

Sample &

Buy

TPS61170-Q1

SLVSAX2A-SEPTEMBER 2011-REVISED JULY 2015

TPS61170-Q1 1.2-A High-Voltage Boost Converter in 2-mm × 2-mm SON Package

Technical

Documents

1 Features

- Qualified for Automotive Applications
- 3-V to 18-V Input Voltage Range
- High Output Voltage: Up to 38 V
- 1.2-A Integrated Switch
- 1.2-MHz Fixed Switching Frequency
- 12 V at 300 mA and 24 V at 150 mA from 5-V Input (Typical)
- Up to 93% Efficiency
- On-The-Fly Output Voltage Reprogramming
- Skip-Switching Cycle for Output Regulation at Light Load
- Built-in Soft Start
- 6-Pin, 2-mm × 2-mm SON Package

Applications 2

- HEV and EV Charger Systems
- Advanced Driver Assistance Systems (ADASs)

3 Description

Tools &

Software

The TPS61170-Q1 is a monolithic, high-voltage switching regulator with integrated 1.2-A, 40-V power MOSFET. The device can be configured in several standard switching-regulator topologies, including boost and SEPIC. The device has a wide inputvoltage range to support applications with input voltage from multicell batteries or regulated 5-V, 12-V power rails.

Support &

Community

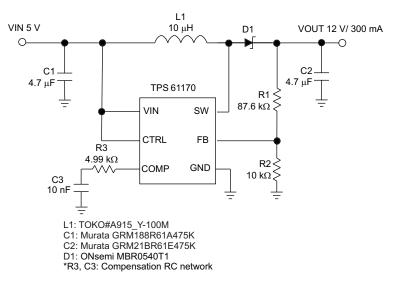
29

The TPS61170-Q1 operates at a 1.2-MHz switching frequency, allowing the use of low-profile inductors and low-value ceramic input and output capacitors. External loop compensation components give the user flexibility to optimize loop compensation and transient response. The device has built-in protection features, such as pulse-by-pulse overcurrent limit, soft start, and thermal shutdown.

The FB pin regulates to a reference voltage of

1.229 V. The reference voltage can be lowered using a 1-wire digital interface (EasyScale[™] protocol) through the CTRL pin. Alternatively, a pulse widthmodulation (PWM) signal can be applied to the CTRL pin. The duty cycle of the signal reduces the feedback reference voltage proportionally.

The TPS61170-Q1 is available in a 6-pin 2-mm ×


2-mm SON package, allowing a compact powersupply solution.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS61170-Q1	SON (6)	2.00 mm × 2.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

4

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Тур	ical Application 1
5	Rev	ision History 2
6	Pin	Configuration and Functions 3
7	Spe	cifications 3
	7.1	Absolute Maximum Ratings 3
	7.2	ESD Ratings 3
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics 4
	7.6	Switching Characteristics 5
	7.7	Typical Characteristics 6
8	Deta	ailed Description8
	8.1	Overview
	8.2	Functional Block Diagram8
	8.3	Feature Description9

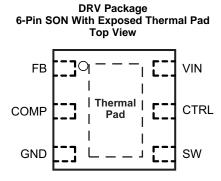
5 Revision History

Changes from Original (September 2011) to Revision A

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation • section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section1

www.ti.com

Page


	8.4	Device Functional Modes	9
	8.5	Programming	13
9	Арр	lication and Implementation	15
	9.1	Application Information	15
	9.2	Typical Applications	15
10	Pow	ver Supply Recommendations	20
11	Lay	out	21
		Layout Guidelines	
	11.2	Layout Example	21
	11.3	Thermal Considerations	21
12	Dev	ice and Documentation Support	22
	12.1	Device Support	22
	12.2	Documentation Support	22
	12.3	Community Resources	22
	12.4	Trademarks	<mark>22</mark>
	12.5	Electrostatic Discharge Caution	<mark>22</mark>
	12.6	Glossary	<mark>22</mark>
13		hanical, Packaging, and Orderable	
	Info	rmation	22

Copyright © 2011–2015, Texas Instruments Incorporated

6 Pin Configuration and Functions

Pin Functions

PIN I/O NAME NO.		1/0	DESCRIPTION		
		1/0	DESCRIPTION		
COMP	COMP 2 O Output of the transconductance error amplifier. Connect an external RC network to this pin to competent the regulator.		Output of the transconductance error amplifier. Connect an external RC network to this pin to compensate the regulator.		
CTRL 5 I Control pin of the boost regulator. CTRL is a multi-functional pin which can be used to enable the devi and control the feedback voltage with a PWM signal or for digital communications.		Control pin of the boost regulator. CTRL is a multi-functional pin which can be used to enable the device and control the feedback voltage with a PWM signal or for digital communications.			
FB	FB 1 I Feedback pin for current. Connect to the center tap of a resistor divider to program the output voltage.		Feedback pin for current. Connect to the center tap of a resistor divider to program the output voltage.		
GND 3 C		0	Ground		
SW	4	Ι	This is the switching node of the IC. Connect SW to the switched side of the inductor.		
VIN 6 I		Ι	The input supply pin for the IC. Connect VIN to a supply voltage between 3 V and 18 V.		
Thermal Pad –		_	The thermal pad should be soldered to the analog ground plane to avoid thermal issue. If possible, use thermal vias to connect to ground plane for ideal power dissipation.		

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
VI	Supply voltages on VIN ⁽²⁾	-0.3	20	
	Voltages on CTRL ⁽²⁾	-0.3	20	V
	Voltage on FB and COMP ⁽²⁾	-0.3	3	V
	Voltage on SW ⁽²⁾	-0.3	40	
PD	Continuous power dissipation	See Therma	l Information	
TJ	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

7.2 ESD Ratings

				VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾		±2000	
V _(ESD) Electrostatic discharge	charged device model (CDM), per JEDEC	Corner pins (FB, GND, VIN, and SW)	±750	V	
		specification JESD22-C101, all pins		±500	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

STRUMENTS

XAS

7.3 Recommended Operating Conditions

		MIN	NOM MAX	UNIT
VI	Input voltage range, VIN	3	18	V
Vo	Output voltage range	V _{IN}	38	V
L	Inductor ⁽¹⁾	10	22	μH
CI	Input capacitor	1		μF
Co	Output capacitor ⁽¹⁾	1	10	μF
T _A	Operating ambient temperature	-40	125	°C
T_J	Operating junction temperature	-40	125	°C

(1) These values are recommended values that have been successfully tested in several applications. Other values may be acceptable in other applications but should be fully tested by the user.

