

MAX3222 SLLS408H – JANUARY 2000 – REVISED OCTOBER 2016

MAX3222 3-V to 5.5-V Multichannel RS-232 Line Driver and Receiver With ±15-kV ESD Protection

1 Features

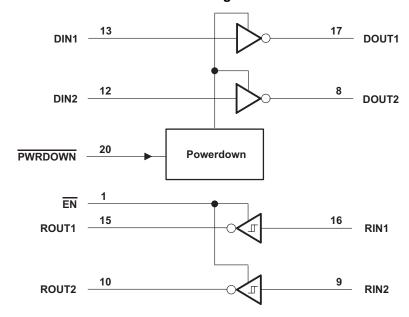
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates Up to 250 kbps
- · Two Drivers and Two Receivers
- Low Standby Current: 1 µA Typical
- External Capacitors: 4 x 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Alternative High-Speed Pin-Compatible Device (1 Mbps)
 - SNx5C3222

2 Applications

- · Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- · Hand-held Equipment

3 Description

The MAX3222 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate.


The MAX3222 <u>can be placed</u> in the power-down mode by setting PWRDOWN low, which draws only 1 μ A from the power supply. When the device is powered down, the receivers remain active while the drivers are placed in the high-impedance state. Receiver outputs also <u>can be placed</u> in the high-impedance state by setting <u>EN</u> high.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
MAX3222CDW, MAX322IDW	SOIC (20)	12.80 mm × 7.50 mm
MAX3222CDB, MAX322IDB	SSOP (20)	7.20 mm × 5.30 mm
MAX3222CPW, MAX322IPW	TSSOP (20)	6.50 mm × 4.40 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Block Diagram

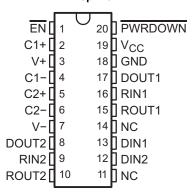
Table of Contents

1	Features 1		8.1 Overview 1	10
2	Applications 1		8.2 Functional Block Diagram 1	10
3	Description		8.3 Feature Description 1	
4	Revision History		8.4 Device Functional Modes 1	11
5	Pin Configuration and Functions	9	Application and Implementation 1	12
6	Specifications4		9.1 Application Information 1	12
U	6.1 Absolute Maximum Ratings		9.2 Typical Application 1	12
	6.2 ESD Ratings	10	Power Supply Recommendations 1	13
	6.3 Recommended Operating Conditions	11	Layout 1	13
	6.4 Thermal Information		11.1 Layout Guidelines 1	13
	6.5 Electrical Characteristics: Device		11.2 Layout Example 1	14
	6.6 Electrical Characteristics: Driver	12	Device and Documentation Support 1	15
	6.7 Electrical Characteristics: Receiver		12.1 Receiving Notification of Documentation Updates 1	
	6.8 Switching Characteristics: Driver		12.2 Community Resources 1	15
	6.9 Switching Characteristics: Receiver		12.3 Trademarks 1	
	6.10 Typical Characteristics		12.4 Electrostatic Discharge Caution 1	15
7	Parameter Measurement Information		12.5 Glossary 1	
8	Detailed Description	13	Mechanical, Packaging, and Orderable Information1	15

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision G (March 2004) to Revision H


Page

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.
 Deleted ODERING INFORMATION table; see POA at the end of the datasheet.
 Changed R_{0JA} for DB, DW and PW package from: 70 °C/W to 84.4°C/W (DB), 58 °C/W to 70.2 °C/W (DW) and 83

