

WW12X，WW08X，WW06X，WW04X

$\pm 1 \%, \pm 5 \%$

Thick Film Low ohm chip resistors

Size 1206，0805，0603， 0402

FEATURE

1．High power rating and compact size
2．High reliability and stability
3．Reduced size of final equipment
4．RoHS compliant and Lead free products

APPLICATION

－Power supply
－PDA
－Digital meter
－Computer
－Automotives
－Battery charger
－DC－DC power converter

DESCRIPTION

The resistors are constructed in a high grade ceramic body（aluminum oxide）．Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate．The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer．

The resistive layer is covered with a protective coat．Finally，the two external end terminations are added．For ease of soldering the outer layer of these end terminations is Tin（lead free）alloy．

Fig 1．Construction of Chip－R

QUICK REFERENCE DATA

Item	General Specification			
Series No．	WW12X	WW08X	WW06X	WW04X
Size code	1206（ 3216 ）	0805 （ 2012）	0603 （ 1608）	0402（1005）
Resistance Tolerance	$\pm 5 \%, \pm 1 \%$			
Resistance Range	$0.102 \Omega \sim 0.976 \Omega$		$0.100 \Omega \sim 0.976 \Omega$	
TCR（ppm／${ }^{\circ} \mathrm{C}$ ）				
$\begin{aligned} & \mathrm{Rn}<0.50 \Omega \\ & 0.50 \Omega \leq \mathrm{Rn}<1 \Omega \end{aligned}$	$\begin{aligned} & \leq 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 400 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \leq 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \leq 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \leq 600 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 600 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
Max．dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1／4 W	1／8 W	1／10 W	1／16 W
Max．Operation Voltage（DC or RMS）	200 V	100 V	50 V	
Max．Overload voltage（DC or RMS）	400 V	200V	100 V	
Operation temperature	$-55 \sim+155$＇ C			

Note ：
1．This is the maximum voltage that may be continuously supplied to the resistor element，see＂IEC publication 60115－8＂

2．Max．Operation Voltage ：So called RCWV（Rated Continuous Working Voltage）is determined by
RCWV $=\sqrt{\text { Rated Power } \times \text { Resistance Value }}$ or Max．RCWV listed above，whichever is lower．

MECHANICAL DATA

Symbol	WW12X	WW08X	WW06X	WW04X
L	3.10 ± 0.10	2.00 ± 0.10	1.60 ± 0.10	1.00 ± 0.05
W	1.60 ± 0.10	1.25 ± 0.10	0.80 ± 0.10	0.50 ± 0.05
T	0.60 ± 0.15	0.50 ± 0.15	0.45 ± 0.15	0.35 ± 0.05
Tt	0.50 ± 0.20	0.40 ± 0.20	0.30 ± 0.10	0.20 ± 0.10
Tb	0.45 ± 0.20	0.40 ± 0.20	0.30 ± 0.20	0.25 ± 0.10

MARKING

－4－digits marking for 1206， 0805 size
Each resistor is marked with a four－digit code on the protective coating to designate the nominal resistance value．
－3－digits marking for 0603 size
Each resistor is marked with a three－digit code on the protective coating to designate the nominal resistance value．
－WW04X series has no marking on the product overcoat for both 5% \＆ 1% ．
－Marking code list．
1．Material No WW series
2．Type \＆Digital code

Type	Res <1 R（E24＋E96 series）	Type	Res．$<1 \mathrm{R}$（E24＋E96 series）
1210	4 digital code	2010	4 digital code
1206	4 digital code	1218	4 digital code
0805	4 digital code	0603	3 digital code
2512	4 digital code	0402	No marking

3．R－value limit：$<1 R$ running value
4．Marking code rule for E24 series \＆E96 series ：

