OPA348
OPA2348
OPA4348

1MHz, 45 4 A, CMOS, Rail-to-Rail OPERATIONAL AMPLIFIERS
 Value Line Series
 Check for Samples: OPA348, OPA2348, OPA4348

FEATURES

- LOW I Q_{C} 45 $\mathbf{4} \mathrm{A}$ Typical
- LOW COST
- RAIL-TO-RAIL INPUT AND OUTPUT
- SINGLE SUPPLY: +2.1V to +5.5V
- INPUT BIAS CURRENT: 0.5pA
- MicroSIZE PACKAGES:

SC70-5, SOT23-8 and TSSOP-14

- HIGH SPEED: POWER WITH BANDWIDTH: 1MHz

APPLICATIONS

- PORTABLE EQUIPMENT
- BATTERY-POWERED EQUIPMENT
- SMOKE ALARMS
- CO DETECTORS
- MEDICAL INSTRUMENTATION

DESCRIPTION

The OPA348 series amplifiers are single supply, lowpower, CMOS op amps in micro packaging. Featuring an extended bandwidth of 1 MHz , and a supply current of $45 \mu \mathrm{~A}$, the OPA348 series is useful for lowpower applications on single supplies of 2.1 V to 5.5 V .
Low supply current of $45 \mu \mathrm{~A}$, and an input bias current of 0.5 pA , make the OPA348 series an optimal candidate for low-power, high-impedance applications such as smoke detectors and other sensors.
The OPA348 is available in the miniature SC70-5, SOT23-5 and SO-8 packages. The OPA2348 is available in SOT23-8 and SO-8 packages, and the OPA4348 is offered in space-saving TSSOP-14 and SO-14 packages. The extended temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ over all supply voltages offers additional design flexibility.

PACKAGES	OPA348	OPA2348	OPA4348
MSOP-8		X	
SC70-5	X		
SO-8	X	X	
SO-14			X
SOT23-5	X		
SOT23-8		X	
TSSOP-14			X

[^0]This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

	VALUE	UNIT
Supply Voltage, $\mathrm{V}-$ to $\mathrm{V}+$	7.5	V
Signal Input Terminals, Voltage ${ }^{(2)}$	$(\mathrm{V}-)-0.5$ to $(\mathrm{V}+)+0.5$	V
Signal Input Terminals, Current ${ }^{(2)}$	10	mA
Output Short-Circuit ${ }^{(3)}$	Continuous	
Operating Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	300	${ }^{\circ} \mathrm{C}$

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only. Functional operation of the device at these conditions, or beyond the specified operating conditions, is not implied.
(2) Input terminals are not diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current-limited to 10 mA or less.
(3) Short-circuit to ground, one amplifier per package.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 5.5 V

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=100 \mathrm{k} \Omega$ connected to $V_{S} / 2$ and $V_{\text {OUT }}=V_{S} / 2$, unless otherwise noted.