5 Pin Configuration and Functions

DB, DW, or PW Package 20-Pin SOIC, SSOP, TSSOP Top View

NC - No internal connection

Pin Functions

P	IN	1/0	DESCRIPTION			
NAME	NO.	I/O	DESCRIF HON			
C1+	2	_	Charge pump capacitor pin			
C1-	4	_	Charge pump capacitor pin			
C2+	5	_	Charge pump capacitor pin			
C2-	6	_	Charge pump capacitor pin			
DIN1	13	1	Driver logic input			
DIN2	12	I	Driver logic input			
DOUT1	17	0	RS-232 driver output			
DOUT2	8	0	RS-232 driver output			
EN	1	1	Receiver enable, active low			
GND	18	_	Ground			
NC	11,14	_	No internal connection			
PWRDOWN	20	I	Driver disable, active low			
RIN1	16	I	RS-232 receiver input			
RIN2	9	1	RS-232 receiver input			
ROUT1	15	0	Receiver logic output			
ROUT2	10	0	Receiver logic output			
V _{CC}	19	_	Power Supply			
V+	3	_	Charge pump capacitor pin			
V-	7	_	Charge pump capacitor pin			

Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Supply voltage, V _{CC} ⁽²⁾		-0.3	6	V
Positive output supply voltage, V+	(2)	-0.3	7	V
Negative output supply voltage, V-	_(2)	0.3	-7	V
Supply voltage difference, V+ - V-	-		13	V
Input voltage V	Drivers, EN, PWRDOWN	-0.3	6	V
Input voltage, V _I	Receiver	-25	25	V
Output valtage V	Drivers	-13.2	13.2	V
Output voltage, V _O	Receivers	-0.3	$V_{CC} + 0.3$	V
Operating virtual junction temperat	ure, T _J		150	°C
Storage temperature, T _{stg}		-65	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001	Pins 8, 9, 16, 17 and 18	±15000	
V _(ESD)	Electrostatic discharge	RIN, DOUT, and GND pins ⁽¹⁾	All other pins	±3000	V
	districtings	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	All pins	±1500	

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾. See Figure 8.

				MIN	NOM	MAX	UNIT
	Cupply voltogo	V _{CC} = 3.3 V		3	3.3	3.6	V
	Supply voltage	$V_{CC} = 5 V$		4.5	5	5.5	V
\/II.I	Driver and control high-level	DIR, EN, PWRDOWN	V _{CC} = 3.3 V	2			V
VIH	input voltage	$V_{CC} = 5 \text{ V}$	$V_{CC} = 5 V$	2.4			V
VIL	Driver and control low-level input voltage	DIR, EN, PWRDOWN				0.8	V
VI	Driver and control input voltage	DIR, EN, PWRDOWN		0		5.5	V
VI	Receiver input voltage			-25		25	V
Τ.		MAX3222C		0		70	°C
TA	Operating free-air temperature	MAX3222I		-40		85	℃

(1) Test conditions are C1-C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2-C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

All voltages are with respect to network GND.

6.4 Thermal Information

			MAX3222				
	THERMAL METRIC ⁽¹⁾⁽²⁾⁽³⁾		DW (SOIC)	PW (TSSOP)	UNIT		
		20 PINS	20 PINS	20 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	84.4	70.2	94.3	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	44.1	36.2	29.9	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	40	37.9	45.1	°C/W		
ΨЈТ	Junction-to-top characterization parameter	11	11.1	1.4	°C/W		
ΨЈВ	Junction-to-board characterization parameter	39.5	37.5	44.6	°C/W		

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application

6.5 Electrical Characteristics: Device

over operating free-air temperature range (unless otherwise noted)⁽¹⁾. See Figure 8.

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
II	Input leakage current (EN, PWRDOWN)			±0.01	±1	μΑ
	Supply current	No load, PWRDOWN at V _{CC}		0.3	1	mA
ICC	Supply current (powered off)	No load, PWRDOWN at GND		1	10	μA

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

6.6 Electrical Characteristics: Driver

over operating free-air temperature range (unless otherwise noted)⁽¹⁾. See Figure 8.

