

TLV6001, TLV6002, TLV6004

SBOS779D -JUNE 2016-REVISED MAY 2017

TLV600x Low-Power, Rail-to-Rail In/Out, 1-MHz Operational Amplifier for Cost-Sensitive Systems

1 Features

Precision Amplifiers for Cost-Sensitive Systems

Low Quiescent Current: 75 μA/ch

Supply Range: 1.8 V to 5.5 V

Input Voltage Noise Density: 28 nV/√Hz at 1 kHz

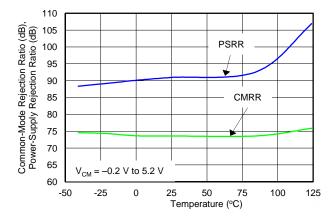
· Rail-to-Rail Input and Output

· Gain Bandwidth: 1 MHz

Low Input Bias Current: 1 pA

Low Offset Voltage: 0.75 mV

· Unity-Gain Stable


Internal RF and EMI Filter

 Extended Temperature Range: -40°C to +125°C

2 Applications

- Industrial and Consumer Electronics
- Portable Equipment
- Portable Blood Glucose Systems
- · Smoke Detectors
- · White Goods
- Power Banks

CMRR and **PSRR** vs Temperature

3 Description

The TLV600x family of single-, dual-, and quad-channel operational amplifiers is specifically designed for general-purpose applications. Featuring rail-to-rail input and output (RRIO) swings, low quiescent current (75 μ A, typical), wide bandwidth (1 MHz) and low noise (28 nV/ $\sqrt{\text{Hz}}$ at 1 kHz), this family is attractive for a variety of applications that require a good balance between cost and performance, such as consumer electronics, smoke detectors, and white goods. The low-input-bias current (±1.0 pA, typical) enables the TLV600x to be used in applications with megaohm source impedances.

The robust design of the TLV600x provides ease-ofuse to the circuit designer: unity-gain stability with capacitive loads of up to 150 pF, integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electrostatic discharge (ESD) protection (4-kV HBM).

The devices are optimized for operation at voltages as low as 1.8 V (\pm 0.9 V) and up to 5.5 V (\pm 2.75 V), and are specified over the extended temperature range of -40° C to $+125^{\circ}$ C.

The single-channel TLV6001 is available in SC70-5 and SOT23-5 packages. The dual-channel TLV6002 is offered in SOIC-8 and VSSOP-8 packages, and the quad-channel TLV6004 is offered in a TSSOP-14 package.

Device Information⁽¹⁾

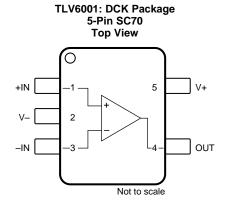
PART NUMBER	PACKAGE	BODY SIZE (NOM)
TI \ (0004	SC70 (5)	2.00 mm × 1.25 mm
TLV6001	SOT-23 (5)	2.90 mm × 1.60 mm
TLVCOOD	SOIC (8)	4.90 mm × 3.91 mm
TLV6002	VSSOP (8)	3.00 mm × 3.00 mm
TLV6004	TSSOP (14)	5.00 mm × 4.40 mm

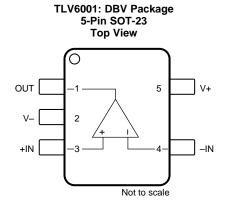
(1) For all available packages, see the orderable addendum at the end of the data sheet.

1	$\Gamma \sim 1$	h		of.	Co	nto	ntc
ı	а	U	ıe	OI.	CO	me	1112

1	Features 1		8.3 Feature Description	15
2	Applications 1		8.4 Device Functional Modes	16
3	Description 1		8.5 Input and ESD Protection	16
4	Revision History2	9	Application and Implementation	17
5	Device Comparison Table3		9.1 Application Information	17
6	Pin Configuration and Functions		9.2 Typical Application	17
7	Specifications		9.3 System Examples	18
•	7.1 Absolute Maximum Ratings	10	Power Supply Recommendations	. 19
	7.2 ESD Ratings	11	Layout	. 20
	7.3 Recommended Operating Conditions		11.1 Layout Guidelines	20
	7.4 Thermal Information: TLV6001		11.2 Layout Example	20
	7.5 Thermal Information: TLV6002	12	Device and Documentation Support	21
	7.6 Thermal Information: TLV6004 8		12.1 Documentation Support	21
	7.7 Electrical Characteristics: V _S = 1.8 V to 5 V (±0.9 V to		12.2 Related Links	21
	±2.75 V)9		12.3 Receiving Notification of Documentation Update	es <mark>21</mark>
	7.8 Typical Characteristics: Table of Graphs 10		12.4 Community Resources	21
	7.9 Typical Characteristics11		12.5 Trademarks	
8	Detailed Description 14		12.6 Electrostatic Discharge Caution	21
	8.1 Overview 14		12.7 Glossary	21
	8.2 Functional Block Diagram	13	Mechanical, Packaging, and Orderable Information	22

4 Revision History

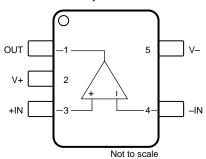

Changes from Revision C (December 2016)	to Revision D	Page
Changed inverting input pin to noninverting	g input pin in Pin Functions: TLV6001 table	3
Changed inverting input pin to noninverting	g input pin in Pin Functions: TLV6001R table	4
Changed inverting input pin to noninverting	g input pin in Pin Functions: TLV6001U table	4
Changed "Sample and Buy" to "Order Now	v" in Related Links table	21
Changes from Revision B (October 2016) to	o Revision C	Page
Changed all pin outs in Pin Configuration a	and Functions section to reflect correct pin names and or	der3
Changes from Revision A (July 2016) to Re	evision B	Page
Added TLV6001R pinout drawing to Pin Co	onfigurations and Functions section	2
Added TLV6001U pinout drawing to Pin Co	onfigurations and Functions section	4
Changes from Original (June 2016) to Revis	sion A	Page
Changed Product Status from Product Pre	view to Production Data	
	nentation section	
• Changed wording of the Receiving Notifica	ation of Documentation Updates section	21



