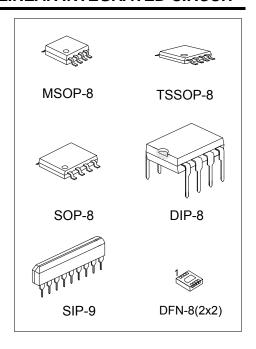
UNISONIC TECHNOLOGIES CO., LTD

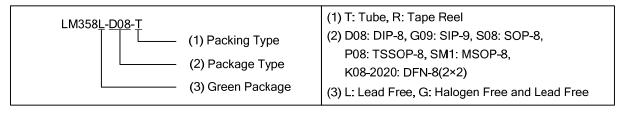
LM358

LINEAR INTEGRATED CIRCUIT

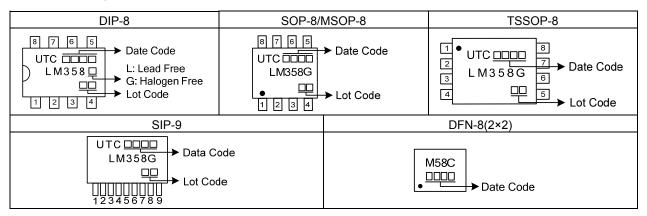

DUAL OPERATIONAL AMPLIFIER

DESCRIPTION

The UTC LM358 consists of two independent high gain, internally frequency compensated operational amplifier. It can be operated from a single power supply and also split power supplies.

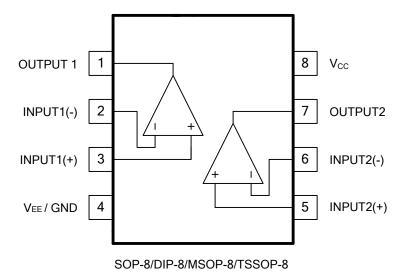

FEATURES

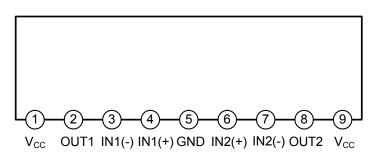
- *Internally frequency compensated for unity gain.
- *Wide power supply range 3V 32V.
- *Input common-mode voltage range include ground.
- *Large DC voltage gain.

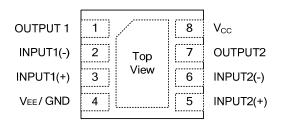


ORDERING INFORMATION

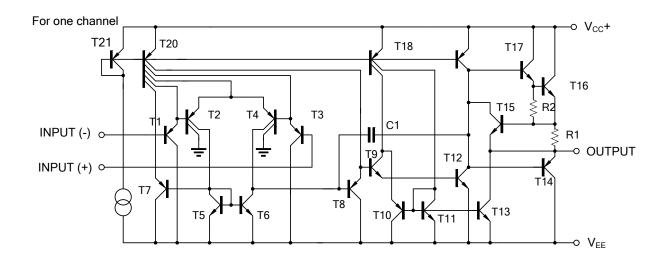
Orderir	Dookago	Dooking		
Lead Free	Halogen-Free	Package	Packing	
LM358L-D08-T	LM358G-D08-T	DIP-8	Tube	
-	LM358G-G09-T	SIP-9	Tube	
-	LM358G-P08-R	TSSOP-8	Tape Reel	
-	LM358G-S08-R	SOP-8	Tape Reel	
-	LM358G-SM1-R	MSOP-8	Tape Reel	
-	LM358G-K08-2020-R	DFN-8(2×2)	Tape Reel	




MARKING


www.unisonic.com.tw 1 of 7

■ PIN DESCRIPTION



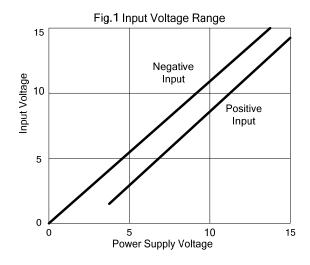
SIP-9

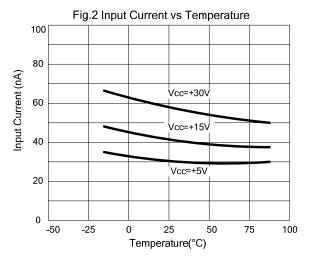
DFN-8(2×2)

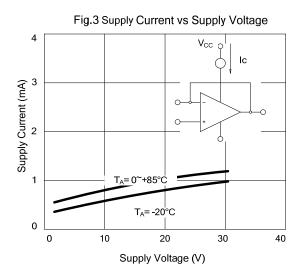
■ BLOCK DIAGRAM

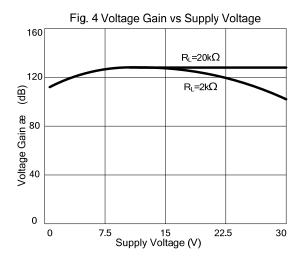
■ ABSOLUTE MAXIMUM RATINGS

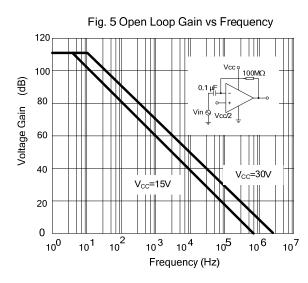
PARAMETER		SYMBOL	RATINGS	UNIT	
Supply Voltage		Vcc	±16 or 32	V	
Differential Input Voltage		$V_{I(DIFF)}$	±32	V	
Input Voltage		Vı	-0.3 ~ +32	V	
Output Short to Ground			Continuous		
Power Dissipation	SIP-9	P _D	750	mW	
	DIP-8		625		
	SOP-8		440		
	TSSOP-8		360		
	MSOP-8		300		
	DFN-8(2×2)		830		
Junction Temperature		TJ	+125	°C	
Operating Temperature (Note 2)		T _{OPR}	-40 ~ +105	°C	
Storage Temperature		T _{STG}	-65 ~ +150	°C	

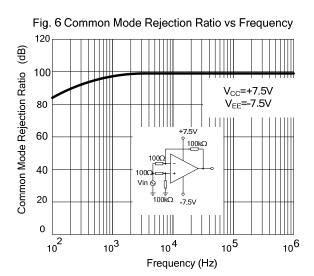

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ **ELECTRICAL CHARACTERISTICS** (V_{CC}=5.0V, V_{EE}=GND, T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	$V_{I(OFF)}$	V_{CM} =0V toV $_{CC}$ -1.5V $V_{O(P)}$ =1.4V, R_S =0 Ω		2.0	5.0	mV
Input Common Mode Voltage	V _{I(CM)}	V _{CC} =30V	0		V _{CC} -1.5	V
Differential Input Voltage	$V_{I(DIFF)}$				V_{CC}	V
Output Voltage Swing	V _{OH}	V_{CC} =30V, R_L =2K Ω	26			V
		V_{CC} =30V, R_L =10K Ω	27	28		V
	V_{OL}	V_{CC} =5 V , $R_L \ge 10 K\Omega$		5	20	mV
Large Signal Voltage Gain	G _V	V_{CC} =15V, $R_L \ge 2K\Omega$ $V_{O(P)}$ =1V ~ 11V	25	100		V/mV
Bassan Commiss Commant	I _{CC}	R _L =∞, V _{CC} =30V		0.8	2.0	mA
Power Supply Current		R _L =∞, Full Temperature Range		0.5	1.2	mA
Input Offset Current	I _{I(OFF)}			5	50	nA
Input Bias Current	I _{I(BIAS)}			45	250	nA
Short Circuit Current to Ground	I _{SC}			40	70	mA
Output Current	I _{SOURCE}	V _I (+)=1V, V _I (-)=0V V _{CC} =15V, V _{O(P)} =2V	10	30		mA
	I _{SINK}	V _I (+)=0V, V _I (-)=1V V _{CC} =15V, V _{O(P)} =2V	10	15		mA
		V _I (+)=0V, V _I (-)=1V V _{CC} =15V, V _{O(P)} =200mV	12	100		μΑ
Common Mode Rejection Ratio	CMRR		65	80		dB
Power Supply Rejection Ratio	PSRR		65	100		dB
Channel Separation	CS	f=1KHZ ~ 20KHZ		120	_	dB


^{2.} It is guarantee by design, not 100% be tested.


■ TYPICAL CHARACTERISTICS



■ TYPICAL CHARACTERISTICS(Cont.)

Fig. 7 Voltage Follower Pulse Response

Sign of Pulse Response

R_{L=2kΩ}
Vcc=15V
Vcc=

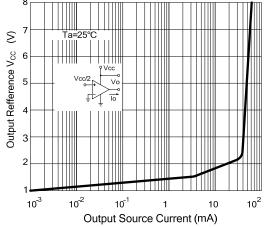

450 (S) 400 350 300

Fig. 8 Voltage Follower Response (Small Signal)

0

4 5 6 Timeä (□ s)

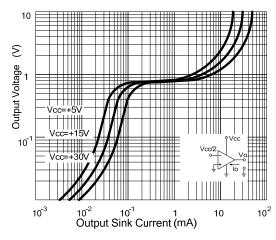
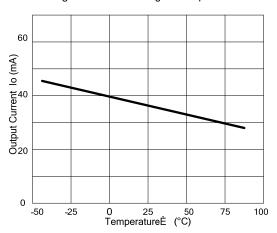



Fig.12 Current Limiting vs Temperature

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