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND, DIN = GND	5	5.4		V
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND, DIN = V_{CC}	-5	-5.4		V
I _{IH}	High-level input current	$V_I = V_{CC}$		±0.01	±1	μΑ
I _{IL}	Low-level input current	V _I at GND		±0.01	±1	μΑ
I _{OS}	Short-circuit output current	$V_{CC} = 3.6 \text{ V}, V_{O} = 0 \text{ V}$ $V_{CC} = 5.5 \text{ V}, V_{O} = 0 \text{ V}$		±35	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V, V_{O} = ±2 V	300	10M		Ω
	Output lockage current	$\overline{PWRDOWN} = GND, V_O = \pm 12 V,$ $V_{CC} = 3 V \text{ to } 3.6 V$			±25	
I _{off}	Output leakage current	$\overline{\text{PWRDOWN}} = \text{GND, V}_{\text{O}} = \pm 10 \text{ V},$ $\text{V}_{\text{CC}} = 4.5 \text{ V to } 5.5 \text{ V}$			±25	μΑ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

6.7 Electrical Characteristics: Receiver

over operating free-air temperature range (unless otherwise noted)(1). See Figure 8.

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1 mA	V _{CC} - 0.6	V _{CC} - 0.1		V
V_{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
V	Positive-going input threshold	V _{CC} = 3.3 V		1.5	2.4	V
V _{IT+}	voltage	V _{CC} = 5 V		1.8	2.4	
V	Negative-going input threshold	V _{CC} = 3.3 V	0.6	1.2		V
V_{IT-}	voltage	V _{CC} = 5 V	0.8	1.5		V
V _{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.3		V
I _{off}	Output leakage current	EN = V _{CC}		±0.05	±10	μA
r _i	Input resistance	$V_1 = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

6.8 Switching Characteristics: Driver

over operating free-air temperature range (unless otherwise noted)⁽¹⁾. See Figure 8.

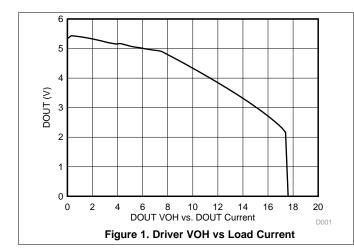
PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	C_L = 1000 pF, R_L = 3 k Ω , One DOUT switching, see Figure 3		150	250		kbps
t _{sk(p)}	Pulse skew ⁽³⁾	C_L = 150 pF to 2500 pF, R_L = Figure 4	C_L = 150 pF to 2500 pF, R_L = 3 k Ω to 7 k Ω , see Figure 4		300		ns
CD(tr)	Slew rate, transition region		C _L = 150 pF to 1000 pF	6		30	\//uo
SR(tr)	(see Figure 3)	V	C _L = 150 pF to 2500 pF	4		30	V/µs

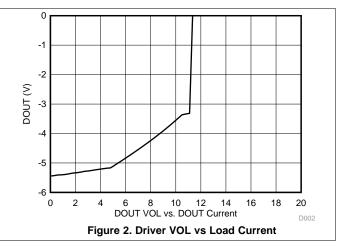
Test conditions are C1-C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2-C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

6.9 Switching Characteristics: Receiver

over operating free-air temperature range (unless otherwise noted)(1). See Figure 8.

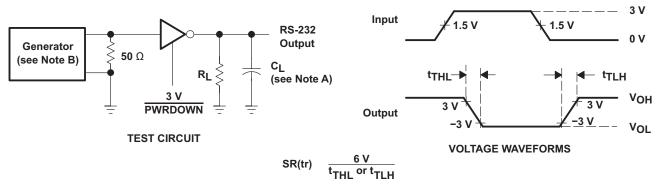
	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF, see Figure 5		300		ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF, see Figure 5		300		ns
t _{en}	Output enable time	C_L = 150 pF, R_L = 3 k Ω , see Figure 6		200		ns
t _{dis}	Output disable time	C_L = 150 pF, R_L = 3 k Ω , see Figure 6		200		ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 5		300		ns


Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.


All typical values are at $V_{CC}=3.3~V$ or $V_{CC}=5~V$, and $T_A=25^{\circ}C$. Pulse skew is defined as |tPLH - tPHL| of each channel of the same device.