7.4 Thermal Information

		TPS61170-Q1	
	THERMAL METRIC ⁽¹⁾	DRV (SON)	UNIT
		6 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	96.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	89	°C/W
R_{\thetaJB}	Junction-to-board thermal resistance	65.9	°C/W
ΨJT	Junction-to-top characterization parameter	3.2	°C/W
Ψјв	Junction-to-board characterization parameter	66.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	40.8	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

VIN = 3.6 V, CTRL = VIN, $T_A = -40^{\circ}$ C to 125°C, typical values are at $T_A = 25^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CU	IRRENT					
VI	Input voltage range, VIN		3.0		18	V
lq	Operating quiescent current into VIN	Device PWM switching no load			2.3	mA
I _{SD}	Shutdown current	CRTL = GND, VIN = 4.2 V			1	μA
UVLO	Undervoltage lockout threshold	VIN falling		2.2	2.5	V
V _{hys}	Undervoltage lockout Hysteresis			70		mV
ENABLE AN	ID REFERENCE CONTROL		·			
V _(CTRLh)	CTRL logic high voltage	VIN = 3 V to 18 V	1.2			V
V _(CTRL)	CTRL logic low voltage	VIN = 3 V to 18 V			0.4	V
R _(CTRL)	CTRL pulldown resistor		400	800	1600	kΩ
	AND CURRENT CONTROL					
V _{REF}	Voltage feedback regulation voltage		1.204	1.229	1.254	V
V _(REF_PWM)	Voltage feedback regulation voltage under reprogram	V _{FB} = 492 mV	477	492	507	mV
I _{FB}	Voltage feedback input bias current	V _{FB} = 1.229 V			200	nA
D _{max}	Maximum duty cycle	V _{FB} = 100 mV	90%	93%		
I _{sink}	Comp pin sink current			100		μA
Isource	Comp pin source current			100		μA
G _{ea}	Error amplifier transconductance		240	320	400	μmho
R _{ea}	Error amplifier output resistance	5 pF connected to COMP		6		MΩ

Electrical Characteristics (continued)

VIN = 3.6 V, CTRL = VIN, $T_A = -40^{\circ}$ C to 125°C, typical values are at $T_A = 25^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER S	WITCH					
D	N-channel MOSFET ON-resistance	VIN = 3.6 V		0.3	0.6	Ω
R _{DS(on)}	N-channel MOSFET ON-resistance	VIN = 3.0 V			0.7	0.7
I _{LN_NFET}	N-channel leakage current	V _{SW} = 35 V, T _A = 25°C			1	μA
OC AND S	S					
I _{LIM}	N-channel MOSFET current limit	D = D _{max}	0.96	1.2	1.44	А
I _{LIM_Start}	Start-up current limit	$D = D_{max}$		0.7		А
EasyScale	TIMING		·			
V _{ACKNL}	Acknowledge output voltage low	Open-drain, $R_{pullup} = 15 \text{ k}\Omega$ to Vin			0.4	V
THERMAL	SHUTDOWN					
T _{shutdown}	Thermal shutdown threshold			160		°C
T _{hysteresis}	Thermal shutdown threshold hysteresis			15		°C

7.6 Switching Characteristics

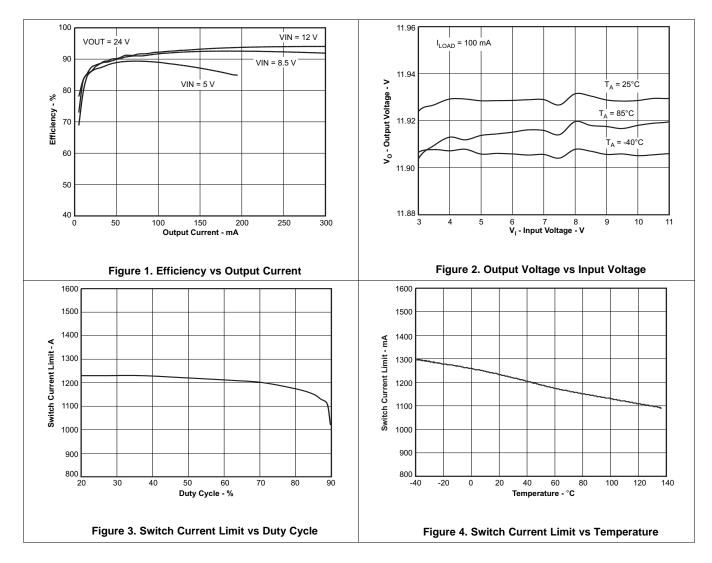
VIN = 3.6 V, CTRL = VIN, $T_A = -40^{\circ}C$ to 125°C, typical values are at $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ENABLE	AND REFERENCE CONTROL		·			
t _{off}	EasyScale detection time ⁽¹⁾	CTRL high to low	2.5			ms
t _{es_det}	EasyScale detection time ⁽¹⁾	CTRL pin low	260			μS
t _{es_delay}	EasyScale detection delay		100			μS
t _{es_win}	EasyScale detection window time		1			ms
VOLTAGE	E AND CURRENT CONTROL					
f _S	Oscillator frequency		1	1.2	1.5	MHz
t _{min_on}	Minimum on pulse width			40		ns
f _{ea}	Error amplifier crossover frequency	5 pF connected to COMP		500		kHz
OC AND S	SS					
t _{Half_LIM}	Time step for half current limit			5		ms
t _{REF}	Vref filter time constant			180		μS
t _{step}	V _{REF} ramp-up time			213		μS
EasyScal	e TIMING					
t _{start}	Start time of program stream		2			μS
t _{EOS}	End time of program stream		2		360	μS
t _{H_LB}	High time low bit	Logic 0	2		180	μS
t _{L_LB}	Low time low bit	Logic 0	2 × t _{H_LB}		360	μS
t _{H_HB}	High time high bit	Logic 1	$2 \times t_{L_{HB}}$		360	μS
t _{L_HB}	Low time high bit	Logic 1	2		180	μS
t _{valACKN}	Acknowledge valid time	See ⁽²⁾			2	μS
t _{ACKN}	Duration of acknowledge condition	See ⁽²⁾			512	μS

EasyScale communication is allowed immediately after the CTRL pin has been low for more than tes_det. To select EasyScale mode, the (1)