PARAMETER		TEST CONDITIONS	OPA348, OPA2348, OPA4348			UNIT				
		MIN	TYP	MAX						
OFFSET VOLTAGE Input Offset Voltage Over Temperature Drift vs Power Supply Over Temperature Channel Separation, dc $f=1 \mathrm{kHz}$	V_{OS} $d V_{\text {OS }} / d T$ PSRR		$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=(\mathrm{V}-)+0.8 \mathrm{~V}$ $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}<(\mathrm{V}+)-1.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}<\left(\mathrm{V}_{+}\right)-1.7 \mathrm{~V} \end{aligned}$		1 4 60 0.2 134	5 6 175 300	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathbf{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ dB			
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio over Temperature over Temperature		$\begin{gathered} (\mathrm{V}-)-0.2 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\left(\mathrm{V}_{+}\right)-1.7 \mathrm{~V} \\ (\mathrm{~V}-)<\mathrm{V}_{\mathrm{CM}}<\left(\mathrm{V}_{+}\right)-1.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V},(\mathrm{~V}-)-0.2 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\left(\mathrm{V}_{+}\right)+0.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V},(\mathrm{~V}-)<\mathrm{V}_{\mathrm{CM}}<\left(\mathrm{V}_{+}\right) \end{gathered}$	$\begin{gathered} (\mathrm{V}-)-0.2 \\ 70 \\ 66 \\ 60 \\ 56 \end{gathered}$	82 71	$(\mathrm{V}+)+0.2$	V dB dB dB dB				
INPUT BIAS CURRENT Input Bias Current Input Offset Current				$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	pA pA				
INPUT IMPEDANCE Differential Common-Mode				$\begin{aligned} & 10^{13} \\| 3 \\ & 10^{13} \\| 6 \\ & \hline \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$				
NOISE Input Voltage Noise, $f=0.1 \mathrm{~Hz}$ to 10 Hz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Input Current Noise Density, $f=1 \mathrm{kHz}$		$\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)-1.7 \mathrm{~V}$		$\begin{gathered} 10 \\ 35 \\ 4 \end{gathered}$		$\mu \mathrm{V}_{\mathrm{PP}}$ $\mathrm{nV} / \overline{\mathrm{Hz}}$ $\mathrm{fA} / \overline{\mathrm{Hz}}$				
OPEN-LOOP GAIN Open-Loop Voltage Gain over Temperature over Temperature	A_{OL}	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \\ 0.025 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4.975 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \\ 0.025 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4.975 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, 0.125 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4.875 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, 0.125 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4.875 \mathrm{~V} \end{gathered}$	94 90 90 88	$\begin{aligned} & 108 \\ & 98 \end{aligned}$		$d B$ dB dB dB				
OUTPUT Voltage Output Swing from Rail over Temperature over Temperature Short-Circuit Current Capacitive Load Drive	$\begin{array}{r} I_{S C} \\ C_{\text {LOAD }} \end{array}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}}>94 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}}>90 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}}>90 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}}>88 \mathrm{~dB} \end{gathered}$	See	18 100 ± 10 ical Chara	$\begin{gathered} 25 \\ 25 \\ 125 \\ 125 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{~mA} \end{aligned}$				

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 5.5 V (continued)

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0 ^ { \circ }} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=100 \mathrm{k} \Omega$ connected to $V_{S} / 2$ and $V_{\text {OUT }}=V_{S} / 2$, unless otherwise noted.

PARAMETER		TEST CONDITIONS	OPA348, OPA2348, OPA4348			UNIT
			MIN	TYP	MAX	
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1\% Settling Time, 0.01\% Overload Recovery Time Total Harmonic Distortion + Noise	$\begin{array}{r} \text { GBP } \\ \mathrm{SR} \\ \mathrm{t}_{\mathrm{S}} \end{array}$	$\begin{gathered} C_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{G}=+1 \\ \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V}, 2 \mathrm{~V} \text { Step, } \mathrm{G}=+1 \\ \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V}, 2 \mathrm{~V} \text { Step, } \mathrm{G}=+1 \\ \mathrm{~V}_{\mathrm{IN}} \times \text { Gain }>\mathrm{V}_{\mathrm{S}} \\ \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{~V}_{\mathrm{PP}}, \mathrm{G}=+1, \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		$\begin{gathered} 1 \\ 0.5 \\ 5 \\ 7 \\ 1.6 \\ 0.0023 \end{gathered}$		MHZ V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ \%
POWER SUPPLY Specified Voltage Range Minimum Operating Voltage Quiescent Current (per amplifier) over Temperature	V_{S}	$\mathrm{I}_{0}=0$	2.5	$\begin{gathered} 2.1 \text { to } 5.5 \\ 45 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 65 \\ & 75 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface-Mount SOT23-8 Surface-Mount MSOP-8 Surface-Mount SO-8 Surface-Mount SO-14 Surface-Mount TSSOP-14 Surface-Mount SC70-5 Surface-Mount	$\theta_{\text {JA }}$		$\begin{aligned} & -40 \\ & -65 \\ & -65 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 150 \\ & 150 \\ & 100 \\ & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & +125 \\ & +150 \\ & +150 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$

TYPICAL CHARACTERISTICS
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

Figure 1.

Figure 3.

Figure 5.

Figure 2.

Figure 4.

Figure 6.

TYPICAL CHARACTERISTICS (continued)
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

Figure 7.

Figure 9.

Figure 11.

OPEN-LOOP GAIN AND PSRR vs TEMPERATURE

Figure 8.

Figure 10.

Figure 12.

TYPICAL CHARACTERISTICS (continued)
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

Figure 13.

Figure 17.

Figure 14.

Figure 18.

APPLICATION INFORMATION

The OPA348 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications.

The OPA348 series features wide bandwidth and unity-gain stability with rail-to-rail input and output for increased dynamic range. Figure 19 shows the input and output waveforms for the OPA348 in unity-gain configuration. Operation is from a single +5 V supply with a $100 \mathrm{k} \Omega$ load connected to $\mathrm{V}_{\mathrm{S}} / 2$. The input is a $5 \mathrm{~V}_{\mathrm{PP}}$ sinusoid. Output voltage is approximately $4.98 \mathrm{~V}_{\text {Pp. }}$.

Power-supply pins should be bypassed with $0.01 \mu \mathrm{~F}$ ceramic capacitors.

Figure 19. The OPA348 Features Rail-to-Rail Input/Output

OPERATING VOLTAGE

The OPA348 series op amps are fully specified and tested from +2.5 V to +5.5 V . However, supply voltage may range from +2.1 V to +5.5 V . Parameters are tested over the specified supply range-a unique feature of the OPA348 series. In addition, all temperature specifications apply from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Most behavior remains virtually unchanged throughout the full operating voltage range. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics.

COMMON-MODE VOLTAGE RANGE

The input common-mode voltage range of the OPA348 series extends 200 mV beyond the supply rails. This is achieved with a complementary input stage-an N-channel input differential pair in parallel with a P-channel differential pair. The N -channel pair is active for input voltages close to the positive rail, typically ($\mathrm{V}+$) -1.2 V to 300 mV above the positive supply, while the P -channel pair is on for inputs from 300 mV below the negative supply to approximately $(\mathrm{V}+$) -1.4 V . There is a small transition region, typically $(\mathrm{V}+$) -1.4 V to $(\mathrm{V}+)-1.2 \mathrm{~V}$, in which both pairs are on. This 200 mV transition region, shown in Figure 20 , can vary $\pm 300 \mathrm{mV}$ with process variation. Thus, the transition region (both stages on) can range from $(\mathrm{V}+)-1.7 \mathrm{~V}$ to $(\mathrm{V}+)-1.5 \mathrm{~V}$ on the low end, up to $(\mathrm{V}+)-1.1 \mathrm{~V}$ to $(\mathrm{V}+)-0.9 \mathrm{~V}$ on the high end. Within the 200 mV transition region PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to operation outside this region.

Figure 20. Behavior of Typical Transition Region at Room Temperature

RAIL-TO-RAIL INPUT

The input common-mode range extends from (V-) 0.2 V to $(\mathrm{V}+)+0.2 \mathrm{~V}$. For normal operation, inputs should be limited to this range. The absolute maximum input voltage is 500 mV beyond the supplies. Inputs greater than the input common-mode range but less than the maximum input voltage, while not valid, will not cause any damage to the op amp. Unlike some other op amps, if input current is limited the inputs may go beyond the power supplies without phase inversion, as shown in Figure 21.

Figure 21. OPA348-No Phase Inversion with Inputs Greater than the Power-Supply Voltage

Normally, input currents are 0.5 pA . However, large inputs (greater than 500 mV beyond the supply rails) can cause excessive current to flow in or out of the input pins. Therefore, as well as keeping the input voltage below the maximum rating, it is also important to limit the input current to less than 10 mA . This is easily accomplished with an input voltage resistor, as shown in Figure 22.

Figure 22. Input Current Protection for Voltages Exceeding the Supply Voltage

RAIL-TO-RAIL OUTPUT

A class AB output stage with common-source transistors is used to achieve rail-to-rail output. This output stage is capable of driving $5 \mathrm{k} \Omega$ loads connected to any potential between $\mathrm{V}+$ and ground. For light resistive loads ($>100 \mathrm{k} \Omega$), the output voltage can typically swing to within 18 mV from supply rail. With moderate resistive loads ($10 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$), the output voltage can typically swing to within 100 mV of the supply rails while maintaining high open-loop gain (see the typical characteristic Output Voltage Swing vs Output Current, Figure 6).

CAPACITIVE LOAD AND STABILITY

The OPA348 in a unity-gain configuration can directly drive up to 250 pF pure capacitive load. Increasing the gain enhances the amplifier's ability to drive greater capacitive loads (see the typical characteristic SmallSignal Overshoot vs Capacitive Load, Figure 13). In unity-gain configurations, capacitive load drive can be improved by inserting a small (10Ω to 20Ω) resistor, R_{S}, in series with the output, as shown in Figure 23. This significantly reduces ringing while maintaining DC performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created, introducing a Direct Current (DC) error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio R_{S} / R_{L}, and is generally negligible.

Figure 23. Series Resistor in Unity-Gain Buffer Configuration Improves Capacitive Load Drive

In unity-gain inverter configuration, phase margin can be reduced by the reaction between the capacitance at the op amp input, and the gain setting resistors, thus degrading capacitive load drive. Best performance is achieved by using small valued resistors. For example, when driving a 500 pF load, reducing the resistor values from $100 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$ decreases overshoot from 55% to 13% (see the typical characteristic Small-Signal Overshoot vs Load Capacitance, Figure 13). However, when large valued resistors cannot be avoided, a small (4 pF to 6 pF) capacitor, C_{FB}, can be inserted in the feedback, as shown in Figure 24. This significantly reduces overshoot by compensating the effect of capacitance, C_{IN}, which includes the amplifier's input capacitance and PC board parasitic capacitance.

Figure 24. Improving Capacitive Load Drive

DRIVING A/D CONVERTERS

The OPA348 series op amps are optimized for driving medium-speed sampling Analog-to-Digital Converters (ADCs). The OPA348 op amps buffer the ADCs input capacitance and resulting charge injection while providing signal gain.
The OPA348 in a basic noninverting configuration driving the ADS7822, see Figure 25. The ADS7822 is a 12-bit, microPOWER sampling converter in the MSOP-8 package. When used with the low-power, miniature packages of the OPA348, the combination is ideal for space-limited, low-power applications. In this configuration, an RC network at the ADC's input can be used to provide for anti-aliasing filter and charge injection current.
The OPA348 in noninverting configuration driving ADS7822 limited, low-power applications. In this configuration, an RC network at the ADC's input can be used to provide for antialiasing filter and charge injection current. See Figure 26 for the OPA2348 driving an ADS7822 in a speech bandpass filtered data acquisition system. This small, low-cost solution provides the necessary amplification and signal conditioning to interface directly with an electret microphone. This circuit will operate with $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 5 V with less than $250 \mu \mathrm{~A}$ typical quiescent current.

Figure 25. OPA348 in Noninverting Configuration Driving ADS7822

Figure 26. OPA2348 as a Speech Bandpass Filtered Data Acquisition System

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (October 2012) to Revision G

- Changed 2nd footnote for Absolute Maximum Ratings table
Changes from Revision E (September 2012) to Revision F Page
- Deleted Package/Ordering Information table data 2

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Top-Side Markings \qquad (4)	Samples
OPA2348AID	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & \text { 2348A } \end{aligned}$	Samples
OPA2348AIDCNR	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	B48	Samples
OPA2348AIDCNRG4	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	B48	Samples
OPA2348AIDCNT	ACTIVE	SOT-23	DCN	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	B48	Samples
OPA2348AIDCNTG4	ACTIVE	SOT-23	DCN	8	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	B48	Samples
OPA2348AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & \text { 2348A } \end{aligned}$	Samples
OPA2348AIDGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS \& no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	OUTQ	Samples
OPA2348AIDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	OUTQ	Samples
OPA2348AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & \text { 2348A } \end{aligned}$	Samples
OPA2348AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & \text { 2348A } \end{aligned}$	Samples
OPA348AID	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & 348 \mathrm{~A} \end{aligned}$	Samples
OPA348AIDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	A48	Samples
OPA348AIDBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	A48	Samples
OPA348AIDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	A48	Samples
OPA348AIDBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	A48	Samples
OPA348AIDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	S48	Samples
OPA348AIDCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	S48	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (${ }^{\circ} \mathrm{C}$)	Top-Side Markings \qquad (4)	Samples
OPA348AIDCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	S48	Samples
OPA348AIDCKTG4	ACTIVE	SC70	DCK	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	S48	Samples
OPA348AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & 348 \mathrm{~A} \end{aligned}$	Samples
OPA348AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & 348 \mathrm{~A} \end{aligned}$	Samples
OPA348AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & 348 \mathrm{~A} \end{aligned}$	Samples
OPA4348AID	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA4348A	Samples
OPA4348AIDG4	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA4348A	Samples
OPA4348AIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA4348A	Samples
OPA4348AIDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA4348A	Samples
OPA4348AIPWR	ACTIVE	TSSOP	PW	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \hline \text { OPA } \\ & 4348 \mathrm{~A} \end{aligned}$	Samples
OPA4348AIPWRG4	ACTIVE	TSSOP	PW	14	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & \text { 4348A } \end{aligned}$	Samples
OPA4348AIPWT	ACTIVE	TSSOP	PW	14	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & 4348 \mathrm{~A} \end{aligned}$	Samples
OPA4348AIPWTG4	ACTIVE	TSSOP	PW	14	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \text { OPA } \\ & 4348 \mathrm{~A} \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA2348, OPA4348 :

- Automotive: OPA2348-Q1, OPA4348-Q1

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 $\mathbf{W 1}(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OPA2348AIDCNR | SOT-23 | DCN | 8 | 3000 | 179.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 |
| OPA2348AIDCNT | SOT-23 | DCN | 8 | 250 | 179.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 |
| OPA2348AIDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
| OPA2348AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA348AIDBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.3 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 |
| OPA348AIDCKR | SC70 | DCK | 5 | 3000 | 179.0 | 8.4 | 2.2 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 |
| OPA348AIDCKT | SC70 | DCK | 5 | 250 | 179.0 | 8.4 | 2.2 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 |
| OPA348AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA4348AIDR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| OPA4348AIPWR | TSSOP | PW | 14 | 2500 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| OPA4348AIPWT | TSSOP | PW | 14 | 250 | 180.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2348AIDCNR	SOT-23	DCN	8	3000	203.0	203.0	35.0
OPA2348AIDCNT	SOT-23	DCN	8	250	203.0	203.0	35.0
OPA2348AIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
OPA2348AIDR	SOIC	D	8	2500	367.0	367.0	35.0
OPA348AIDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
OPA348AIDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
OPA348AIDCKT	SC70	DCK	5	250	203.0	203.0	35.0
OPA348AIDR	SOIC	D	8	2500	367.0	367.0	35.0
OPA4348AIDR	SOIC	D	14	2500	367.0	367.0	38.0
OPA4348AIPWR	TSSOP	PW	14	2500	367.0	367.0	35.0
OPA4348AIPWT	TSSOP	PW	14	250	210.0	185.0	35.0

DBV (R-PDSO-G5)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-178 Variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLAStic SmALL OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCN (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Package outline exclusive of metal burr \& dambar protrusion/intrusion.
D. Package outline inclusive of solder plating.
E. A visual index feature must be located within the Pin 1 index area.
F. Falls within JEDEC M0-178 Variation BA.
G. Body dimensions do not include flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

DCN (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G14)
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed $0.006(0,15)$ each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side
E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of Tl components or services with statements different from or beyond the parameters stated by Tl for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	$\underline{\text { microcontroller.ti.com }}$	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