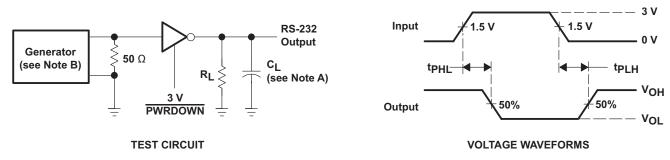
6.10 Typical Characteristics

 $T_A = 25^{\circ} \text{ C}; V_{CC} = 3.3 \text{V}$



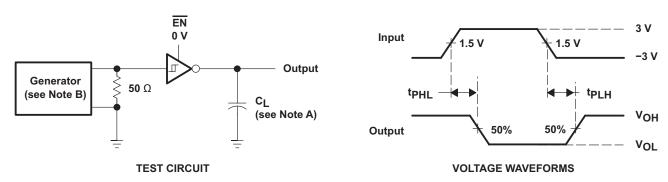
Submit Documentation Feedback

TEXAS INSTRUMENTS


7 Parameter Measurement Information

NOTES: A. CL includes probe and jig capacitance.

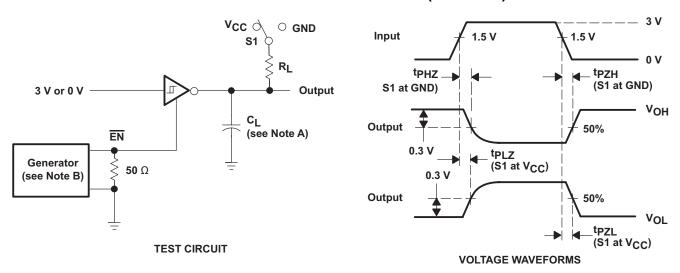
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \ \Omega$, 50% duty cycle, $t_\Gamma \le 10 \ ns$.


Figure 3. Driver Slew Rate

NOTES: A. C_I includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 4. Driver Pulse Skew


NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_\Gamma \le 10$ ns, $t_f \le 10$ ns.

Figure 5. Receiver Propagation Delay Times

Parameter Measurement Information (continued)

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 6. Receiver Enable and Disable Times

8 Detailed Description

8.1 Overview

The MAX3222 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ± 15 -kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/ μ s driver output slew rate.

The MAX3222 can be placed in the power-down mode by setting $\overline{PWRDOWN}$ low, which draws only 1 μA from the power supply. When the device is powered down, the receivers remain active while the drivers are placed in the high-impedance state. Also, during power down, the onboard charge pump is disabled; V+ is lowered to V_{CC} , and V- is raised toward GND. Receiver outputs also can be placed in the high-impedance state by setting EN high.

8.2 Functional Block Diagram

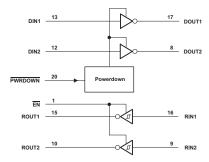


Figure 7. Logic Diagram (Positive Logic)

8.3 Feature Description

8.3.1 Power

The power block increases, inverts, and regulates voltage at V+ and V- pins using a charge pump that requires four external capacitors.

8.3.2 RS232 Driver

Two drivers interface standard logic level to RS232 levels. PWRDOWN input low turns driver off and PWRDOWN input high turns driver on. Both DIN inputs and PWRDOWN input must be valid high or low. Do not float logic input pins.

8.3.3 RS232 Receiver

Two receivers interface RS232 levels to standard logic levels. An open input will result in a high out<u>put</u> on ROUT. Each RIN input includes an internal standard RS232 load. <u>EN</u> input low turns on both ROUT pins. EN input high puts both ROUT pins into high impedance state, output off. <u>EN</u> input must be valid high or low. Do not float logic input pins.

8.4 Device Functional Modes

Driver and receiver outputs are controlled by the functional truth tables.

Table 1. Functional Table - Each Driver (1)

INPL	JTS	OUTPUT DOUT				
DIN	PWRDOWN	001701 0001				
X	L	Z				
L	Н	Н				
Н	Н	L				

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

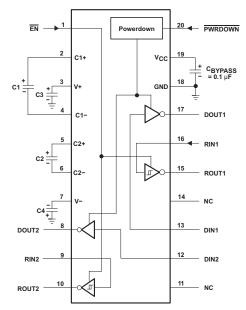
Table 2. Functional Table - Each Receiver (1)

INPL	JTS	OUTPUT ROUT				
RIN	EN	OUTFUT ROUT				
L	L	Н				
Н	L	L				
X	Н	Z				
Open	L	Н				

 H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The MAX3222 interfaces a universal asynchronous receiver / transmitter (UART) to RS-232 port voltage levels. External capacitors are used to generate RS-232 compliant voltages. For proper operation, add capacitors as shown in Figure 8.

9.2 Typical Application

ROUT and DIN connect to UART or general purpose logic lines. RIN and DOUT lines connect to a RS232 connector or cable.

C3 can be connected to V_{CC} or GND.

Resistor values shown are nominal.

NC - No internal connection

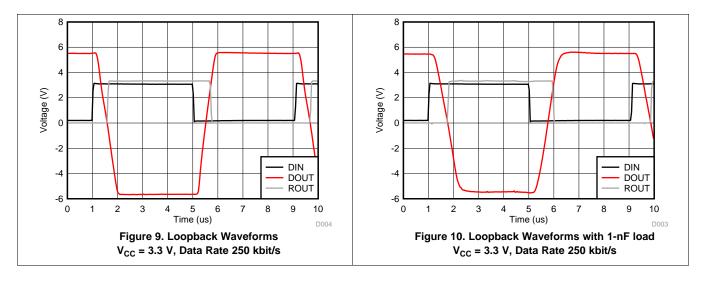
Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Figure 8. Recommended Application Schematic

9.2.1 Design Requirements

- Recommended V_{CC} is 3.3 V or 5 V. 3 V to 5.5 V is also possible
- · Maximum recommended bit rate is 250 kbit/s.

Table 3. V_{CC} vs Capacitor Values


VCC	C1	C2, C3, and C4
3.3 V ± 0.3 V	0.1 μF	0.1 μF
5 V ± 0.5 V	0.047 μF	0.33 μF
3 V ± 5.5 V	0.1 μF	0.47 μF

9.2.2 Detailed Design Procedure

- All DIN, PWRDOWN and EN inputs must be connected to valid low or high logic levels.
- Select capacitor values based on VCC level for best performance.

9.2.3 Application Curves

10 Power Supply Recommendations

V_{CC} should be between 3 V and 5.5 V. Charge pump capacitors should be chosen using table in Table 3.

11 Layout

11.1 Layout Guidelines

Keep the external capacitor traces short. This is more important on C1 and C2 nodes that have the fastest rise and fall times. Make the impedance from MAX3222 ground pin and circuit board's ground plane as low as possible for best ESD performance. Use wide metal and multiple vias on both sides of ground pin

11.2 Layout Example

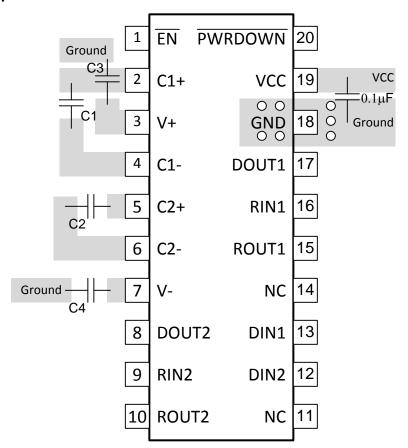


Figure 11. MAX3222 Layout

Submit Documentation Feedback

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MAX3222CDB	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MA3222C	Sample
MAX3222CDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MA3222C	Sample
MAX3222CDBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MA3222C	Sample
MAX3222CDBRG4	BRG4 ACTIVE SSOP DB 20 2000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM & no Sb/Br)		0 to 70	MA3222C	Sample						
MAX3222CDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3222C	Sample
MAX3222CDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3222C	Sample
MAX3222CDWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3222C	Sample
MAX3222CPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)			0 to 70	MA3222C	Sample
MAX3222CPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MA3222C	Sample
MAX3222IDB	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MB3222I	Sample
MAX3222IDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MB3222I	Sample
MAX3222IDBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MB3222I	Sample
MAX3222IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3222I	Sample
MAX3222IDWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3222I	Sample
MAX3222IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3222I	Sample
MAX3222IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MB3222I	Sample
MAX3222IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MB3222I	Sample

PACKAGE OPTION ADDENDUM

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
MAX3222IPWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4/5) MB3222I	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

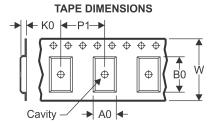
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

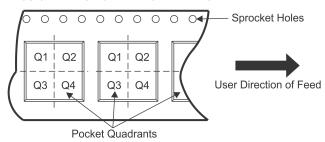
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

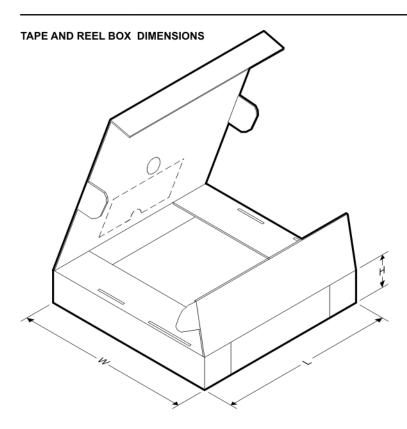
PACKAGE MATERIALS INFORMATION

www.ti.com 12-Jul-2018


TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

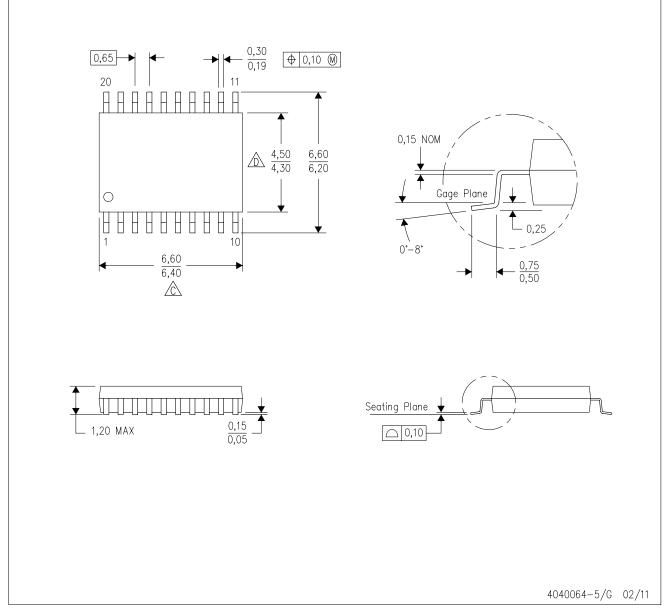


*All dimensions are nominal

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX3222CDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
MAX3222CDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
MAX3222CPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MAX3222IDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
MAX3222IDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 12-Jul-2018

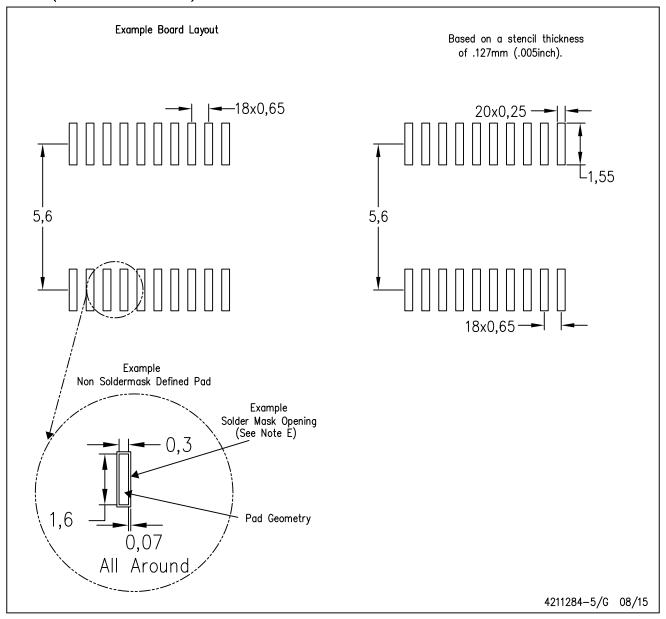


*All dimensions are nominal

7 til dilliciololio die Hollindi							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MAX3222CDBR	SSOP	DB	20	2000	367.0	367.0	38.0
MAX3222CDWR	SOIC	DW	20	2000	367.0	367.0	45.0
MAX3222CPWR	TSSOP	PW	20	2000	367.0	367.0	38.0
MAX3222IDBR	SSOP	DB	20	2000	367.0	367.0	38.0
MAX3222IDWR	SOIC	DW	20	2000	367.0	367.0	45.0