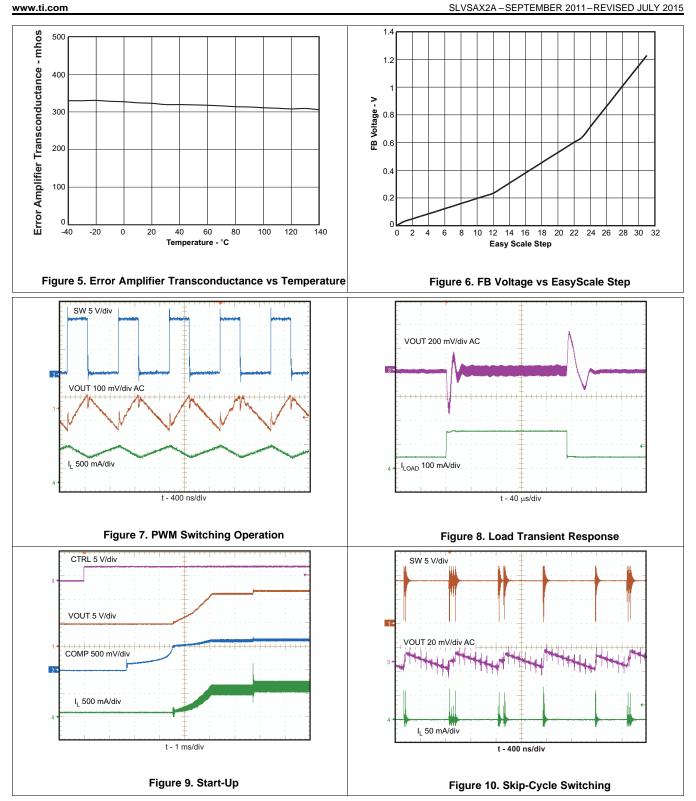
CTRL pin must be low for more than t_{es_det} the end of t_{es_win}. Acknowledge condition active 0, this condition will only be applied if the RFA bit is set. Open-drain output, line must be pulled high by (2) the host with resistor load.

SLVSAX2A-SEPTEMBER 2011-REVISED JULY 2015


TEXAS INSTRUMENTS

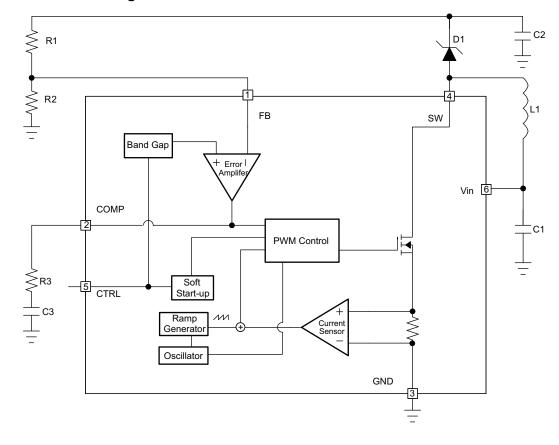
www.ti.com

7.7 Typical Characteristics


L = TOKO A915_Y-100M, D1 = ONsemi MBR0540T1, unless otherwise noted

Typical Application		FIGURE
Efficiency	VIN = 5V; VOUT = 12 V, 18 V, 24 V, 30 V	Figure 17
Efficiency	VIN = 5 V, 8.5 V, 12 V; VOUT = 24 V	Figure 1
Output voltage accuracy	I _{LOAD} = 100 mA	Figure 2
Switch current limit	$T_A = 25^{\circ}C$	Figure 3
Switch current limit		Figure 4
Error amplifier transconductance		Figure 5
EasyScale step		Figure 6
PWM switching operation	$VIN = 5 V$; $VOUT = 12 V$; $I_{LOAD} = 250 mA$	Figure 7
Load transient response	VIN = 5 V; VOUT = 12 V; I_{LOAD} = 50 mA to 150 mA	Figure 8
Start-up	VIN = 5 V; VOUT = 12 V; I _{LOAD} = 250 mA	Figure 9
Skip-cycle switching	VIN = 9 V ; $VOUT$ = 12 V, $I_LOAD\text{=}$ 100 μA	Figure 10

TPS61170-Q1 SLVSAX2A – SEPTEMBER 2011 – REVISED JULY 2015



8 Detailed Description

8.1 Overview

The TPS61170-Q1 integrates a 40-V low-side FET for providing output voltages up to 38 V. The device regulates the output with current mode PWM (pulse width modulation) control. The switching frequency of the PWM is fixed at 1.2 MHz (typical). The PWM control circuitry turns on the switch at the beginning of each switching cycle. The input voltage is applied across the inductor and stores the energy as the inductor current ramps up. During this portion of the switching cycle, the load current is provided by the output capacitor. When the inductor current rises to the threshold set by the error amplifier output, the power switch turns off and the external Schottky diode is forward biased. The inductor transfers stored energy to replenish the output capacitor and supply the load current. This operation repeats each switching cycle. As shown in the block diagram, the duty cycle of the converter is determined by the PWM control comparator which compares the error amplifier output and the current signal.

A ramp signal from the oscillator is added to the current ramp. This slope compensation ramp is necessary to avoid subharmonic oscillations that are intrinsic to current mode control at duty cycles higher than 50%. The feedback loop regulates the FB pin to a reference voltage through an error amplifier. The output of the error amplifier must be connected to the COMP pin. An external RC compensation network must be connected to the COMP pin to optimize the feedback loop for stability and transient response.

8.2 Functional Block Diagram

8.3 Feature Description

Soft-start circuitry is integrated into the IC to avoid a high inrush current during start-up. After the device is enabled by a logic high signal on the CTRL pin, the FB pin reference voltage ramps up in 32 steps, with each step taking 213 μ s. This ensures that the output voltage rises slowly to reduce inrush current. Additionally, for the first 5 ms after the COMP voltage ramps, the current limit of the PWM switch is set to half of the normal current limit specification or below 700 mA (typical). For a typical example, see the start-up waveform (Figure 9).

8.3.2 Overcurrent Protection

TPS61170-Q1 has a cycle-by-cycle overcurrent limit feature that turns off the power switch once the inductor current reaches the overcurrent limit. The PWM circuitry resets itself at the beginning of the next switch cycle. During an overcurrent event, this results in a decrease of output voltage that is directly proportional to load current. The current limit threshold as well as input voltage, output voltage, switching frequency and inductor value determine the maximum available output current. Larger inductance values typically increase the current output capability because of the reduced current ripple. See the *Application and Implementation* section for the output current calculation.

8.3.3 Undervoltage Lockout

An undervoltage lockout (UVLO) prevents misoperation of the device at input voltages below 2.2 V (typical). When the input voltage is below the undervoltage threshold, the device remains off and the internal switch FET is turned off. The undervoltage lockout threshold is set below minimum operating voltage of 3 V to avoid any transient VIN dip triggering the UVLO and causing the device to reset. For the input voltages between UVLO threshold and 3 V, the device tries operation, but the specifications are not ensured.

8.3.4 Thermal Shutdown

An internal thermal shutdown turns off the device when the typical junction temperature of 160°C is exceeded. The IC restarts when the junction temperature drops by 15°C.

8.3.5 Enable and Shutdown

The TPS61170-Q1 device enters shutdown when the CTRL voltage is less than 0.4 V for more than 2.5 ms. In shutdown, the input supply current for the device is less than 1 μ A (maximum). The CTRL pin has an internal 800-k Ω (typical) pulldown resistor to disable the device when the pin is left unconnected.