5 Device Comparison Table

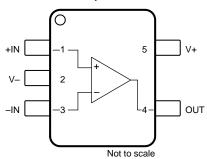
	NO. OF			PACKAGE-LEADS		
DEVICE	CHANNELS	SC70	SOT-23	SOIC	VSSOP	TSSOP
TLV6001	1	5	5	_	_	_
TLV6002	2	_	_	8	8	_
TLV6004	4	_	_	_	_	14

6 Pin Configuration and Functions



Pin Functions: TLV6001

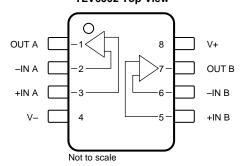
PIN					
NAME	DCK (SC70)	DBV (SOT-23)	I/O	DESCRIPTION	
-IN	3	4	I	Inverting input	
+IN	1	3	I	Noninverting input	
OUT	4	1	0	Output	
V-	2	2	_	Negative (lowest) power supply	
V+	5	5	_	Positive (highest) power supply	



Pin Functions: TLV6001R

PIN		I/O	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
-IN	4	I	Inverting input	
+IN	3	I	Noninverting input	
OUT	1	0	Output	
V-	5	_	Negative (lowest) power supply	
V+	2	_	Positive (highest) power supply	

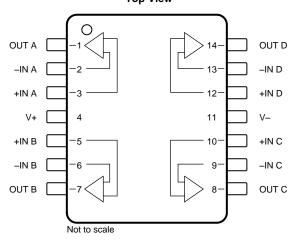
TLV6001U: DBV Package 5-Pin SOT-23 Top View



Pin Functions: TLV6001U

PIN		1/0	DESCRIPTION	
NAME	NO.	I/O	DESCRIPTION	
-IN	3	I	Inverting input	
+IN	1	I	Noninverting input	
OUT	4	0	Output	
V-	2	_	Negative (lowest) power supply	
V+	5	_	Positive (highest) power supply	

TLV6002: D, DGK Packages 8-Pin SOIC, 8-Pin VSSOP TLV6002 Top View



Pin Functions: TLV6002

	PIN				
NAME	D (SOIC)	DGK (VSSOP)	I/O	DESCRIPTION	
-IN A	2	2	I	Inverting input, channel A	
–IN B	6	6	I	Inverting input, channel B	
+IN A	3	3	I	Noninverting input, channel A	
+IN B	5	5	I	Noninverting input, channel B	
OUT A	1	1	0	Output, channel A	
OUT B	7	7	0	Output, channel B	
V-	4	4	_	Negative (lowest) power supply	
V+	8	8	_	Positive (highest) power supply	

TLV6004: PW Package 14-Pin TSSOP Top View

Pin Functions: TLV6004

P	PIN		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
–IN A	2	I	Inverting input, channel A
–IN B	6	I	Inverting input, channel B
–IN C	9	I	Inverting input, channel C
–IN D	13	I	Inverting input, channel D
+IN A	3	I	Noninverting input, channel A
+IN B	5	I	Noninverting input, channel B
+IN C	10	I	Noninverting input, channel C
+IN D	12	I	Noninverting input, channel D
OUT A	1	0	Output, channel A
OUT B	7	0	Output, channel B
OUT C	8	0	Output, channel C
OUT D	14	0	Output, channel D
V-	11	_	Negative (lowest) power supply
V+	4	_	Positive (highest) power supply

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Voltage	Supply voltage		7	V
	Signal input pins, voltage (2)	(V-) - 0.5	(V+) + 0.5	V
Current	Signal input pins, current ⁽²⁾	-10	10	mA
	Output short-circuit (3)	Cont	inuous	mA
	Operating, T _A	-40	150	°C
Temperature	Junction, T _J		150	°C
	Storage, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V	Floatrootatio discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
V _(ESD) Electrostatic discharge		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _S	Supply voltage	1.8	5.5	V
T _A	Specified temperature range	-40	125	°C

⁽²⁾ Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less.

⁽³⁾ Short-circuit to ground, one amplifier per package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Thermal Information: TLV6001

		TLV		
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SC70)	UNIT
		5 PINS	5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	228.5	281.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	99.1	91.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	54.6	59.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	7.7	1.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	53.8	58.8	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Thermal Information: TLV6002

		TLV6002				
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DGK (VSSOP)	UNIT		
		8 PINS	8 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	138.4	191.2	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	89.5	61.9	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	78.6	111.9	°C/W		
ΨЈТ	Junction-to-top characterization parameter	29.9	5.1	°C/W		
ΨЈВ	Junction-to-board characterization parameter	78.1	110.2	°C/W		
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.6 Thermal Information: TLV6004

		TLV6004		
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	UNIT	
		14 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	121.0	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	49.4	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	62.8	°C/W	
ΨЈТ	Junction-to-top characterization parameter	5.9	°C/W	
ΨЈВ	Junction-to-board characterization parameter	62.2	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W	