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

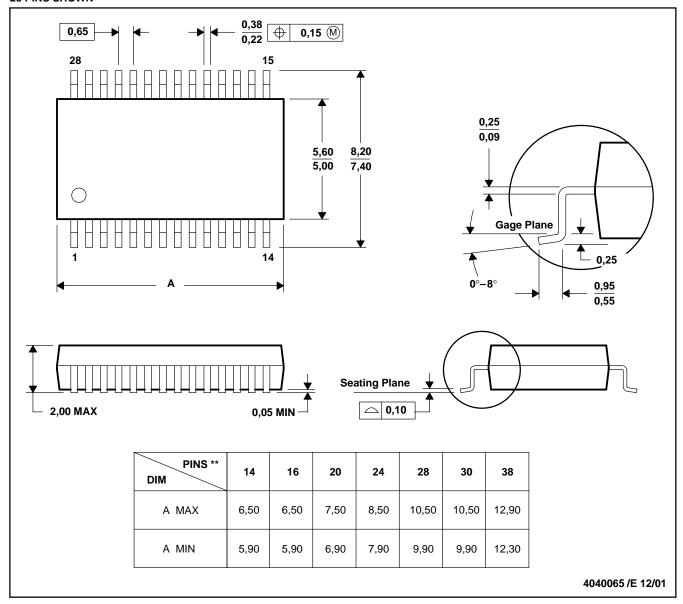

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

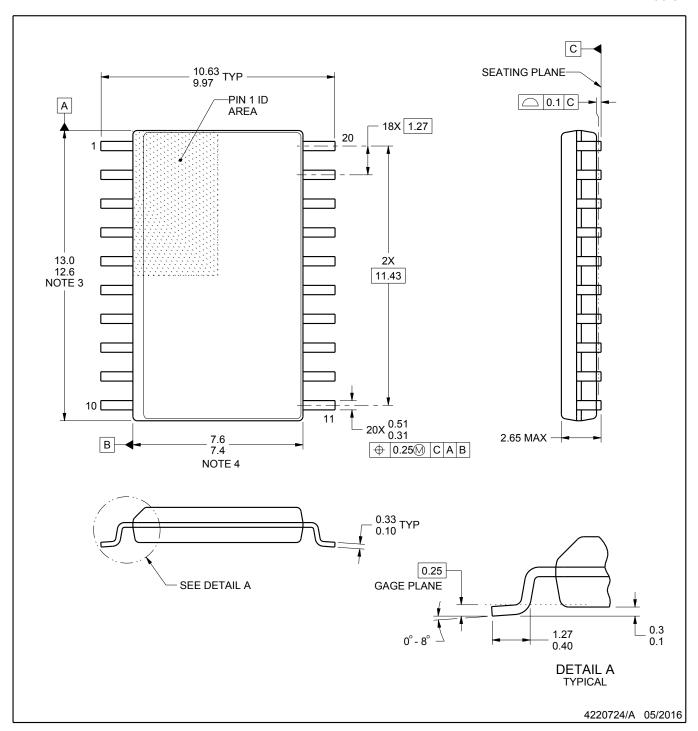

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

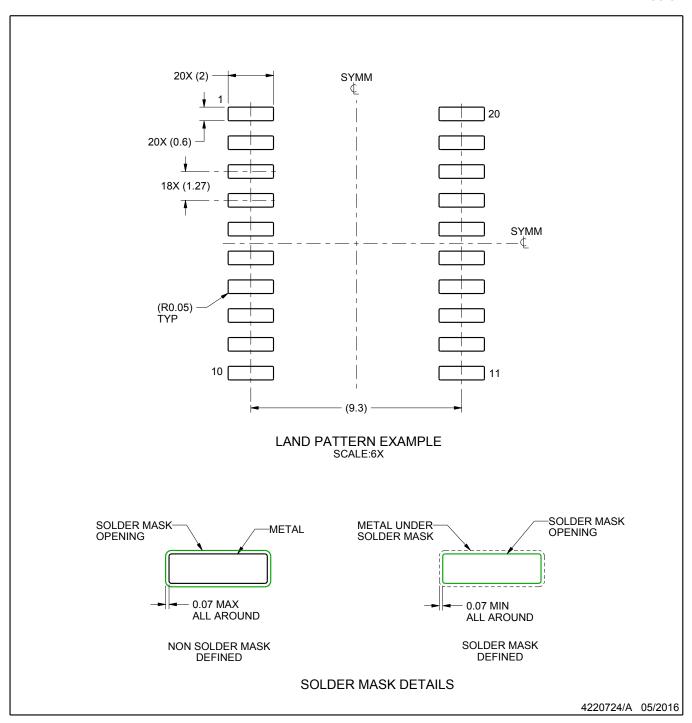

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

SOIC

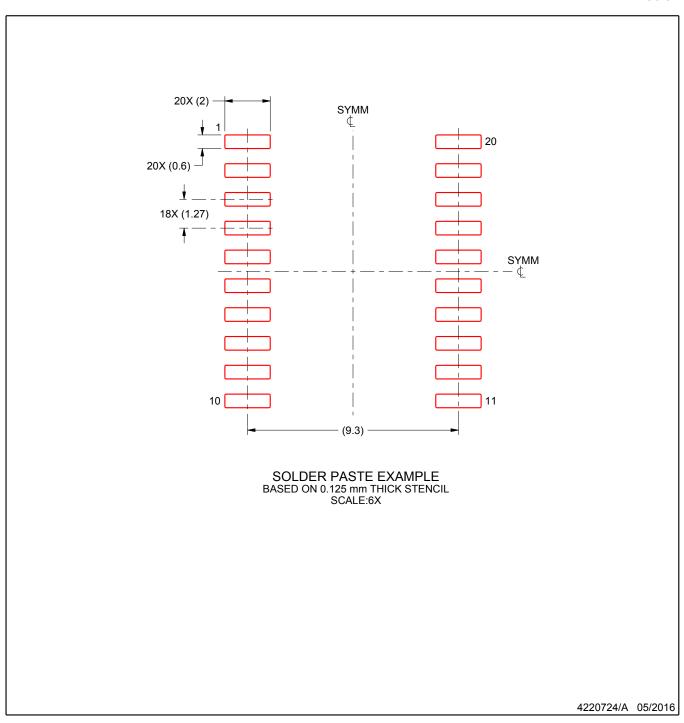
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.