8.4 Device Functional Modes

8.4.1 PWM Program Mode

When the CTRL pin is constantly high, the FB voltage is regulated to 1.229 V typically. However, the CTRL pin allows a PWM signal to lower this regulation voltage. The relationship between the duty cycle and FB voltage is given in Equation 1:

 $V_{FB} = Duty \times 1.229 V$

where

- Duty = duty cycle of the PWM signal
- 1.229 V = internal reference voltage

(1)

As shown in Figure 11, the IC chops up the internal 1.229-V reference voltage at the duty cycle of the PWM signal. The pulse signal is then filtered by an internal low-pass filter. The output of the filter is connected to the error amplifier as the reference voltage for the FB pin regulation. The regulation voltage is independent of the PWM logic voltage level which often has large variations.

Device Functional Modes (continued)

For optimum performance, use the PWM mode in the range of 5 kHz to 100 kHz. The requirement of minimum frequency comes from the EasyScale detection delay and detection time specification for the mode selection. The device can mistakenly enter 1-wire mode if the PWM signal frequency is less than 5 kHz. Because there is an internal fixed ON-time error of 40 nS, the FB voltage absolute value will be different than expected when the PWM frequency is above 100 kHz. For example, the additional duty cycle of 3.2% due to the ON-time error increases the FB voltage when using an 800-kHz PWM signal. A compromise between PWM frequency and FB voltage accuracy extends the frequency range. Adding an external RC filter to the pin serves no purpose.

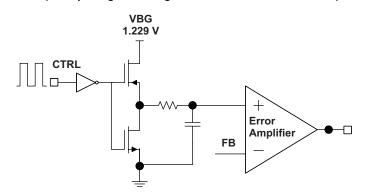


Figure 11. Block Diagram of Programmable FB Voltage Using PWM Signal

8.4.2 1-Wire Program Mode

The CTRL pin features a simple digital interface to control the feedback reference voltage. The 1-wire mode can save the processor power and battery life as it does not require a PWM signal all the time, and the processor can enter idle mode if available.

The TPS61170-Q1 adopts the EasyScale protocol, which can program the FB voltage to any of the 32 steps with one command. See Table 2 for the FB pin voltage steps. The programmed reference voltage is stored in an internal register. The default value is full scale when the device is first enabled ($V_{FB} = 1.229$ V). A power reset clears the register value and reset it to default.

8.4.3 EasyScale

EasyScale is a simple but very flexible 1-pin interface to configure the FB voltage. The interface is based on a master-slave structure, where the master is typically a microcontroller or application processor. Figure 12 and Table 2 give an overview of the protocol. The protocol consists of a device-specific address byte and a data byte. The device-specific address byte is fixed to 72 hex. The data byte consists of 5 bits for information, 2 address bits, and the RFA bit. The RFA bit set to high indicates the *Request for Acknowledge* condition. The Acknowledge condition is only applied if the protocol was received correctly. The advantage of EasyScale compared with other on pin interfaces is that its bit detection is in a large extent independent from the bit transmission rate. EasyScale can automatically detect bit rates from 1.7 kbsp up to 160 kbsp.

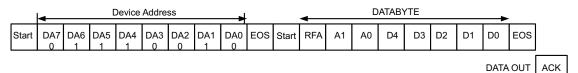

				J		
	FB VOLTAGE (mV)	D4	D3	D2	D1	D0
0	0.000	0	0	0	0	0
1	0.031	0	0	0	0	1
2	0.049	0	0	0	1	0
3	0.068	0	0	0	1	1
4	0.086	0	0	1	0	0
5	0.104	0	0	1	0	1
6	0.123	0	0	1	1	0
7	0.141	0	0	1	1	1

 Table 2. Selectable FB Voltage

	FB VOLTAGE (mV)	D4	D3	D2	D1	D0
8	0.160	0	1	0	0	0
9	0.178	0	1	0	0	1
10	0.197	0	1	0	1	0
11	0.215	0	1	0	1	1
12	0.234	0	1	1	0	0
13	0.270	0	1	1	0	1
14	0.307	0	1	1	1	0
15	0.344	0	1	1	1	1
16	0.381	1	0	0	0	0
17	0.418	1	0	0	0	1
18	0.455	1	0	0	1	0
19	0.492	1	0	0	1	1
20	0.528	1	0	1	0	0
21	0.565	1	0	1	0	1
22	0.602	1	0	1	1	0
23	0.639	1	0	1	1	1
24	0.713	1	1	0	0	0
25	0.787	1	1	0	0	1
26	0.860	1	1	0	1	0
27	0.934	1	1	0	1	1
28	1.008	1	1	1	0	0
29	1.082	1	1	1	0	1
30	1.155	1	1	1	1	0
31	1.229	1	1	1	1	1

Table 2. Selectable FB Voltage (continued)

DATA IN

Figure 12. EasyScale Protocol Overview

Table 2			
Table 5.	EasyScale	Bit Description	

BYTE	BIT NUMBER	NAME	TRANSMISSION DIRECTION	DESCRIPTION						
	7	DA7		0 MSB device address						
	6	DA6		1						
Device	5	DA5		1						
Address	4	DA4	IN	1						
Byte	3	DA3	IIN	0						
72 hex	2	DA2		0						
	1	DA1		1						
	0	DA0		0 LSB device address						

ISTRUMENTS

FXAS

BYTE	BIT NUMBER	NAME	TRANSMISSION DIRECTION	DESCRIPTION
	7 (MSB)	RFA		Request for acknowledge. If high, acknowledge is applied by device
	6	A1		0 Address bit 1
	5	A0		0 Address bit 0
Data huta	4	D4	IN	Data bit 4
Data byte	3	D3	IIN	Data bit 3
	2	D2		Data bit 2
	1	D1		Data bit 1
	0 (LSB)	D0		Data bit 0
		ACK	OUT	Acknowledge condition active 0, this condition will only be applied if the RFA bit is set. Open-drain output, Line must be pulled high by the host with a pullup resistor. This feature can only be used if the master has an open-drain output stage. In case of a push-pull output stage Acknowledge condition may not be requested!

Table 3. EasyScale Bit Description (continued)

Easy Scale Timing, without acknowledge RFA = 0

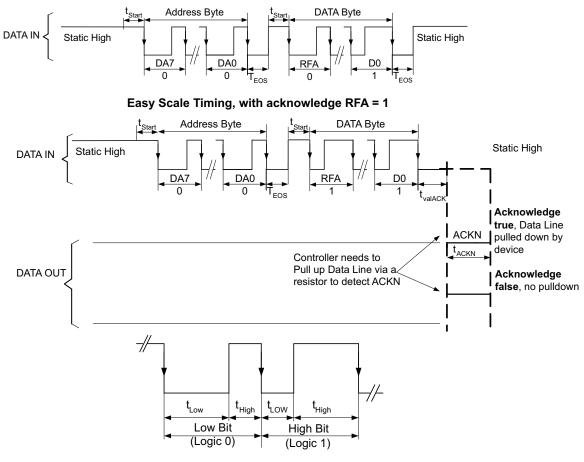


Figure 13. EasyScale — Bit Coding

All bits are transmitted MSB first and LSB last. Figure 13 shows the protocol without acknowledge request (bit RFA = 0), Figure 13 with acknowledge (bit RFA = 1) request. Before both bytes, device address byte and data byte, a start condition must be applied. For this, the CTRL pin must be pulled high for at least t_{start} (2 µs) before the bit transmission starts with the falling edge. If the CTRL pin is already at high level, no start condition is needed before the device address byte. The transmission of each byte is closed with an End of Stream condition for at least t_{EOS} (2 µs).