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

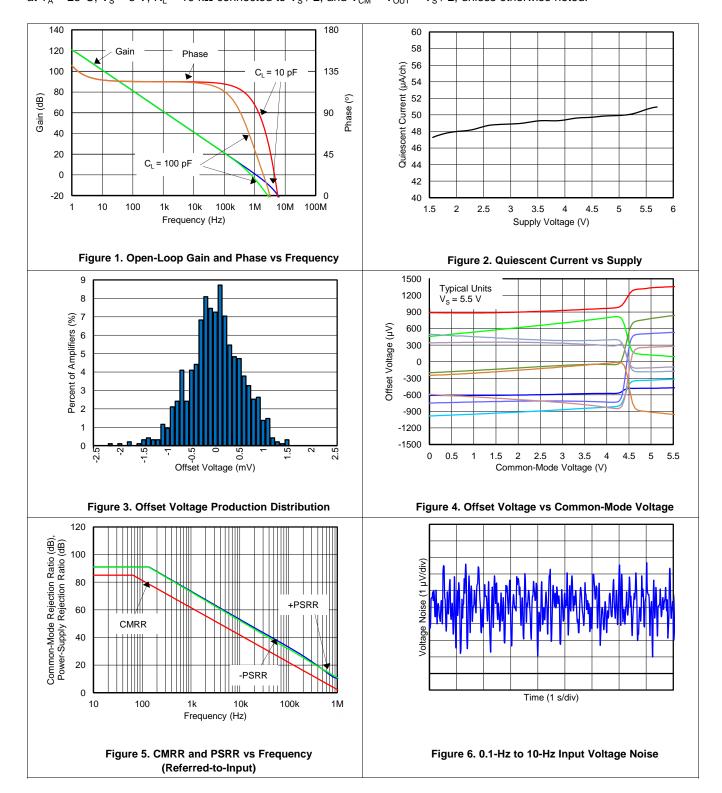
7.7 Electrical Characteristics: $V_s = 1.8 \text{ V to } 5 \text{ V } (\pm 0.9 \text{ V to } \pm 2.75 \text{ V})^{(1)}$

at $T_A = 25$ °C, $R_L = 10$ k Ω connected to V_S / 2, and $V_{CM} = V_{OUT} = V_S$ / 2, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET \	/OLTAGE					
V _{OS}	Input offset voltage			0.75	4.5	mV
dV _{OS} /dT	V _{OS} vs temperature	$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		2		μV/°C
PSRR	Power-supply rejection ratio			86		dB
INPUT BIA	AS CURRENT		<u>.</u>			
I _B	Input bias current	T _A = 25°C		±1.0		pA
Ios	Input offset current			±1.0		pA
INPUT IM	PEDANCE		<u>.</u>			
Z _{ID}	Differential			100 1		MΩ pF
Z _{IC}	Common-mode			1 5		10 ¹³ Ω pF
INPUT VO	LTAGE RANGE					
V _{CM}	Common-mode voltage range	No phase reversal, rail-to-rail input	(V-) - 0.2		(V+) + 0.2	V
CMRR	Common-mode rejection ratio	V _{CM} = -0.2 V to 5.7 V	60	76		dB
OPEN-LO	OP GAIN					
A _{OL}	Open-loop voltage gain	$0.3 \text{ V} < \text{V}_{\text{O}} < (\text{V+}) - 0.3 \text{ V}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega$	90	110		
	Phase margin	V _S = 5.0 V, G = +1		65		degrees
OUTPUT						
1/	Voltage cutout outing from cumply rails	$R_L = 100 \text{ k}\Omega$		5		mV
Vo	Voltage output swing from supply rails	$R_L = 2 \text{ k}\Omega$		75	100	mV
I _{SC}	Short-circuit current			±15		mA
Ro	Open-loop output impedance			2300		Ω
FREQUEN	NCY RESPONSE		·			
GBW	Gain-bandwidth product			1		MHz
SR	Slew rate			0.5		V/µs
t _S	Settling time	To 0.1%, $V_S = 5.0 \text{ V}$, 2-V step , $G = +1$		5		μS
NOISE						
	Input voltage noise (peak-to-peak)	f = 0.1 Hz to 10 Hz		6		μV_{PP}
e _n	Input voltage noise density	f = 1 kHz		28		nV/√ Hz
i _n	Input current noise density	f = 1 kHz		5		fA/√ Hz
POWER S	SUPPLY					
V _S	Specified voltage range		1.8 (±0.9)		5.5 (±2.75)	V
IQ	Quiescent current per amplifier	I _O = 0 mA, V _S = 5.0 V		75	100	μA
	Power-on time	V _S = 0 V to 5 V, to 90% I _Q level		10		μs

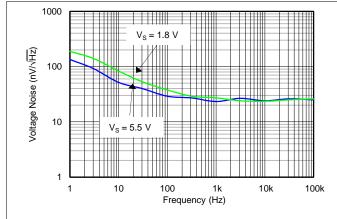
⁽¹⁾ Parameters with minimum or maximum specification limits are 100% production tested at 25°C, unless otherwise noted. Overtemperature limits are based on characterization and statistical analysis.

7.8 Typical Characteristics: Table of Graphs


Table 1. Table of Graphs

TITLE	FIGURE
Open-Loop Gain and Phase vs Frequency	Figure 1
Quiescent Current vs Supply Voltage	Figure 2
Offset Voltage Production Distribution	Figure 3
Offset Voltage vs Common-Mode Voltage (Maximum Supply)	Figure 4
CMRR and PSRR vs Frequency (RTI)	Figure 5
0.1-Hz to 10-Hz Input Voltage Noise (5.5 V)	Figure 6
Input Voltage Noise Spectral Density vs Frequency (1.8 V, 5.5 V)	Figure 7
Input Bias and Offset Current vs Temperature	Figure 8
Open-Loop Output Impedance vs Frequency	Figure 9
Maximum Output Voltage vs Frequency and Supply Voltage	Figure 10
Output Voltage Swing vs Output Current (over Temperature)	Figure 11
Closed-Loop Gain vs Frequency, G = 1, −1, 10 (1.8 V)	Figure 12
Small-Signal Step Response, Noninverting (1.8 V)	Figure 13
Small-Signal Step Response, Noninverting (5.5 V)	Figure 14
Large-Signal Step Response, Noninverting (1.8 V)	Figure 15
Large-Signal Step Response, Noninverting (5.5 V)	Figure 16
No Phase Reversal	Figure 17
EMIRR IN+ vs Frequency	Figure 18

7.9 Typical Characteristics


at T_A = 25°C, V_S = 5 V, R_L = 10 k Ω connected to V_S / 2, and V_{CM} = V_{OUT} = V_S / 2, unless otherwise noted.