$\begin{array}{\|c} 4.1 . \\ 4.2 \\ \hline \end{array}$	$1210 / 1206 / 0805 / 2512 / 2010 / 1218$ type（ 1% \＆ 5% ）： 4 digits for running value of E24 \＆E96 series． ＂ R ＂followed by 3 significant digits Ex ： $0.002 \mathrm{R}=\mathrm{R} 002$ $0.020 \mathrm{R}=\mathrm{R} 020$ $0.200 \mathrm{R}=\mathrm{R} 200$										
	0603 type（ 1% \＆ 5% ）： 3 digits for ruming value of E24 \＆ 296 series．										
	Item	Rule					Series		limit	Example	Remark
	（1）${ }^{*}$	＂R＂followed by 2 significant digits if the 4th digit is＂ 0 ＂					E24	100 mR	10 mR	220 mR ：R22	Table6．1
	（2）T	The lst two digit codes are referring to the CODE on the table，the 3rd code is the index of resistance value ：＂Z＂					E96	100 mR	76 mR	$\begin{aligned} & 178 \mathrm{mR}: 25 \mathrm{Z} \\ & 221 \mathrm{mR}: 34 \mathrm{Z} \end{aligned}$	Table6． 2
	（3）${ }^{\text {P }}$	The 3rd code is the index of resistance value ：＂M＂ Ps．＂M＂equals＇m＂，means 1／1000						1 mR		$\begin{array}{\|} \hline 75 \mathrm{mR}: 75 \mathrm{M} \\ 2 \mathrm{mR}: 02 \mathrm{M} \end{array}$	Table6． 3
	（4） O	Others are no marking printed．									
4.3.	E24 series standard Res list：										
	Item12345	R ＿value	Item678910	R＿value	Item 11 12 13 14 15	R＿Value		Item 16 17 18 19 20	R ＿value	Item 21 22 23 24 -	R＿value
		100		160		270			430		680
		110		180		300			470		750
		120		200		330			510		820
		130		220		360			560		910
		150		240		390			620		－
4．4．E96 series standard Res，\＆CODE table： （1） 0603 ：refer to the CODE and R value． （2）Others：refer to the R value only．											
	CODE	R \quad＿value	CODE	R＿value	CODE	R Value		CODE	R ＿value	CODE	R ＿value
	01	100	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	162	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	261		61	422	8182	681
		102		165		267			432		698
	03	105	23	169	43	274		63	442	83	715
	04	107	24	174	44	280			453	84	732
	05	110		178	45	287		65	464	85	750
	06	113	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	182	46	294		66	475	86	768
	07	115	27	187	47	301		67			787
	08	118	28	191	48	309		68	499	88	806
	09	121	29	196	49	316		69	511	89	825
	10	124	30	200	50	324		70	523	9091	845
	11	127	31	205	51	332		71	536		866
	12	130	32	210	52	340		72	549	92	887
	13	133	33	215	53	348			562	93	909
	14	137	34	221	54	357		74	576	94	931
	15	140	35	226	55	365		75	590	95	953
	16	143	36	232	56	374		76	604	96	976
	17	147	37	237	57	383		77	619		－
	18	150	38	243	58	392		7879	634	－	－
	19	154	39	249	59	402			649	$-$	－
	20	158	40	255	60	412		80	665		－

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96 \＆E24 series for resistors with a tolerance of $\pm 5 \%$ \＆$\pm 1 \%$ ．The values of the E24／E96 series are in accordance with＂IEC publication 60063＂．

Derating curve

The power that the resistor can dissipate depends on the operating temperature；see Fig． 2

Figure 2 Maximum dissipation in percentage of rated power as a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances，Surface Mountable Resistors are suitable for handling by automatic placement systems．
Chip placement can be on ceramic substrates and printed－circuit boards（PCBs）．
Electrical connection to the circuit is by individual soldering condition．
The end terminations guarantee a reliable contact．

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of $260^{\circ} \mathrm{C}$ for 10 seconds．Therefore，it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse（mixed PCBs）．
Surface Mount Resistors are tested for solderability at $235^{\circ} \mathrm{C}$ during 2 seconds．The test condition for no leaching is $260^{\circ} \mathrm{C}$ for 30 seconds． Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

Fig 3．Infrared soldering profile

CATALOGUE NUMBERS

The resistors have a catalogue number starting with ．

WW12	X	R020	F	T	L
Size code WW12 ： 1206 WW08 ： 0805 WW06 ： 0603 WW04 ： 0402	Type code X ：Normal	Resistance code E96 +E24: R is first digit followed by 3 significant digits． $\begin{aligned} & 0.020 \Omega=\text { R020 } \\ & 0.510 \Omega=\text { R510 } \\ & 0.025 \Omega=\text { R025 } \\ & 0.400 \Omega=\text { no marking } \end{aligned}$	Tolerance J：$\pm 5 \%$ G：$\pm 2 \%$ F：$\pm 1 \%$	Packaging code T ：7＂Reel taping	$\begin{aligned} & \text { Termination code } \\ & L \underset{\text { free) }}{=\text { Sn base (lead }} \end{aligned}$

Tape packaging WW12，WW08，WW06：8mm width paper taping 5，000pcs per reel．
WW04：8mm width paper taping 10，000pcs per reel．

TEST AND REQUIREMENTS（JIS C 5201－1 ：1998）

TEST	PROCEDURE	REQUIREMENT
Temperature Coefficient of Resistance（T．C．R） Clause 4.8	Natural resistance change per change in degree centigrade． $\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \mathrm{t}_{1}: 20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1 \mathrm{C}$ R_{1} ：Resistance at reference temperature R_{2} ：Resistance at test temperature	Refer to ＂QUICK REFERENCE DATA＂
Short time overload（S．T．O．L） Clause 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list，whichever is less．	$\Delta R / R \max . \pm(2 \%+0.005 \Omega)$ WW04X max $\pm(2 \%+0.010 \Omega)$
Resistance to soldering heat（R．S．H） Clause 4.18	Un－mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	no visible damage $\Delta R / R \max . \pm(1 \%+0.005 \Omega)$ WW04X $\max \pm(1 \%+0.010 \Omega)$
Solderability Clause 4.17	Un－mounted chips completely immersed for 2 ± 0.5 second in a SAC solder bath at $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	good tinning（＞95\％covered） no visible damage
Temperature cycling Clause 4.19	30 minutes at $-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}, 30$ minutes at $+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$ ，total 5 continuous cycles	no visible damage $\Delta R / R \max . \pm(1 \%+0.005 \Omega)$ WW04X max $\pm(1 \%+0.010 \Omega)$
Load life（endurance） Clause 4.25	$1000+48 /-0$ hours，loaded with RCWV or Vmax in chamber controller $70 \pm 2^{\circ} \mathrm{C}, 1.5$ hours on and 0.5 hours off	$\Delta R / R \max . \pm(3 \%+0.005 \Omega)$ WW04X $\max \pm(5 \%+0.010 \Omega)$
Load life in Humidity Clause 4.24	$1000+48 /-0$ hours，loaded with RCWV or Vmax in humidity chamber controller at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \%$ relative humidity， 1.5 hours on and 0.5 hours off	$\Delta R / R \max . \pm(3 \%+0.005 \Omega)$ WW04X max $\pm(5 \%+0.010 \Omega)$
Bending strength Clause 4.33	Resistors mounted on a 90 mm glass epoxy resin PCB（FR4）； bending ： 2 mm ，once for 10 seconds	$\Delta R / R \max . \pm(1 \%+0.005 \Omega)$ WW04X max $\pm(1 \%+0.010 \Omega)$
Adhesion Clause 4.32	Pressurizing force： 5 N ，Test time： $10 \pm 1 \mathrm{sec}$ ．	No remarkable damage or removal of the terminations
Insulation Resistance Clause 4.6	Apply the maximum overload voltage（DC）for 1 minute	$\mathrm{R} \geqq 10 \mathrm{G} \Omega$
Dielectric Withstand Voltage Clause 4.7	Apply the maximum overload voltage（AC）for 1 minute	No breakdown or flashover

PACKAGING

Paper Tape specifications（unit ：mm）

Series No．	A	B	W	F	E
WW12X	3.60 ± 0.20	2.00 ± 0.20			
WW08X	2.40 ± 0.20	1.65 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10
WW06X	1.90 ± 0.20	1.10 ± 0.20			
WW04X	1.20 ± 0.10	0.70 ± 0.10			

Series No．	P1	P0	ФD	T
WW12X／WW08X	4.00 ± 0.10	4.00 ± 0.10		$\Phi 1.50_{-0.0}^{+0.1}$

Reel dimensions

Symbol	A	B	C	D
（unit ：mm）	$\Phi 178.0 \pm 2.0$	$\Phi 60.0 \pm 1.0$	13.0 ± 0.2	9.0 ± 0.5