The bit detection is based on a Logic Detection scheme, where the criterion is the relation between t_{LOW} and t_{HIGH} . It can be simplified to:

High bit: $t_{HIGH} > t_{LOW}$, but with t_{HIGH} at least 2x t_{LOW} , see Figure 13.

Low bit: $t_{HIGH} < t_{LOW}$, but with t_{LOW} at least 2x t_{HIGH} , see Figure 13.

The bit detection starts with a falling edge on the CTRL pin and ends with the next falling edge. Depending on the relation between t_{HIGH} and t_{LOW} , the logic 0 or 1 is detected.

The acknowledge condition is only applied if:

- Acknowledge is requested by a set RFA bit.
- The transmitted device address matches with the device address of the device.
- 16 bits are received correctly.

If the device turns on the internal ACKN-MOSFET and pulls the CTRL pin low for the time t_{ACKN} , which is 512 µs maximum then the Acknowledge condition is valid after an internal delay time t_{valACK} . This means that the internal ACKN-MOSFET is turned on after t_{valACK} , when the last falling edge of the protocol was detected. The master controller keeps the line low in this period. The master device can detect the acknowledge condition with its input by releasing the CTRL pin after t_{valACK} and read back a logic 0. The CTRL pin can be used again after the acknowledge condition ends.

The Acknowledge condition may only be requested if the master device has an open-drain output. For the pushpull output stage, the use a series resistor in the CRTL line to limit the current to 500 μ A is recommended for such cases as:

- An accidentally requested acknowledge
- To protect the internal ACKN-MOSFET

8.5 Programming

8.5.1 Feedback Reference Program Mode Selection

The CTRL pin is used for changing the FB pin reference voltage *on-the-fly*. There are two methods to program the reference voltage, PWM signal and 1-wire interface (EasyScale). The programming mode is selected each time the device is enabled. The default mode is to use the duty cycle of the PWM signal on the CTRL pin to modulate the reference voltage. To enter the 1-wire interface mode, the following digital pattern on the CTRL pin must be recognized by the IC every time the IC starts from the shutdown mode.

1. Pull CTRL pin high to enable the TPS61170-Q1 and to start the 1-wire mode detection window.

- After the EasyScale detection delay (t_{es_delay}, 100 μsec) expires, drive CTRL low for more than the EasyScale detection time (t_{es_detect}, 260 μsec).
- 3. The CTRL pin must be low for more than EasyScale detection time before the EasyScale detection window (t_{es win}, 1ms) expires. EasyScale detection window starts from the first CTRL pin low to high transition.

The IC immediately enters the 1-wire mode once the preceding three conditions are met. The EasyScale communication can start before the detection window expires. Once the mode is programmed, it cannot be changed without another start-up. In other words, the IC must be shut down by pulling the CTRL low for 2.5 ms and restarted to exit EasyScale Mode. See Figure 14 for a graphical explanation.

Programming (continued)

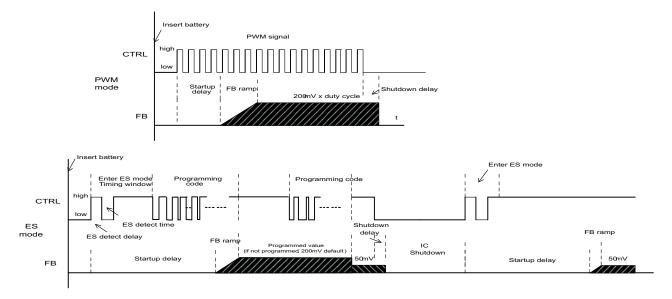


Figure 14. Mode Detection of Feedback Reference Program

TPS61170-Q1 SLVSAX2A-SEPTEMBER 2011-REVISED JULY 2015

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS61170-Q1 device can be configured in several topologies including boost and SEPIC. The device has a wide-input voltage range to support applications with input voltage from multicell batteries or regulated 5-V, 12-V power rails.

9.2 Typical Applications

9.2.1 12-V to 24-V DC-DC Power Conversion

This application is designed for a 5-V to 12-V power conversion with programmable feedback reference voltage.

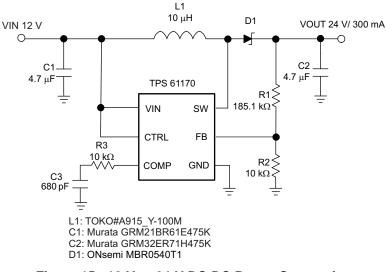


Figure 15. 12-V to 24-V DC-DC Power Conversion

9.2.1.1 Design Requirements

Use the following parameters for this design example:

- Input Voltage: 12 V
- Output Voltage: 300 mA

Typical Applications (continued)

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Program Output Voltage

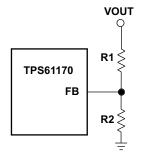


Figure 16. Program Output Voltage

To program the output voltage, select the values of R1 and R2 (see Figure 16) according to Equation 2.

Vout = 1.229 V x $\left(\frac{R1}{R1} + 1\right)$	$B1 = B2 \times \left(\frac{Vout}{1} - 1 \right)$	
$v_{0}u_{1} - 1.229 v_{1}x_{1} - \frac{1}{100} + 1$	$R_1 - R_2 \times \left(\frac{1}{1229} \sqrt{-1} \right)$	
(R2)	(1.229 V)	(2)

Considering the leakage current through the resistor divider and noise decoupling to FB pin, an optimum value for R2 is approximately 10 k. The output voltage tolerance depends on the accuracy of the reference voltage and the tolerance of R1 and R2.