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 5$ V, $R_L = 10$ k Ω connected to V_S / 2, and $V_{CM} = V_{OUT} = V_S$ / 2, unless otherwise noted.

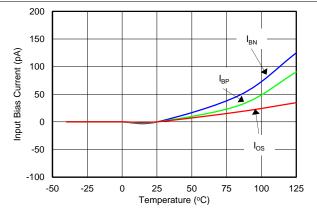
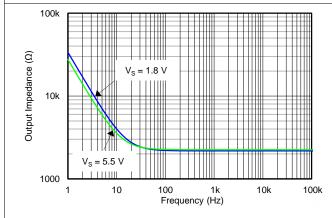



Figure 7. Input Voltage Noise Spectral Density vs Frequency

Figure 8. Input Bias and Offset Current vs Temperature

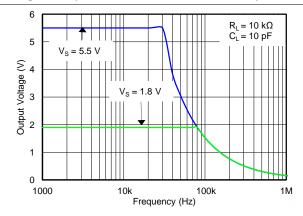
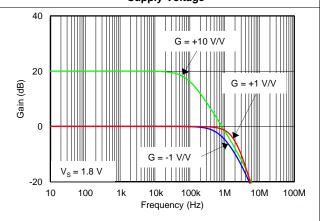



Figure 9. Open-Loop Output Impedance vs Frequency

Figure 10. Maximum Output Voltage vs Frequency and Supply Voltage



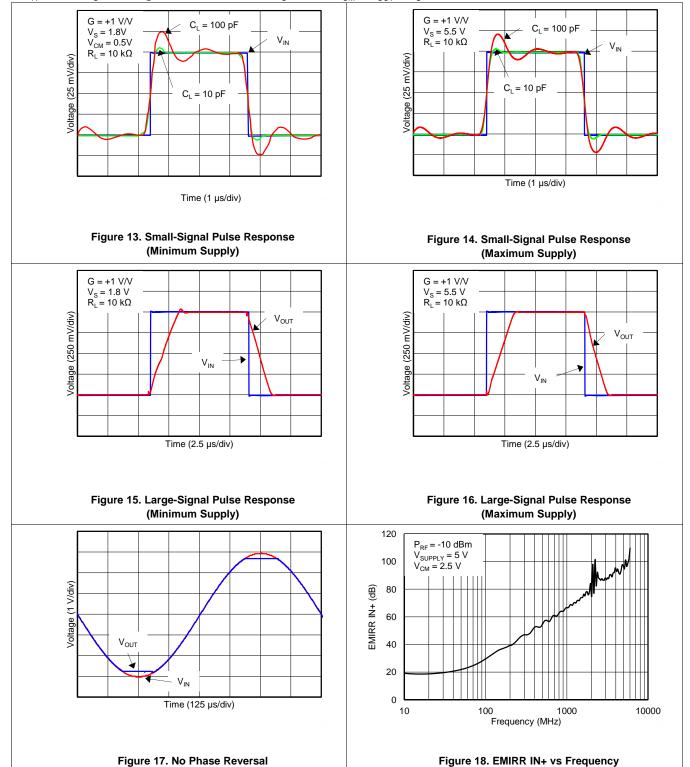
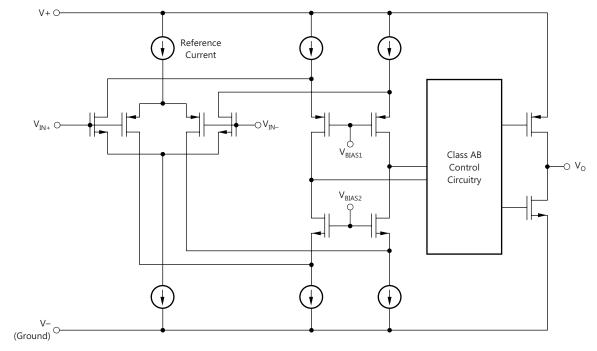

Figure 11. Output Voltage Swing vs Output Current (Over Temperature)

Figure 12. Closed-Loop Gain vs Frequency (Minimum Supply)

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 5$ V, $R_L = 10$ k Ω connected to V_S / 2, and $V_{CM} = V_{OUT} = V_S$ / 2, unless otherwise noted.



8 Detailed Description

8.1 Overview

The TLV600x family of operational amplifiers are general-purpose, low-cost devices that are suitable for a wide range of portable applications. Rail-to-rail input and output swings, low quiescent current, and wide dynamic range make the op amps well-suited for driving sampling analog-to-digital converters (ADCs) and other single-supply applications.

8.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Operating Voltage

The TLV600x series is fully specified and tested from 1.8 V to 5.5 V (±0.9 V to ±2.75 V). Parameters that vary with supply voltage are illustrated in the *Typical Characteristics* section.

8.3.2 Rail-to-Rail Input

The input common-mode voltage range of the TLV600x series extends 200 mV beyond the supply rails. This performance is achieved with a complementary input stage: an N-channel input differential pair in parallel with a P-channel differential pair, as shown in the *Functional Block Diagram*. The N-channel pair is active for input voltages close to the positive rail, typically (V+) - 1.3 V to 200 mV above the positive supply, while the P-channel pair is on for inputs from 200 mV below the negative supply to approximately (V+) - 1.3 V. There is a small transition region, typically (V+) - 1.4 V to (V+) - 1.2 V, in which both pairs are on. This 200-mV transition region may vary up to 300 mV with process variation. Thus, the transition region (both stages on) may range from (V+) - 1.7 V to (V+) - 1.5 V on the low end, up to (V+) - 1.1 V to (V+) - 0.9 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to device operation outside this region.

8.3.3 Rail-to-Rail Output

Designed as a micro-power, low-noise operational amplifier, the TLV600x delivers a robust output drive capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output swing capability. For resistive loads up to 100 k Ω , the output swings typically to within 5 mV of either supply rail regardless of the power-supply voltage applied. Different load conditions change the ability of the amplifier to swing close to the rails, as shown in Figure 11.

8.3.4 Common-Mode Rejection Ratio (CMRR)

CMRR for the TLV600x is specified in several ways so the best match for a given application may be used; see *Electrical Characteristics*. First, the CMRR of the device in the common-mode range below the transition region $[V_{CM} < (V+) - 1.3 \text{ V}]$ is given. This specification is the best indicator of the capability of the device when the application requires the use of one of the differential input pairs. Second, the CMRR over the entire common-mode range is specified at $(V_{CM} = -0.2 \text{ V to } 5.7 \text{ V})$. This last value includes the variations seen through the transition region, as shown in Figure 4.

8.3.5 Capacitive Load and Stability

The TLV600x is designed to be used in applications where driving a capacitive load is required. As with all op amps, there may be specific instances where the TLV600x may become unstable. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether or not an amplifier is stable in operation. An op amp in the unity-gain ($\frac{1}{2}-1$ -V/V) buffer configuration that drives a capacitive load exhibits a greater tendency to be unstable than an amplifier operated at a higher noise gain. The capacitive load, in conjunction with the op amp output resistance, creates a pole within the feedback loop that degrades the phase margin. The degradation of the phase margin increases as the capacitive loading increases. When operating in the unity-gain configuration, the TLV600x remains stable with a pure capacitive load up to approximately 1 nF. The equivalent series resistance (ESR) of some capacitors (C_L greater than 1 μ F) is sufficient to alter the phase characteristics in the feedback loop such that the amplifier remains stable. Increasing the amplifier closed-loop gain allows the amplifier to drive increasingly larger capacitance. This increased capability is evident when observing the overshoot response of the amplifier at higher voltage gains.

Feature Description (continued)

One technique for increasing the capacitive load drive capability of the amplifier when it operates in a unity-gain configuration is to insert a small resistor, typically $10\frac{1}{1000} + \Omega$ to $20\frac{1}{1000} + \Omega$, in series with the output, as shown in Figure 19. This resistor significantly reduces the overshoot and ringing associated with large capacitive loads. One possible problem with this technique is that a voltage divider is created with the added series resistor and any resistor connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output that reduces the output swing.

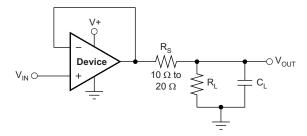


Figure 19. Improving Capacitive Load Drive

8.3.6 EMI Susceptibility and Input Filtering

Operational amplifiers vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If conducted EMI enters the op amp, the dc offset observed at the amplifier output may shift from the nominal value while EMI is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. While all op amp pin functions may be affected by EMI, the signal input pins are likely to be the most susceptible. The TLV600x family incorporates an internal input low-pass filter that reduces the amplifiers response to EMI. Common-mode and differential mode filtering are provided by this filter. The filter is designed for a cutoff frequency of approximately 35 MHz (–3 dB), with a !— roll-off!— rolloff of 20 dB per decade.

Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. The EMI rejection ratio (EMIRR) metric allows op amps to be directly compared by the EMI immunity. Figure 18 illustrates the results of this testing on the TLV600x family. Detailed information may be found in *EMI Rejection Ratio of Operational Amplifiers* (SBOA128), available for download from www.ti.com.

8.4 Device Functional Modes

The TLV600x have a single functional mode. The devices are powered on as long as the power-supply voltage is between 1.8 V (± 0.9 V) and 5.5 V (± 2.75 V).

8.5 Input and ESD Protection

The TLV600x incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the case of input and output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply pins. The ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA, as stated in the *Absolute Maximum Ratings* table. Figure 20 shows how a series input resistor may be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in noise-sensitive applications.

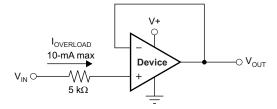
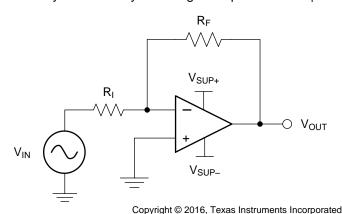


Figure 20. Input Current Protection

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TLV600x is a family of low-power, rail-to-rail input and output operational amplifiers specifically designed for portable applications. The devices operate from 1.8 V to 5.5 V, are unity-gain stable, and are suitable for a wide range of general-purpose applications. The class AB output stage is capable of driving \leq 10-k Ω loads connected to any point between V+ and ground. The input common-mode voltage range includes both rails, and allows the TLV600x to be used in any single-supply application.

9.2 Typical Application

A typical application for an operational amplifier is an inverting amplifier, as shown in Figure 21. An inverting amplifier takes a positive voltage on the input and outputs a signal inverted to the input, making a negative voltage of the same magnitude. In the same manner, the amplifier makes negative input voltages positive on the output. In addition, amplification may be added by selecting the input resistor R_I and the feedback resistor R_I .

. . .

Figure 21. Application Schematic

9.2.1 Design Requirements

The supply voltage must be chosen to be larger than the input voltage range and the desired output range. The limits of the input common-mode range (V_{CM}) and the output voltage swing to the rails (V_O) must be considered. For instance, this application scales a signal of ± 0.5 V (1 V) to ± 1.8 V (3.6 V). Setting the supply at ± 2.5 V is sufficient to accommodate this application.

9.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

$$A_{V} = \frac{V_{OUT}}{V_{IN}} \tag{1}$$

$$A_{V} = \frac{1.8}{-0.5} = -3.6 \tag{2}$$

Typical Application (continued)

When the desired gain is determined, choose a value for R_I or R_F . Choosing a value in the kilohm range is desirable for general-purpose applications because the amplifier circuit uses currents in the milliamp range. This milliamp current range ensures the device does not draw too much current. The trade-off is that large resistors (hundreds of kilohms) draw the smallest current but generate the highest noise. Small resistors (100s of ohms) generate low noise but draw high current. This example uses 10 k Ω for R_I , meaning 36 k Ω is used for R_F . The values are determined by Equation 3:

$$A_{V} = -\frac{R_{F}}{R_{I}} \tag{3}$$

9.2.3 Application Curve

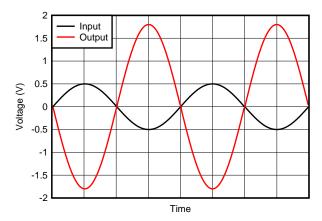
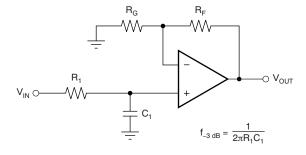



Figure 22. Inverting Amplifier Input and Output

9.3 System Examples

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to establish this limited bandwidth is to place an RC filter at the noninverting terminal of the amplifier, as shown in Figure 23.

$$\frac{V_{OUT}}{V_{IN}} = \left(1 + \frac{R_F}{R_G}\right) \left(\frac{1}{1 + sR_1C_1}\right)$$

Figure 23. Single-Pole Low-Pass Filter

System Examples (continued)

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter may be used for this task, as shown in Figure 24. For best results, the amplifier must have a bandwidth that is eight to 10 times the filter frequency bandwidth. Failure to follow this guideline may result in phase shift of the amplifier.

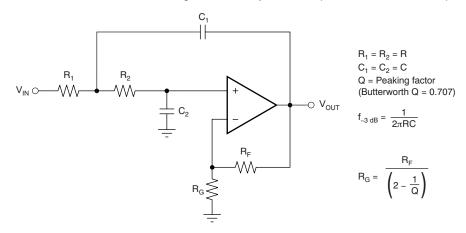


Figure 24. Two-Pole, Low-Pass, Sallen-Key Filter

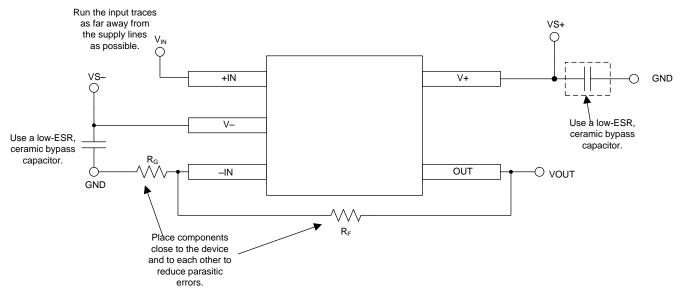
10 Power Supply Recommendations

The TLV600x is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply from –40°C to +125°C. The *Typical Characteristics* presents parameters that may exhibit significant variance with regard to operating voltage or temperature.

CAUTION

Supply voltages larger than 7 V may permanently damage the device. (See the *Absolute Maximum Ratings* table).

Place 0.1- μ F bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see *Layout Guidelines*.


11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

- Noise may propagate into analog circuitry through the power pins of the circuit and the operational amplifier. Use bypass capacitors to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of the circuitry is one of the simplest and most
 effective methods of noise suppression. One or more layers on multilayer PCBs are typically devoted to
 ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to
 physically separate digital and analog grounds, paying attention to the flow of the ground current. For
 more detailed information, refer to Circuit Board Layout Techniques (SLOA089).
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as
 possible. If the traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better
 than crossing in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keep R_F and R_G close to the inverting
 input in order to minimize parasitic capacitance, as shown in Figure 25.
- Keep the length of input traces as short as possible. Remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring may significantly reduce leakage currents from nearby traces that are at different potentials.

11.2 Layout Example

Copyright © 2016, Texas Instruments Incorporated

Figure 25. Operational Amplifier Board Layout for Noninverting Configuration

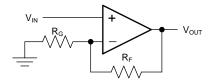


Figure 26. Schematic Representation of Figure 25

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

- EMI Rejection Ratio of Operational Amplifiers (SBOA128)
- Circuit Board Layout Techniques (SLOA089)

12.2 Related Links

Table 2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

TECHNICAL TOOLS & SUPPORT & PARTS PRODUCT FOLDER **ORDER NOW** SOFTWARE **DOCUMENTS** COMMUNITY TLV6001 Click here Click here Click here Click here Click here TLV6002 Click here Click here Click here Click here Click here Click here TLV6004 Click here Click here Click here Click here

Table 2. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

11-May-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TLV6001IDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	14W2	Samples
TLV6001IDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	14W2	Samples
TLV6001IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	13X	Samples
TLV6001IDCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	13X	Samples
TLV6001RIDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	16O2	Samples
TLV6001RIDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	16O2	Samples
TLV6001UIDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	16P2	Samples
TLV6001UIDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	16P2	Samples
TLV6002IDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	14TV	Samples
TLV6002IDGKT	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	14TV	Samples
TLV6002IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	V6002	Samples
TLV6004IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV6004	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

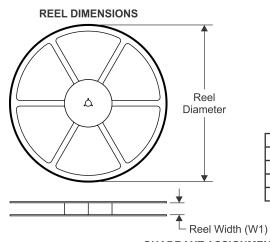
⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

PACKAGE OPTION ADDENDUM

11-May-2017

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

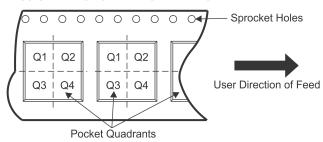
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

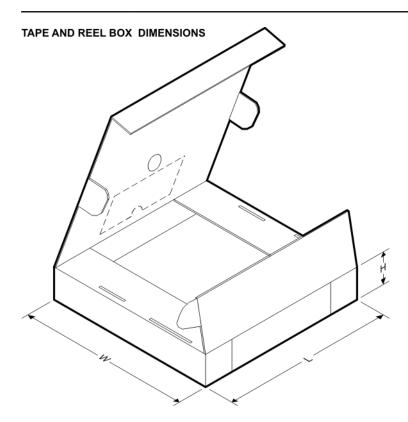
www.ti.com 11-May-2017


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

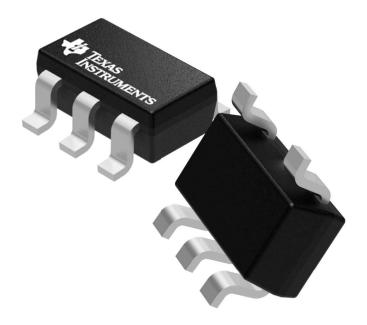
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV6001IDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV6001IDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV6001IDCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV6001IDCKT	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV6001RIDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV6001RIDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV6001UIDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV6001UIDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV6002IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV6002IDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV6002IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV6004IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com 11-May-2017

*All dimensions are nominal

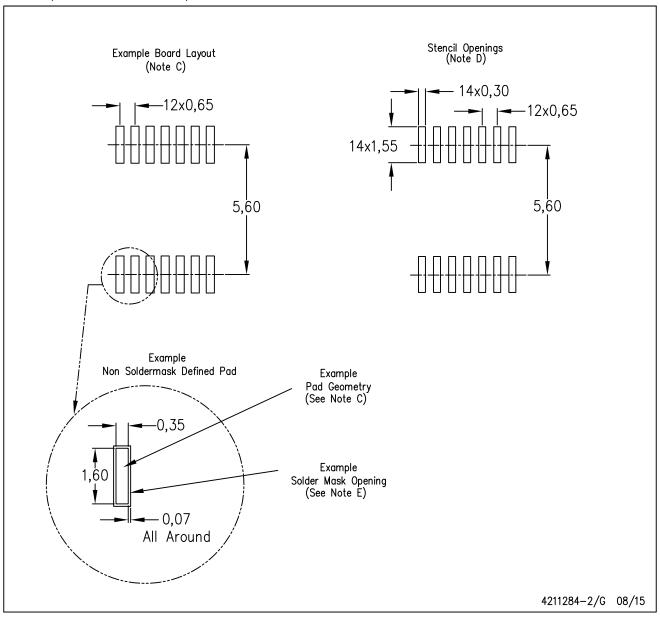
All ulmensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV6001IDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV6001IDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV6001IDCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TLV6001IDCKT	SC70	DCK	5	250	180.0	180.0	18.0
TLV6001RIDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV6001RIDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV6001UIDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV6001UIDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV6002IDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
TLV6002IDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0
TLV6002IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV6004IPWR	TSSOP	PW	14	2000	367.0	367.0	35.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4073253/P

PW (R-PDSO-G14)

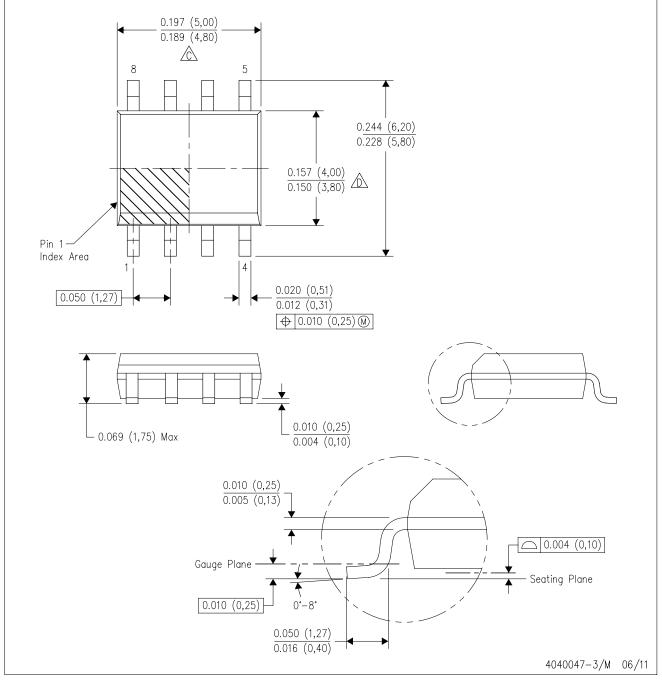
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
 - Sody length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

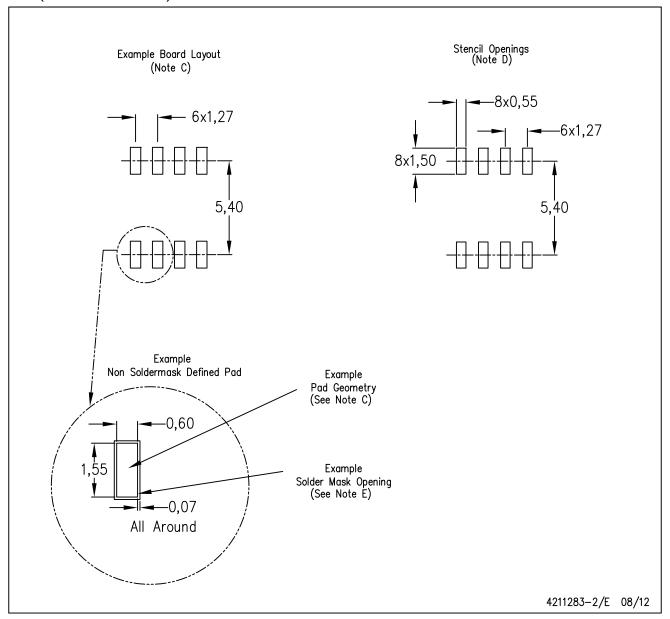
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

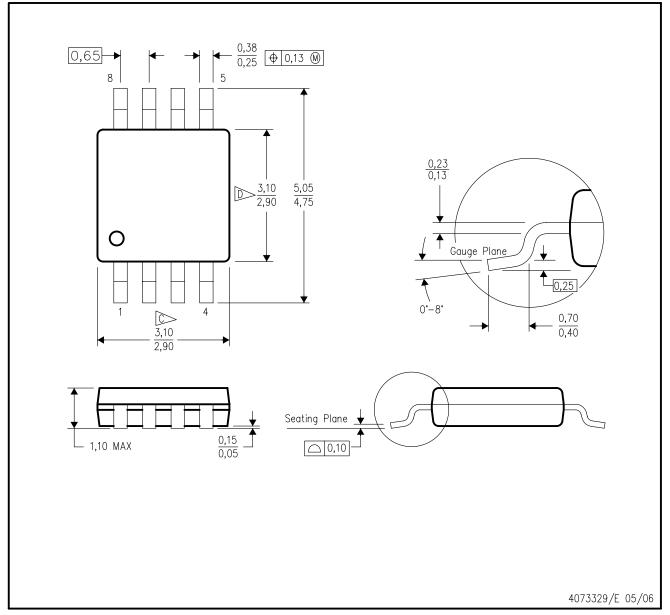
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

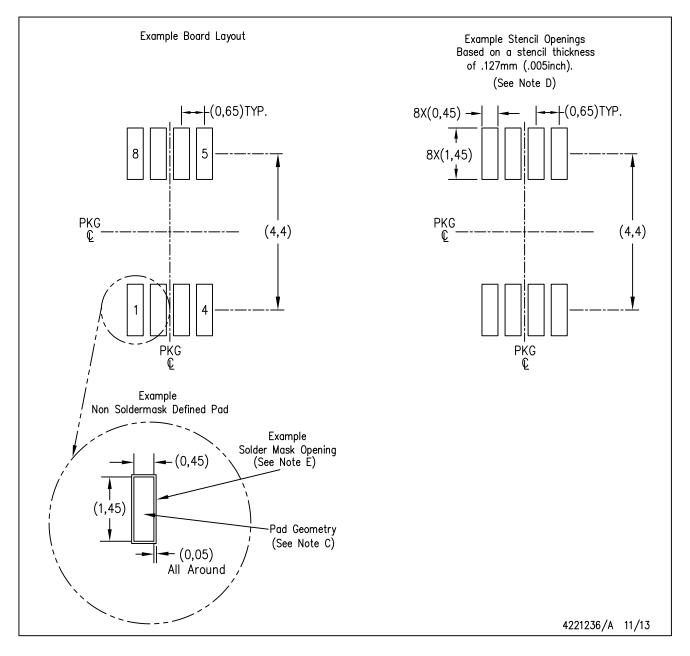
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DGK (S-PDSO-G8)

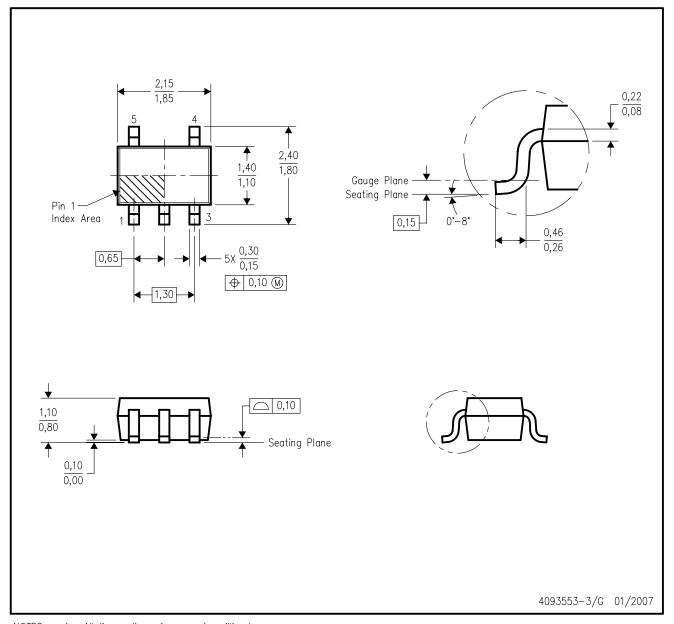
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

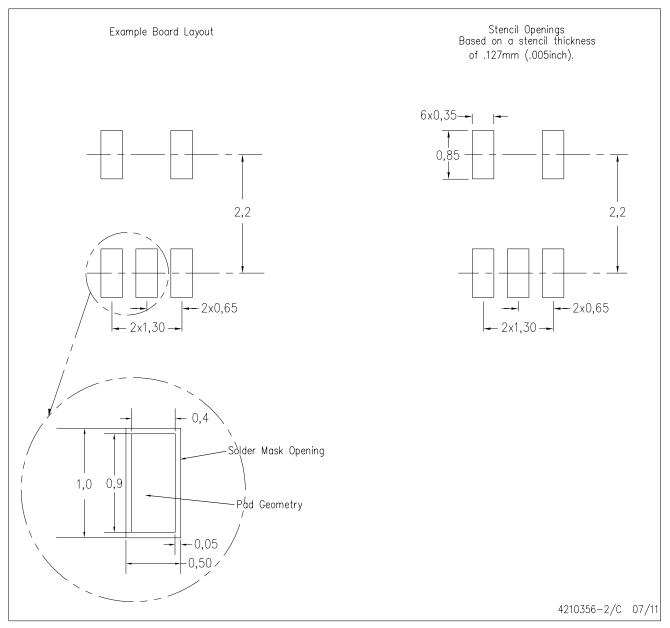
PLASTIC SMALL OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.