

SGM706 Low-Cost, Microprocessor Supervisory Circuit

GENERAL DESCRIPTION

The SGM706 microprocessor supervisory circuit reduces the complexity and number of components required to monitor power-supply and monitor microprocessor activity. It significantly improves system reliability and accuracy compared to separate ICs or discrete components.

The SGM706 provides power-supply monitoring circuitry that generates a reset output during power-up, power-down and brownout conditions. The reset output remains operational with $V_{\rm CC}$ as low as 1V. Independent watchdog monitoring circuitry is also provided. This is activated if the watchdog input has not been toggled within 1.6 seconds.

In addition, there is a 1.25V threshold detector for power-fail warning, low-battery detection, or monitoring an additional power supply. An active-low manual-reset input (\overline{MR}) is also included.

The SGM706 is available in Green SOIC-8 package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

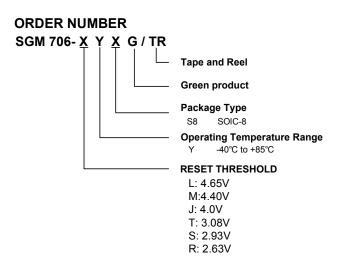
- Precision Supply-Voltage Monitor
 - 4.65V for SGM706-L
 - 4.40V for SGM706-M
 - 4.0V for SGM706-J
 - 3.08V for SGM706-T
 - 2.93V for SGM706-S
 - 2.63V for SGM706-R
- Guaranteed RESET Valid at Vcc = 1V
- 200ms Reset Pulse Width
- Debounced TTL/CMOS-Compatible
 Manual-Reset Input
- Independent Watchdog Timer (1.6sec) Timeout
- Voltage Monitor for Power-Fail or Low-Battery Warning
- -40°C to +85°C Operating Temperature Range
- Green SOIC-8 Package

APPLICATIONS

Computers

Controllers

Intelligent Instruments


Automotive Systems

Critical µP Power Monitoring

PACKAGE/ORDERING INFORMATION

MODEL	RESET THRESHOLD (V)	PACKAGE DESCRIPTION	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
	4.65	SOIC-8	SGM706-LYS8G/TR	SGM706-LYS8	Tape and Reel, 2500
	4.40	SOIC-8	SGM706-MYS8G/TR	SGM706-MYS8	Tape and Reel, 2500
SGM706	4.0	SOIC-8	SGM706-JYS8G/TR	SGM706-JYS8	Tape and Reel, 2500
3GM706	3.08	SOIC-8	SGM706-TYS8G/TR	SGM706-TYS8	Tape and Reel, 2500
	2.93	SOIC-8	SGM706-SYS8G/TR	SGM706-SYS8	Tape and Reel, 2500
	2.63	SOIC-8	SGM706-RYS8G/TR	SGM706-RYS8	Tape and Reel, 2500

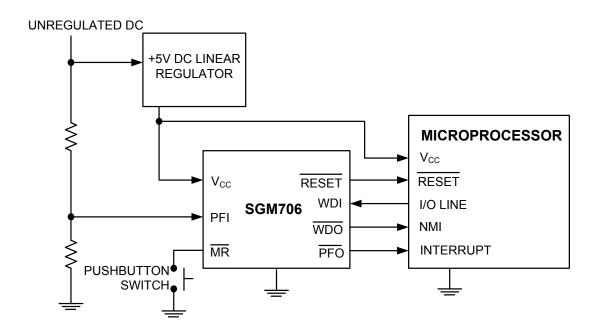
NOTE: Order number is defined as the follow:

CAUTION

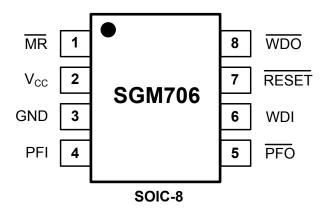
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

ABSOLUTE MAXIMUM RATINGS


(Typical values are at T_A = +25°C, unless otherwise noted.) Terminal Voltage (with respect to GND)

0 \ 1	
V _{CC}	0.3V to 6.0V
All Other Inputs	0.3V to (V _{CC} + 0.3V)
Input Current, V _{CC}	20mA
GND	20mA
Output Current, (all outputs)	20mA
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C
Storage Temperature	65°C to +150°C
Lead Temperature (Soldering, 10sec)	260°C
ESD Susceptibility	
HBM	4000V
NANA	2001/


NOTE:

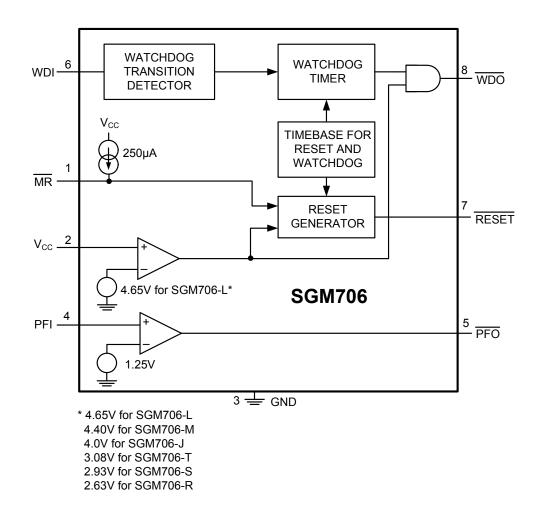
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL OPERATION CIRCUIT

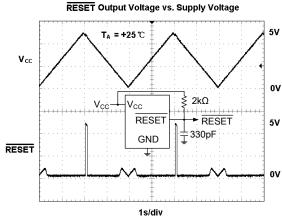
PIN CONFIGURATION (TOP VIEW)

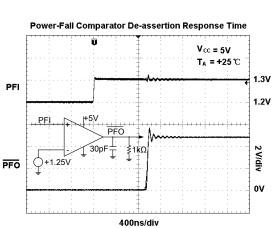
PIN DESCRIPTION

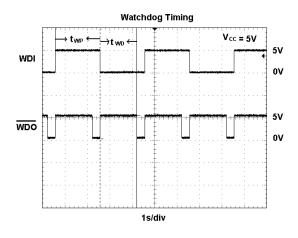
PIN	NAME	FUNCTION
1	MR	Manual-Reset Input triggers a reset pulse when pulled below 0.8V. This active-low input has an internal 250 μ A (V _{CC} = +5V) pull-up current. It can be driven from a TTL or CMOS logic line as well as shorted to ground with a switch.
2	V _{CC}	Power Supply Voltage that is monitored.
3	GND	0V Ground Reference for all signals.
4	PFI	Power-Fail Voltage Monitor Input. When PFI is less than 1.25V, $\overline{\text{PFO}}$ goes low. Connect PFI to GND or V_{CC} when not used.
5	PFO	Power-Fail Output goes low and sinks current when PFI is less than 1.25V; otherwise $\overline{\text{PFO}}$ stays high.
6	WDI	Watchdog Input. If WDI remains high or low for 1.6sec, the internal watchdog timer runs out and WDO goes low (BLOCK DIAGRAM). Floating WDI or connecting WDI to a high-impedance three-state buffer disables the watchdog feature. The internal watchdog timer clears whenever reset is asserted, WDI is three-stated, or WDI sees a rising or falling edge.
7	RESET	Active-Low Reset Output pulses low for 200ms when triggered, and stays low whenever V_{CC} is below the reset threshold (4.65V for SGM706-L, 4.4V for SGM706-M, 4.0V for SGM706-J, 3.08V for SGM706-T and 2.93V for SGM706-S, 2.63V for SGM706-R). It remains low for 200ms after V_{CC} rises above the reset threshold or $\overline{\text{MR}}$ goes from low to high. A watchdog timeout will not trigger $\overline{\text{RESET}}$ unless $\overline{\text{WDO}}$ is connected to $\overline{\text{MR}}$.
8	WDO	Watchdog Output pulls low when the internal watchdog timer finishes its 1.6sec count and does not go high again until the watchdog is cleared. $\overline{\text{WDO}}$ also goes low during low-line conditions. Whenever V_{CC} is below the reset threshold, $\overline{\text{WDO}}$ stays low; however, unlike $\overline{\text{RESET}}$, $\overline{\text{WDO}}$ does not have a minimum pulse width. As soon as V_{CC} rises above the reset threshold, $\overline{\text{WDO}}$ goes high with no delay.

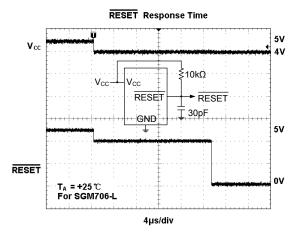

SGM706

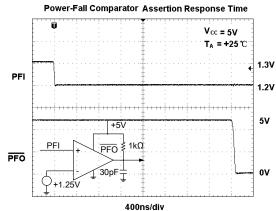
ELECTRICAL CHARACTERISTICS

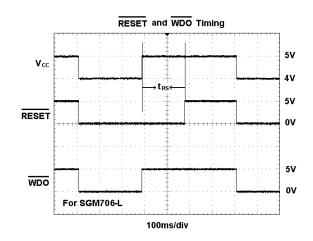

 $(V_{CC} = 4.75 \text{V to } 5.5 \text{V for SGM706-L}; \ V_{CC} = 4.5 \text{V to } 5.5 \text{V for SGM706-M}; \ V_{CC} = 4.07 \text{V to } 5.5 \text{V for SGM706-J}; \ V_{CC} = 3.14 \text{V to } 5.5 \text{V for SGM706-R}; \ V_{CC} = 2.95 \text{V to } 5.5 \text{V for SGM706-S}; \ V_{CC} = 2.68 \text{V to } 5.5 \text{V for SGM706-R}; \ T_{A} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}, \ unless otherwise noted.)$

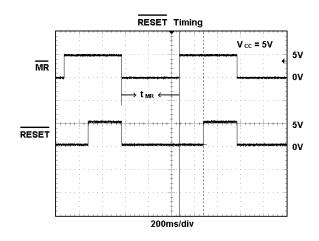

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS	
Operating Voltage Range	e (V _{CC})		1.0		5.5	V	
Supply Current (I _{SUPPLY})				50	150	μA	
		SGM706-L	4.5	4.65	4.75		
		SGM706-M	4.25	4.4	4.5		
Deart Threehold ()/)		SGM706-J	3.91	4.0	4.07	V	
Reset Threshold (V _{RT})		SGM706-T	3.02	3.08	3.14		
		SGM706-S	2.85	2.93	2.95		
		SGM706-R	2.56	2.63	2.68		
		SGM706-L, SGM706-M		40			
Decet Three bald thretons	_:_	SGM706-J		34		Ī,	
Reset Threshold Hystere	SIS	SGM706-T, SGM706-S		25		- mV	
		SGM706-R		22			
Reset Pulse Width (t _{RS})			120	200	280	ms	
		I _{SOURCE} = 800µA	V _{CC} - 1.5			V	
RESET Output Voltage		I _{sink} = 3.2mA			0.4		
		$V_{CC} = 1V$, $I_{sink} = 50\mu A$			0.3	1	
Watchdog Timeout Period (t _{WD})			1.0	1.6	2.25	sec	
WDI Pulse Width (t _{WP})		$V_{IL} = 0.4V$, $V_{IH} = V_{CC}$	70			ns	
	Low	V _{CC} = 5V			0.8		
MDII (TI III	High	V _{CC} = 5V	3.5			V	
WDI Input Threshold	Low	$V_{RST(MAX)} < V_{CC} < 3.6V$			0.8		
	High	$V_{RST(MAX)} < V_{CC} < 3.6V$	0.7 × V _{CC}			1	
WDI Input Current		WDI = V _{CC}		50	150	μΑ	
		WDI = 0V	-150	-50			
		I _{SOURCE} = 800µA	V _{CC} - 1.5			1	
WDO Output Voltage		I _{sink} = 1.2mA			0.4	_ V	
MR Pull-Up Current		MR = 0V	100		600	μA	
MR Pulse Width (t _{MR})			250			ns	
	Low	T05°20			0.8		
MR Input Threshold	High	T _A = +25°C	2			- V	
MR to Reset Out Delay (t _{MD})					350	ns	
PFI Input Threshold		V _{CC} = 5V	1.18	1.25	1.3	V	
PFI Input Current				0.2		nA	
		I _{SOURCE} = 800µA	V _{CC} - 1.5			.,	
PFO Output Voltage		I _{sink} = 3.2mA			0.4	V	


BLOCK DIAGRAM




TYPICAL PERFORMANCE CHARACTERISTICS





TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATION NOTES

Ensuring a Valid RESET Output Down to $V_{CC} = 0V$

When V_{CC} falls below 1V, the SGM706 $\overline{\text{RESET}}$ output no longer sinks current—it becomes an open circuit. High-impedance CMOS logic inputs can drift to undetermined voltages if left undriven. If a pull-down resistor is added to the $\overline{\text{RESET}}$ pin as shown in Figure 1, any stray charge or leakage currents will be drained to ground, holding $\overline{\text{RESET}}$ low. Resistor value (R1) is not critical. It should be about $100\text{k}\Omega$, large enough not to load $\overline{\text{RESET}}$ and small enough to pull $\overline{\text{RESET}}$ to ground.

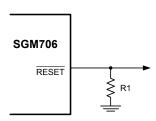


Figure 1. RESET Valid to Ground Circuit

Monitoring Voltages Other Than the Unregulated DC Input

Monitor voltages other than the unregulated DC by connecting a voltage divider to PFI and adjusting the ratio appropriately. If required, add hysteresis by connecting a resistor (with a value approximately 10 times the sum of the two resistors in the potential divider network) between PFI and $\overline{\text{PFO}}$. A capacitor between PFI and GND will reduce the power-fail circuit's sensitivity to high-frequency noise on the line being monitored. $\overline{\text{RESET}}$ can be asserted on other voltages in addition to the +5V V_{CC} line. Connect $\overline{\text{PFO}}$ to $\overline{\text{MR}}$ to initiate a $\overline{\text{RESET}}$ pulse when PFI drops below 1.25V. Figure 2 shows the SGM706 configured to assert $\overline{\text{RESET}}$ when the +5V supply falls below approximately 11V.

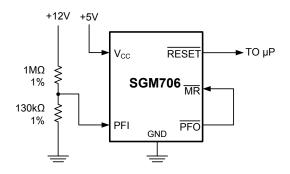


Figure 2. Monitoring Both +5V and +12V

Monitoring a Negative Voltage

The power-fail comparator can also monitor a negative supply rail (Figure 3). When the negative rail is good (a negative voltage of large magnitude), \overline{PFO} is low, and when the negative rail is degraded (a negative voltage of lesser magnitude), \overline{PFO} is high. By adding the resistors and transistor as shown, a high \overline{PFO} triggers reset. As long as \overline{PFO} remains high, the SGM706 will keep reset asserted (\overline{RESET} = low, RESET = high). Note that this circuit's accuracy depends on the PFI threshold tolerance, the V_{CC} line, and the resistors.

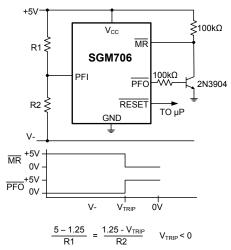


Figure 3. Monitoring a Negative Voltage

Interfacing to μPs with Bidirectional Reset Pins

 μ Ps with bidirectional reset pins, such as the Motorola 68HC11 series, can contend with the SGM706 RESET output. If, for example, the RESET output is driven high and the Microprocessor wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7kΩ resistor between the RESET output and the μ P reset I/O, as in Figure 4. Buffer the RESET output to other system components.

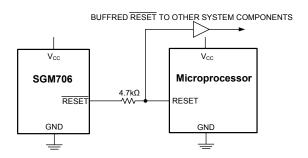
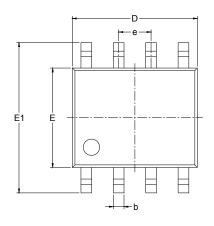
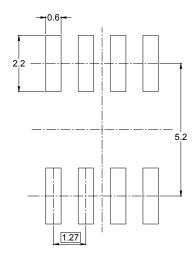
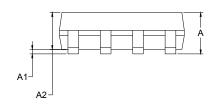
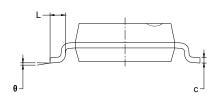
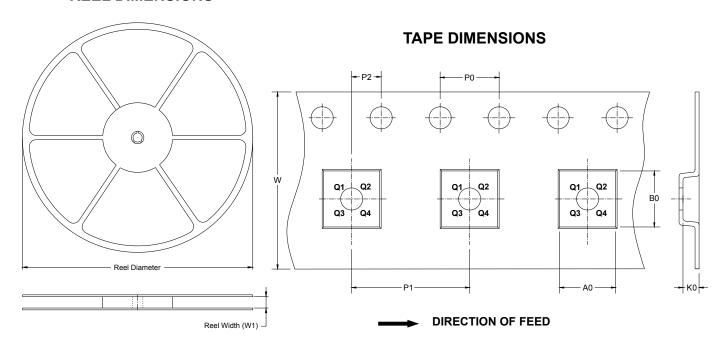




Figure 4. Interfacing to Microprocessors with Bidirectional Reset I/O


PACKAGE OUTLINE DIMENSIONS


SOIC-8

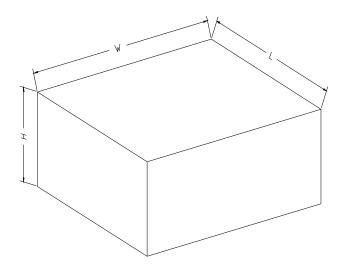
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS


 $\ensuremath{\mathsf{NOTE}}\xspace$ The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13"	12.4	6.4	5.4	2.1	4.0	8.0	2.0	12.0	Q1

SGM706

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5