9.2.1.2.2 Maximum Output Current

The overcurrent limit in a boost converter limits the maximum input current, and thus the maximum input power for a given input voltage. The maximum output power is less than the maximum input power due to power conversion losses. Therefore, the current-limit setting, input voltage, output voltage and efficiency can all affect the maximum output current. The current limit clamps the peak inductor current; therefore, the ripple must be subtracted to derive the maximum DC current. The ripple current is a function of the switching frequency, inductor value and duty cycle. The following equations take into account of all of the previously factors for maximum output current calculation.

$$I_{P} = \frac{1}{\left[L \times F_{s} \times (\frac{1}{V_{out} + V_{f} - V_{in}} + \frac{1}{V_{in}})\right]}$$

where

- I_P = inductor peak-to-peak ripple current
- L = inductor value
- V_f = Schottky diode forward voltage
- F_s = switching frequency
- V_{out} = output voltage

$$I_{out_max} = \frac{V_{in} \times (I_{lim} - \frac{I_P}{2}) \times \eta}{V_{out}}$$

where

- I_{out_max} = maximum output current of the boost converter
- I_{lim} = overcurrent limit
- $\eta = efficiency$

For instance, when V_{in} is 5 V, V_{out} is 12 V, the inductor is 10 μ H, the Schottky forward voltage is 0.2 V; and then the maximum output current is 300 mA in a typical operation.

www.ti.com

(4)

(3)

Typical Applications (continued)

9.2.1.2.3 Switch Duty Cycle

TPS61170-Q1

(6)

SLVSAX2A - SEPTEMBER 2011-REVISED JULY 2015

The maximum switch duty cycle (D) of the TPS61170-Q1 is 90% (minimum). The duty cycle of a boost converter under continuous conduction mode (CCM) is given by:

$$D = \frac{Vout - Vin}{Vout}$$
(5)

For a 5-V to 12-V application, the duty cycle is 58.3%, and for a 5-V to 24-V application, the duty cycle is 79.2%. The duty cycle must be lower than the maximum specification of 90% in the application; otherwise, the output voltage cannot be regulated.

Once the PWM switch is turned on, the TPS61170-Q1 device has minimum ON pulse width. This sets the limit of the minimum duty cycle. When operating at low duty cycles, the TPS61170-Q1 enters pulse-skipping mode. In this mode, the device turns the power switch off for several switching cycles to prevent the output voltage from rising above regulation. This operation typically occurs in light load condition when the PWM operates in discontinuous mode. See the Figure 10.

9.2.1.2.4 Inductor Selection

The selection of the inductor affects steady state operation as well as transient behavior and loop stability. These factors make it the most important component in power regulator design. There are three important inductor specifications: inductor value, DC resistance (DCR) and saturation current. Considering inductor value alone is not enough.

The inductance value of the inductor determines its ripple current. TI recommends setting the peak-to-peak ripple current given by Equation 3 to 30% to 40% of the DC current. Inductance values shown in the *Recommended Operating Conditions* table are recommended for most applications. Inductor DC current can be calculated as

$$I_{in_DC} = \frac{Vout \times lout}{Vin \times \eta}$$

Inductor values can have ±20% tolerance with no current bias. When the inductor current approaches saturation level, its inductance can decrease 20% to 35% from the 0-A value depending on how the inductor vendor defines saturation current. Using an inductor with a smaller inductance value forces discontinuous PWM where the inductor current ramps down to zero before the end of each switching cycle. This reduces the maximum output current of the boost converter, causes large input voltage ripple and reduces efficiency. In general, inductors with large inductance and low DCR values provide much more output current and higher conversion efficiency. Inductors with smaller inductance values can give better load transient response. For these reasons, a $10-\mu$ H to $22-\mu$ H inductance value range is recommended. Table 4 lists some recommended inductors for the TPS61170-Q1.

TPS61170-Q1 device has built-in slope compensation to avoid subharmonic oscillation associated with current mode control. If the inductor value is lower than 10 μ H, the slope compensation may not be adequate, and the loop can become unstable. Therefore, customers must verify operation in their application if the inductor is different from the recommended values.

PART NUMBER	L (μH)	DCR MAX (mΩ)	SATURATION CURRENT (A)	SIZE (L × W × H mm)	VENDOR
A915_Y-100M	10	90	1.3	5.2 × 5.2 × 3	ТОКО
VLCF5020T-100M1R1-1	10	237	1.1	5 × 5 × 2	TDK
CDRH4D22/HP	10	144	1.2	5 × 5 × 2.4	Sumida
LQH43PN100MR0	10	247	0.84	4.5 × 3.2 × 2	Murata

 Table 4. Recommended Inductors for TPS61170-Q1

TPS61170-Q1

SLVSAX2A-SEPTEMBER 2011-REVISED JULY 2015

9.2.1.2.5 Schottky Diode Selection

The high switching frequency of the TPS61170-Q1 device demands a high-speed rectifying switch for optimum efficiency. Ensure that the average and peak current rating of the diode exceeds the average output current and peak inductor current. In addition, the reverse breakdown voltage of the diode must exceed the switch FET rating voltage of 40 V. So, the ONSemi MBR0540 is recommended for the TPS61170-Q1 device. However, Schottky diodes with lower rated voltages can be used for lower output voltages to save the solution size and cost. For example, a converter providing a 12-V output with 20-V diode is a good choice.

9.2.1.2.6 Compensation Capacitor Selection

The TPS61170-Q1 has an external compensation, COMP pin, which allows the loop response to be optimized for each application. The COMP pin is the output of the internal error amplifier. An external resistor R3 and ceramic capacitor C3 are connected to COMP pin to provide a pole and a zero. This pole and zero, along with the inherent pole of a current mode control boost converter, determine the close loop frequency response. This is important to a converter stability and transient response.

The following equations summarize the poles, zeros and DC gain of a TPS61170-Q1 boost converter with ceramic output capacitor (C2), as shown in the block diagram. They include the dominant pole (f_{P1}), the output pole (f_{P2}) of a boost converter, the right-half-plane zero (f_{RHPZ}) of a boost converter, the zero (f_Z) generated by R3 and C3, and the DC gain (A).

$$f_{P1} = \frac{1}{2\pi \times 6 \operatorname{M}\Omega \times \operatorname{C3}}$$
(7)

$$f_{P2} = \frac{2}{2\pi x \operatorname{Rout} x \operatorname{C2}}$$
(8)

$$f_{RHPZ} = \frac{Rout}{2\pi \times L} \times \left(\frac{VIn}{Vout}\right)$$
(9)

$$f_{Z} = \frac{1}{2\pi \times R3 \times C3}$$
(10)
$$A = \frac{1.229}{2} \times Gea \times 6 MO \times \frac{Vin}{2} \times Fout \times \frac{1}{2}$$

$$A = \frac{M - 2}{V_{out}} \times Gea \times 6 M\Omega \times \frac{M}{V_{out} \times Rsense} \times Rout \times \frac{1}{2}$$

where

- Rout is the load resistance
- Gea is the error amplifier transconductance located in *Electrical Characteristics*
- Rsense (100 m Ω typical) is a sense resistor in the current control loop (11)

These equations help generate a simple bode plot for TPS61170-Q1 loop analysis.

Increasing R3 or reducing C3 increases the close loop bandwidth which improves the transient response. Adjusting R3 and C3 in opposite directions increase the phase, and help loop stability. For many of the applications, the recommended value of 10 k Ω and 680 pF makes an ideal compromise between transient response and loop stability. To optimize the compensation, use C3 in the range of 100 pF to 10 nF, and R3 of 10 k Ω . See the TI application report, SLVA319, for thorough analysis and description of the boost converter small signal model and compensation design.

