-V to 6-V Input Voltage Range
- 18.5-V Boost Converter With 3.2-A Switch Current
- $650-\mathrm{kHz}, 1.2-\mathrm{MHz}$ Selectable Switching Frequency
- Adjustable Soft-Start
- Thermal Shutdown
- Undervoltage Lockout
- 10-Pin QFN and Thin QFN Packages

2 Applications

- Handheld Devices
- GPS Receivers
- Digital Still Cameras
- Portable Applications
- DSL Modems
- PCMCIA Cards
- TFT LCD Bias Supply

3 Description

The TPS61087 is a high-frequency, high-efficiency DC-DC converter with an integrated 3.2-A, 0.13- Ω power switch capable of providing an output voltage up to 18.5 V . The selectable frequency of 650 kHz or 1.2 MHz allows the use of small external inductors and capacitors and provides fast transient response. The external compensation allows optimization of the application for specific conditions. A capacitor connected to the soft-start pin minimizes inrush current at startup.

Device Information $^{\mathbf{(1)}}$	
PART NUMBER PACKAGE BODY SIZE (NOM) TPS61087 VSON (10) $3.00 \mathrm{~mm} \times 3.00 \mathrm{~mm}$ WSON (10)	

(1) For all available packages, see the orderable addendum at the end of the datasheet.

4 Simplified Schematic

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Simplified Schematic 1
5 Revision History. 2
6 Pin Configuration and Functions 3
7 Specifications 3
7.1 Absolute Maximum Ratings 3
7.2 ESD Ratings 4
7.3 Recommended Operating Conditions 4
7.4 Thermal Information 4
7.5 Electrical Characteristics 4
7.6 Typical Characteristics 5
8 Detailed Description 8
8.1 Overview 8
8.2 Functional Block Diagram 8
8.3 Feature Description 9
8.4 Device Functional Modes 9
9 Application and Implementation 10
9.1 Application Information 10
9.2 Typical Application 10
9.3 System Examples 16
10 Power Supply Recommendations 21
11 Layout. 21
11.1 Layout Guidelines 21
11.2 Layout Example 22
12 Device and Documentation Support 23
12.1 Third-Party Products Disclaimer 23
12.2 Trademarks 23
12.3 Electrostatic Discharge Caution 23
12.4 Glossary 23
13 Mechanical, Packaging, and Orderable Information 23

5 Revision History

Changes from Revision C (July 2013) to Revision D Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
Changes from Revision B (March 2010) to Revision C Page
- Added V_{IH} Test Condition for $\mathrm{EN}, \mathrm{V}_{\mathbb{I N}}=2.5 \mathrm{~V}$ to 4.3 V 5
Changes from Revision A (June 2008) to Revision B- Added DSC package to PIN ASSIGNMENT3
- Deleted Lead temperature from Absolute Maximum Ratings 3
- Changed $f_{\text {osc }}$ to f_{S} in Electrical Characteristics Boost Converter Oscillator Frequency 5
- Changed FREQ = high to FREQ = V_{IN} in Electrical Characteristics Boost Converter Oscillator Frequency 5
- Changed FREQ = low to $\mathrm{FREQ}=\mathrm{GND}$ in Electrical Characteristics Boost Converter Oscillator Frequency 5
- Added Maximum load current vs. Input voltage graph 5
- Added Maximum load current vs. Input voltage graph 5
- Changed f to f_{S} and Frequency to Oscillator Frequency in Figure 6 6
- Changed f to f_{s} and Frequency to Oscillator Frequency in Figure 7 6
- Changed the text in the Detailed Description. 8
- Changed "inductor current ripple is below 20\%" to " inductor current ripple is below 35\%" 12
- Added output capacitor calculation 14
Changes from Original (May 2008) to Revision A Page
- Added text to the Detailed Description - following the Block Diagram 8

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	
NAME	NO.		
AGND	4, Thermal Pad		Analog ground
COMP	1	I/O	Compensation pin
EN	3	I	Shutdown control input. Connect this pin to logic high level to enable the device
FB	2	I	Feedback pin
FREQ	9	I	Frequency select pin. The power switch operates at 650 kHz if FREQ is connected to GND and at 1.2 MHz if FREQ is connected to IN
IN	8	I	Input supply pin
PGND	5		Power ground
SS	10	O	Soft-start control pin. Connect a capacitor to this pin if soft-start needed. Open = no soft-start
SW	6,7	I	Switch pin

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

	MIN	MAX	UNIT
Input voltage range IN ${ }^{(2)}$	-0.3	7.0	V
Voltage range on pins EN, FB, SS, FREQ, COMP	-0.3	7.0	V
Voltage on pin SW	-0.3	20	V
Continuous power dissipation	See Thermal Information		
Operating junction temperature range	-40	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
(2) All voltage values are with respect to network ground terminal.

7.2 ESD Ratings

			VALUE	UNIT
$\mathrm{V}_{\text {(ESD) }}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	± 2000	V
		Charged-device model (CDM), per JEDEC specification JESD22C101 ${ }^{(2)}$	± 500	
		Machine model (MM)	± 200	

(1) JEDEC document JEP155 states that $500-\mathrm{V}$ HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than $500-\mathrm{V}$ HBM is possible with the necessary precautions. Pins listed as $\pm 2000 \mathrm{~V}$ may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than $250-\mathrm{V}$ CDM is possible with the necessary precautions. Pins listed as $\pm 500 \mathrm{~V}$ may actually have higher performance.

7.3 Recommended Operating Conditions

		MIN	NOM
$\mathrm{V}_{\mathbb{I}}$	Input voltage range	2.5	UNIT
V_{S}	Boost output voltage range	$\mathrm{V}_{\mathbb{I N}}+0.5$	6
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-40	18.5
$\mathrm{~T}_{\mathrm{J}}$	Operating junction temperature	-40	8

7.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		TPS61087		UNIT
		DRC	DSC	
		10 PINS	10 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	54.7	55.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	67.2	84.8	
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	29.6	29.7	
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	2.3	5.4	
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	29.8	29.8	
$\mathrm{R}_{\text {өJC(bot) }}$	Junction-to-case (bottom) thermal resistance	15.6	10.9	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

$\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}, \mathrm{EN}=\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY						
$\mathrm{V}_{\text {IN }}$	Input voltage range		2.5		6	V
I_{Q}	Operating quiescent current into IN	Device not switching, $\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$		75	100	$\mu \mathrm{A}$
ISDVIN	Shutdown current into IN	EN = GND			1	$\mu \mathrm{A}$
VUVLO	Undervoltage lockout threshold	$\mathrm{V}_{\text {IN }}$ falling			2.4	V
		$\mathrm{V}_{\text {IN }}$ rising			2.5	V
TSD	Thermal shutdown	Temperature rising		150		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SDHYS }}$	Thermal shutdown hysteresis			14		${ }^{\circ} \mathrm{C}$

Electrical Characteristics (continued)

$\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}, \mathrm{EN}=\mathrm{V}_{\mathbb{I N}}, \mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LOGIC SIGNALS EN, FREQ						
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 6.0 V	2			V
		Valid only for $\mathrm{EN}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 4.3 V	1.6			
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 6.0 V			0.5	V
IINLEAK	Input leakage current	$\mathrm{EN}=\mathrm{FREQ}=\mathrm{GND}$			0.1	$\mu \mathrm{A}$
BOOST CONVERTER						
$\mathrm{V}_{\text {S }}$	Boost output voltage		$\begin{array}{r} \hline \mathrm{V}_{\mathbb{1 N}}+ \\ 0.5 \end{array}$		18.5	V
$\mathrm{V}_{\text {FB }}$	Feedback regulation voltage		1.230	1.238	1.246	V
gm	Transconductance error amplifier			107		$\mu \mathrm{A} / \mathrm{V}$
$\mathrm{I}_{\text {FB }}$	Feedback input bias current	$\mathrm{V}_{\mathrm{FB}}=1.238 \mathrm{~V}$			0.1	$\mu \mathrm{A}$
${ }^{\text {rDS }}$ (on)	N-channel MOSFET on-resistance	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\text {SW }}=$ current limit		0.13	0.18	Ω
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{SW}}=$ current limit		0.16	0.23	
$I_{\text {SWLEAK }}$	SW leakage current	$\mathrm{EN}=\mathrm{GND}, \mathrm{V}_{\text {SW }}=\mathrm{V}_{\text {IN }}=6.0 \mathrm{~V}$			2	$\mu \mathrm{A}$
LIM	N-Channel MOSFET current limit		3.2	4.0	4.8	A
$\mathrm{I}_{\text {SS }}$	Soft-start current	$\mathrm{V}_{\text {SS }}=1.238 \mathrm{~V}$	7	10	13	$\mu \mathrm{A}$
f_{s}	Oscillator frequency	FREQ $=\mathrm{V}_{\text {IN }}$	0.9	1.2	1.5	MHz
		FREQ $=$ GND	480	650	820	kHz
	Line regulation	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 6.0 V , $\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$	0.0002			\%/V
	Load regulation	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$ to 1 A		0.11		\%/A

7.6 Typical Characteristics

The typical characteristics are measured with the inductors $74477890033.3 \mu \mathrm{H}$ (high frequency) or $744540686.8 \mu \mathrm{H}$ (low frequency) from Wurth and the rectifier diode SL22.

Table 1. Table of Graphs

			FIGURE
lout(max)	Maximum load current	vs. Input voltage at High frequency (1.2 MHz)	Figure 1
lout(max)	Maximum load current	vs. Input voltage at Low frequency (650 kHz)	Figure 2
η	Efficiency	vs. Load current, $\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$	Figure 3
η	Efficiency	vs. Load current, $\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}$	Figure 4
	Supply current	vs. Supply voltage	Figure 5
	Oscillator frequency	vs. Load current	Figure 6
	Oscillator frequency	vs. Supply voltage	Figure 7

Figure 1. Maximum Load Current vs Input Voltage

Figure 3. Efficiency vs Load Current

Figure 5. Supply Current vs Supply Voltage

Figure 2. Maximum Load Current vs Input Voltage

Figure 4. Efficiency vs Load Current

Figure 6. Oscillator Frequency vs Load Current

Figure 7. Oscillator Frequency vs Supply Voltage

8 Detailed Description

8.1 Overview

The boost converter is designed for output voltages of up to 18.5 V with a switch peak current limit of 3.2 A minimum. The device, which operates in a current mode scheme with quasi-constant frequency, is externally compensated for maximum flexibility and stability. The switching frequency is selectable between 650 kHz and 1.2 MHz , and the minimum input voltage is 2.5 V . To limit the inrush current at start-up, a soft-start pin is available.

The novel topology of the TPS60187 boost converter uses adaptive off-time to provide superior load and line transient responses. This topology also operates over a wider range of applications than conventional converters.
The selectable switching frequency offers the possibility to optimize the design either for the use of small-sized components (1.2 MHz) or for higher system efficiency (650 kHz). However, the frequency changes slightly because the voltage drop across the $r_{\text {DS(on) }}$ has some influence on the current and voltage measurement and thus on the on-time (the off-time remains constant).

The converter operates in continuous conduction mode (CCM) as soon as the input current increases above half the ripple current in the inductor, for lower load currents it switches into discontinuous conduction mode (DCM). If the load is further reduced, the part starts to skip pulses to maintain the output voltage.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Soft-Start

The boost converter has an adjustable soft-start to prevent high inrush current during start-up. To minimize the inrush current during start-up an external capacitor, connected to the soft-start pin SS and charged with a constant current, is used to slowly ramp up the internal current limit of the boost converter. When the EN pin is pulled high, the soft-start capacitor C_{SS} is immediately charged to 0.3 V . The capacitor is then charged at a constant current of $10 \mu \mathrm{~A}$ typically until the output of the boost converter V_{S} has reached its Power Good threshold (roughly 98% of V_{S} nominal value). During this time, the SS voltage directly controls the peak inductor current, starting with 0 A at $\mathrm{V}_{\mathrm{SS}}=0.3 \mathrm{~V}$ up to the full current limit at $\mathrm{V}_{\mathrm{SS}}=800 \mathrm{mV}$. The maximum load current is available after the soft-start is completed. The larger the capacitor the slower the ramp of the current limit and the longer the soft-start time. A $100-\mathrm{nF}$ capacitor is usually sufficient for most of the applications. When the EN pin is pulled low, the soft-start capacitor is discharged to ground.

8.3.2 Frequency Select Pin (FREQ)

The frequency select pin FREQ allows to set the switching frequency of the device to 650 kHz (FREQ = low) or 1.2 MHz (FREQ = high). Higher switching frequency improves load transient response but reduces slightly the efficiency. The other benefits of higher switching frequency are a lower output ripple voltage. The use of a 1.2MHz switching frequency is recommended unless light load efficiency is a major concern.

8.3.3 Undervoltage Lockout (UVLO)

To avoid mis-operation of the device at low input voltages an undervoltage lockout is included that disables the device, if the input voltage falls below 2.4 V .

8.3.4 Thermal Shutdown

A thermal shutdown is implemented to prevent damages due to excessive heat and power dissipation. Typically the thermal shutdown happens at a junction temperature of $150^{\circ} \mathrm{C}$. When the thermal shutdown is triggered the device stops switching until the junction temperature falls below typically $136^{\circ} \mathrm{C}$. Then the device starts switching again.

8.3.5 Overvoltage Prevention

If overvoltage is detected on the FB pin (typically 3% above the nominal value of 1.238 V) the part stops switching immediately until the voltage on this pin drops to its nominal value. This prevents overvoltage on the output and secures the circuits connected to the output from excessive overvoltage.

8.4 Device Functional Modes

The converter operates in continuous conduction mode (CCM) as soon as the input current increases above half the ripple current in the inductor, for lower load currents it switches into discontinuous conduction mode (DCM). If the load is further reduced, the part starts to skip pulses to maintain the output voltage.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS61085 is designed for output voltages up to 18.5 V with a switch peak current limit of 2.0-A minimum. The device, which operates in a current mode scheme with quasi-constant frequency, is externally compensated for maximum flexibility and stability. The switching frequency is selectable between 650 kHz and 1.2 MHz , and the input voltage range is 2.3 V to 6.0 V . To control the inrush current at start-up a soft-start pin is available. The following section provides a step-by-step design approach for configuring the TPS61085 as a voltage regulating boost converter.

9.2 Typical Application

Figure 8. Typical Application, 5 V to $15 \mathrm{~V}\left(\mathrm{f}_{\mathrm{S}}=1.2 \mathrm{MHz}\right)$

9.2.1 Design Requirements

Table 2. TPS61087 15-V Output Design Requirements

PARAMETERS	VALUES
Input Voltage	$5 \mathrm{~V} \pm 20 \%$
Output Voltage	15 V
Output Current	900 mA
Switching Frequency	1.2 MHz

9.2.2 Detailed Design Procedure

The first step in the design procedure is to verify that the maximum possible output current of the boost converter supports the specific application requirements. A simple approach is to estimate the converter efficiency, by taking the efficiency numbers from the provided efficiency curves or to use a worst case assumption for the expected efficiency, for example, 90%.

1. Duty cycle, D :

$$
\begin{equation*}
D=1-\frac{V_{I V} \cdot \eta}{V_{S}} \tag{1}
\end{equation*}
$$

2. Maximum output current, $I_{\text {out(max) }}$:

$$
\begin{equation*}
I_{\text {out (max })}=\left(I_{L I M(\text { min })}-\frac{\Delta I_{L}}{2}\right) \cdot(1-D) \tag{2}
\end{equation*}
$$

3. Peak switch current in application, $I_{\text {swpeak }}$:

$$
\begin{equation*}
I_{\text {swpeak }}=\frac{\Delta I_{L}}{2}+\frac{I_{\text {out }}}{1-D} \tag{3}
\end{equation*}
$$

with the inductor peak-to-peak ripple current, ΔI_{L}

$$
\begin{equation*}
\Delta I_{L}=\frac{V_{I N} \cdot D}{f_{S} \cdot L} \tag{4}
\end{equation*}
$$

and

$V_{I N}$	Minimum input voltage
V_{S}	Output voltage
$I_{\text {LIM }(\text { min })}$	Converter switch current limit (minimum switch current limit = 3.2 A)
f_{S}	Converter switching frequency (typically 1.2 MHz or 650 kHz)
L	Selected inductor value
η	Estimated converter efficiency (use the number from the efficiency plots or 90% as an estimation)

The peak switch current is the steady state peak switch current that the integrated switch, inductor and external Schottky diode has to be able to handle. The calculation must be done for the minimum input voltage where the peak switch current is the highest.

9.2.2.1 Inductor Selection

The TPS61087 is designed to work with a wide range of inductors. The main parameter for the inductor selection is the saturation current of the inductor which should be higher than the peak switch current as calculated in the Detailed Design Procedure section with additional margin to cover for heavy load transients. An alternative, more conservative, is to choose an inductor with a saturation current at least as high as the maximum switch current limit of 4.8 A. The other important parameter is the inductor DC resistance. Usually the lower the DC resistance the higher the efficiency. It is important to note that the inductor DC resistance is not the only parameter determining the efficiency. Especially for a boost converter where the inductor is the energy storage element, the type and core material of the inductor influences the efficiency as well. At high switching frequencies of 1.2 MHz inductor core losses, proximity effects and skin effects become more important. Usually an inductor with a larger form factor gives higher efficiency. The efficiency difference between different inductors can vary between 2% to 10%. For the TPS61087, inductor values between $3 \mu \mathrm{H}$ and $6 \mu \mathrm{H}$ are a good choice with a switching frequency of 1.2 MHz , typically $3.3 \mu \mathrm{H}$. At 650 kHz TI recommends inductors between $6 \mu \mathrm{H}$ and $13 \mu \mathrm{H}$, typically $6.8 \mu \mathrm{H}$. Possible inductors are shown in Table 3.

Typically, TI recommends an inductor current ripple below 35% of the average inductor current. Therefore, the following equation can be used to calculate the inductor value, L :

$$
\begin{equation*}
L=\left(\frac{V_{N N}}{V_{S}}\right)^{2} \cdot\left(\frac{V_{S}-V_{I N}}{I_{\text {out }} \cdot f_{S}}\right) \cdot\left(\frac{\eta}{0.35}\right) \tag{5}
\end{equation*}
$$

with

$V_{I N}$	Minimum input voltage
V_{S}	Output voltage
$I_{\text {out }}$	Maximum output current in the application
f_{S}	Converter switching frequency (typically 1.2 MHz or 650 kHz)
η	Estimated converter efficiency (use the number from the efficiency plots or 90% as an estimation)

Table 3. Inductor Selection

$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	SUPPLIER	COMPONENT CODE	$\begin{gathered} \text { SIZE } \\ (\mathrm{L} \times \mathrm{W} \times \mathrm{H} \mathrm{~mm}) \end{gathered}$	DCR TYP ($\mathrm{m} \Omega$)	$\mathrm{I}_{\text {sat }}(\mathrm{A})$
1.2 MHz					
4.2	Sumida	CDRH5D28	$5.7 \times 5.7 \times 3$	23	2.2
4.7	Wurth Elektronik	7447785004	$5.9 \times 6.2 \times 3.3$	60	2.5
5	Coilcraft	MSS7341	$7.3 \times 7.3 \times 4.1$	24	2.9
5	Sumida	CDRH6D28	$7 \times 7 \times 3$	23	2.4
4.6	Sumida	CDR7D28	$7.6 \times 7.6 \times 3$	38	3.15
4.7	Wurth Elektronik	7447789004	$7.3 \times 7.3 \times 3.2$	33	3.9
3.3	Wurth Elektronik	7447789003	$7.3 \times 7.3 \times 3.2$	30	4.2
650 kHz					
10	Wurth Elektronik	744778910	$7.3 \times 7.3 \times 3.2$	51	2.2
10	Sumida	CDRH8D28	$8.3 \times 8.3 \times 3$	36	2.7
6.8	Sumida	CDRH6D26HPNP	$7 \times 7 \times 2.8$	52	2.9
6.2	Sumida	CDRH8D58	$8.3 \times 8.3 \times 6$	25	3.3
10	Coilcraft	DS3316P	$\begin{gathered} 12.95 \times 9.40 \times \\ 5.08 \end{gathered}$	80	3.5
10	Sumida	CDRH8D43	$8.3 \times 8.3 \times 4.5$	29	4
6.8	Wurth Elektronik	74454068	$12.7 \times 10 \times 4.9$	55	4.1

9.2.2.2 Rectifier Diode Selection

To achieve high efficiency a Schottky type should be used for the rectifier diode. The reverse voltage rating should be higher than the maximum output voltage of the converter. The averaged rectified forward current $l_{\text {avg }}$, the Schottky diode needs to be rated for, is equal to the output current $I_{\text {out }}$:

$$
\begin{equation*}
I_{\text {avg }}=I_{\text {out }} \tag{6}
\end{equation*}
$$

Usually a Schottky diode with 2-A maximum average rectified forward current rating is sufficient for most applications. The Schottky rectifier can be selected with lower forward current capability depending on the output current $I_{\text {out }}$ but has to be able to dissipate the power. The dissipated power, P_{D}, is the average rectified forward current times the diode forward voltage, $V_{\text {forward }}$.

$$
\begin{equation*}
P_{D}=I_{\text {avg }} \cdot V_{\text {forvard }} \tag{7}
\end{equation*}
$$

Typically, the diode should be able to dissipate around 500 mW depending on the load current and forward voltage.

Table 4. Rectifier Diode Selection

CURRENT RATING $\boldsymbol{I}_{\text {avg }}$	$\boldsymbol{V}_{\boldsymbol{r}}$	$\boldsymbol{V}_{\text {forward }} \boldsymbol{I}_{\text {avg }}$	SUPPLIER	COMPONENT CODE
2 A	20 V	$0.44 \mathrm{~V} / 2 \mathrm{~A}$	Vishay Semiconductor	SL 22
2 A	20 V	$0.5 \mathrm{~V} / 2 \mathrm{~A}$	Fairchild Semiconductor	SS 22

9.2.2.3 Setting the Output Voltage

The output voltage is set by an external resistor divider. Typically, a minimum current of $50 \mu \mathrm{~A}$ flowing through the feedback divider gives good accuracy and noise covering. A standard low-side resistor of $18 \mathrm{k} \Omega$ is typically selected. The resistors are then calculated as:

$$
\begin{align*}
& R 2=\frac{V_{F B}}{70 \mu A} \approx 18 k \Omega \quad R 1=R 2 \cdot\left(\frac{V_{S}}{V_{F B}}-1\right) \\
& V_{F B}=1.238 \mathrm{~V} \tag{8}
\end{align*}
$$

9.2.2.4 Compensation (COMP)

The regulator loop can be compensated by adjusting the external components connected to the COMP pin. The COMP pin is the output of the internal transconductance error amplifier.
Standard values of $R_{\text {COMP }}=16 \mathrm{k} \Omega$ and $C_{\text {COMP }}=2.7 \mathrm{nF}$ will work for the majority of the applications.
See Table 5 for dedicated compensation networks giving an improved load transient response. The following equations can be used to calculate $R_{\text {COMP }}$ and $C_{\text {COMP }}$:

$$
\begin{equation*}
R_{\text {COMP }}=\frac{110 \cdot V_{\text {IN }} \cdot V_{S} \cdot C_{\text {out }}}{L \cdot I_{\text {out }}} \quad C_{\text {COMP }}=\frac{V_{s} \cdot C_{\text {out }}}{7.5 \cdot I_{\text {out }} \cdot R_{\text {COMP }}} \tag{9}
\end{equation*}
$$

with

$V_{I N}$	Minimum input voltage
V_{S}	Output voltage
$C_{\text {out }}$	Output capacitance
L	Inductor value, for example, $3.3 \mu \mathrm{H}$ or $6.8 \mu \mathrm{H}$
$I_{\text {out }}$	Maximum output current in the application

Make sure that $R_{\text {COMP }}<120 \mathrm{k} \Omega$ and $C_{\text {COMP }}>820 \mathrm{pF}$, independent of the results of the above formulas.
Table 5. Recommended Compensation Network Values at High/Low Frequency

FREQUENCY	L	$\mathrm{v}_{\text {S }}$	$\mathrm{V}_{\text {IN }} \pm \mathbf{2 0 \%}$	$\mathrm{R}_{\text {comp }}$	$\mathrm{C}_{\text {comp }}$
High (1.2 MHz)	$3.3 \mu \mathrm{H}$	15 V	5 V	$100 \mathrm{k} \Omega$	820 pF
			3.3 V	$91 \mathrm{k} \Omega$	1.2 nF
		12 V	5 V	$68 \mathrm{k} \Omega$	820 pF
			3.3 V	$68 \mathrm{k} \Omega$	1.2 nF
		9 V	5 V	$39 \mathrm{k} \Omega$	820 pF
			3.3 V	$39 \mathrm{k} \Omega$	1.2 nF
Low (650 kHz)	$6.8 \mu \mathrm{H}$	15 V	5 V	$51 \mathrm{k} \Omega$	1.5 nF
			3.3 V	$47 \mathrm{k} \Omega$	2.7 nF
		12 V	5 V	$33 \mathrm{k} \Omega$	1.5 nF
			3.3 V	$33 \mathrm{k} \Omega$	2.7 nF
		9 V	5 V	$18 \mathrm{k} \Omega$	1.5 nF
			3.3 V	$18 \mathrm{k} \Omega$	2.7 nF

Table 5 gives conservative $R_{\text {COMP }}$ and $C_{\text {COMP }}$ values for certain inductors, input and output voltages providing a very stable system. For a faster response time, a higher $R_{\text {Cомр }}$ value can be used to enlarge the bandwidth, as well as a slightly lower value of $C_{\text {Сомр }}$ to keep enough phase margin. These adjustments should be performed in parallel with the load transient response monitoring of TPS61087.

9.2.2.5 Input Capacitor Selection

For good input voltage filtering low ESR ceramic capacitors are recommended. TPS61087 has an analog input IN . Therefore, a $1-\mu \mathrm{F}$ bypass is highly recommended as close as possible to the IC from IN to GND.

Two $10-\mu \mathrm{F}$ (or one $22-\mu \mathrm{F}$) ceramic input capacitors are sufficient for most of the applications. For better input voltage filtering this value can be increased. See Table 6 and typical applications for input capacitor recommendation.

9.2.2.6 Output Capacitor Selection

For best output voltage filtering a low ESR output capacitor like ceramic capcaitor is recommended. Four $10-\mu \mathrm{F}$ ceramic output capacitors (or two-22 $\mu \mathrm{F}$) work for most of the applications. Higher capacitor values can be used to improve the load transient response. See Table 6 for the selection of the output capacitor.

Table 6. Rectifier Input and Output Capacitor Selection

	CAPACITOR/SIZE	VOLTAGE RATING	SUPPLIER	COMPONENT CODE
$\mathrm{C}_{\text {IN }}$	$22 \mu \mathrm{~F} / 1206$	16 V	Taiyo Yuden	EMK316 BJ 226ML
IN bypass	$1 \mu \mathrm{~F} / 0603$	16 V	Taiyo Yuden	EMK107 BJ 105KA
$\mathrm{C}_{\text {OUT }}$	$10 \mu \mathrm{~F} / 1206$	25 V	Taiyo Yuden	TMK316 BJ 106KL

To calculate the output voltage ripple, the following equation can be used:

$$
\begin{equation*}
\Delta V_{C}=\frac{V_{S}-V_{I N}}{V_{S} \cdot f_{S}} \cdot \frac{I_{\text {out }}}{C_{\text {out }}} \quad \Delta V_{C_{-} E S R}=I_{L(\text { peak })} \cdot R_{C_{-} E S R} \tag{10}
\end{equation*}
$$

with

ΔV_{C}	Output voltage ripple dependent on output capacitance,output current and switching frequency
V_{S}	Output voltage
$V_{I N}$	Minimum input voltage of boost converter
f_{S}	Converter switching frequency (typically 1.2 MHz or 650 kHz)
$I_{\text {out }}$	Output capacitance
$\Delta V_{C_{\text {_ESR }}}$	Output voltage ripple due to output capacitors ESR (equivalent series resistance)
$I_{S W P E A K}$	Inductor peak switch current in the application
$R_{C-E S R}$	Output capacitors equivalent series resistance (ESR)

$\Delta \mathrm{V}_{\text {C_ESR }}$ can be neglected in many cases since ceramic capacitors provide low ESR.

9.2.3 Application Curves

Figure 9. PWM Switching Discontinuous Conduction Mode

Figure 11. Load Transient Response High Frequency (1.2 MHz)

Figure 10. PWM Switching Continuous Conduction Mode

Figure 12. Load Transient Response Low Frequency (650 kHz)

Figure 13. Soft-Start

9.3 System Examples

9.3.1 General Boost Application Circuits

Figure 14. Typical Application, 5 V to $15 \mathrm{~V}\left(\mathrm{f}_{\mathrm{S}}=\mathbf{6 5 0} \mathbf{~ k H z}\right)$

Figure 15. Typical Application, 3.3 V to $9 \mathrm{~V}\left(\mathrm{f}_{\mathrm{S}}=1.2 \mathrm{MHz}\right)$

System Examples (continued)

Figure 16. Typical Application, 3.3 V to $9 \mathrm{~V}\left(\mathrm{f}_{\mathrm{S}}=\mathbf{6 5 0} \mathrm{kHz}\right)$

Figure 17. Typical Application With External Load Disconnect Switch

System Examples (continued)

Figure 18. Typical Application, 5 V to $15 \mathrm{~V}\left(\mathrm{f}_{\mathrm{s}}=1.2 \mathrm{MHz}\right.$) With Overvoltage Protection

System Examples (continued)

9.3.2 TFT LCD Application

Figure 19. Typical Application 5 V to $15 \mathrm{~V}\left(\mathrm{f}_{\mathrm{S}}=1.2 \mathrm{MHz}\right)$ for TFT LCD With External Charge Pumps (VGH, VGL)

System Examples (continued)

9.3.3 White LED Applications

Figure 20. Simple Application (5 V Input Voltage) ($\mathrm{f}_{\mathrm{S}}=650 \mathrm{kHz}$) for wLED Supply (3S3P) (With Optional Clamping Zener Diode)

Figure 21. Simple Application (5 V Input Voltage) ($\mathrm{f}_{\mathrm{S}}=650 \mathrm{kHz}$) for wLED Supply (3S3P) With Adjustable Brightness Control Using a PWM Signal on the Enable Pin
(With Optional Clamping Zener Diode)

System Examples (continued)

Figure 22. Simple Application (5 V Input Voltage) ($\mathrm{f}_{\mathrm{S}}=650 \mathrm{kHz}$) for wLED Supply (3S3P) With Adjustable Brightness Control Using an Analog Signal on the Feedback Pin
(With Optional Clamping Zener Diode)

10 Power Supply Recommendations

The TPS61085 is designed to operate from an input voltage supply range from 2.3 V to 6.0 V . The power supply to the TPS61085 must have a current rating according to the supply voltage, output voltage, and output current of the TPS61085.

11 Layout

11.1 Layout Guidelines

For all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of ground noise. Connect these ground nodes at the GND terminal of the IC. The most critical current path for all boost converters is from the switching FET, through the rectifier diode, then the output capacitors, and back to ground of the switching FET. Therefore, the output capacitors and their traces should be placed on the same board layer as the IC and as close as possible between the SW pin and the GND terminal of the IC..

11.2 Layout Example

Figure 23. TPS61087 Layout Example

12 Device and Documentation Support

12.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Trademarks

All trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TPS61087DRCR	ACTIVE	VSON	DRC	10	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PMOQ	Samples
TPS61087DRCRG4	ACTIVE	VSON	DRC	10	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PMOQ	Samples
TPS61087DRCT	ACTIVE	VSON	DRC	10	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PMOQ	Samples
TPS61087DRCTG4	ACTIVE	VSON	DRC	10	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PMOQ	Samples
TPS61087DSCR	ACTIVE	WSON	DSC	10	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PMWI	Samples
TPS61087DSCT	ACTIVE	WSON	DSC	10	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PMWI	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annul basis.
OTHER QUALIFIED VERSIONS OF TPS61087 :

- Automotive: TPS61087-Q1

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	$\mathbf{A 0}$ $(\mathbf{m m})$	$\mathbf{B 0}$ $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
TPS61087DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61087DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61087DRCT	VSON	DRC	10	250	180.0	12.5	3.3	3.3	1.1	8.0	12.0	Q2
TPS61087DRCT	VSON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61087DSCR	WSON	DSC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61087DSCT	WSON	DSC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS61087DRCR	VSON	DRC	10	3000	338.0	355.0	50.0
TPS61087DRCR	VSON	DRC	10	3000	367.0	367.0	35.0
TPS61087DRCT	VSON	DRC	10	250	338.0	355.0	50.0
TPS61087DRCT	VSON	DRC	10	250	210.0	185.0	35.0
TPS61087DSCR	WSON	DSC	10	3000	367.0	367.0	35.0
TPS61087DSCT	WSON	DSC	10	250	210.0	185.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Small Outline No-Lead (SON) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance, if present.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions, if present

DRC (S-PVSON-N10)

PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.
The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions
4206565-3/Y 08/15
NOTE: A. All linear dimensions are in millimeters

DRC (S-PVSON-N10)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC -7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com 〈http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4221826/C
12/2017
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271)
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

EXPOSED PAD 11:
80\% PRINTED SOLDER COVERAGE BY AREA
SCALE:25X

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