9.2.1.2.7 Input and Output Capacitor Selection

The output capacitor is mainly selected to meet the requirements for the output ripple and loop stability. The ripple voltage is related to the capacitance of the capacitor and its equivalent series resistance (ESR). Assuming a capacitor with zero ESR, the minimum capacitance needed for a given ripple can be calculated using Equation 12.

$$C_{out} = \frac{\left(V_{out} - V_{in}\right)I_{out}}{V_{out} \times Fs \times V_{ripple}}$$

where

V_{ripple} = peak-to-peak output ripple.

The additional output ripple component caused by ESR is calculated using:

Copyright © 2011–2015, Texas Instruments Incorporated

(12)

$V_{ripple}_{ESR} = I_{out} \times R_{ESR}$

(13)

Due to its low ESR, Vripple_ESR can be neglected for ceramic capacitors, but must be considered if tantalum or electrolytic capacitors are used.

Care must be taken when evaluating the derating value of a ceramic capacitor under DC bias, aging and AC signal. For example, larger form factor capacitors (in 1206 size) have a resonant frequencies in the range of the switching frequency. So, the effective capacitance is significantly lower. The DC bias can also significantly reduce capacitance. A ceramic capacitor can lose as much as 50% of its capacitance at its rated voltage. Therefore, choose a ceramic capacitor with a voltage rating at least 1.5× the expected DC bias voltage.

The capacitor in the range of 1 μ F to 4.7 μ F is recommended for input side. The output typically requires a capacitor in the range of 1 μ F to 10 μ F. The output capacitor affects the loop stability of the boost regulator. If the output capacitor is below the range, the boost regulator can potentially become unstable.

9.2.1.3 Application Curve

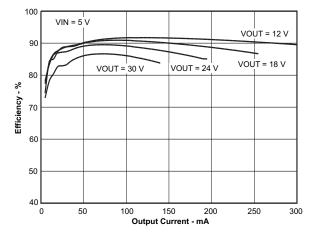


Figure 17. Efficiency vs Output Current

9.2.2 5-V to 12-V DC-DC Power Conversion With Programmable Feedback Reference Voltage

Using Equation 3, we calculate the output resistors to program the desired output voltage of 24 V. The inductance, compensation capacitor, input capacitor, and the output capacitor are calculated in the same way as for the first application example.

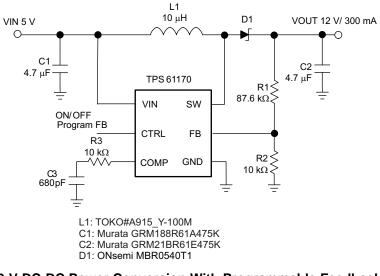


Figure 18. 5-V to 12-V DC-DC Power Conversion With Programmable Feedback Reference Voltage

9.2.3 12-V SEPIC (Buck-Boost) Converter

The single-ended primary-inductance converter (SEPIC) is a DC-DC converter topology that provides a positive regulated output voltage from an input voltage that varies from above to below the output voltage. In this example, we demonstrate a DC-DC converter that can provide 12 V at 300 mA with 90% efficiency from an input voltage from 9 to 15 V. This converter can be implemented using the TPS61170-Q1 device. See *Designing DC/DC converters based on SEPIC topology*, SLYT309 for detailed description and application curves.

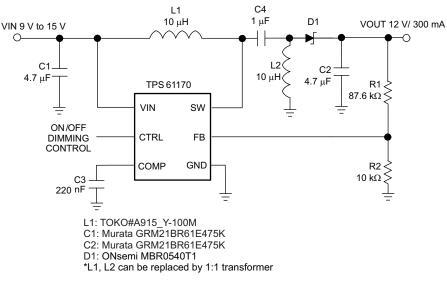


Figure 19. 12-V SEPIC (Buck-Boost) Converter

10 Power Supply Recommendations

The TPS61170-Q1 device is designed to operate from an input voltage up to 18 V. Ensure that the input supply is well regulated. Furthermore, if the supply voltage in the application is likely to reach negative voltage (for example, reverse battery) a forward diode must be placed at the input of the supply. For the VIN pin, a small ceramic capacitor with a typical value of 4.7 μ F is recommended. Capacitance derating for aging, temperature, and DC bias must be considered while determining the capacitor value.

11 Layout

11.1 Layout Guidelines

As for all switching power supplies, especially those switching at high frequencies and/or providing high currents, layout is an important design step. If layout is not carefully done, the regulator could suffer from instability as well as noise problems. To maximize efficiency, switch rise and fall times should be as short as possible. To reduce radiation of high-frequency switching noise and harmonics, proper layout of the high-frequency switching path is essential. Minimize the length and area of all traces connected to the SW pin and always use a ground plane under the switching regulator to minimize interplane coupling. The high current path including the switch, Schottky diode, and output capacitor, contains nanosecond rise and fall times and should be kept as short as possible. The input capacitor needs not only to be close to the VIN pin, but also to the GND pin to reduce the IC supply ripple. Figure 20 shows a sample layout.

11.2 Layout Example

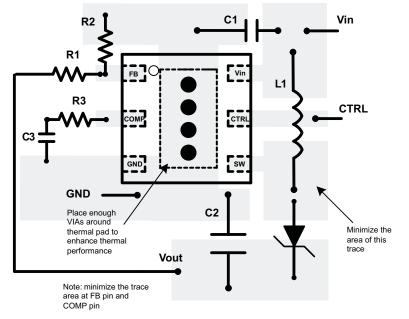


Figure 20. PCB Layout Recommendation

11.3 Thermal Considerations

The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation of the TPS61170-Q1. Calculate the maximum allowable dissipation, $P_{D(max)}$, and keep the actual dissipation less than or equal to $P_{D(max)}$. The maximum-power-dissipation limit is determined using Equation 14:

$$\mathsf{P}_{\mathsf{D}(\mathsf{max})} = \frac{125^{\circ}\mathsf{C} - \mathsf{T}_{\mathsf{A}}}{\mathsf{R}_{\theta}\mathsf{J}_{\mathsf{A}}}$$

where

- T_A is the maximum ambient temperature for the application.
- R_{0JA} is the thermal resistance junction-to-ambient given in the *Thermal Information* table. (14)

The TPS61170-Q1 comes in a thermally enhanced SON package. This package includes a thermal pad that improves the thermal capabilities of the package. The $R_{\theta JA}$ of the SON package greatly depends on the PCB layout and thermal pad connection. The thermal pad must be soldered to the analog ground on the PCB. Using thermal vias underneath the thermal pad as illustrated in the layout example. Also see the *QFN/SON PCB Attachment* application report (SLUA271).

Copyright © 2011–2015, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

- Designing DC/DC converters based on SEPIC topology, SLYT309
- How to Design a Boost Converter With the TPS61170, SLVA319
- QFN/SON PCB Attachment, SLUA271

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

EasyScale, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

2-Jun-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS61170QDRVRQ1	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	RAP	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

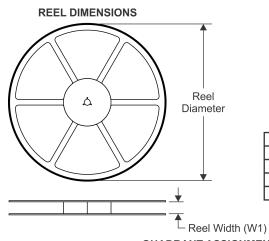
PACKAGE OPTION ADDENDUM

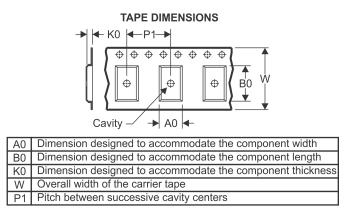
2-Jun-2016

OTHER QUALIFIED VERSIONS OF TPS61170-Q1 :

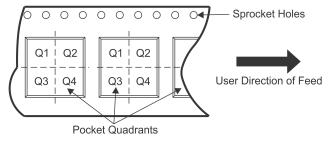
Catalog: TPS61170

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	

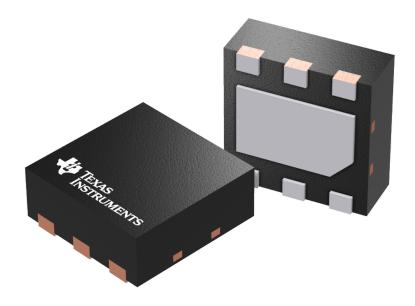
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS61170QDRVRQ1	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

2-Jun-2016


*All dimensions are nominal

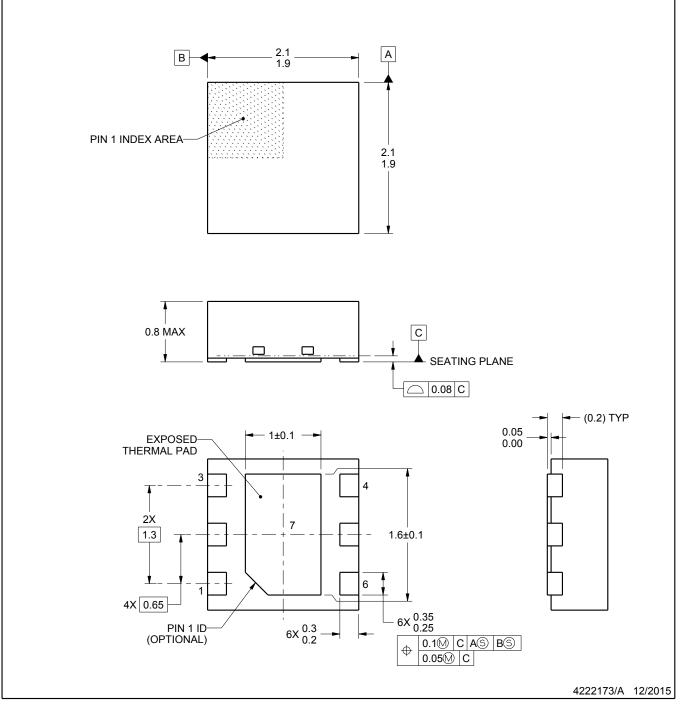
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS61170QDRVRQ1	WSON	DRV	6	3000	210.0	185.0	35.0

DRV 6

GENERIC PACKAGE VIEW

WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DRV0006A

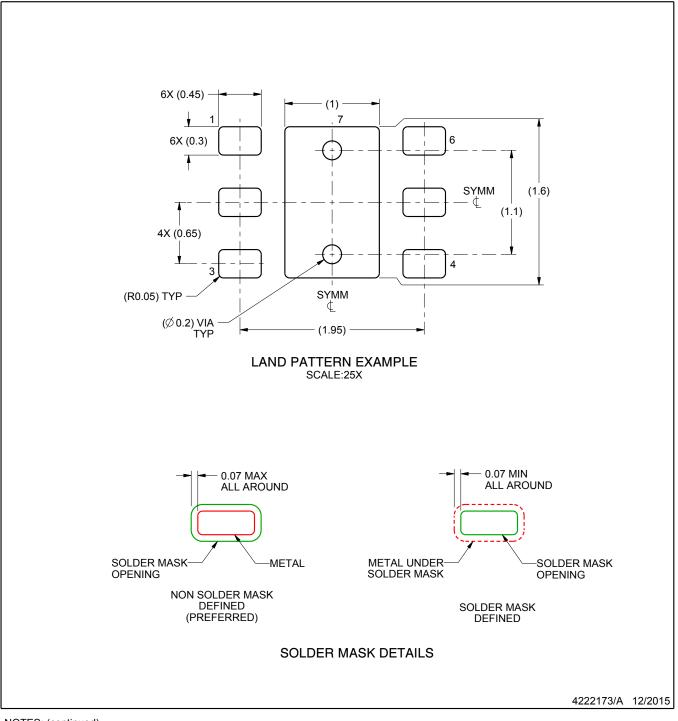
PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



DRV0006A

EXAMPLE BOARD LAYOUT

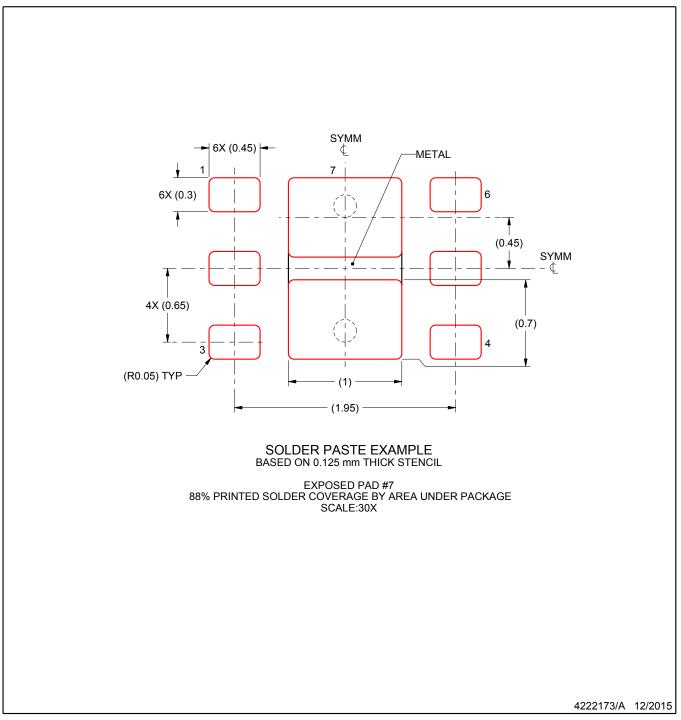
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature

number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.



DRV0006A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated