GTL/GTLP Logic High-Performance Backplane Drivers Data Book

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated

INTRODUCTION

Texas Instruments provides an array of advanced bus-interface devices. Designers can select the best solutions for speed, level translation, power consumption, noise rejection, fault tolerance, or simply driving a high-speed local bus or backplane.

Gunning Transceiver Logic (GTL) devices are reduced-voltage-swing, high-speed interface devices between cards operating at LVTTL logic levels and backplanes operating at GTL signal levels. High-speed backplane operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and output edge control. TI offers LVTTL-to-GTL translators in SSOP and TSSOP Widebus[™] packages to interface with TTL/LVTTL-based subsystems in wireless, remote access, mass storage and legacy telecom/networking applications.

Gunning Transceiver Logic Plus (GTLP) devices are reduced-voltage-swing devices that are designed for high-speed interface between cards operating at LVTTL logic levels and backplanes operating at GTLP signal levels. High-speed backplane operation in excess of 80 MHz is a direct result of the reduced output swing (<1 V), reduced input threshold levels, output edge control, and overshoot-protection circuitry. All devices are optimized for the higher threshold voltage and lower noise margin GTLP derivative of the JEDEC JESD8-3 GTL standard. TI offers LVTTL-to-GTLP translators in low-profile, fine-pitch ball grid array (LFBGA), Widebus, and octal packages to interface with TTL/LVTTL-based subsystems in wireless, remote access, mass storage and legacy telecom/networking applications.

BTL/FB+ transceivers from TI provide high drive and speed, while minimizing skew and ground-bounce noise. BTL devices are compatible with IEEE Std 1194.1-1991. The BTL/FB+ standard uses a greatly reduced output swing and a tighter switching region, improved noise margins, live insertion, bus hold on inputs, series damping resistors on high-drive outputs, and space-saving package options.

ABTE has wider noise margins and is backward compatible with existing TTL logic. ABTE devices support the VME64-ETL specification, with tight tolerances on skew and transition times. ABTE is manufactured using the latest 0.8- μ BiCMOS process by providing high drive up to 90 mA. Other features include a bias pin and internal pullup resistors on control pins for maximum live-insertion protection. Bus-hold circuitry eliminates external pullup resistors on the inputs and series damping resistors on the outputs to damp reflections.

VME complies with VME64 Standard and has 2.94-V regulated output voltage with 1% tolerance at 25°C. VME provides bias for up to 32 lines of active termination for VME buses, –575-mA sourcing current for termination, +475-mA sinking current for active negation drivers, current limit and thermal shutdown protection, and low thermal resistance surface-mount packages.

For more information on these and other TI products, please contact your local TI representative, authorized distributor, the TI technical support hotline at 972-644-5780, or visit the TI home page at http://www.ti.com

MicroStar BGA, MicroSTAR Jr., OEC, TI-OPC, Widebus, and Widebus+ are trademarks of Texas Instruments.

GTL FAMILY SUMMARY

Primary features of the GTL devices:

- 3.3-V or 3.3/5-V V_{CC} operation with 5-V tolerant LVTTL inputs and outputs (I/Os) (except GTL1655), which allows the devices to act as 5-V TTL-to-GTL/GTL+, as well as 3.3-V LVTTL-to-GTL/GTL+, translators.
- GTL1655 supports live insertion with backplane precharge circuitry.
- High point-to-point frequencies with acceptable short-backplane frequencies. The GTL16612 transition device provides for higher distributed load (RLC) frequencies (>60 MHz), due to its optimized edge rate.

		GTL+	FREQUENCY		
DEVICE	FUNCTION	DRIVE (mA)	MAX p-p (MHz)	MAX RLC (MHz)	
Medium-Drive Device	S				
SN74GTL16612A	18-bit universal bus transceiver	34	85	>60	
SN74GTL16616	17-bit universal bus transceiver with buffered clock	50	95	25–33	
SN74GTL16622A	18-bit bus transceiver	50	200	25–33	
SN74GTL16923	18-bit bus transceiver 50 200 25				
High-Drive Devices					
SN74GTL1655	16-bit universal bus transceiver	100	160	25–33	

Additional features of GTL devices:

- I_{off} circuitry prevents damage to the device during partial power down, a feature of all GTL devices (see I_{off} in the data sheets).
- Power-up 3-state (PU3S) forces outputs to the high-impedance state during power up and power down, which prevents driver conflict during hot swap or hot insertion, a feature of the GTL1655 (see I_{OZPU} and I_{OZPD} in the data sheets).
- BIAS V_{CC} circuitry allows easy internal precharging of backplane I/O pins for true live-insertion applications where active backplane data cannot be suspended or disturbed during circuit-board insertion or removal, a feature of the GTL1655 (see BIAS V_{CC} in the data sheets).
- Bus hold is a feature of all GTL devices. It eliminates floating inputs by holding them at the last valid logic state. This eliminates the need for external pullup and pulldown resistors on unused or undriven inputs, reducing power requirements, cost, and board-layout time. There is no bus-hold circuitry on the B port (GTL/GTL+ side) because this defeats the purpose of open-drain outputs that take on the high-impedance state, which allows the bus to achieve a logic-high state via the pullup resistors.
- OEC[™] circuitry controls the rising and falling edges of the GTL16612 GTL/GTL+ outputs, and reduces line reflections and EMI, thereby improving overall signal integrity.
- Edge-rate control (ERC) is featured on the high-drive GTL1655. Fast or slow edge
 rates are achievable by holding the ERC pin at V_{CC} or GND, respectively.
- GTL devices are available in the shrink small-outline package (SSOP) (56-pin GTL16612 and GTL16616 only) and thin shrink small-outline package (TSSOP) (56 pins or 64 pins).

GTLP FAMILY SUMMARY

Primary features of the GTLP devices:

- 3.3-V V_{CC} operation with 5-V tolerant LVTTL I/Os, which allows the devices to act as 5-V TTL-to-GTL/GTL+, as well as 3.3-V LVTTL-to-GTL/GTL+, translators.
- Optimized OEC circuitry allows clock frequencies of >80 MHz in high-performance, heavily loaded backplane applications.
- Fully supports live insertion with backplane precharge circuitry
- CMOS construction for low-static power consumption
- A-port (LVTTL side) balanced drive of ±24 mA
- B-port (GTL/GTL+ side) drive of 50 mA or 100 mA, which allows the designer flexibility in matching the device to backplane length, slot spacing, and termination resistance
- Each data sheet provides both the lumped-load specified data and resistive/inductive/capacitive (RLC) network data for the designer. The RLC data more closely approximates the device response in a distributed load.
- The SN74GTLP1394 is designed specifically to work with the TSB14AA1 (1394 backplane physical-layer controller) in multiple-slot backplane applications.

		GTL+	FREQUENCY		
DEVICE	DEVICE FUNCTION		MAX p-p (MHz)	MAX RLC (MHz)	
Medium-Drive Devices					
SN74GTLP817	GTL+-to-LVTTL 1-to-6 fanout driver	50	Not specified	>80	
SN74GTLPH306	8-bit bus transceiver	50	Not specified	>80	
SN74GTLPH16945	16-bit bus transceiver	50	Not specified	>80	
SN74GTLPH16912	18-bit universal bus transceiver	50	TBD	>80	
SN74GTLPH32945	32-bit bus transceiver	50	Not specified	>80	
SN74GTLPH16916	17-bit universal bus transceiver	50	175	>80	
SN74GTLPH16612	18-bit universal bus transceiver	50	80	>80	
High-Drive Devices					
SN74GTLP1394	2-bit transceiver	100	Not specified	>80	
SN74GTLPH1645	16-bit bus transceiver	100	Not specified	>80	
SN74GTLPH1655	16-bit universal bus transceiver	100	175	>80	
SN74GTLPH1612	18-bit universal bus transceiver	100	175	>80	
SN74GTLPH3245	32-bit bus transceiver	100	Not specified	>80	
SN74GTLP1395	Two 1-bit bus transceivers	100	Not specified	>80	
SN74GTLP21395	Two 1-bit bus transceivers	100	Not specified	>80	
SN74GTLPH1616	17-bit universal bus transceiver	100	175	>80	
SN74GTLPH1627	18-bit bus transceiver	100	TBD	>80	
SN74GTLP2033	8-bit registered transceiver	100	Not specified	>80	
SN74GTLP22033	8-bit registered transceiver	100	Not specified	>80	
SN74GTLP2034	8-bit registered transceiver	100	Not specified	>80	
SN74GTLP22034	8-bit registered transceiver	100	Not specified	>80	

GTLP FAMILY SUMMARY (CONTINUED)

Additional features of GTLP devices:

- I_{off} circuitry prevents damage to the device during partial power down, a feature of all GTLP devices (see I_{off} in the data sheets).
- PU3S forces outputs to the high-impedance state during power up and power down, which prevents driver conflict during hot swap or hot insertion, a feature of all GTLP devices (see I_{OZPU} and I_{OZPD} in the data sheets).
- BIAS V_{CC} circuitry allows easy internal precharging of backplane I/O pins for true live-insertion applications where active backplane data cannot be suspended or disturbed during circuit-board insertion or removal, a feature of all GTLP devices, except GTLPH306 and GTLP817 (see BIAS V_{CC} in the data sheets).
- Bus hold eliminates floating inputs by holding them at the last valid logic state. This
 eliminates the need for external pullup and pulldown resistors on unused or
 undriven inputs, reducing power requirements, cost, and board-layout time.
 Devices with an H in the device name have the bus-hold feature. There is no
 bus-hold circuitry on the B port (GTL/GTL+ side) because this defeats the purpose
 of open-drain outputs that take on the high-impedance state, which allows the bus
 to achieve a logic-high state via the pullup resistors.
- Improved OEC circuitry controls the rising and falling edges of the GTL/GTL+ outputs (a feature of all GTLP devices) and reduces line reflections and EMI, thereby, improving overall signal integrity.
- TI-OPC[™] circuitry actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions, thus, improving signal integrity, which allows adequate noise margin to be maintained at higher frequencies.
- ERC is a feature of all high-drive GTLP devices and the medium-drive GTLP817. Fast or slow edge rates are achievable by holding the ERC pin at V_{CC} or GND, respectively.
 - The fast edge rate is useful in point-to-point applications and when the backplane has been optimally terminated.
 - The slow edge rate is used in less than optimally terminated backplane applications where the slow edge reduces overshoot and ringing.
- GTLP devices are available in small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), thin very small-outline package (TVSOP), low-profile, fine-pitch ball grid array (LFBGA), and very low-profile, fine-pitch ball grid array (VFBGA) packages to fit any design requirements.

PRODUCT STAGE STATEMENTS

Product stage statements are used on Texas Instruments data sheets to indicate the development stage(s) of the product(s) specified in the data sheets.

If all products specified in a data sheet are at the same development stage, the appropriate statement from the following list is placed in the lower left corner of the first page of the data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

If not all products specified in a data sheet are at the PRODUCTION DATA stage, then the first statement below is placed in the lower left corner of the first page of the data sheet. Subsequent pages of the data sheet containing PRODUCT PREVIEW information or ADVANCE INFORMATION are then marked in the lower left-hand corner with the appropriate statement given below:

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

General Information	1
GTL	2
GTLP	3
ETL	4
BTL/FB+	5
VME	6
Application Reports	7
Mechanical Data	8

Contents

	Page
Alphanumeric Index	1–3
Glossary	1–5
Explanation of Function Tables	1–10
D-Type Flip-Flop and Latch Signal Conventions	1–12
Device Names and Package Designators	1–13
Thermal Information	1–14

ALPHANUMERIC INDEX

DEVICE

PAGE
SN74GTLP2033 3-149
SN74GTLP2034 3-181
SN74GTLP21395
SN74GTLP22033 3-165
SN74GTLP22034 3-197
SN74GTLPH306 3-3
SN74GTLPH1612 3-69
SN74GTLPH1616 3-83
SN74GTLPH1627 3-97
SN74GTLPH1645 3-113
SN74GTLPH1655 3-135
SN74GTLPH3245 3–123
SN74GTLPH16612 3-213
SN74GTLPH16912 3-221
SN74GTLPH16916 3-233
SN74GTLPH16945 3-245
SN74GTLPH32945 3-255
SN74VMEH22501 6-3

DEVICE	PAGE
	SN74ABTE16245 4–3
	SN74ABTE16246 4–11
	SN74FB1650 5–3
	SN74FB1651 5–11
	SN74FB16535-21
	SN74FB20315-31
	SN74FB2033A 5–39
	SN74FB2033K 5–51
	SN74FB20405-63
	SN74FB2041A 5-69
	SN74GTL1655 2–3
SN54GTL16612	SN74GTL16612 2–15
	SN74GTL16616 2–23
	SN74GTL16622A2-33
	SN74GTL16923 2-41
	SN74GTLP817 3–11
	SN74GTLP1394
	SN74GTLP13953-37

INTRODUCTION

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use.

operating conditions and characteristics (in sequence by letter symbols)

Ci	Input capacitance
	The capacitance of an input terminal of the device
C _{io}	Input/output capacitance
	The capacitance of an input/output (I/O) terminal of the device with the input conditions applied that, according to the product specification, establishes the high-impedance state at the output
Co	Output capacitance
	The capacitance of an output terminal of the device with the input conditions applied that, according to the product specification, establishes the high-impedance state at the output
C _{pd}	Power dissipation capacitance
	Used to determine the no-load dynamic power dissipation per logic function (see individual circuit pages): $P_D = C_{pd} V_{CC}^2 f + I_{CC} V_{CC}$
f _{max}	Maximum clock frequency
	The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification
I _{BHH}	Bus-hold high sustaining current
	The bus-hold circuit can source at least the minimum high sustaining current at V _{IH} min. I _{BHH} should be measured after raising V _{IN} to V _{CC} and then lowering it to V _{IH} min.
I _{BHL}	Bus-hold low sustaining current
	The bus-hold circuit can sink at least the minimum low sustaining current at V _{IL} max. I _{BHL} should be measured after lowering V _{IN} to GND and then raising it to V _{IL} max.
I _{BHHO}	Bus-hold high overdrive current
	An external driver must sink at least I _{BHHO} to switch this node from high to low.
I _{BHLO}	Bus-hold low overdrive current
	An external driver must source at least I _{BHLO} to switch this node from low to high.
ICC	Supply current
	The current into* the V_{CC} supply terminal of an integrated circuit
Δl_{CC}	Supply current change
	The increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or $\rm V_{CC}$
ICEX	Output high leakage current
	The maximum leakage current into [*] an output that is in a high state and $V_O = V_{CC}$
l _{l(hold)}	Input hold current
	The input current that holds the input at the previous state when the driving device goes to the high-impedance state

*Current out of a terminal is given as a negative value.

GLOSSARY SYMBOLS, TERMS, AND DEFINITIONS

Чн	High-level input current The current into* an input when a high-level voltage is applied to that input
IIL	Low-level input current
	The current into* an input when a low-level voltage is applied to that input
l _{off}	Input/output power-off leakage current The maximum leakage current into* an input or output terminal of the device with the specified voltage applied to the terminal and $V_{CC} = 0 V$
I _{OH}	High-level output current
	The current into* an output with input conditions applied that, according to the product specification, establishes a high level at the output
I _{OHS}	Static high-level output current
	The static and testable current into* a DOC [™] circuit output with input conditions applied that, according to the product specifications, establishes a static high level at the output. The dynamic drive current is not specified for devices with DOC circuit outputs because of its transient nature; however, it is similar to the dynamic drive current that is available from a high-drive (nondamping resistor) standard-output device.
I _{OL}	Low-level output current
	The current into* an output with input conditions applied that, according to the product specification, establishes a low level at the output
I _{OLS}	Static low-level output current
	The static and testable current into* a DOC circuit output with input conditions applied that, according to the product specifications, establishes a static low level at the output. The dynamic drive current is not specified for devices with DOC circuit outputs because of its transient nature; however, it is similar to the dynamic drive current that is available from a high-drive (nondamping resistor) standard-output device.
loz	Off-state (high-impedance state) output current (of a 3-state output)
	The current flowing into* an output with the input conditions applied that, according to the product specification, establishes the high-impedance state at the output
IOZPD	Power-down off-state (high-impedance state) output current (of a 3-state output)
	The current flowing into* an output that is switched to or held in the high-impedance state as the device is being powered down to V_{CC} = 0 V
I _{OZPU}	Power-up off-state (high-impedance state) output current (of a 3-state output)
	The current flowing into* an output that is switched to or held in the high-impedance state as the device is being powered up from $V_{CC} = 0 V$
jitter	Jitter
	Dispersion of a time parameter of the pulse waveforms in a pulse train with respect to a reference time, interval, or duration. Unless otherwise specified by a mathematical adjective, peak-to-peak jitter is assumed.
jitter(RMS)	RMS jitter
	The root mean square jitter, one-sixth of the maximum peak-to-peak jitter

*Current out of a terminal is given as a negative value. DOC is a trademark of Texas Instruments.

SR Slew rate

The average rate of change (i.e., V/ns) for a waveform that is changing from one defined logic level to another defined logic level

ta Access time

The time interval between the application of a specified input pulse and the availability of valid signals at an output

t_c Clock cycle time

Clock cycle time is 1/fmax

tdis Disable time (of a 3-state or open-collector output)

The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from either of the defined active levels (high or low) to the high-impedance (off) state

NOTE: For 3-state outputs, $t_{dis} = t_{PHZ}$ or t_{PLZ} . Open-collector outputs change only if they are low at the time of disabling, so $t_{dis} = t_{PLH}$.

ten Enable time (of a 3-state or open-collector output)

The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from the high-impedance (off) state to either of the defined active levels (high or low)

NOTE: In the case of memories, this is the access time from an enable input (e.g., \overline{OE}). For 3-state outputs, $t_{en} = t_{PZH}$ or t_{PZL} . Open-collector outputs change only if they are responding to data that would cause the output to go low, so $t_{en} = t_{PHL}$.

t_f Fall time

The time interval between two reference points (90% and 10%, unless otherwise specified) on a waveform that is changing from the defined high level to the defined low level

t_h Hold time

The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal

NOTES: 1. The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is to be expected.

2. The hold time may have a negative value, in which case, the minimum limit defines the longest interval (between the release of the signal and the active transition) for which correct operation of the digital circuit is to be expected.

t_{pd} Propagation delay time

The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level ($t_{pd} = t_{PHL}$ or t_{PLH})

t_{PHL} Propagation delay time, high-to-low level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level

t_{PHZ} Disable time (of a 3-state output) from high level

The time interval between the specified reference points on the input and the output voltage waveforms with the 3-state output changing from the defined high level to the high-impedance (off) state

GLOSSARY SYMBOLS, TERMS, AND DEFINITIONS

Propagation delay time, low-to-high level output t_{PLH} The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level Disable time (of a 3-state output) from low level t_{PLZ} The time interval between the specified reference points on the input and the output voltage waveforms with the 3-state output changing from the defined low level to the high-impedance (off) state Enable time (of a 3-state output) to high level tPZH The time interval between the specified reference points on the input and output voltage waveforms with the 3-state output changing from the high-impedance (off) state to the defined high level Enable time (of a 3-state output) to low level ^tPZL The time interval between the specified reference points on the input and output voltage waveforms with the 3-state output changing from the high-impedance (off) state to the defined low level tr **Rise time** The time interval between two reference points (10% and 90%, unless otherwise specified) on a waveform that is changing from the defined low level to the defined high level Input skew tsk(i) The difference between any two propagation delay times that originate at different inputs and terminate at a single output. Input skew describes the ability of a device to manipulate (stretch, shrink, or chop) a clock signal. This is typically accomplished with a multiple-input gate wherein one of the inputs acts as a controlling signal to pass the clock through. tsk(i) describes the ability of the gate to shape the pulse to the same duration, regardless of the input used as the controlling input. Limit skew t_{sk(l)} The difference between 1) the greater of the maximum specified values of t_{PLH} and t_{PHI} and 2) the lesser of the minimum specified values of tpl H and tpHI. Limit skew is not directly observed on a device. It is calculated from the data-sheet limits for tPLH and tPHL. tsk(I) quantifies for the designer how much variation in propagation delay time is induced by operation over the entire ranges of supply voltage, temperature, output load, and other specified operating conditions. Specified as such, tsk(l) also accounts for process variation. In fact, all other skew specifications $[t_{sk(0)}, t_{sk(i)}, t_{sk(p)}, and t_{sk(pr)}]$ are subsets of $t_{sk(l)}$; they are never greater than $t_{sk(l)}$. **Output skew** t_{sk(o)} The skew between specified outputs of a single logic device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads Pulse skew tsk(p)

The magnitude of the time difference between the propagation delay times, t_{PHL} and t_{PLH} , when a single switching input causes one or more outputs to switch

t_{sk(pr)} Process skew

The magnitude of the difference in propagation delay times between corresponding terminals of two logic devices when both logic devices operate with the same supply voltages, operate at the same temperature, and have identical package styles, identical specified loads, identical internal logic functions, and the same manufacturer

t_{su} Setup time

The time interval between the application of a signal at a specified input terminal and a subsequent active transition at another specified input terminal

NOTES: 1. The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is specified.

2. The setup time may have a negative value, in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the digital circuit is specified.

tw Pulse duration (width)

The time interval between specified reference points on the leading and trailing edges of the pulse waveform

VIH High-level input voltage

An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables

NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which operation of the logic element within specification limits is to be expected.

VIL Low-level input voltage

An input voltage within the less positive (more negative) of the two ranges of values used to represent the binary variables

NOTE: A maximum is specified that is the most-positive value of low-level input voltage for which operation of the logic element within specification limits is to be expected.

V_{OH} High-level output voltage

The voltage at an output terminal with input conditions applied that, according to product specification, establishes a high level at the output

V_{OHS} Static high-level output voltage

The static and testable voltage at a DOC circuit output with input conditions applied that, according to the product specifications, establishes a static high level at the output. The dynamic drive voltage is not specified for devices with DOC circuit outputs because of its transient nature.

V_{OL} Low-level output voltage

The voltage at an output terminal with input conditions applied that, according to product specification, establishes a low level at the output

V_{OLS} Static low-level output voltage

The static and testable voltage at a DOC circuit output with input conditions applied that, according to the product specifications, establishes a static low level at the output. The dynamic drive voltage is not specified for devices with DOC circuit outputs because of its transient nature.

V_{T+} Positive-going input threshold level

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T-}

V_T- Negative-going input threshold level

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, V_{T+}

EXPLANATION OF FUNCTION TABLES

The following symbols are used in function tables on TI data sheets:

Н high level (steady state) = L low level (steady state) = ↑ transition from low to high level = \downarrow transition from high to low level = value/level or resulting value/level is routed to indicated destination = -= value/level is re-entered K Х irrelevant (any input, including transitions) = Ζ off (high-impedance) state of a 3-state output = a...h = the level of steady-state inputs A through H, respectively level of Q before the indicated steady-state input conditions were established Q_0 = complement of Q_0 or level of \overline{Q} before the indicated steady-state input Q_0 = conditions were established level of Q before the most recent active transition indicated by \downarrow or \uparrow Qn = one high-level pulse = one low-level pulse = Toggle each output changes to the complement of its previous level on each active = transition indicated by \downarrow or \uparrow

If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.

If, in the input columns, a row contains H, L, and/or X together with \uparrow and/or \downarrow , this means the output is valid whenever the input configuration is achieved but the transition(s) must occur following the achievement of the steady-state levels. If the output is shown as a level (H, L, Q₀, or \overline{Q}_0), it persists so long as the steady-state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as a pulse, $____$ or $____$, the pulse follows the indicated input transition and persists for an interval dependent on the circuit.)

Among the most complex function tables are those of the shift registers. These embody most of the symbols used in any of the function tables, plus more. Below is the function table of a 4-bit bidirectional universal shift register.

INPUTS							OUTI	PUTS					
	MC	DE	CLOCK	SEI	RIAL		PARA	LLEL			0-		0-
CLEAR	S1	S0	CLOCK	LEFT	RIGHT	Α	В	С	D	^Q A	αB	ЧC	۹D
L	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L
н	Х	Х	L	х	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q_{D0}
н	н	Н	↑	х	Х	а	b	С	d	а	b	С	d
н	L	Н	↑	х	Н	н	Н	Н	Н	н	Q _{An}	Q _{Bn}	Q _{Cn}
н	L	Н	↑	X	L	L	L	L	L	L	Q _{An}	Q _{Bn}	QCn
н	н	L	↑	н	Х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	Н
н	н	L	↑	L	Х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	L
н	L	L	Х	Х	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q_{D0}

EU	NCT	ION	T۸	
FU.		IUN	18	DLL

The first line of the table represents a synchronous clearing of the register and says that if clear is low, all four outputs will be reset low regardless of the other inputs. In the following lines, clear is inactive (high) and so has no effect.

The second line shows that so long as the clock input remains low (while clear is high), no other input has any effect and the outputs maintain the levels they assumed before the steady-state combination of clear high and clock low was established. Since on other lines of the table only the rising transition of the clock is shown to be active, the second line implicitly shows that no further change in the outputs occurs while the clock remains high or on the high-to-low transition of the clock.

The third line of the table represents synchronous parallel loading of the register and says that if S1 and S0 are both high then, without regard to the serial input, the data entered at A is at output Q_A , data entered at B is at Q_B , and so forth, following a low-to-high clock transition.

The fourth and fifth lines represent the loading of high- and low-level data, respectively, from the shift-right serial input and the shifting of previously entered data one bit; data previously at Q_A is now at Q_B , the previous levels of Q_B and Q_C are now at Q_C and Q_D , respectively, and the data previously at Q_D is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is low and S0 is high and the levels at inputs A through D have no effect.

The sixth and seventh lines represent the loading of high- and low-level data, respectively, from the shift-left serial input and the shifting of previously entered data one bit; data previously at Q_B is now at Q_A , the previous levels of Q_C and Q_D are now at Q_B and Q_C , respectively, and the data previously at Q_A is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is high and S0 is low and the levels at inputs A through D have no effect.

The last line shows that as long as both inputs are low, no other input has any effect and, as in the second line, the outputs maintain the levels they assumed before the steady-state combination of clear high and both mode inputs low was established.

The function table functional tests do not reflect all possible combinations or sequential modes.

It is normal TI practice to name the outputs and other inputs of a D-type flip-flop or latch and to draw its logic symbol based on the assumption of true data (D) inputs. Outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called preset (PRE). An input that causes a \overline{Q} output to go high or a Q output to go low is called clear (CLR). Bars are used over these pin names (\overline{PRE} and \overline{CLR}) if they are active low.

The devices on several data sheets are second-source designs, and the pin-name conventions used by the original manufacturers have been retained. That makes it necessary to designate the inputs and outputs of the inverting circuits \overline{D} and Q.

In some applications, it may be advantageous to redesignate the data input from D to \overline{D} or vice versa. In that case, all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbols. Arbitrary pin numbers are shown.

The figures show that when Q and \overline{Q} exchange names, the preset and clear pins also exchange names. The polarity indicators (\square) on \overline{PRE} and \overline{CLR} remain, as these inputs are still active low, but the presence or absence of the polarity indicator changes at D (or \overline{D}), Q, and \overline{Q} . Pin 5 (Q or \overline{Q}) is still in phase with the data input (D or \overline{D}); their active levels change together.

Example:

1 Standard Prefix

Examples: SN – Standard Prefix SNJ – Conforms to MIL-PRF-38535 (QML)

2 Temperature Range

Examples: 54 – Military

74 – Commercial

3 Family

Examples: Blank - Transistor-Transistor Logic ABT – Advanced BiCMOS Technology ABTE/ETL - Advanced BiCMOS Technology/ Enhanced Transceiver Logic AC/ACT - Advanced CMOS Logic AHC/AHCT - Advanced High-Speed CMOS Logic ALB - Advanced Low-Voltage BiCMOS ALS - Advanced Low-Power Schottky Logic ALVC - Advanced Low-Voltage CMOS Technology AS - Advanced Schottky Logic AVC - Advanced Very Low-Voltage CMOS Logic BCT - BiCMOS Bus-Interface Technology CBT - Crossbar Technology CBTLV - Low-Voltage Crossbar Technology CD4000 - CMOS B-Series Integrated Circuits F – F Logic FB - Backplane Transceiver Logic/Futurebus+ FCT - Fast CMOS TTL Logic GTL - Gunning Transceiver Logic HC/HCT - High-Speed CMOS Logic HSTL - High-Speed Transceiver Logic LS - Low-Power Schottky Logic LV - Low-Voltage CMOS Technology LVC - Low-Voltage CMOS Technology LVT - Low-Voltage BiCMOS Technology PCA/PCF – I²C Inter-Integrated Circuit Applications S – Schottky Logic SSTL/SSTV - Stub Series-Terminated Logic TVC – Translation Voltage Clamp Logic

4 Special Features

- Examples: Blank = No Special Features
 - C Configurable V_{CC} (LVCC)
 - D Level-Shifting Diode (CBTD)
 - H Bus Hold (ALVCH)
 - K Undershoot-Protection Circuitry (CBTK)
 - R Damping Resistor on Inputs/Outputs (LVCR)
 - S Schottky Clamping Diode (CBTS)
 - Z Power-Up 3-State (LVCZ)

5 Bit Width

Examples: Blank = Gates, MSI, and Octals

- 1G Single Gate
- 8 Octal IEEE 1149.1 (JTAG)
- 16 Widebus™ (16, 18, and 20 bit) 18 – Widebus IEEE 1149.1 (JTAG)
- 32 Widebus 1222 1149.1 (31A)

6 **Options**

Examples: Blank = No Options 2 – Series Damping Resistor on Outputs 4 – Level Shifter

 $25 - 25 - \Omega$ Line Driver

7 Function

Examples: 244 – Noninverting Buffer/Driver 374 – D-Type Flip-Flop 573 – D-Type Transparent Latch 640 – Inverting Transceiver

8 Device Revision

Examples: Blank = No Revision Letter Designator A–Z

9 Packages

Commercial	 D, DW – Small-Outline Integrated Circuit (SOIC) DB, DL – Shrink Small-Outline Package (SSOP) DBB, DGV – Thin Very Small-Outline Package (TVSOP) DBQ – Quarter-Size Outline Package (QSOP) DBV, DCK, DCT, DCU – Small-Outline Transistor Package (SOT) DGG, PW – Thin Shrink Small-Outline Package (TSSOP) FN – Plastic Leaded Chip Carrier (PLCC) GKE, GKF – MicroSTAR BGA™ Low-Profile Fine-Pitch Ball Grid Array (LFBGA) GQL – MicroStar Jr.™ Very-Thin-Profile Fine-Pitch Ball Grid Array (VFBGA)
	N, NP, NT – Plastic Dual-In-Line Package (PDIP) NS, PS – Small-Outline Package (SOP) PAG, PAH, PCA, PCB, PM, PN, PZ –
	Thin Quad Flatpack (TQFP) PH, PQ, RC – Quad Flatpack (QFP) YEA – NanoStar™ Die-Size Ball Grid Array (DSBGA) [†]
Military:	FK – Leadless Ceramic Chip Carrier (LCCC) GB – Ceramic Pin Grid Array (CPGA) HFP, HS, HT, HV – Ceramic Quad Flatpack (CQFP) J, JT – Ceramic Dual-In-Line Package (CDIP) W, WA, WD – Ceramic Flatpack (CFP)

10 Tape and Reel

Devices in the DB and PW package types include the R designation for reeled product. Existing product inventory designated LE may remain, but all products are being converted to the R designation.

Examples: Old Nomenclature – SN74LVTxxxDBLE New Nomenclature – SN74LVTxxxADBR LE – Left Embossed (valid for DB and PW packages only) R – Standard (valid for all surface-mount packages)

There is no functional difference between LE and R designated products, with respect to the carrier tape, cover tape, or reels used.

[†] DSBGA is the JEDEC reference for wafer chip scale package (WCSP).

In digital-system design, consideration must be given to thermal management of components. The small size of the small-outline packages makes this even more critical. Figures 1–5 show the high-effect (High-K) thermal resistance for the small-outline 14-, 16-, 20-, 24-, and 48-pin packages for various rates of airflow calculated in accordance with JESD 51-7.

The thermal resistances in Figures 1–5 can be used to approximate typical and maximum virtual junction temperatures. In general, the junction temperature for any device can be calculated using the following equation:

$$T_J = R_{\theta JA} \times P_T + T_A$$

where:

 $T_{.I}$ = virtual junction temperature (°C)

 $R_{\theta JA}$ = thermal resistance, junction to free air (°C/W)

 P_T = total power dissipation of the device (W)

 T_A = free-air temperature (°C)

Figure 1

General Information	1
GTL	2
GTLP	3
ETL	4
BTL/FB+	5
VME	6
Application Reports	7
Mechanical Data	8

Contents

		Contento	Page
	SN74GTL1655	16-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceiver With Live Insertion	2–3
SN54GTL16612	SN74GTL16612	18-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers	2–15
	SN74GTL16616	17-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceiver With Buffered Clock Outputs	2–23
	SN74GTL16622A	18-Bit LVTTL-to-GTL/GTL+ Bus Transceiver	2–33
	SN74GTL16923	18-Bit LVTTL-to-GTL/GTL+ Bus Transceiver	2–41

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION

SCBS696G – JULY 1997 – REVISED AUGUST 2001

● Member of Texas Instruments' Widebus™ Family	DO	DGG PACKAGE (TOP VIEW)				
 UBT[™] Transceiver Combines D-Type	1 <mark>0EAB</mark> [$ \begin{array}{cccc} 1 & & 64 \\ 2 & & 63 \\ 3 & & 62 \\ 4 & & 61 \end{array} $] CLK			
Latches and D-Type Flip-Flops for	10EBA [] 1LEAB			
Operation in Transparent, Latched, or	V _{CC} [] 1LEBA			
Clocked Modes	1A1 [] VERC			
 OEC[™] Circuitry Improves Signal Integrity	GND [5 60	GND			
and Reduces Electromagnetic Interference	142	6 59] GND			
 Translates Between GTL/GTL+ Signal Leve	1A3 [7 58] 1B2			
and LVTTL Logic Levels	GND [8 57] GND			
 High-Drive (100 mA),	1A4 [9 56] 1B3			
Low-Output-Impedance (12 Ω) Bus	GND [10 55] 1B4			
Transceiver (B Port)	145 [11 54] 1B5			
 Edge-Rate-Control Input Configures the	GND [12 53] GND			
B-Port Output Rise and Fall Times	1A6 [13 52] 1B6			
 I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion 	1A7 [V _{CC} [1A8 [14 51 15 50] 1B7] V _{CC}] 1B8			
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port 	2A1 [GND]	17 48 18 47] 2B1] GND			
 Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise 	2A2 L 2A3 [GND [19 46 20 45 21 44] 2B2] 2B3] GND			
description	2A4 [22 43] 2B4			
	2A5 [23 42] 2B5			
The SN74GTL1655 is a high-drive (100 mA low-output-impedance (12 Ω) 16-bit UBT), GND [24 41] V _{REF}			
	™ 2A6 [25 40] 2B6			
transceiver that provides LVTTL-to-GTL/GTL	+ GND [26 39] GND			
and GTL/GTL+-to-LVTTL signal-level translatior	n. 2A7]	27 38] 2B7			
This device is partitioned as two 8-bit transceiver	s V _{CC} [28 37] 2B8			
and combines D-type flip-flops and D-type latche	s 2A8 [29 36] BIAS V _{CC}			
to allow for transparent, latched, and clocke modes of data transfer similar to the '1650	a GND [30 35] 2LEAB			
	1 20EAB [31 34] 2LEBA			

20EBA 32 33 OE

OEC, UBT, and Widebus are trademarks of Texas Instruments.

function. This device provides an interface

between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC[™] circuitry. The high drive is suitable for driving double-terminated low-impedance backplanes using incident-wave

switching.

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION SCBS696G – JULY 1997 – REVISED AUGUST 2001

description (continued)

The user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or the preferred higher noise margin GTL+ ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels. GTL+ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels but are not 5-V tolerant. V_{REF} is the reference input voltage for the B port.

This device is uniquely partitioned as two 8-bit transceivers with individual latch timing and output signals, but with a common clock and output enable inputs for both transceiver words.

Data flow for each word is determined by the respective latch enables (LEAB and LEBA), output enables (OEAB and OEBA), and clock (CLK). The output enables (10EAB, 10EBA, 20EAB, and 20EBA) control byte 1 and byte 2 data for the A-to-B and B-to-A directions, respectively.

For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB transitions low, the A data is latched independent of CLK high or low. If LEAB is low, the A data is registered on the CLK low-to-high transition. When OEAB is low, the outputs are active. With OEAB high, the outputs are in the high-impedance state.

Data flow for the B-to-A direction is identical, but uses OEBA, LEBA, and CLK. Note that CLK is common to both directions and both 8-bit words. OE is also common and is used to disable all I/O ports simultaneously.

The SN74GTL1655 has adjustable edge-rate control (V_{ERC}). Changing V_{ERC} input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize for various loading conditions.

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	TSSOP – DGG Tape and reel		SN74GTL1655DGGR	GTL1655

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables

FUNCTION[†]

	INPU ⁻	тѕ		OUTPUT	MODE
OEAB	LEAB	CLK	Α	В	MODE
Н	Х	Х	Х	Z	Isolation
L	Н	Х	L	L	Transparent
L	Н	Х	Н	Н	Transparent
L	L	\uparrow	L	L	Registered
L	L	\uparrow	н	Н	Registered
L	L	н	Х	в ₀ ‡	Previous state
L	L	L	Х	в ₀ §	Previous state

[†] A-to-B data flow is shown. B-to-A flow is similar, but uses OEBA, LEBA, and CLK.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLK was high before LEAB went low

§ Output level before the indicated steady-state input conditions were established

	INPUTS		OUTPUTS		
OE OEAB OEBA		A PORT	B PORT		
L	L	L	Active	Active	
L	L	Н	Z	Active	
L	Н	L	Active	Z	
L	Н	Н	Z	Z	
Н	Х	Х	Z	Z	

OUTPUT ENABLE

B-PORT EDGE-RATE CONTROL (VERC)

INPU	T V _{ERC}	OUTPUT		
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE		
Н	Vcc	Slow		
L	GND	Fast		

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION SCBS696G – JULY 1997 – REVISED AUGUST 2001

logic diagram (positive logic)

To Seven Other Channels

41 V_{REF} 61 VERC -64 CLK -35 2LEAB -34 2LEBA 32 20EBA 31 2OEAB 33 OE -17 2A1 -1D 48 \Diamond 2B1 **C**1 > CLK 1D C1 CLK <

logic diagram (positive logic) (continued)

To Seven Other Channels

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION SCBS696G – JULY 1997 – REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} , BIAS V _{CC}	-0.5 V to 4.6 V
B port, V _{FRC} , and V _{RFF}	-0.5 V to 4.6 V
Voltage range applied to any output in the high or power-off state, VO	
(see Note 1): A port	
B port	
Current into any output in the low state, I _O : A port	
B port	
Current into any A-port output in the high state, I _O (see Note 2)	
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ _{JA} (see Note 3)	
Storage temperature range, T _{sto}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
BIAS V _{CC}	Supply voltage		3	3.3	3.6	V	
\/	Termination voltage	GTL	1.14	1.2	1.26	V	
∨	Termination voltage	GTL+	1.35	1.5	1.65	V	
	Poforonce voltage	GTL	0.74	0.8	0.87		
VREF	Reference voltage	GTL+	0.87	1	1.1	v	
. v.	Input voltage	B port	0		VTT	V	
vI	input voltage	Except B port	0		VCC	V	
VIH		B port	V _{REF} +50 mV				
	High-level input voltage	VERC	V _{CC} -0.6	Vcc		V	
		Except B port and ERC	2				
		B port			V _{REF} –50 mV		
VIL	Low-level input voltage	VERC		GND	0.6	V	
		Except B port and ERC			0.8		
IIК	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
lai		A port			24	m۸	
IOL		B port			100	MA	
Δt/ΔVCC	Power-up ramp rate		200			μs/V	
Т _А	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Normal connection sequence is GND first, BIAS V_{CC} = 3.3 V second, and V_{CC} = 3.3 V, I/O, control inputs, V_{TT} and V_{REF} (any order) last. However, if the B-port I/O precharge is not required, the acceptable connection sequence is GND first and V_{CC} = 3.3 V, BIAS V_{CC} = 3.3 V, I/O, control inputs, V_{TT} and V_{REF} (any order) last. When V_{CC} is connected, the BIAS V_{CC} circuitry is disabled.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

7. V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT} .

electrical characteristics over recommended operating free-air temperature range, V _{RF}	F = 1 V and
V _{TT} = 1.5 V (unless otherwise noted)	•

PARAMETER		TEST CON	MIN	TYP†	MAX	UNIT		
VIK		V _{CC} = 3 V,	l _l = –18 mA			-1.2	V	
		V _{CC} = 3 V to 3.6 V,	I _{OH} = -100 μA	V _{CC} -0.2				
∨он	A port		I _{OH} = -12 mA	2.4			V	
		vCC = 3 v	I _{OH} = -24 mA	2.2				
		V _{CC} = 3 V to 3.6 V,	I _{OL} = 100 μA			0.2		
	A port		I _{OL} = 12 mA			0.4		
Vei		vCC = 3 v	I _{OL} = 24 mA			0.55	V	
VOL			I _{OL} = 40 mA			0.2	v	
	B port	$V_{CC} = 3 V$	I _{OL} = 80 mA			0.4		
			I _{OL} = 100 mA			0.5		
	Control inputs		$V_I = V_{CC}$ or GND			±10		
П	B port	VCC = 3.6 V	$V_I = V_{TT}$ or GND			±10	μΑ	
loff		$V_{CC} = 0,$	$V_I \text{ or } V_O = 0 \text{ to } 3.6 \text{ V}$			±100	μA	
		V _{CC} = 3 V	V _I = 0.8 V	75			μA	
II(hold)	A port		V ₁ = 2 V	-75				
		$V_{CC} = 3.6 V^{\ddagger},$	$V_I = 0$ to V_{CC}			±500		
IOZH	B port	V _{CC} = 3.6 V,	V _O = 1.5 V			10	μA	
IOZL	B port	V _{CC} = 3.6 V,	$V_{O} = 0.4 V$			-10	μA	
loz§	A port	V _{CC} = 3.6 V,	$V_{O} = V_{CC} \text{ or } GND$			±10	μA	
IOZPU	A port	$V_{CC} = 0$ to 3.6 V, $V_{O} = 0.5$ V to	$3 \text{ V}, \overline{\text{OE}} = \text{low}$			±50	μA	
IOZPD	A port	$V_{CC} = 3.6 \text{ V to } 0, \text{ V}_{O} = 0.5 \text{ V to}$	$o 3 V, \overline{OE} = Iow$			±50	μA	
			Outputs high			80		
Icc	A or B port	$V_{CC} = 3.6 V, I_{O} = 0,$	Outputs low			80	mA	
			Outputs disabled			80		
∆ICC¶	Except B port	V_{CC} = 3.6 V, A-port or control inputs at V_{CC} or GND, One input at V_{CC} – 0.6 V				1	mA	
Ci	Control inputs	$V_{I} = V_{CC} \text{ or } 0$			3	5	pF	
C.	A port				5	6	ъĒ	
Cio	B port	AO = ACC or O			6	8	p⊢	

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

§ For I/O ports, the parameter IOZ includes the input leakage current.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

live-insertion specifications over recommended operating free-air temperature range

PAI	RAMETER	TEST CONDITIONS				MAX	UNIT
ICC (BIAS VCC)		$V_{CC} = 0$ to 3 V	- V _O (B port) = 0 to 1.2 V, V _I (BIAS V _{CC}) = 3 V to 3.6 V			5	mA
		$V_{CC} = 3 V \text{ to } 3.6 V$				10	μΑ
VO	B port	$V_{CC} = 0,$	V_{I} (BIAS V_{CC}) = 3.3 V		1	1.2	V
		$V_{CC} = 0,$	V _O (B port) = 0.4 V,	VI (BIAS V _{CC}) = 3 V to 3.6 V	-1		
IO	B port	$V_{CC} = 0$ to 3.6 V,	OE = 3.3 V			100	μA
		$V_{CC} = 0$ to 1.5 V,	$\overline{OE} = 0$ to 3.3 V			100	

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION SCBS696G – JULY 1997 – REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V, V_{REF} = 0.8 V, and V_{ERC} = V_{CC} or GND for GTL (unless otherwise noted)

					MAX	UNIT
fclock	f _{clock} Clock frequency				160	MHz
	Dulas duration	LE high		3		
١W	Puise duration	CLK high or low		3		ns
	Setup time	Data before CLK↑		2.7		
t _{su}		Data before LE↓	CLK high	2.8		ns
			CLK low	2.6		
	Hold time	Data after CLK↑		0.4		
'n		Data after LE \downarrow	CLK high or low	0.9		115

A-to-B switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V, V_{REF} = 0.8 V, and V_{ERC} = V_{CC} or GND for GTL (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	МАХ	UNIT
fmax			160		MHz
^t PLH	А	P	3.1	5.2	
^t PHL	V _{ERC} = V _{CC}	D	2.6	6.2	115
^t PLH	CLK	P	3.4	5.5	00
^t PHL	V _{ERC} = V _{CC}		2.4	5.8	ns
^t PLH	LEAB	P	3.5	5.8	-
^t PHL	V _{ERC} = V _{CC}	D	2.6	6.4	115
t _{en}	OEAB or OE	P	3.3	5.4	
^t dis	VERC = VCC	D	2.7	5.9	ns
^t PLH	А	P	2.3	4.3	20
^t PHL	V _{ERC} = GND		1.9	4.3	115
^t PLH	CLK	P	2.7	4.8	200
^t PHL	V _{ERC} = GND		1.8	4.3	115
^t PLH	LEAB	P	2.8	4.9	00
^t PHL	V _{ERC} = GND		2	4.8	115
t _{en}	OEAB or OE	P	2.5	4.5	00
^t dis	V _{ERC} = GND		2	4.2	115
Slew rate (V _{ERC} = V _{CC})	Both transitions, B outputs (0.6 V to 1.3 V)			1	ns/V
Slew rate (V _{ERC} = GND)	Both transitions, B outputs (0.6 V to 1.3 V)			1	ns/V
^t sk(o) [†]	Skew between drivers in the same package (switching in the same direction)			1	ns
t _{sk(o)} ‡	Skew between drivers switching in any direction in the same package			1	ns

[†] Skew values are applicable for through mode only.

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION

SCBS696G - JULY 1997 - REVISED AUGUST 2001

B-to-A switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V and V_{REF} = 0.8 V for GTL (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
f _{max}			160		MHz
^t PLH	P	^	1.8	4.7	200
^t PHL	ם	~	2.3	4.6	115
^t PLH		0	1.6	4	
^t PHL	CER	A	1.5	3.4	115
^t PLH			1.7	4	
^t PHL	LEBA	A	1.4	3.5	115
t _{en}			1.3	4.2	20
^t dis	OEBA OF OE	A	2	6.1	115
^t sk(o) [†]	Skew between drivers in the same package (switching in the same direction)			1	ns
^t sk(o) [‡]	Skew between drivers switching in any direction in the same package			1	ns

[†] Skew values are applicable for through mode only.

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION SCBS696G – JULY 1997 – REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5 \text{ V}$, $V_{REF} = 1 \text{ V}$, and $V_{ERC} = V_{CC}$ or GND for GTL+ (unless otherwise noted)

			MIN	MAX	UNIT	
f _{clock} Clock frequency				160	MHz	
		LE high		3		
W Pulse duration	Fuise duration	CLK high or low		3		IIS
t _{su} Setup time		Data before CLK↑		2.7		
	Setup time	Data before LE↓	CLK high	2.8		ns
			CLK low	2.6		
t _h Hold time	Lold time	Data after CLK↑		0.4		
		Data after LE↓	CLK high or low	0.9		ns

A-to-B switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V, V_{REF} = 1 V, and V_{ERC} = V_{CC} or GND for GTL+ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
^f max			160		MHz
^t PLH	А	A		5.1	ns
^t PHL	V _{ERC} = V _{CC}	D	2.9	6.5	115
^t PLH	CLK	P	3.4	5.4	00
^t PHL	V _{ERC} = V _{CC}	ם -	2.7	6.2	115
^t PLH	LEAB	В	3.5	5.7	ns
^t PHL	V _{ERC} = V _{CC}	נ	2.8	6.7	
^t en	OEAB	В	3.3	5.4	ns
^t dis	V _{ERC} = V _{CC}		3	6.3	115
ten	ŌĒ	В	3	5.5	ns
^t dis	V _{ERC} = V _{CC}	L L L L L L L L L L L L L L L L L L L	3.6	5.8	115
^t PLH	А	P	2.3	4.3	50
^t PHL	V _{ERC} = GND	۵	2	4.4	115
^t PLH	CLK	В	2.7	4.8	ne
^t PHL	V _{ERC} = GND	נ	1.9	4.5	115
^t PLH	LEAB	P	2.8	4.9	00
^t PHL	V _{ERC} = GND	ם -	2.1	4.9	ns
t _{en}	OEAB	P	2.5	4.5	200
^t dis	V _{ERC} = GND	d	2.1	4.4	115
t _{en}	ŌĒ	В	2.5	4.6	ne
^t dis	V _{ERC} = GND	נ	2.9	4.9	115
Slew rate (V _{ERC} = V _{CC})	Both transitions, B outputs (0.6 V to 1.3 V)			1	ns/V
Slew rate (V _{ERC} = GND)	Both transitions, B outputs (0.6 V to 1.3 V)			1	ns/V
t _{sk(o)} †	Skew between drivers in the same package (switching in the same direction)			1	ns
^t sk(o) [‡]	Skew between drivers switching in any direction in the same package			1	ns

[†] Skew values are applicable for through mode only.

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION SCBS696G - JULY 1997 - REVISED AUGUST 2001

B-to-A switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
fmax			160		MHz
^t PLH	Р	<u>^</u>	2	4.8	20
^t PHL	D	A	2.4	4.7	ns
^t PLH		<u>^</u>	1.6	4.4	20
^t PHL	CER	A	1.5	3.4	115
^t PLH		LEBA A	1.7	4	20
^t PHL	LEDA		1.4	3.5	115
t _{en}		A	1.3	4.2	00
^t dis	OEBA		2	6.1	115
t _{en}		А	2.2	4.7	200
^t dis	OE		4.1	6.3	
^t sk(o) [†]	Skew between drivers in the same package (switching in the same direction)			1	ns
^t sk(o) [‡]	Skew between drivers switching in any direction in the same package			1	ns

[†] Skew values are applicable for through mode only.

SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER WITH LIVE INSERTION

SCBS696G - JULY 1997 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .

SN54GTL16612, SN74GTL16612 18-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVERS

GND 125

A18 26

OEBA 27

LEBA 28

32 GND

31 B18

30 CLKBA

29 CEBA

SCBS480K - JUNE 1994 - REVISED AUGUST 2001

 Members of Texas Instruments' Widebus™ Family 	SN54GTL16612 WD PACKAGE SN74GTL16612 DGG OR DL PACKAGE		
	(TOP VIEW)		
Latches and D-Type Flip-Flops for			
Operation in Transparent, Latched,			
Clocked, or Clock-Enabled Modes		54 B1	
● OEC [™] Circuitry Improves Signal Integrity		53 GND	
and Reduces Electromagnetic Interference	A2 5	52 B2	
Translate Between GTL/GTL+ Signal Levels	A3 🛛 6	51 B3	
and LVTTL Logic Levels	V _{CC} (3.3 V) 🛛 7	50 🛛 V _{CC} (5 V)	
Support Mixed-Mode (3.3 V and 5 V) Signal	A4 🛛 8	49 B4	
Operation on A-Port and Control Inputs	A5 🛙 9	48 B5	
 Identical to '16601 Function 	A6 🛿 10	47 🛛 B6	
L Supporte Portial Power Down Mede	GND 🛛 11	46 GND	
 Ioff Supports Farilal-Power-Down Mode Operation 	A7 🛛 12	45 B7	
Des Halles Data legata Eliminates the	A8 🛛 13	44 B8	
 Bus Hold on Data Inputs Eliminates the Need for Externel Bully (Bulldown) 	A9 🛛 14	43 B9	
Resistors on A Port	A10 15	42 B10	
		41 B 11	
 Distributed V_{CC} and GND Pins Minimize 		40 B12	
High-Speed Switching Noise		39 GND	
 Latch-Up Performance Exceeds 500 mA Per 			
JESD 17			
description			
uescription	v_{CC} (3.3 V) \Box 22 A 16 \Box 22		
The 'GTL16612 devices are 18-bit UBT™		34 D D D 32 D B17	
		33 1 D17	

transceivers that provide LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation. They combine D-type flip-flops and D-type latches to allow for transparent, latched, clocked, and clock-enabled modes of data transfer identical to the '16601 function. The devices provide an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC[™] circuitry.

The user has the flexibility of using these devices at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or the preferred higher noise margin GTL+ ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels. GTL+ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{REF} is the reference input voltage for the B port.

V_{CC} (5 V) supplies the internal and GTL circuitry while V_{CC} (3.3 V) supplies the LVTTL output buffers.

OEC, UBT, and Widebus are trademarks of Texas Instruments.

Copyright © 2001, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
SCBS480K - JUNE 1994 - REVISED AUGUST 2001

description (continued)

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable(LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CEAB and CEBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CEAB is low and CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB if CEAB also is low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that for A to B, but uses OEBA, LEBA, CLKBA, and CEBA.

These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

т _А	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		Tube	SN74GTL16612DL	CTI 16612	
–40°C to 85°C	330F - DL	Tape and reel	SN74GTL16612DLR	GILIO012	
	TSSOP – DGG	Tape and reel	SN74GTL16612DGGR	GTL16612	
–55°C to 125°C	CFP – WD Tube		SNJ54GTL16612WD	SNJ54GTL16612WD	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

		INPUTS	;		OUTPUT	MODE
CEAB	OEAB	LEAB	CLKAB	Α	В	MODE
Х	Н	Х	Х	Х	Z	Isolation
L	L	L	Н	Х	в ₀ §	Latabad storage of A data
L	L	L	L	Х	B₀¶	Laterieu storage of A data
Х	L	Н	Х	L	L	Transport
X	L	Н	Х	Н	н	Transparent
L	L	L	\uparrow	L	L	Clocked storage of A data
L	L	L	\uparrow	Н	н	CIUCKEU SIOTAYE OF A UAIA
Н	L	L	Х	Х	B₀¶	Clock inhibit
1						

FUNCTION TABLE[‡]

[‡]A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, CLKBA, and CEBA.

§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

¶ Output level before the indicated steady-state input conditions were established

SCBS480K - JUNE 1994 - REVISED AUGUST 2001

logic diagram (positive logic)

To 17 Other Channels

SCBS480K - JUNE 1994 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} : 3.3 V	–0.5 V to 4.6 V
5 V	–0.5 V to 7 V
Input voltage range, V _I (see Note 1): A-port and control inputs	–0.5 V to 7 V
B port and V _{REF}	–0.5 V to 4.6 V
Voltage range applied to any output in the high or power-off state, V_{O}	
(see Note 1): A port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	128 mA
B port	80 mA
Current into any A-port output in the high state, I _O (see Note 2)	64 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 3): DGG package	64°C/W
DL package	56°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 4 through 7)

			SN5	4GTL16	612	SN7	4GTL166	12	
			MIN	NOM	MAX	MIN	NOM	MAX	
Vee	Supply voltogo	3.3 V	3.15	3.3	3.45	3.15	3.3	3.45	V
VCC	Supply voltage	5 V	4.75	5	5.25	4.75	5	5.25	
V	Termination	GTL	1.14	1.2	1.26	1.14	1.2	1.26	V
VTT voltage	voltage	GTL+	1.35	1.5	1.65	1.35	1.5	1.65	v
VREF Reference voltage	GTL	0.74	0.8	0.87	0.74	0.8	0.87	V	
	VREF	Reference voltage	GTL+	0.87	1	1.1	0.87	1	1.1
V _I Inp	Input voltage	B port			VTT			VTT	V
		Except B port			5.5			5.5	Ň
	High-level input voltage	B port	V _{REF} +50 mV			V _{REF} +50 mV			V
VIH		Except B port	2			2			Ň
. V.i.	Low-level	B port			V_{REF} –50 mV		,	V _{REF} -50 mV	V
VIL	input voltage	Except B port			0.8			0.8	v
Iк	Input clamp current				-18			-18	mA
ЮН	High-level output current	A port			-32			-32	mA
	Low-level	A port			64			64	mA
^{'OL}	output current	B port			40			40	
TA	Operating free-air te	mperature	-55		125	-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Normal connection sequence is GND first, $V_{CC} = 5 V$ second, and $V_{CC} = 3.3 V$, I/O, control inputs, V_{TT} and V_{REF} (any order) last.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}.

SCBS480K - JUNE 1994 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	AETED	TEST CONDIT	IONS	SN54	GTL166	12	SN74GTL16612			LINUT	
PARAP	NEIER	TEST CONDIT		MIN	түр†	MAX	MIN	түр†	MAX	UNIT	
VIK		V _{CC} (3.3 V) = 3.15 V, V _{CC} (5 V) = 4.75 V	Iı = –18 mA			-1.2			-1.2	V	
		V _{CC} (3.3 V)= 3.15 V to 3.45 V, V _{CC} (5 V) = 4.75 V to 5.25 V	I _{OH} = -100 μA	V _{CC} (3.3	V)–0.2		V _{CC} (3.3	V)–0.2			
VOH	A port	V _{CC} (3.3 V) = 3.15 V,	I _{OH} = –8 mA	2.4			2.4			V	
		V _{CC} (5 V) = 4.75 V	I _{OH} = -32 mA	2			2				
			I _{OL} = 100 μA			0.2			0.2		
	Aport	V _{CC} (3.3 V) = 3.15 V,	I _{OL} = 16 mA			0.4			0.4		
VOL	Apon	(CC (5 V) = 4.75 V	I _{OL} = 32 mA			0.5			0.5	V	
			I _{OL} = 64 mA			0.6			0.55		
	B port	V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V)	= 4.75 V, I _{OL} = 40 mA			0.5			0.4		
	Control inputs	V _{CC} (3.3 V) = 0 or 3.45 V, V _{CC} (5 V) = 0 or 5.25 V	VI = 5.5 V			10			10		
		V _I = 5.5 V			1000			20			
l II	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V	VI = VCC (3.3 V)			1			1	μA	
		$V_{I} = 0$			-30			-30			
B port	V _{CC} (3.3 V) = 3.45 V,	$V_{I} = V_{CC} (3.3 V)$			5			5			
	V _{CC} (5 V) = 5.25 V	V _I = 0			-5			-5			
I _{off}	-	$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$			1000			100	μA	
		\/(2,2)\/\2,45.\/	V _I = 0.8 V	75			75				
II(hold)	A port	port $V_{CC}(3.3 V) = 3.15 V$, $V_{I} = 2 V$		-75			-75			μA	
			$V_{I} = 0 \text{ to } V_{CC} (3.3 \text{ V})^{\ddagger}$			±500			±500		
	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V)	= 5.25 V, V _O = 3 V			1			1	ıιΔ	
^I OZH	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V)	= 5.25 V, V _O = 1.2 V			10			10	μΛ	
1071	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V)	= 5.25 V, V _O = 0.5 V			-1			-1	нΑ	
'OZL	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V)	= 5.25 V, V _O = 0.4 V			-10			-10	μΛ	
	A	V_{CC} (3.3 V) = 3.45 V,	Outputs high			1			1		
(3.3 V)	A OF B	V_{CC} (5 V) = 5.25 V, I _O = 0,	Outputs low			5			5	mA	
(0.0.1)	pon	$V_{I} = V_{CC} (3.3 \text{ V}) \text{ or GND}$	Outputs disabled			1			1		
	A	V_{CC} (3.3 V) = 3.45 V,	Outputs high			120			120		
	A or B	V_{CC} (5 V) = 5.25 V, I_{O} = 0,	Outputs low			120			120	mA	
(0 1)	pon	$V_{I} = V_{CC} (3.3 \text{ V}) \text{ or GND}$	Outputs disabled			120			120		
∆ICC§		V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = A-port or control inputs at V_{CC} (3 One input at 2.7 V	= 5.25 V, .3 V) or GND,			1			1	mA	
Ci	Control inputs	VI = 3.15 V or 0			3.5	12		3.5		pF	
Cir	A port	$V_{0} = 3.15 V_{0} r 0$			12	18		12		nF	
	B port	VO = 5.15 V 01 0				10			5	μL	

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. § This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS480K - JUNE 1994 - REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V and V_{REF} = 0.8 V for GTL (unless otherwise noted) (see Figure 1)

			SN54GTL	16612	SN74GTL	16612	LINUT	
			MIN	MAX	MIN	MAX	UNIT	
fclock	Clock frequency			95		95	MHz	
+	Pulse duration	LEAB or LEBA high	3.3		3.3			
١W		CLKAB or CLKBA high or low	5.6		5.6		115	
t _{su}		A before CLKAB↑	1.3		1.3			
	Setup time	B before CLKBA1	3.4		2.5			
		A before LEAB↓	1.2		0			
		B before LEBA↓	1		1		115	
		CEAB before CLKAB↑	2.1		2			
		CEBA before CLKBA↑	2.6		2.2			
		A after CLKAB↑	2.9		1.6			
		B after CLKBA↑	4.1		0.3			
÷.	Hold time	A after LEAB↓	4.5		4		50	
Чh	Hold time	B after LEBA↓	4.3		3.6		ns	
		CEAB after CLKAB↑	2		0.8			
		CEBA after CLKBA↑	1.1		1.1			

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V and V_{REF} = 0.8 V for GTL (see Figure 1)

DADAMETED	FROM	то	SN5	SN54GTL16612			SN74GTL16612		
PARAMETER	(INPUT)	(OUTPUT)	MIN	түр†	MAX	MIN	түр†	MAX	UNIT
fmax			95			95			MHz
^t PLH	٨	P	1	2.8	4.5	1.5	2.8	4.1	200
^t PHL	A	В		2.5	4.5	1.3	2.5	4	ns
^t PLH		P	1	3.6	5.5	2	3.6	5.3	200
^t PHL	LLAD	В	1	3.5	6	1.9	3.5	5.4	115
^t PLH		B	1	3.7	5.5	2.3	3.7	5.3	ne
^t PHL	CERAB	В	1	3.4	5.5	1.9	3.4	5.4	115
t _{en}	0545	P	1	3.3	5.5	2	3.3	5.5	200
^t dis	UEAD	В	1	3.4	5.5	2	3.4	5.1	115
tr	Transition time, B or	utputs (0.5 V to 1 V)		1.3			1.3		ns
t _f	Transition time, B or	utputs (1 V to 0.5 V)		0.5			0.5		ns
^t PLH	P	٨	2	4.1	6.9	2.1	4.1	6.3	20
^t PHL	D	A	1	2.9	5.1	1.2	2.9	4.6	115
^t PLH		٨	2	3.7	6.1	2.3	3.7	5.7	20
^t PHL	LLDA	~	1	3	5.1	1.8	3	4.8	115
^t PLH		٨	2	3.8	6.4	2.5	3.8	6.1	20
^t PHL	ULNDA	A	2	3.3	5.6	2.3	3.3	5.2	115
ten		Δ	1	5	7.5	2.3	5	7.4	200
^t dis	OLDA	A	2	4.3	6.9	2.5	4.3	6.4	115

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

SCBS480K - JUNE 1994 - REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5$ V and $V_{REF} = 1$ V for GTL+ (unless otherwise noted) (see Figure 1)

			SN54GTL	16612	SN74GTL	16612	LINUT	
			MIN	MAX	MIN	MAX	UNIT	
fclock	Clock frequency			95		95	MHz	
+	Pulso duration	LEAB or LEBA high	3.3		3.3		200	
١w		CLKAB or CLKBA high or low	5.6		5.6		115	
t _{su}		A before CLKAB↑	1.3		1.3			
	Setup time	B before CLKBA↑	3.2		2.3			
		A before LEAB↓	1.2		0		-	
		B before LEBA \downarrow	1.3		1.3		115	
		CEAB before CLKAB↑	2.1		2			
		CEBA before CLKBA↑	2.6		2.2			
		A after CLKAB↑	2.9		1.6			
		B after CLKBA↑	4.4		0.3			
L.	Lold time	A after LEAB↓	4.5		4			
^h	Hold ume	B after LEBA↓	4.3		3.6		ns	
		CEAB after CLKAB↑	2		0.8			
		CEBA after CLKBA↑	1.1		1.1			

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (see Figure 1)

DADAMETED	FROM	то	SN5	4GTL16	612	SN7	4GTL16	612	LINUT
PARAMETER	(INPUT)	(OUTPUT)	MIN	түр†	MAX	MIN	түр†	MAX	UNIT
fmax			95			95			MHz
^t PLH	٨	D	1	2.8	4.5	1.5	2.8	4.1	
^t PHL	A	В		2.5	4.6	1.3	2.5	4.1	115
^t PLH		P	1	3.6	5.5	2	3.6	5.3	200
^t PHL	LLAD	В	1	3.5	6.1	1.9	3.5	5.5	115
^t PLH		D	1	3.7	5.5	2.3	3.7	5.3	-
^t PHL	ULKAB	D	1	3.4	5.6	1.9	3.4	5.5	115
^t PLH	0540	D	1	3.4	5.5	2	3.4	5.1	
^t PHL	OEAB	B	1	3.3	5.6	2	3.3	5.6	115
tr	Transition time, B or	utputs (0.5 V to 1 V)		1.5			1.5		ns
tf	Transition time, B or	utputs (1 V to 0.5 V)		0.8			0.8		ns
^t PLH	P	٨	1.9	4	6.9	2	4	6.3	
^t PHL	D	A	0.9	2.8	4.9	1.1	2.8	4.4	115
^t PLH		٨	2	3.7	6.1	2.3	3.7	5.7	
^t PHL	LEDA	A	1	3	5.1	1.8	3	4.8	115
^t PLH		٨	2	3.8	6.4	2.5	3.8	6.1	-
^t PHL	ULKBA	A	2	3.3	5.6	2.3	3.3	5.2	115
ten	OEBA	A	1	5	7.5	2.3	5	7.4	
tdis	OLDA	A	2	4.3	6.9	2.5	4.3	6.4	IIS

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

SCBS480K - JUNE 1994 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION V_{TT} = 1.2 V, V_{REF} = 0.8 V FOR GTL AND V_{TT} = 1.5 V, V_{REF} = 1 V FOR GTL+

[†] All control inputs are TTL levels.

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \le 10 MHz, Z_O = 50 Ω , t_f \le 2.5 ns, t_f \le 2.5 ns. C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveform

SCBS481H - JUNE 1994 - REVISED AUGUST 2001

● Member of Texas Instruments' Widebus™ Family	DGG OR DL PACKAGE (TOP VIEW)				
 UBT[™] Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Modes 	OEAB 1 56 6 LEAB 2 55 6 A1 3 54 1 GND 4 52 6	CEAB CLKAB B1			
 OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference 	A2 [5 52] 1 A3 [6 51] 1	B2 B3			
 GTL Buffered CLKAB Signal (CLKOUT) 	V _{CC} (3.3 V) [7 50]	V _{CC} (5 V)			
 Translates Between GTL/GTL+ Signal Levels and LVTTL Logic Levels 	A4 [8 49] I A5 [9 48] I	B4 B5			
 Supports Mixed-Mode (3.3 V and 5 V) Signal Operation on A-Port and Control Inputs 	A6 10 47 GND 11 46 (A7 12 45	B6 GND B7			
 Equivalent to '16601 Function 		B8			
 I_{off} Supports Partial-Power-Down Mode Operation 		B9 B10 B11			
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port 	A12 [] 17 40]] GND [] 18 39] A12 [] 18 39]	B12 GND			
 Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise 	A13 [19 38] 1 A14 [20 37] 1 A15 [21 36] 1	B13 B14 B15			
 Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 	V _{CC} (3.3 V) 22 35 3 A16 23 34 1	V _{REF} B16			
 ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A) 	A17 U 24 33 U 1 GND U 25 32 U CLKIN U 26 31 U	B17 GND CLKOUT			
lescription	OEBA 27 30 0 IEBA 28 29 10				

d

The SN74GTL16616 is a 17-bit UBT™ transceiver that provides LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation.

Combined D-type flip-flops and D-type latches allow for transparent, latched, clocked, and clocked-enabled modes of data transfer identical to the '16601 function. Additionally, this device provides for a copy of CLKAB at GTL/GTL+ signal levels (CLKOUT) and conversion of a GTL/GTL+ clock to LVTTL logic levels (CLKIN). This device provides an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC[™] circuitry.

The user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{REF} = 0.8 V) or the preferred higher noise margin GTL+ (V_{TT} = 1.5 V and V_{REF} = 1 V) signal levels. GTL+ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. VREF is the reference input voltage for the B port. VCC (5 V) supplies the internal and GTL circuitry while V_{CC} (3.3 V) supplies the LVTTL output buffers.

OEC, UBT, and Widebus are trademarks of Texas Instruments

SCBS481H - JUNE 1994 - REVISED AUGUST 2001

description (continued)

Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latch-enable (LEAB and LEBA). and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (\overline{CEAB} and \overline{CEBA}) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CEAB is low and CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB if CEAB also is low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B, but uses OEBA, LEBA, CLKBA, and CEBA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

To ensure the high-impedance state during power up or power down, $\overline{\mathsf{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

т _А	PACK	AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C		Tube	SN74GTL16616DL	GTL16616
	330F - DL	Tape and reel	SN74GTL16616DLR	GTL16616
	TSSOP – DGG	Tape and reel	SN74GTL16616DGGR	GTL16616

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

		INPUTS	;		OUTPUT	MODE
CEAB	OEAB	LEAB	CLKAB	Α	В	MODE
Х	Н	Х	Х	Х	Z	Isolation
L	L	L	Н	Х	в ₀ §	Latabad stars as of A data
L	L	L	L	Х	B₀¶	Latched Storage of A data
Х	L	Н	Х	L	L	Transportent
Х	L	Н	Х	Н	н	Transparent
L	L	L	\uparrow	L	L	Clocked storage of A data
L	L	L	\uparrow	Н	н	Clocked Storage of A data
н	L	L	Х	Х	B₀¶	Clock inhibit

FUNCTION TABLE[‡]

[‡]A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA, LEBA, CLKBA, and CEBA. The condition when OEAB and OEBA are both low at the same time is not recommended.

§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

 \P Output level before the indicated steady-state input conditions were established

SCBS481H - JUNE 1994 - REVISED AUGUST 2001

logic diagram (positive logic)

SCBS481H – JUNE 1994 – REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} : 3.3 V	–0.5 V to 4.6 V
5 V	–0.5 V to 7 V
Input voltage range, V _I (see Note 1): A-port and control inputs	–0.5 V to 7 V
B port and V _{RFF}	
Voltage range applied to any output in the high or power-off state, V _O	
(see Note 1): A port	–0.5 V to 7 V
B port	
Current into any output in the low state, I _O : A port	128 mA
B port	80 mA
Current into any A-port output in the high state, I_{O} (see Note 2)	64 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} (V _O < 0)	
Package thermal impedance, θ_{IA} (see Note 3): DGG package	
DL package	
Storage temperature range, T _{sto}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
Vaa	Supply voltage	3.3 V	3.15	3.3	3.45	V
VCC		5 V	4.75	5	5.25	v
VTT	Termination voltage	GTL	1.14	1.2	1.26	
	remination voltage	GTL+	1.35	1.5	1.65	v
VREF	Reference voltage	GTL	0.74	0.8	0.87	V
		GTL+	0.87	1	1.1	V
	Input voltage	B port			VTT	V
VI		Except B port			5.5	v
	High-level input voltage	B port	V _{REF} +50 m∖	/		V
VIН		Except B port	2			Ň
N/m	Low lovel input voltogo	B port			V _{REF} -50 mV	V
VIL	Low-level input voltage	Except B port			0.8	V V
IIК	Input clamp current				-18	mA
ЮН	High-level output current	A port			-32	mA
1.0.		A port			64	
OL	Low-level output current	B port			40	mA
TA	Operating free-air temperature		-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Normal connection sequence is GND first, V_{CC} = 5 V second, and V_{CC} = 3.3 V, I/O, control inputs, V_{TT} and V_{REF} (any order) last.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT.

SCBS481H - JUNE 1994 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
VIK		V _{CC} (3.3 V) = 3.15 V,	V _{CC} (5 V) = 4.75 V,	I _I = –18 mA			-1.2	V
		V_{CC} (3.3 V) = 3.15 V to 3.45 V, V_{CC} (5 V) = 4.75 V to 5.25 V, I_{OH} = -100 μ A			V _{CC} -0.2			
∨он	A port			I _{OH} = -8 mA	2.4			V
		VCC (3.3 V) = 3.15 V,	VCC(5 V) = 4.75 V	I _{OH} = -32 mA	2			
				I _{OL} = 100 μA			0.2	
	Aport	(22)/(-245)/(-255)/(-245)/(-245)/(-255)/(-245)/(-255)/(-	$\lambda = (5 \lambda) = 4.75 \lambda$	I _{OL} = 16 mA			0.4	
VOL	Apon	$v_{CC}(3.3 v) = 3.13 v,$	VCC(3 V) = 4.73 V	I _{OL} = 32 mA			0.5	V
				I _{OL} = 64 mA			0.55	
	B port	V _{CC} (3.3 V) = 3.15 V,	V _{CC} (5 V) = 4.75 V,	I _{OL} = 40 mA			0.4	
	Control inputs	V _{CC} = 0 or 3.45 V,	V_{CC} (5 V) = 0 or 5.25 V,	V _I = 5.5 V			10	
		V _{CC} (3.3 V) = 3.45 V,		VI = 5.5 V			20	
.	A port		V _{CC} (5 V) = 5.25 V	VI = VCC (3.3 V)			1	
' ¹				$V_{I} = 0$			-30	μA
	P.port	1/22 (3 3 $1/1$ - 3 $1/5$ $1/1$		$V_{I} = V_{CC} (3.3 V)$			5	
	$\nabla CC (3.3 \text{ V}) = 3.43 \text{ V}, \nabla CC (3 \text{ V}) = 3.23 \text{ V}$		$V_{I} = 0$			-5		
l _{off}		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V				100	μA
		V _{CC} (3.3 V) = 3.15 V,	V _{CC} (5 V) = 4.75 V	V _I = 0.8 V	75			
II(hold)	A port			V _I = 2 V	-75			μA
				$V_{I} = 0 \text{ to } V_{CC} (3.3 \text{ V})^{\ddagger}$			±500	
	A port	V _{CC} (3.3 V) = 3.45 V,	V_{CC} (5 V) = 5.25 V,	$V_{O} = 3 V$			1	
ЮДН	B port	V _{CC} (3.3 V) = 3.45 V,	V_{CC} (5 V) = 5.25 V,	V _O = 1.2 V			10	μA
	A port	V _{CC} (3.3 V) = 3.45 V,	V _{CC} (5 V) = 5.25 V,	V _O = 0.5 V			-1	
'OZL	B port	V_{CC} (3.3 V) = 3.45 V,	V_{CC} (5 V) = 5.25 V,	V _O = 0.4 V			-10	μΛ
		V_{CC} (3.3 V) = 3.45 V.		Outputs high			1	
¹ CC (3.3.V)	A or B port	V_{CC} (5 V) = 5.25 V, IO =	= 0,	Outputs low			5	mA
(0.0 1)		$V_{I} = V_{CC} (3.3 \text{ V}) \text{ or GN}$	D	Outputs disabled			1	
		VCC (3.3 V) = 3.45 V,		Outputs high			120	
ICC (5 V)	A or B port	V _{CC} (5 V) = 5.25 V, I _O =	= 0,	Outputs low			120	mA
		$V_{I} = V_{CC} (3.3 \text{ V}) \text{ or GND}$		Outputs disabled			120	
ΔICC§		V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, A-port or control inputs at V_{CC} (3.3 V) or GND, One input at 2.7 V				1	mA	
Ci	Control inputs	VI = 3.15 V or 0				3.5		pF
<u></u>	A port	V _O = 3.15 V or 0				12		~~
Cio	B port	Per IEEE Std 1194.1					5	р⊢

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. § This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS481H – JUNE 1994 – REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V and V_{REF} = 0.8 V for GTL (unless otherwise noted) (see Figure 1)

			MIN	MAX	UNIT		
fclock	Clock frequency			95	MHz		
		LEAB or LEBA high	3.3				
١w		CLKAB or CLKBA high or low	5.5		ns		
		A before CLKAB↑	1.3				
	Setup time	B before CLKBA↑	2.5				
		A before LEAB↓	0				
^t su		B before LEBA↓	1.1		- ns		
		CEAB before CLKAB [↑]	2.2				
		CEBA before CLKBA1	2.7				
		A after CLKAB↑	1.6				
		B after CLKBA↑	0.4				
		A after LEAB↓	4				
τh	Hold time	B after LEBA↓	3.5		ns		
		CEAB after CLKAB↑	1.1				
		CEBA after CLKBA↑	0.9				

SCBS481H - JUNE 1994 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V and V_{REF} = 0.8 V for GTL (see Figure 1)

PARAMETER	FROM TO (INPUT) (OUTPUT)		MIN	түр†	МАХ	UNIT
fmax			95			MHz
^t PLH	٨	Р	1.7	3	4.4	
^t PHL	X	D	1.4	2.8	4.5	115
^t PLH		Р	2.3	3.8	5.4	20
^t PHL	LEAD	D	2.2	3.7	5.3	115
^t PLH		Р	2.4	4	5.7	20
^t PHL	GLNAB	D	2.1	3.7	5.4	115
^t PLH		CLKOUT	4.7	6.1	8.1	00
^t PHL	GERAB	CEROOT	5.7	7.9	11.3	115
^t PHL		B or CLKOUT	2.1	3.6	5.1	ns
^t PLH	OEAB		2.1	3.8	5.6	
tr	Transition time, B or		1.2		ns	
t _f	Transition time, B or	utputs (1 V to 0.5 V)		0.7		ns
^t PLH	В	0	1.7	4	6.7	ns
^t PHL	В	~	1.4	2.9	4.7	
^t PLH			2.4	3.8	5.8	200
^t PHL	LEDA	~	2	3	4.6	115
^t PLH		٨	2.6	4	6	20
^t PHL	GENBA	~	2.2	3.4	4.9	115
^t PLH			7.4	10	14.4	ne
^t PHL	CERCOT	CERIN	6.1	8.1	11.7	115
ten	OEPA	A or CLKIN	2.8	5.3	7.8	ne
tdis	UEDA		2.7	4.3	6.4	115

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

SCBS481H – JUNE 1994 – REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (unless otherwise noted) (see Figure 1)

			MIN	MAX	UNIT	
fclock	Clock frequency			95	MHz	
t _w	Dulas duration	LEAB or LEBA high	3.3		-	
	Pulse duration	CLKAB or CLKBA high or low	5.5		ns	
	Setup time	A before CLKAB↑	1.3			
		B before CLKBA↑	2.3		ns	
		A before LEAB↓	0			
^ı su		B before LEBA↓	1.3			
		CEAB before CLKAB↑	2.2			
		CEBA before CLKBA↑	2.7			
		A after CLKAB↑	1.6			
		B after CLKBA↑	0.6			
		A after LEAB↓	4			
Ψh	Hold time	B after LEBA↓	3.5		ns	
		CEAB after CLKAB↑	1.1			
		CEBA after CLKBA↑	0.9			

SCBS481H - JUNE 1994 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
f _{max}			95			MHz
^t PLH	0	P	1.7	3	4.4	
^t PHL	A	D	1.4	2.9	4.6	115
^t PLH		P	2.3	3.8	5.4	200
^t PHL	LLAD		2.2	3.7	5.4	115
^t PLH	CLKAR	P	2.4	4	5.7	20
^t PHL	CERAB		2.1	3.8	5.5	115
^t PLH	CLKAB	CLKOUT	4.7	6.1	8.1	ne
^t PHL	CEIVED	CERCOT	5.7	8	11.4	115
^t PLH		B or CLKOUT	2.1	3.6	5.1	ns
^t PHL	UEAB		2.1	3.8	5.7	
tr	Transition time, B o		1.4		ns	
t _f	Transition time, B o	utputs (1 V to 0.5 V)		1		ns
^t PLH	в	0	1.6	3.9	6.6	ne
^t PHL		~	1.3	2.8	4.5	ns
^t PLH	LEBA	٨	2.4	3.8	5.8	ne
^t PHL		~	2	3	4.6	115
^t PLH	CLKBA	٨	2.6	4	6	20
^t PHL	CERBA	~	2.2	3.4	4.9	115
^t PLH	CLKOUT		7.3	9.9	14.3	ne
^t PHL	CERCOT	CERIN	6	8	11.5	115
ten	OERA	A or CLKIN	2.8	5.3	7.8	ns
tdis	VEDA		2.7	4.3	6.4	115

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

SCBS481H - JUNE 1994 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION VTT = 1.2 V, VREF = 0.8 V FOR GTL AND VTT = 1.5 V, VREF = 1 V FOR GTL+

[†] All control inputs are TTL levels.

- NOTES: A. CI includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. The outputs are measured one at a time with one transition per measurement.

SCBS673F - AUGUST 1996 - REVISED AUGUST 2001

 Member of Texas Instruments' Widebus™ Family 	DGG I (TO	DGG PACKAGE (TOP VIEW)				
 OECTM Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference 						
 D-Type Flip-Flops With Qualified Storage Enable 		62] 1CEBA				
 Translates Between GTL/GTL+ Signal Levels and LVTTL Logic Levels 	1A2 [] 4 1A3 [] 5 GND [] 6	60 GND 59 1182				
 Supports Mixed-Mode (3.3 V and 5 V) Signal Operation on A-Port and Control Inputs 	V _{CC} [7 1A4 [8 GND [9	58] 1B3 57] V _{CC} 56] 1B4				
 I_{off} Supports Partial-Power-Down Mode Operation 	1A5 [10 1A6 [11	55] 1B5 54] 1B6				
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port 	GND [12 1A7 [13 1A8 [14	53 GND 52 1B7 51 1B8				
 Distributed V_{CC} and GND Pins Minimize High-Speed Noise 	GND [15 1A9 [16	50 GND 49 1B9				
 Latch-Up Performance Exceeds 250 mA Per JESD 17 	2A1 L 17 GND [18 2A2 [19	48 2B1 47 GND 46 2B2				
 ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) 	2A3 [20 GND [21	45 2B2 45 2B3 44 GND				
 200-V Machine Model (A115-A) 1000-V Charged-Device Model (C101) 	2A4 [22 2A5 [23	43 2B4 42 2B5				
description	GND [24 2A6 [25	41 2B6 40 V _{REF} 39 2B7				
The SN74GTL16622A is an 18-bit registered bus transceiver that provides LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation.	GND [27 2A7 [28 2A8 [20	38 2B7 38 2B8 37 GND 36 2B9				
This device is partitioned as two separate 9-bit transceivers with individual clock-enable controls	GND [30	35 2 <u>CEBA</u>				

The user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{REF} = 0.8 V) or the preferred higher noise margin GTL+ (V_{TT} = 1.5 V and V_{REF} = 1 V) signal levels. GTL+ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{REF} is the reference input voltage for the B port.

OEC and Widebus are trademarks of Texas Instruments

and contains D-type flip-flops for temporary

storage of data flowing in either direction. This device provides an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold

levels, and OEC[™] circuitry.

34 2CEAB

33 CLKBA

2A9 🛛 31

OEBA 32

SCBS673F - AUGUST 1996 - REVISED AUGUST 2001

description (continued)

Data flow in each direction is controlled by the output-enable (\overline{OEAB} and \overline{OEBA}) and clock (CLKAB and CLKBA) inputs. The clock-enable (\overline{CEAB} and \overline{CEBA}) inputs control each 9-bit transceiver independently, which makes the device more versatile.

For A-to-B data flow, the device operates on the low-to-high transition of CLKAB if CEAB is low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B, but uses OEBA, CLKBA, and CEBA.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

т _А	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74GTL16622ADGGR	GTL16622A	
+					

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

	INP	UTS		OUTPUT	NODE
CEAB	OEAB	CLKAB	Α	В	MODE
Х	Н	Х	Х	Z	Isolation
Н	L	Х	Х	в ₀ §	Latched storage of A data
Х	L	H or L	Х	в ₀ §	Latoned Storage of A data
L	L	\uparrow	L	L	Clocked storage of A data
L	L	\uparrow	Н	Н	CIUCKEU SICIAGE OF A UAIA

FUNCTION TABLE[‡]

 \ddagger A-to-B data flow is shown. B-to-A data flow is similar, but uses $\overline{\text{OEBA}},$ CLKBA, and $\overline{\text{CEBA}}.$

§ Output level before the indicated steady-state input conditions are established

SCBS673F - AUGUST 1996 - REVISED AUGUST 2001

logic diagram (positive logic)

To Eight Other Channels

SCBS673F - AUGUST 1996 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1): A-port and control inputs B port and VPEE	0.5 V to 4.6 V 0.5 V to 6.5 V 0.5 V to 6.5 V
Voltage range applied to any output in the high or power-off state, V_{O}	
(see Note 1): A port	
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	100 mA
Current into any A-port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 3)	55°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3.15	3.3	3.45	V
V	Termination voltage	GTL	1.14	1.2	1.26	V
VTT	Termination voltage	GTL+	1.35	1.5	1.65	v
Vara	Reference voltage	GTL	0.74	0.8	0.87	V
VREF		GTL+	0.87	1	1.1	v
VI	Input voltage	B port			VTT	v
		Except B port			5.5	
	High-level input voltage	B port	V _{REF} +50 mV			V
VIH		Except B port	2			1 ×
N/m		B port			V _{REF} -50 mV	V
۷IL	Low-level input voltage	Except B port			0.8	v
IIK	Input clamp current				-18	mA
IOH	High-level output current	A port			-24	mA
1		A port			24	
OL	Low-level output current	B port			50	IIIA
ТА	Operating free-air temperature		-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Normal connection sequence is GND first and V_{CC} = 3.3 V, I/O, control inputs, V_{TT} and V_{REF} (any order) last.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT.

SCBS673F - AUGUST 1996 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTL/GTL+ (unless otherwise noted)

PARAMETER TEST CONDITIONS		MIN	TYP†	MAX	UNIT		
VIK		$V_{CC} = 3.15 \text{ V},$ $I_{I} = -18 \text{ mA}$				-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
VOH	A port		I _{OH} = -12 mA	2.4			V
		VCC = 3.15 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	
	A port	1/22 = 2.15 1/2	I _{OL} = 12 mA			0.4	
		VCC = 3.15 V	I _{OL} = 24 mA			0.5	
VOL		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	V
	Root		I _{OL} = 10 mA			0.2	
	D poit	V _{CC} = 3.15 V	I _{OL} = 40 mA			0.4	
			I _{OL} = 50 mA			0.55	
	B port	V _{CC} = 3.45 V,	$V_I = V_{TT}$ or GND			±5	
li –	A-port and control inputs	V _{CC} = 3.45 V	$V_I = V_{CC}$ or GND			±5	μA
			$V_I = 5.5 V \text{ or GND}$			±20	
loff		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			100	μΑ
		1/22 - 2.15	VI = 0.8 V	75			
II(hold)	A port	VCC = 3.15 V	V _I = 2 V	-75			μA
		V _{CC} = 3.45 V [‡] ,	$V_I = 0.8 V$ to 2 V			±500	
Ioz§	A port	V _{CC} = 3.45 V,	$V_{O} = V_{CC} \text{ or } GND$			±10	μΑ
IOZH	B port	V _{CC} = 3.45 V,	V _O = 1.5 V			10	μΑ
		$V_{CC} = 3.45 V_{c}$	Outputs high			60	
ICC	A or B port	$I_{O} = 0,$	Outputs low			60	mA
		$V_I = V_{CC}$ or GND	Outputs disabled			60	
∆ICC¶		$V_{CC} = 3.45$ V, A-port or con One input at $V_{CC} - 0.6$ V	trol inputs at V_{CC} or GND,			500	μΑ
Ci	Control inputs	$V_{I} = 3.15 \text{ V or } 0$			2.5	3	pF
C	A port	$V_{0} = 3.15 V_{0} r 0$			6	8	рĒ
Cio	B port	$V_{O} = 3.15 \text{ V or } 0$			6.5	8.5	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. § For I/O ports, the parameter I_{OZ} includes the input leakage current.

I This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS673F - AUGUST 1996 - REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature for GTL (unless otherwise noted)

			MIN	MAX	UNIT
f _{clock} Clock frequency				200	MHz
tw	t _w Pulse duration, CLK high or low				ns
t _{su}	Satura tima	Data before CLK↑	2.1		
	Setup time	CE before CLK↑	3.3		ns
th	Held time	Data after CLK↑	0.3		
		CE after CLK↑	0		115

switching characteristics over recommended ranges of supply voltage and operating free-air temperature for GTL (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	ΤΥΡ [†] ΜΑΧ	
fmax			200		MHz
^t PLH		P	2.5	5.	5
^t PHL	GERAB	6	2.2	5.	115
^t dis		P	1.7	4.8	
t _{en}	OEAB		2.2	5.2	115
Slew rate	Both transitions (B port)			0.5	V/ns
t _r	Transition time, B or	utputs (0.6 V to 1 V)	0.6	2.2	ns ns
t _f	Transition time, B or	utputs (1 V to 0.6 V)	0.4	1.	i ns
^t PLH		0	2.1	5.5	5
^t PHL	CLKBA	A	2.1		5
t _{en}		0	1.7		5 00
tdis	UEBA	A	2.3	5.	5

[†] All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$.

SCBS673F - AUGUST 1996 - REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature for GTL+ (unless otherwise noted)

			MIN	MAX	UNIT
f _{clock} Clock frequency				200	MHz
tw	t _w Pulse duration, CLK high or low				ns
t _{su}	Satura tima	Data before CLK↑	2.4		
	Setup time	CE before CLK↑	3.2		ns
th	Hold time	Data after CLK↑	0.2		
		CE after CLK↑	0		115

switching characteristics over recommended ranges of supply voltage and operating free-air temperature for GTL+ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
fmax			200			MHz
^t PLH	CLKAR	P	2.6	4	5.6	200
^t PHL	CERAB	в	2.3	4	5.7	115
^t PLH		В	2.4	3.8	5.2	00
^t PHL	OEAB		1.8	3.4	5	115
Slew rate	Both transitions (B port)			0.5		V/ns
t _r	Transition time, B ou	tputs (0.6 V to 1.3 V)	1	1.6	2.7	ns
tf	Transition time, B ou	tputs (1.3 V to 0.6 V)	0.5	1.1	3.2	ns
^t PLH		0	2	3.8	5.3	-
^t PHL	CERBA	A	1.9	3.6	5	115
t _{en}			1.9	3.6	5	200
tdis	UEBA	A	2.1	4	5.5	115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCBS673F - AUGUST 1996 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2.5 ns, t_f ≤ 2.5 ns.
 C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCBS674G - AUGUST 1996 - REVISED AUGUST 2001

 Member of Texas Instruments' Widebus™ Family 	DGG PACKAGE (TOP VIEW)
 OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference 	
 D-Type Flip-Flops With Qualified Storage Enable 	GND 3 62 10EAB
 Translates Between GTL/GTL+ Signal Levels and LVTTL Logic Levels 	1A3 [5 60] GND GND [6 59] 1B2
 Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltages With 3.3-V V_{CC}) 	V _{CC} 7 58 1B3 1A4 8 57 V _{CC} GND 9 56 1B4
 I_{off} Supports Partial-Power-Down Mode Operation 	1A5 [10 55] 1B5 1A6 [11 54] 1B6
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port 	GND [12 53] GND 1A7 [13 52] 1B7 1A8 [14 51] 1B8
 Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise 	GND [15 50] GND 1A9 [16 49] 1B9 241 [17 48] 2B1
 Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 	GND [18 47] GND 2A2 [19 46] 2B2
 ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A) 200-V Machine Model (A115-A) 	2A3
 1000-V Charged-Device Model (C101) 	2A5 [23 42] 2B5 GND [24 41] 2B6
description	2A6 [] 25 40]] V _{REF} Voc [] 26 39 [] 2B7
The SN74GTL16923 is an 18-bit registered bus transceiver that provides LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation. This device is partitioned as two 9-bit transceivers	GND [27 38] 2B8 2A7 [28 37] GND 2A8 [29 36] 2B9 GND [30 35] 2OEBA
with individual output-enable controls and	$2\Delta 9 \prod_{31} 34 \prod_{2} OF\Delta B$

The user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{REF} = 0.8 V) or the preferred higher noise margin GTL+ (V_{TT} = 1.5 V and V_{REF} = 1 V) signal levels. GTL+ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels. All inputs can be driven from either 3.3-V or 5-V devices, which allows use in a mixed 3.3-V/5-V system environment. VREF is the reference input voltage for the B port.

2A9 31

CEBA 32

34 20EAB

33 CLKBA

OEC and Widebus are trademarks of Texas Instruments

contains D-type flip-flops for temporary storage of

data flowing in either direction. This device provides an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC[™]

circuitry.

SCBS674G - AUGUST 1996 - REVISED AUGUST 2001

description (continued)

Data flow in each direction is controlled by the output-enable (OEAB and OEBA) and clock (CLKAB and CLKBA) inputs. The clock-enable (CEAB and CEBA) inputs enable or disable the clock for all 18 bits at a time. However, OEAB and OEBA are designed to control each 9-bit transceiver independently, which makes the device more versatile.

For A-to-B data flow, the device operates on the low-to-high transition of CLKAB if CEAB is low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B, but uses OEBA, CLKBA, and CEBA.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

T _A PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74GTL16923DGGR	GTL16923

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

	INPUTS			OUTPUT	MODE			
CEAB	OEAB	CLKAB	Α	В	MODE			
Х	Н	Х	Х	Z	Isolation			
н	L	Х	Х	в ₀ §	Latabad storage of A data			
Х	L	H or L	Х	в ₀ §	Latorieu storage of A data			
L	L	\uparrow	L	L	Clocked storage of A data			
L	L	\uparrow	Н	н	Clocked Storage of A data			

FUNCTION TABLE[‡]

[‡]A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA, CLKBA, and CEBA.

§ Output level before the indicated steady-state input conditions were established

SCBS674G - AUGUST 1996 - REVISED AUGUST 2001

logic diagram (positive logic)

To Eight Other Channels

SCBS674G - AUGUST 1996 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V _O (see Note 1)	\ldots –0.5 V to 7 V
Current into any output in the low state, I _O : A port	48 mA
B port	100 mA
Current into any A-port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{IA} (see Note 3)	55°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		3.15	3.3	3.45	V	
V	Termination voltage	GTL	1.14	1.2	1.26	V	
V I I	Termination voltage	GTL+	1.35	1.5	1.65	V	
Vara	Potoronoo voltago	GTL	0.74	0.8	0.87	V	
	Relefence voltage	GTL+	0.87	1	1.1	v	
. V.		B port	0		VTT	V	
٧I	input voitage	Except B port	0		5.5	v	
No. 1	High-level input voltage	B port	V _{REF} +50 mV			V	
VIH		Except B port	2			V	
V.		B port		V _{REF} -50 m\		V	
VIL	Low-level input voltage	Except B port			0.8	v	
Iк	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
1		A port			24		
OL		B port			50	ША	
ТА	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Normal connection sequence is GND first, V_{CC} = 3.3 V, I/O, control inputs, V_{TT}, V_{REF} (any order) last.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT.

SCBS674G - AUGUST 1996 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTL/GTL+ (unless otherwise noted)

PARAMETER TEST CONDITIONS		MIN	TYP†	MAX	UNIT			
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V	
		$V_{CC} = 3.15 \text{ V} \text{ to } 3.45 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.2				
∨он	A port	1/22 - 2.15	I _{OH} = -12 mA	2.4			V	
		VCC = 5.15 V	I _{OH} = -24 mA	2				
		$V_{CC} = 3.15 \text{ V} \text{ to } 3.45 \text{ V},$	I _{OL} = 100 μA			0.2		
	A port	$V_{00} = 3.15 V$	I _{OL} = 12 mA			0.4		
		VCC = 0.10 V	I _{OL} = 24 mA			0.5		
VOL		V_{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	V	
	Bnort		I _{OL} = 10 mA			0.2		
	B port	V _{CC} = 3.15 V	I _{OL} = 40 mA			0.4		
			I _{OL} = 50 mA			0.55		
	B port	V _{CC} = 3.45 V,	$V_I = 5.5 V \text{ or GND}$			±5		
ų	A-port and control inputs	V _{CC} = 3.45 V	$V_I = V_{CC}$ or GND			±5	μA	
			$V_I = 5.5 V \text{ or GND}$			±20		
loff		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			±100	μA	
		1/22 = 3.15	V _I = 0.8 V	75				
II(hold)	A port	VCC = 3.15 V	V _I = 2 V	-75			μA	
		$V_{CC} = 3.45 V^{\ddagger},$	$V_{I} = 0.8 V$ to 2 V			±500		
Ioz§	A port	V _{CC} = 3.45 V,	$V_{O} = V_{CC} \text{ or } GND$			±10	μA	
IOZH	B port	V _{CC} = 3.45 V,	V _O = 1.5 V			10	μΑ	
		$V_{CC} = 3.45 V.$	Outputs high			60		
ICC	A or B port	$I_{O} = 0,$	Outputs low			60	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled			60		
∆ICC¶		V_{CC} = 3.45 V, A-port or control inputs at V_{CC} or GND, One input at V_{CC} – 0.6 V				500	μΑ	
Ci	Control inputs	V _I = 3.15 V or 0			2.5	3	pF	
C.	A port	V _O = 3.15 V or 0			6	8.5	рЕ	
Cio	B port	V _O = 3.15 V or 0	V _O = 3.15 V or 0		7	9.5	^{p_}	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. § For I/O ports, the parameter I_{OZ} includes the input leakage current.

I This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS674G - AUGUST 1996 - REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature for GTL (unless otherwise noted)

			MIN	MAX	UNIT
f _{clock} Clock frequency				200	MHz
t _w Pulse duration, CLK high or low			2.5		ns
	Satur time	Data before CLK↑	2.6		
ⁱ su	Setup time	CE before CLK↑	3.3		ns
	Hold time	Data after CLK↑	0.1		
^h		CE after CLK↑	0		115

switching characteristics over recommended ranges of supply voltage and operating free-air temperature for GTL (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	τυρ† ΜΑΧ	UNIT
fmax			200		MHz
^t PLH		CLKAB B	2.2	5.8	
^t PHL	GERAB		2.1	6.3	115
t _{dis}	OEAB	B	1.7	5.3	ne
t _{en}			2	5	115
Slew rate	Both transitions			0.5	V/ns
t _r	Transition time, B outputs (0.6 V to 1 V)		0.3	2.9	ns
t _f	Transition time, B outputs (1 V to 0.6 V)		0.1	3.9	ns
^t PLH	CLKBA	0	1.8	5	
^t PHL		A	1.7	4.8	115
t _{en}	OEBA	•	1.3	4.8	
^t dis		A	2	4.8	115

[†] All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$.

SCBS674G - AUGUST 1996 - REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature for GTL+ (unless otherwise noted)

			MIN	MAX	UNIT
f _{clock} Clock frequency				200	MHz
t _w Pulse duration, CLK high or low		2.5		ns	
t _{su} Setup tin	Satura tima	Data before CLK↑	2.3		
	Setup time	CE before CLK↑	3.3		115
t _h ⊦	Hold time	Data after CLK↑	0.1		
		CE after CLK↑	0		115

switching characteristics over recommended ranges of supply voltage and operating free-air temperature for GTL+ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
fmax			200			MHz
^t PLH	CLKAR	P	2.2	4	5.9	20
^t PHL	CERAB		2.1	4	6.1	115
^t PLH	OEAB	Р	1.9	3.4	5.2	00
^t PHL			1.7	3.1	5.1	115
Slew rate	Both transitions			0.5		V/ns
t _r	Transition time, B outputs (0.6 V to 1.3 V)		0.6	1.3	2.6	ns
t _f	Transition time, B outputs (1.3 V to 0.6 V)		0.4	1.3	3	ns
^t PLH	CLKBA	0	1.8	3.5	5.1	-
^t PHL		A	1.7	3.3	4.9	115
t _{en}	OEBA	<u> </u>	1.3	2.9	4.8	200
^t dis		A	2	3.2	5	115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCBS674G - AUGUST 1996 - REVISED AUGUST 2001

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

General Information	
GTL	2
GTLP	3
ETL	4
BTL/FB+	5
VME	6
Application Reports	7
Mechanical Data	8

Contents

		Page
SN74GTLPH306	8-Bit LVTTL-to-GTLP Bus Transceiver	3–3
SN74GTLP817	GTLP-to-LVTTL 1-to-6 Fanout Driver	3–11
SN74GTLP1394	2-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceiver With Split LVTTL Port, Feedback Path, and Selectable Polarity	3–21
SN74GTLP1395	Two 1-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers With Split LVTTL Port, Feedback Path, and Selectable Polarity	3–37
SN74GTLP21395	Two 1-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers With Split LVTTL Port, Feedback Path, and Selectable Polarity	3–53
SN74GTLPH1612	18-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceiver	3–69
SN74GTLPH1616	17-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceiver With Buffered Clock Outputs	3–83
SN74GTLPH1627	18-Bit LVTTL-to-GTLP Bus Transceiver With Source Synchronous Clock Outputs	3–97
SN74GTLPH1645	16-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceiver	3–113
SN74GTLPH3245	32-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceiver	3–123
SN74GTLPH1655	16-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceiver	3–135
SN74GTLP2033	8-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Registered Transceiver With Split LVTTL Port and Feedback Path	3–149
SN74GTLP22033	8-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Registered Transceiver With Split LVTTL Port and Feedback Path	3–165
SN74GTLP2034	8-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Registered Transceiver With Split LVTTL Port and Feedback Path	3–181
SN74GTLP22034	8-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Registered Transceiver With Split LVTTL Port and Feedback Path	3–197
SN74GTLPH16612	18-Bit LVTTL-to-GTLP Universal Bus Transceiver	3–213
SN74GTLPH16912	18-Bit LVTTL-to-GTLP Universal Bus Transceiver	3–221
SN74GTLPH16916	17-Bit LVTTL-to-GTLP Universal Bus Transceiver With Buffered Clock Outputs	3–233
SN74GTLPH16945	16-Bit LVTTL-to-GTLP Bus Transceiver	3–245
SN74GTLPH32945	32-Bit LVTTL-to-GTLP Bus Transceiver	3–255

SN74GTLPH306 8-BIT LVTTL-TO-GTLP BUS TRANSCEIVER

SCES284E - OCTOBER 1999 - REVISED AUGUST 2001

 TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes 	DGV, DW, OR PW PACKAGE (TOP VIEW)	
 OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference 		
 Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels 	A1 [] 3 22] B1 A2 [] 4 21 [] B2	
 LVTTL Interfaces Are 5-V Tolerant 	A3 🛛 5 20 🗍 B3	
 Medium-Drive GTLP Outputs (50 mA) 	A4 🛛 6 19 🛛 B4	
 LVTTL Outputs (–24 mA/24 mA) 		
 GTLP Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads 	A5 [8 17] B5 A6 [9 16] B6 A7 [10 15] B7 A8 [11 14] B8	
 I_{off} and Power-Up 3-State Support Hot Insertion 	GND [12 13] GND	
 Bus Hold on A-Port Data Inputs 		

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22

 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description

The SN74GTLPH306 is a medium-drive, 8-bit bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The medium drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 19 Ω .

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH306 is given only at the preferred higher-noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

OEC, TI, and TI-OPC are trademarks of Texas Instruments.

SCES284E - OCTOBER 1999 - REVISED AUGUST 2001

description (continued)

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Tube	SN74GTLPH306DW	
40°C to 95°C	30IC - DW	Tape and reel	SN74GTLPH306DWR	GILFH300
-40 C 10 85 C	TSSOP – PW	Tape and reel	SN74GTLPH306PWR	GH306
	TVSOP – DGV	Tape and reel	SN74GTLPH306DGVR	GH306

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH306 is an 8-bit bus transceiver and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. \overline{OE} can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.

For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to A to B, except \overline{OE} and DIR are low.

I ONOTION TABLE						
INP	UTS		MODE			
OE	DIR	001201	WODE			
Н	Х	Z	Isolation			
L	L	B data to A port	True transporent			
L	Н	A data to B port	riue transparent			

FUNCTION TABLE

SCES284E - OCTOBER 1999 - REVISED AUGUST 2001

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1): A port and control inputs	–0.5 V to 7 V
B port and V _{RFF}	
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1): A port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	100 mA
Current into any A port output in the high state, I_{Ω} (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} (V _O < 0)	
Package thermal impedance, θ_{IA} (see Note 3): DGV package	
DW package	
PW package	
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$. 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES284E - OCTOBER 1999 - REVISED AUGUST 2001

recommended operating conditions (see Notes 4 through 7)

		MIN	NOM	MAX	UNIT
Supply voltage		3.15	3.3	3.45	V
Termination valtage	GTL	1.14	1.2	1.26	V
Termination voltage	GTLP	1.35	1.5	1.65	v
Potoronoo voltago	GTL	0.74	0.8	0.87	V
Relefence voltage	GTLP	0.87	1	1.1	v
	B port			VTT	V
input voltage	Except B port		Vcc	5.5	
High lovel input veltage	B port	V _{REF} +0.05			V
righ-level liput voltage	Except B port	2			v
	B port			V _{REF} -0.05	V
Low-level input voltage	Except B port			0.8	v
Input clamp current				-18	mA
High-level output current	A port			-24	mA
	A port			24	
	B port			50	ША
Input transition rise or fall rate	Outputs enabled			10	ns/V
Power-up ramp rate		20			μs/V
Operating free-air temperature		-40		85	°C
	Supply voltage Termination voltage Reference voltage Input voltage High-level input voltage Low-level input voltage Input clamp current High-level output current Low-level output current Development Power-up ramp rate Operating free-air temperature	Supply voltageTermination voltageGTLTermination voltageGTLPReference voltageGTLPInput voltageB portInput voltageExcept B portHigh-level input voltageB portLow-level input voltageB portInput clamp currentA portHigh-level output currentA portInput transition rise or fall rateOutputs enabledPower-up ramp rateOperating free-air temperature	MINSupply voltage3.15Termination voltageGTLTermination voltageGTLGTLP1.35Reference voltageGTLInput voltageGTLInput voltageB portHigh-level input voltageB portLow-level input voltageB portInput clamp currentA portHigh-level output currentA portHigh-level output currentA portInput transition rise or fall rateOutputs enabledPower-up ramp rate20Operating free-air temperature-40	MINNOMSupply voltage3.153.3Termination voltageGTL1.141.2GTLP1.351.5Reference voltageGTL0.740.8Input voltageB port0.871High-level input voltageB port2VREF+0.05Low-level input voltageB port21Input clamp currentA port11High-level output currentA port11Input transition rise or fall rateOutputs enabled11Power-up ramp rate20-001Operating free-air temperature-40-401	MINNOMMAXSupply voltage3.153.33.45Termination voltageGTL1.141.21.26Termination voltageGTLP1.351.51.65Reference voltageGTLP0.870.871.1Input voltageB port0.871.11.1Input voltageB portVCC5.55.5High-level input voltageB portVVCC5.5Low-level input voltageB port2V0.87Input clamp currentB port0.2V5.5Input clamp currentA port20.87Input clamp currentA port-240.87Input ransition rise or fall rateOutputs enabled50Power-up ramp rateQuity senabled112Operating free-air temperature-40-4085

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES284E - OCTOBER 1999 - REVISED AUGUST 2001

PA	RAMETER	TEST CONDITIONS		MIN	түр†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = −100 μA	V _{CC} -0.2			V
∨он	A port		I _{OH} = -12 mA	2.4			
		VCC = 3.15 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	V
	A port	Vec - 2 15 V	I _{OL} = 12 mA			0.4	
VOL		VCC = 3.13 V	I _{OL} = 24 mA			0.5	
	R port	Voo - 215 V	I _{OL} = 40 mA			0.4	
	вроп	VCC = 3.13 V	I _{OL} = 50 mA			0.55	
	A-port and		$V_I = 0 \text{ or } V_{CC}$		· · ·	±5	μΑ
ı _l ‡	control inputs	V _{CC} = 3.45 V	V _I = 5.5 V			±20	
	B port		V _I = 0 to 1.5 V			±5	
I _{BHL} §	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μΑ
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μA
IBHLO [#]	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	500			μA
^І внно	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μA
		$V_{CC} = 3.45 V. _{O} = 0.$	Outputs high			20	
Icc	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			20	mA
		VI (B port) = VTT or GND	Outputs disabled			20	
∆lCC☆	-	V_{CC} = 3.45 V, One A-port or control input at V Other A-port or control inputs at V _{CC} or GND	/CC – 0.6 V,			1.5	mA
Ci	Control inputs	V _I = 3.15 V or 0			4.5	5	pF
C.	A port	$V_{O} = 3.15 V \text{ or } 0$			7.5	9	ηE
U0	B port	$V_{0} = 1.5 \text{ V or } 0$			7.5	9	μr

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I₁ includes the off-state output leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH}min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH}min.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

*This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
l _{off}	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	$V_{O} = 0.5 V \text{ to } 3 V,$	$\overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	$V_{O} = 0.5 V \text{ to } 3 V,$	$\overline{OE} = 0$		±30	μA

SCES284E - OCTOBER 1999 - REVISED AUGUST 2001

hot-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
l _{off}	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 1.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	$V_{O} = 0.5 V$ to 1.5 V,	$\overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	$V_{O} = 0.5 V$ to 1.5 V,	$\overline{OE} = 0$		±30	μÂ

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
^t PLH		Р	1		7.5	ns
^t PHL	~	в	1		7.5	
ten		Р	1		8	ns
^t dis	0E	D	1		8	
t _r	Rise time, B outputs (20% to 80%) 2.2		2.2		ns	
t _f	Fall time, B output	uts (80% to 20%)		2.1		ns
t _r	Rise time, A outp	uts (10% to 90%)		4.1		ns
tf	Fall time, A output	uts (90% to 10%)		3.3		ns
^t PLH	Р	0	1		7	20
^t PHL	D	~	1		7	ns
ten		0	1		8	200
^t dis		^	1		8	115

[†] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}$ C.

SCES284E - OCTOBER 1999 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES284E - OCTOBER 1999 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. Medium-Drive Test Backplane

Figure 3. Medium-Drive RLC Network

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	түр†	UNIT
^t PLH	A	P	3.6	ns
^t PHL		В	4.1	
t _{en}		P	4.4	
^t dis	UE UE	В	4.6	115
t _r	Rise time, B outp	uts (20% to 80%)	1.2	ns
t _f	Fall time, B outpu	uts (80% to 20%)	2.2	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference	DGV, DW, OR PW PACKAGE (TOP VIEW)		V PACKAGE EW)
•	Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels	AI [AO1 [1 2	24 GNDT 23 OEAB
•	GTLP-to-LVTTL 1-to-6 Fanout Driver	GNDT [3	22 BO1
•	LVTTL-to-GTLP 1-to-2 Fanout Driver	AO2 [4	21 GNDG
٠	LVTTL Interfaces Are 5-V Tolerant	Vcc	5	20 V _{REF}
•	Medium-Drive GTLP Outputs (50 mA)		6 7	
•	Reduced-Drive LVTTL Outputs	AO4 [8	17 BO2
	(–12 mA/12 mA)	V _{CC} [9	16 🛛 GNDG
•	Variable Edge-Rate Control (ERC) Input	AO5 [10	15 🛛 BI
	Selects GTLP Rise and Fall Times for	GNDT [11	14 🛛 OEBA
	Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads	AO6 [12	13 GNDT

- I_{off} and Power-Up 3-State Support Hot Insertion
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description

The SN74GTLP817 is a medium-drive fanout driver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP reduced output swing (<1 V), reduced input threshold levels, improved differential input, and OECTM circuitry. The improved GTLP OEC circuitry minimizes bus settling time and has been designed and tested using several backplane models. The medium drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 19 Ω . BO1 and BO2 can be tied together to drive an equivalent load impedance down to 11 Ω .

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP817 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

GNDT is the TTL output ground, while GNDG is the GTLP output ground, and both may be separated from each other for a quieter device.

OEC and TI are trademarks of Texas Instruments.

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

description (continued)

This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

This device features adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load. ERC automatically is selected to the same speed as alternate source 1-to-6 fanout drivers that use pin 18 for 3.3-V or 5-V V_{CC} .

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

т _А	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Tube	SN74GTLP817DW	
40°C to 95°C	30IC - DW	Tape and reel	SN74GTLP817DWR	GILFOI
-40 C 10 85 C	TSSOP – PW	Tape and reel	SN74GTLP817PWR	GT817
	TVSOP – DGV	Tape and reel	SN74GTLP817DGVR	GT817

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLP817 is a fanout driver providing LVTTL-to-GTLP translation and GTLP-to-LVTTL translation in the same package.

The LVTTL-to-GTLP direction is a 1-to-2 fanout driver with a single output enable (OEAB).

The GTLP-to-LVTTL direction is a 1-to-6 fanout driver with a single output enable (OEBA).

Data polarity is inverting for both directions.

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

Function Tables

)	(A to B)				
MODE	OUTPUT	INPUTS			
MODE	BOn	OEAB	AI		
Isolation	Z	Н	Х		
Inverted transport	L	L	Н		
invened transparent	н	L	L		

OUTPUT CONTROL (B to A)

INF	PUTS	OUTPUT	MODE
BI	OEBA	AOn	MODE
Х	Н	Z	Isolation
Н	L	L	Inverted transport
L	L	н	inveneu transparent

B-PORT EDGE-RATE CONTROL (ERC)

INP	UT ERC	OUTPUT	
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE	
н	VCC	Slow	
L	GND	Fast	

logic diagram (positive logic)

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Ground dc voltage difference, (V _{GNDG} – V _{GNDT}) Input voltage range, V _I (see Note 1): AI port and control inputs BI port and V _{REF}	
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1): AO port	–0.5 V to 7 V
BO port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : AO port	24 mA
BO port	100 mA
Current into any A output in the high state, I _O (see Note 2)	24 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 3): DGV package	
DW package	46°C/W
PW package	
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$. 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

			MIN	NOM	MAX	UNIT	
VCC	Supply voltage		3.15	3.3	3.45	V	
\ <i>I</i>		GTL	1.14	1.2	1.26	V	
VTT	Termination voltage	GTLP	1.35	1.5	1.65	v	
N/	Deference veltage	GTL	0.74	0.8	0.87	V	
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
M		BI			VTT	v	
٧I	Input voltage	AI, OE		VCC	5.5		
	High-level input voltage	BI	V _{REF} +0.05				
VIH		ERC	VCC-0.6	VCC	5.5	V	
		AI, OE	2				
		BI			V _{REF} -0.05		
VIL	Low-level input voltage	ERC		GND	0.6	V	
		AI, OE			0.8	1	
IIK	Input clamp current				-18	mA	
ЮН	High-level output current	AO port			-12	mA	
le.	Low lovel output ourrent	AO port			12	m /	
OL	Low-level output current	BO port			50		
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V	
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		20			μs/V	
T _A	Operating free-air temperature		-40		85	°C	

recommended operating conditions (see Notes 4 through 7)

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Normal connection sequence is GND first and V_{CC} = 3.3 V, I/O, control inputs, V_{TT} , V_{REF} (any order) last.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT.

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS			TYP†	MAX	UNIT	
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V	
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = −100 μA	V _{CC} -0.2				
Vou	AO port		I _{OH} = −100 μA	V _{CC} -0.2			V	
VОН		V _{CC} = 3.15 V	I _{OH} = –6 mA	2.4			v	
			I _{OH} = -12 mA	2.2				
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2		
	AO port		I _{OL} = 100 μA			0.2		
	AG poir	V _{CC} = 3.15 V	I _{OL} = 6 mA			0.4		
VOL			I _{OL} = 12 mA			0.5	V	
		V _{CC} = 3.15 V	I _{OL} = 100 μA			0.2		
	BO port		I _{OL} = 40 mA			0.5		
			I _{OL} = 50 mA			0.55		
Ц	BI, AI, OE, ERC	V _{CC} = 3.45 V	VI = 0 or 5.5 V			±5	μΑ	
	AO port		AO = ACC			10		
IOZH	BO port	$V_{CC} = 3.45 V$	V _O = 1.5 V			5	μΑ	
	AO port		V _O = GND			-10	۵	
IOZL	BO port	VCC = 3.45 V	V _O = 5.5 V			-5	μΑ	
		$V_{CC} = 3.45 V. _{C} = 0.$	Outputs high			10		
ICC	AO or BO port	V_{I} (AI or control input) = V_{CC} or GND,	Outputs low			10	mA	
		V _I (BI input) = V _{TT} or GND	Outputs disabled			10		
ΔI_{CC}^{\ddagger}	AI, OE	V_{CC} = 3.45 V, One A-port or control input at V_{CC} – 0.6 V, Other A-port or control inputs at V_{CC} or GND				1	mA	
AI, OE, ERC		$V_{I} = V_{CC} \text{ or } 0$			4	4.4	۶E	
	BI	$V_{I} = V_{TT} \text{ or } 0$			3.5	3.9	P	
<u> </u>	AO port	AO = ACC or 0			4	4.5	ъĘ	
<i>C</i> 0	BO port	$V_{O} = V_{TT}$ or 0			5	5.4	μr	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This is the increase in supply current for each input that is at the specified LVTTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
loff	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μΑ

hot-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
loff	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 1.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	$V_{O} = 0.5 V$ to 1.5 V,	$\overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 1.5 V,	$\overline{OE} = 0$		±30	μΑ

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	МАХ	UNIT
^t PLH	A1	50	Slow	3		6	20
^t PHL	AI	BO	310W	1.8		4.7	115
^t PLH	Δ1	PO	Fact	2		5	200
^t PHL	AI	BO	Fasi	1.5		4.2	115
t _{en}		50	Slow	3		6.1	
^t dis	UEAB	во	310W	2		4.7	115
t _{en}		PO	Fact	2.1		6	00
^t dis	UEAB	BO	rasi	1.5		4.7	115
+			Slow		2.5		200
ч	Rise time, B outp	uts (20% to 80%)	Fast	1.4			115
+ <i>c</i>			Slow		1.7		20
Ч	Fall time, B outpu	Jts (80% to 20%)	Fast	1		115	
^t PLH		40		2.3		6	20
^t PHL	BI	AU	_	1.9		4.7	115
t _{en}		40	-	1.1		6.3	
tdis	OLDA	AU		1.2	5	115	

[†] Slow (ERC = V_{CC}) and Fast (ERC = GND) [‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_r \approx 2 ns, t_f \approx 2 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES285E - OCTOBER 1999 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. Medium-Drive Test Backplane

Figure 3. Medium-Drive RLC Network

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
^t PLH	Δ1	20	Slow	4.4	
^t PHL	Ai	BO	310W	4.4	115
^t PLH	Δι	6	Fact	3.2	20
^t PHL	AI	BO	Fasi	3.2	115
^t en		PO	Slow	4	ns
^t dis	UEAD	BO	310W	4.4	
^t en			Fact	2.9	20
^t dis	UEAD	BO	Fasi	3.1	115
				1.8	20
r Rise time, B outputs (20% to 80%)		uts (20% to 80%)	Fast	1	115
+.	t _f Fall time, B outputs (80% to 20%)		Slow	2	
Ч			Fast	1.6	115

[†]Slow (ERC = V_{CC}) and Fast (ERC = GND)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

- TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OECTM Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
- LVTTL Interfaces Are 5-V Tolerant
- High-Drive GTLP Outputs (100 mA)
- LVTTL Outputs (-24 mA/24 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Polarity Control Selects True or Complementary Outputs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description

The SN74GTLP1394 is a high-drive, 2-bit, 3-wire bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It allows for transparent and inverted transparent modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels, and is especially designed to work with the Texas Instruments 1394 backplane physical-layer controllers. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuitry minimizes bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω .

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP1394 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{REF} = 0.8 V) or GTLP (V_{TT} = 1.5 V and V_{REF} = 1 V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B port differential input reference voltage.

OEC, TI, and TI-OPC are trademarks of Texas Instruments.

D, DGV, OR PW PACKAGE (TOP VIEW)					
OEBY	[1	16] BIAS V _{CC}		
Y1	[2	15] GND		
Y2	[3	14] B1		
V _{CC}	[4	13] GND		
A1	[5	12] B2		
A2	[6	11] GND		
OEAB	[7	10] V _{REF}		
ERC	[8	9] T/C		

SN74GTLP1394 2-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES286E - OCTOBER 1999 - REVISED AUGUST 2001

description (continued)

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS V_{CC}. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC}. through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		Tube	SN74GTLP1394D		
10°C to 95°C	3010 - 0	Tape and reel	SN74GTLP1394DR	GILP1394	
	TSSOP – PW	Tape and reel	SN74GTLP1394PWR	GP394	
	TVSOP – DGV	Tape and reel	SN74GTLP1394DGVR	GP394	

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The output-enable (OEAB) input controls the activity of the B port. When OEAB is low, the B-port outputs are active. When OEAB is high, the B-port outputs are disabled.

Separate LVTTL input and output pins provide a feedback path for control and diagnostics monitoring. The \overline{OEBY} input controls the Y outputs. When \overline{OEBY} is low, the Y outputs are active. When \overline{OEBY} is high, the Y outputs are disabled.

The polarity-control (T/ \overline{C}) input is provided to select polarity of data transmission in both directions. When T/ \overline{C} is high, data transmission is true, and A data goes to the B bus and B data goes to the Y bus. When T/\overline{C} is low, data transmission is complementary, and inverted A data goes to the B bus and inverted B data goes to the Y bus.

Function Tables

OUTPUT CONTROL

	INPUTS			MODE
T/C	OEAB	OEBY	001201	MODE
Х	Н	Н	Z	Isolation
Н	L	Н	A data to B bus	True transporent
Н	Н	L	B data to Y bus	The transparent
н	L	L	A data to B bus, B data to Y bus	True transparent with feedback path
L	L	Н	Inverted A data to B bus	Inverted transparent
L	Н	L	Inverted B data to Y bus	inverted transparent
L	L	L	Inverted A data to B bus, Inverted B data to Y bus	Inverted transparent with feedback path

OUTPUT EDGE-RATE CONTROL (ERC)

INPU	T ERC	OUTPUT
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE
L	GND	Slow
Н	VCC	Fast

logic diagram (positive logic)

SN74GTLP1394 2-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES286E - OCTOBER 1999 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A inputs, ERC, and control inputs B port and V _{REF}	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1): Y outputs	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : Y outputs	48 mA
B port	200 mA
Current into any output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Package thermal impedance, θ_{IA} (see Note 3): D package	
DGV package	120°C/W
PW package	108°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$. 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74GTLP1394 2-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES286E - OCTOBER 1999 - REVISED AUGUST 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V
N/	Terreinetice veltere	GTL	1.14	1.2	1.26	
VTT	Termination voltage	GTLP	1.35	1.5	1.65	V
\/	Deference veltege	GTL	0.74	0.8	0.87	V
VREF	Reference voltage	GTLP	0.87	1	1.1	v
M		B port			VTT	V
V	Input voltage	Except B port		VCC	5.5	v
	High-level input voltage	B port	V _{REF} +0.05			
VIH		ERC	V _{CC} -0.6	Vcc	5.5	V
		Except B port and ERC	2			
	Low-level input voltage	B port			V _{REF} -0.05	
VIL		ERC		GND	0.6	V
		Except B port and ERC			0.8	
IIK	Input clamp current				-18	mA
ЮН	High-level output current	Y outputs			-24	mA
1		Y outputs			24	A
IOL	Low-level output current	B port			100	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate	•	20			μs/V
Т _А	Operating free-air temperature		-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IQI ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VREF. If operated in the A-to-B direction, VREF should be set to within 0.6 V of VTT to minimize current drain.

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS			түр†	MAX	UNIT	
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V	
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2				
∨он	Y outputs		I _{OH} = -12 mA	2.4			V	
		VCC = 3.15 V	I _{OH} = -24 mA	2				
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2		
	Y outputs	Vec = 3 15 V	I _{OL} = 12 mA			0.4		
Val		VCC = 3.15 V	I _{OL} = 24 mA			0.5	V	
VOL			I _{OL} = 10 mA			0.2	v	
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4		
			I _{OL} = 100 mA			0.55		
Ц	A-port and control inputs	V _{CC} = 3.45 V	V _I = 0 to 5.5 V			±10	μΑ	
. +	Y outputs		VO = VCC			10	۵	
^I OZH ⁺	B port	VCC = 3.45 V	V _O = 1.5 V			10	μΑ	
IOZL [‡]	Y outputs and B port	V _{CC} = 3.45 V,	V _O = GND			-10	μΑ	
		$V_{CC} = 3.45 \text{ V}, I_{O} = 0,$	Outputs high			20		
ICC	Y outputs and B port	V_I (A-port or control inputs) = V_{CC} or GND,	Outputs low			20	mA	
	5 port	VI (B port) = VTT or GND	Outputs disabled			20		
∆ICC§		V_{CC} = 3.45 V, One A-port or control input at V_{C} Other A-port or control inputs at V_{CC} or GND	C – 0.6 V,			1.5	mA	
A-port inputs					3.5	4.5	۶E	
	$V_{i} = 3.15 \text{ V or } 0$				4	5	μL	
Co	Y outputs	V _O = 3.15 V or 0		4.5	5	pF		
C _{io}	B port	V _O = 1.5 V or 0		9	10.5	pF		

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] For I/O ports, the parameters I_{OZH} and I_{OZL} include the input leakage current.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A inputs and Y outputs over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 5.5 V		10	μA
IOZPU	V _{CC} = 0 to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V \text{ to } 3 V,$	$\overline{OE} = 0$		±30	μA

SN74GTLP1394 2-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES286E - OCTOBER 1999 - REVISED AUGUST 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS					UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 1.5 \text{ V}$		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
	$V_{CC} = 0$ to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{0} (P port) – 0 to 1.5 V		5	mA
	V_{CC} = 3.15 V to 3.45 V	DIAS VCC = 5.15 V 10 5.45 V,	vO (В роп) = 0 ю 1.5 v		10	μA
VO	$V_{CC} = 0,$	BIAS $V_{CC} = 3.3 V$,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μΑ

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	MAX	UNIT	
^t PLH	۵	В	Slow	3.3		5.9	ne	
^t PHL	~	В	Slow	3		6.6	115	
^t PLH	٨	B	Fact	2.5		5.2	20	
^t PHL	~	В	1 431	1.9		4.8	115	
^t PLH	٨	V	Slow	5.4		9	20	
^t PHL	A		310W	4.9		8.6	115	
^t PLH	Δ	v	Fast	4.3		7.9	ne	
^t PHL	~	I	1 431	3.9		7.5	115	
^t PLH	T	В	Slow	3		6.5	ne	
^t PHL	1/0	В	310W	3.1		6.6	115	
^t PLH	T /0	B	Fact	2.3		5.6	20	
^t PHL	1/0	В	Fasi	1.7		4.9	115	
t _{en}		B	Slow	3.2		6.2	20	
^t dis	OEAB	в	310W	3.2		6.4	115	
t _{en}	0540	P	Fact	1.9		5.3	20	
^t dis	UEAB	Ь	1 431	2.4		5.7		
+	Pico timo Routo	ute (20% to 80%)	Slow	2.7		20		
۲	Kise time, b outp		Fast	1.5		115		
+-	Fall time Boute	t_{0} (80% to 20%)	Slow		3.2		20	
Ч	Fair time, B outpu		Fast		2.1		115	
^t PLH	B	V		1.6		4.6	20	
^t PHL	в	I	_	1.4		3.9	115	
^t PLH	T	v	_	1		4.5	ne	
^t PHL	1/0		1.2			4.1		
ten				1		4.1	200	
tdis	VEDT		_	1.3		4.6	115	

† Slow ($\overline{\text{ERC}}$ = GND) and Fast ($\overline{\text{ERC}}$ = V_{CC})

[‡] All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$.

SN74GTLP1394 2-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES286E – OCTOBER 1999 – REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATET	түр‡	UNIT
^t PLH		P	Clow	4.2	
^t PHL	A	Ь	510W	4.2	ns
^t PLH	٨	P	Foot	3.6	20
^t PHL	A	D	Fasi	3.6	115
^t PLH	Δ	V	Slow	5.8	ne
^t PHL	~	Ι	5100	5.8	115
^t PLH	Δ	V	Fact	5.2	ne
^t PHL	~	Ι	1 451	5.2	113
^t PLH	T/C	в	Slow	4.4	ne
^t PHL	170	6	0.000	4.4	113
^t PLH	T/C	в	Fast	3.8	ns
^t PHL	170	6	1 451	3.8	115
^t en		в	Slow	4.2	ns
^t dis	OEAB	d	0.00	4.3	110
t _{en}		в	Fast	3.6	ns
^t dis	OLAB	B	1 451	3.3	115
t.	Rise time. Bouto	uts (20% to 80%)	Slow	2	ns
ч			Fast	1.2	115
te	Fall time. B outou	its (80% to 20%)	Slow	2.5	
Ч			Fast		115

† Slow (ERC = GND) and Fast (ERC = V_{CC})

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

APPLICATION INFORMATION

operational description

The GTLP1394 is specifically designed for use with the Texas Instruments 1394 backplane layer controller family to transmit the 1394 backplane serial bus across parallel backplanes. But, it is a versatile 2-bit device that also is being used to provide multiple single-bit clocks or ATM read and write clock in multislot parallel backplane applications.

The 1394–1995 is an IEEE designation for a high-performance serial bus. This serial bus defines both a backplane (e.g., GTLP, VME, FB+, CPCI, etc.) physical layer and a point-to-point cable-connected virtual bus. The backplane version operates at 25, 50, or 100 Mbps, whereas the cable version supports data rates of 100, 200, and 400 Mbps. Both versions are compatible at the link layer and above. The interface standard defines the transmission method, media in the cable version, and protocol. The primary application of the cable version is the interconnection of digital A/V equipment and integration of I/O connectivity at the back panel of personal computers using a low-cost, scalable, high-speed serial interface. The primary application of the backplane version is to provide a robust control interface to each daughter card. The 1394 standard also provides new services such as real-time I/O and live connect/disconnect capability for external devices.

electrical

The 1394 standard is a transaction-based packet technology for cable- or backplane-based environments. Both chassis and peripheral devices can use this technology. The 1394 serial bus is organized as if it were memory space interconnected between devices, or as if devices resided in slots on the main backplane. Device addressing is 64 bits wide, partitioned as ten bits for bus ID, six bits for node ID, and 48 bits for memory addresses. The result is the capability to address up to 1023 buses, with each having up to 63 nodes, each with 281 terabytes of memory. Memory-based addressing, rather than channel addressing, views resources as registers or memory that can be accessed with processor-to-memory transactions. Each bus entity is termed a unit, to be individually addressed, reset, and identified. Multiple nodes can physically reside in a single module, and multiple ports can reside in a single node.

Some key features of the 1394 topology are multimaster capabilities, live connect/disconnect (hot plugging) capability, genderless cabling connectors on interconnect cabling, and dynamic node address allocation as nodes are added to the bus. A maximum of 63 nodes can be connected to one network.

The cable-based physical interface uses dc-level line states for signaling during initialization and arbitration. Both environments use dominant mode addresses for arbitration. The backplane environment does not have the initialization requirements of the cable environment because it is a physical bus and does not contain repeaters. Due to the differences, a backplane-to-cable bridge is required to connect these two environments.

The signals transmitted on both the cable and backplane environments are NRZ with data-strobe (DS) encoding. DS encoding allows only one of the two signal lines to change each data bit-period, essentially doubling the jitter tolerance with very little additional circuitry overhead in the hardware.

APPLICATION INFORMATION

protocol

Both asynchronous and isochronous data transfers are supported. The asynchronous format transfers data and transaction-layer information to an explicit address. The isochronous format broadcasts data based on channel numbers rather than specific addressing. Isochronous packets are issued on the average of each 125 µs in support of time-sensitive applications. Providing both asynchronous and isochronous formats on the same interface allows both non-real-time and real-time critical applications on the same bus. The cable environment's tree topology is resolved during a sequence of events, triggered each time a new node is added or removed from the network. This sequence starts with a bus reset phase, where previous information about a topology is cleared. The tree ID sequence determines the actual tree structure, and a root node is dynamically assigned, or it is possible to force a particular node to become the root. After the tree is formed, a self-ID phase allows each node on the network to identify itself to all other nodes. During the self-ID process, each node is assigned an address. After all the information has been gathered on each node, the bus goes into an idle state, waiting for the beginning of the standard arbitration process.

The backplane physical layer shares some commonality with the cable physical layer. Common functions include: bus state determination, bus access protocols, encoding and decoding functions, and synchronization of received data to a local clock.

backplane features

- 25-, 50-, and 100-Mbps data rates for backplane environments
- Live connection/disconnection possible without data loss or interruption.
- Configuration ROM and status registers supporting plug and play
- Multidrop or point-to-point topologies supported.
- Specified bandwidth assignments for real-time applications

applicability and typical application for IEEE 1394 backplane

The 1394 backplane serial bus (BPSB) plays a supportive role in backplane systems, specifically GTLP, FutureBus+, VME64, and proprietary backplane bus systems. This supportive role can be grouped into three categories:

- Diagnostics
 - Alternate control path to the parallel backplane bus
 - Test, maintenance, and troubleshooting
 - Software debug and support interface
- System enhancement
 - Fault tolerance
 - Live insertion
 - CSR access
 - Auxiliary 2-bit bus with a 64-bit address space to the parallel backplane bus
- Peripheral monitoring
 - Monitoring of peripherals (disk drives, fans, power supplies, etc.) in conjunction with another externally wired monitor bus, such as defined by the Intelligent Platform Management Interface (IPMI).

The 1394 backplane physical layer (PHY) and the SN74GTLP1394 provide a cost-effective way to add high-speed 1394 connections to every daughter card in almost any backplane. More information on the backplane physical layer devices and how to implement the 1394 standard in backplane and cable applications can be found at: *www.ti.com/sc/1394*.

APPLICATION INFORMATION

SN74GTLP1394 interface with the TSB14AA1 1394 backplane PHY

- A1, B1, and Y1 are used for the PHY data signals.
- A2, B2, and Y2 are used for the PHY strobe signals.
- PHY N_OEB_D or OCDOE connects to OEAB, which controls the PHY transmit signals.
- OEBY is connected to GND since the transceiver always must be able to receive signals from the backplane and relay them to the PHY.
- T/\overline{C} is connected to GND for inverted signals.
- V_{CC} is nominal 3.3 V.
- BIAS V_{CC} is connected to nominal 3.3 V to support live insertion.
- V_{REF} normally is 2/3 of V_{TT}.
- ERC normally is connected to GND for slow edge-rate operation because frequencies of only 50 MHz (S100) and 25 MHz (S50) are required.

APPLICATION INFORMATION

logical representation

APPLICATION INFORMATION

physical representation

SN74GTLP1395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY SCES349B – JUNE 2001 – REVISED AUGUST 2001

- TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OECTM Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
- LVTTL Interfaces Are 5-V Tolerant
- High-Drive GTLP Outputs (100 mA)
- LVTTL Outputs (-24 mA/24 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Polarity Control Selects True or Complementary Outputs

DGV, DW, OR PW PACKAGE (TOP VIEW)					
1Y [20	10EBY		
1T/C	2	19	2T/C		
2Y [3	18	20EBY		
GND [4	17] GND		
1 OEAB	5	16] 1B		
V _{CC} [6	15] ERC		
1A [7	14] 2B		
GND [8	13] GND		
2A [9	12] V _{REF}		
2OEAB	10	11	BIAS V _{CC}		

description

The SN74GTLP1395 is two 1-bit, high-drive, 3-wire bus transceivers that provide LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation for applications, such as primary and secondary clocks, that require individual output-enable and true/complement controls. The device allows for transparent and inverted transparent modes of data transfer with separate LVTTL input and LVTTL output pins, which provide a feedback path for control and diagnostics monitoring. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels and is designed especially to work with the Texas Instruments 3.3-V 1394 backplane physical-layer controller. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC[™] circuitry, and TI-OPC[™] circuitry. Improved GTLP OEC and TI-OPC circuitry minimizes bus settling time, and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes, with equivalent load impedance down to 11 Ω.

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP1395 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, *Texas Instruments GTLP Frequently Asked Questions*, literature number SCEA019, and *GTLP in BTL Applications*, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL or 5-V CMOS devices. V_{REF} is the B-port differential input reference voltage.

OEC and TI-OPC are trademarks of Texas Instruments.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

description (continued)

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

terminal assignments

	1	2	3	4
A	1T/C	1Y	10EBY	2T/C
в	GND	GND	2Y	2 <mark>0EBY</mark>
C	V _{CC}	1OEAB	ERC	1B
D	GNE	GND	1A	2B
E	2OEAB	2A	$BIASV_{CC}$	VREF

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Tube	SN74GTLP1395DW	
−40°C to 85°C	30IC - DW	Tape and reel	SN74GTLP1395DWR	GILF 1395
	TSSOP – PW	Tape and reel	SN74GTLP1395PWR	GP395
	TVSOP – DGV	Tape and reel	SN74GTLP1395DGVR	GP395
	VFBGA – GQN	Tape and reel	SN74GTLP1395GQNR	GP395

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The output-enable ($1\overline{OEAB}$, $1\overline{OEBY}$) and polarity-control ($1T/\overline{C}$) inputs control 1A, 1B, and 1Y. $2\overline{OEAB}$, $2\overline{OEBY}$, and $2T/\overline{C}$ control 2A, 2B, and 2Y.

OEAB controls the activity of the B port. When OEAB is low, the B-port output is active. When OEAB is high, the B-port output is disabled.

A separate LVTTL A input and Y output provide a feedback path for control and diagnostics monitoring. <u>OEBY</u> controls the Y output. When <u>OEBY</u> is low, the Y output is active. When <u>OEBY</u> is high, the Y output is disabled.

 T/\overline{C} selects polarity of data transmission in both directions. When T/\overline{C} is high, data transmission is true, and A data goes to the B bus and B data goes to the Y bus. When T/\overline{C} is low, data transmission is complementary, and inverted A data goes to the B bus and inverted B data goes to the Y bus.

	INPUTS			MODE
T/C	OEAB	OEBY	001201	MODE
Х	Н	Н	Z	Isolation
Н	L	Н	A data to B bus	True transparent
Н	Н	L	B data to Y bus	The transparent
н	L	L	A data to B bus, B data to Y bus	True transparent with feedback path
L	L	Н	Inverted A data to B bus	Inverted transparent
L	Н	L	Inverted B data to Y bus	inveneu transparent
L	L	L	Inverted A data to B bus, Inverted B data to Y bus	Inverted transparent with feedback path

Function Tables

OUTPUT EDGE-RATE CONTROL (ERC)

INPUT	OUTPUT	
ERC	B-PORT	
LOGIC LEVEL	EDGE RATE	
Н	Slow	
L	Fast	

SN74GTLP1395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY SCES349B – JUNE 2001 – REVISED AUGUST 2001

SCES349B – JUNE 2001 – REVISED AUGUST 2001

logic diagram (positive logic)

Pin numbers shown are for the DGV, DW, and PW packages.

SN74GTLP1395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES349B - JUNE 2001 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} and BIAS V_{CC} Input voltage range, V_I (see Note 1): A inputs, ERC, and control inputs B port and V_{RFF}			
Voltage range applied to any output in the high-impedance or power-off state, Vo			
(see Note 1): Y outputs	–0.5 V to 7 V		
B port	–0.5 V to 4.6 V		
Current into any output in the low state, I _O : Y outputs	48 mA		
B port	200 mA		
Current into any output in the high state, I _O (see Note 2)	48 mA		
Continuous current through each V _{CC} or GND	±100 mA		
Input clamp current, I _{IK} (V _I < 0)	–50 mA		
Output clamp current, I_{OK} (V _O < 0)	–50 mA		
Package thermal impedance, θ_{JA} (see Note 3): DGV package	92°C/W		
DW package	58°C/W		
GQN package	28°C/W		
PW package	83°C/W		
Storage temperature range, T _{stg}	–65°C to 150°C		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V
\/ 	Termination voltage	GTL	1.14	1.2	1.26	V
V I I	Termination voltage	GTLP	1.35	1.5	1.65	v
	Poforonce voltage	GTL	0.74	0.8	0.87	V
VREF	Reference voltage	GTLP	0.87	1	1.1	v
١/.	Input voltage	B port			V _{TT}	V
۷I	input voitage	Except B port		VCC	5.5	v
	High-level input voltage	B port	V _{REF} +0.05			V
VIH		Except B port	2			V
\/	Low-level input voltage	B port			V _{REF} -0.05	V
۷IL		Except B port			0.8	V
ΙIK	Input clamp current				-18	mA
ЮН	High-level output current	Y outputs			-24	mA
le:		Y outputs			24	
OL	Low-level output current	B port			100	ma
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V
TA	Operating free-air temperature		-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS $V_{CC} = 3.3 V$ first, I/O second, and $V_{CC} = 3.3 V$ first, I/O second, V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally it is two-thirds VTT. TI-OPC is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VREF. If operated in the A-to-B direction, VREF should be set to within 0.6 V of VTT to minimize current drain.

SN74GTLP1395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES349B - JUNE 2001 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	түр†	MAX	UNIT	
VIK		V _{CC} = 3.15 V,	l _l = –18 mA	-1.2		-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
∨он	Y outputs	V _{CC} = 3.15 V IOH	I _{OH} = -12 mA	2.4			V
			I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	
	Y outputs	Voo - 2 15 V	I _{OL} = 12 mA			0.4	
Vei		VCC = 3.13 V	I _{OL} = 24 mA			0.5	V
VOL			I _{OL} = 10 mA			0.2	v
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
ı _l ‡	A-port and control inputs	V _{CC} = 3.45 V,	$V_{I} = 0$ to 5.5 V	±10		±10	μA
. +	Y outputs	$V_{CC} = 3.45 \text{ V},$ $V_{O} = 0 \text{ to } 5.5 \text{ V}$				±10	
^I OZ ⁺	B port	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} ,	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} , V_{O} = 0 to 2.3 V			±10	μΑ
		$V_{CC} = 3.45 V. I_{C} = 0.$	Outputs high			20	
ICC	Y outputs or B port	V_{I} (A or control inputs) = V_{CC} or GND,	Outputs low			20	mA
		V_I (B port) = V_{TT} or GND	Outputs disabled			20	
∆I _{CC} §		$V_{CC} = 3.45$ V, One A-port or control input at $V_{CC} - 0.6$ V, Other A-port or control inputs at V_{CC} or GND				1.5	mA
0	A-port inputs	1/ 2.45 1/ or 0					~ [
	Control inputs	V _I = 3.15 V or U					рг
Co	Y outputs	V _O = 3.15 V or 0					pF
C _{io}	B port	V _O = 1.5 V or 0					pF

T All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

hot-insertion specifications for A inputs and Y outputs over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MI	N MAX	UNIT
l _{off}	V _{CC} = 0,	V_{I} or V_{O} = 0 to 5.5 V			10	μA
IOZPU	V _{CC} = 0 to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OEBY} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V \text{ to } 3 V,$	$\overline{OEBY} = 0$		±30	μA

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS					UNIT
loff	V _{CC} = 0,	BIAS $V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 1.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V}$ to 1.5 V,	$\overline{OEAB} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V}$ to 1.5 V,	$\overline{OEAB} = 0$		±30	μA
lcc	V _{CC} = 0 to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{O} (B port) = 0 to 1.5 V			5	mA
(BIAS V _{CC})	V _{CC} = 3.15 V to 3.45 V	DIAS VCC = 3.15 V (0.3.45 V),				10	μA
Vo	V _{CC} = 0,	BIAS $V_{CC} = 3.3 V$,	IO = 0		0.95	1.05	V
10	V _{CC} = 0,	BIAS $V_{CC} = 3.15$ V to 3.45 V,	V _O (B port) = 0.6 V		-1		μA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	ΜΙΝ ΤΥΡ [‡] ΜΑΧ	UNIT
^t PLH	Δ	в	Slow		ns
^t PHL	~	В	5100		115
^t PLH	Δ	в	Fast		ns
^t PHL	~		1 431		113
^t PLH	А	Y	Slow		ns
^t PHL		·	0.011		110
^t PLH	А	Y	Fast		ns
^t PHL			1 401		
^t PLH	T/C	В	Slow		ns
^t PHL	170	_	0.0.1		
^t PLH	T/C	В	Fast		ns
^t PHL	170	_			
ten		В	Slow		ns
^t dis	OEAD	_	0.0.1		
ten	OFAB	В	Fast		ns
^t dis	02/18	_			
tr	Rise time. B outp	uts (20% to 80%)	Slow		ns
1			Fast		
tr	Fall time, B outpu	uts (80% to 20%)	Slow		ns
1	·		Fast		
^t PLH	В	Y			ns
^t PHL		<u> </u>			
^t PLH	T/C	Y			ns
^t PHL	1/0	1			
ten		Y			ns
^t dis		1			10

AS

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$.

skew characteristics over recommended ranges of supply voltage and operating free-air temperature, $V_{REF} = 1 V$, standard lumped loads ($C_L = 30 pF$ for B port and $C_L = 50 pF$ for Y port) (unless otherwise noted)(see Figure 1)^T

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE‡	MIN TYP§ MAX	UNIT
^t sk(LH) [¶]	Δ	в	Slow		ns
^t sk(HL) [¶]	~	Б	CIOW		113
^t sk(LH) [¶]	Δ	в	Fast		ns
^t sk(HL) [¶]	~	Б	1 431		113
^t sk(LH) [¶]	в	v			ns
^t sk(HL) [¶]	D	'			113
	Δ	В	Slow		ns
t _{sk(t)} ¶			Fast		ns
	В	Y			ns
^t sk(prLH) [#]	Δ	P	Slow		ns
^t sk(prHL) [#]	~	b	CIOW		113
^t sk(prLH) [#]	Δ	в	Fast		ns
^t sk(prHL) [#]	~	5	1 431		113
^t sk(prLH) [#]	в	v			ns
^t sk(prHL) [#]		· ·			

[†] Actual skew values between GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

 \ddagger Slow (ERC = L) and Fast (ERC = H)

§ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Itsk(LH)/tsk(HL) and tsk(t) - Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in the same direction either high to low [tsk(HL)] or low to high [tsk(LH)] or in opposite directions, both low to high and high to low [tsk(t)].

tsk(prLH)/tsk(prHL) – The magnitude of the difference in propagation delay times between corresponding terminals of two logic devices when both logic devices operate with the same supply voltages and at the same temperature, and have identical package types, identical specified loads, and identical logic functions. Furthermore, these values are provided by SPICE simulations.

SN74GTLP1395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES349B – JUNE 2001 – REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in the backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT	
^t PLH	Δ	R	Slow		20	
^t PHL	~	D	5100		115	
^t PLH	Δ	В	Fast		ne	
^t PHL	^	D	1 431		115	
^t PLH	٨	Y	Slow		ne	
^t PHL	^		Clow		115	
^t PLH	Δ	×	Fact		ne	
^t PHL	~		Fasi		115	
+	Piso timo, Blouto	utc (20% to 80%)	Slow		20	
ч	Rise line, B oup	Rise time, B outputs (20% to 80%)			115	
te	Fall time, R outpu	$u_{12} (80\% to 20\%)$	Slow		200	
Ч	Fair time, B outp	Fall time, B outputs (80% to 20%)			ns	

[†]Slow (ERC = H) and Fast (ERC = L)

[‡]All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI SPICE models.

APPLICATION INFORMATION

operational description

The GTLP1395 is designed specifically for use with the TI 1394 backplane layer controller family to transmit the 1394 backplane serial bus across parallel backplanes. But, it is a versatile two 1-bit device that also can provide multiple 1-bit clocks or an ATM read and write clock in multislot parallel backplane applications.

The 1394–1995 is an IEEE designation for a high-performance serial bus. This serial bus defines both a backplane (e.g., GTLP, VME, FB+, CPCI, etc.) physical layer and a point-to-point cable-connected virtual bus. The backplane version operates at 25, 50, or 100 Mbps, whereas the cable version supports data rates of 100, 200, and 400 Mbps. Both versions are compatible at the link layer and above. The interface standard defines the transmission method, media in the cable version, and protocol. The primary application of the cable version is the interconnection of digital A/V equipment and integration of I/O connectivity at the back panel of personal computers using a low-cost, scalable, high-speed serial interface. The primary application of the backplane version is to provide a robust control interface to each daughter card. The 1394 standard also provides new services such as real-time I/O and live connect/disconnect capability for external devices.

electrical

PRODUCT PREVIEW

The 1394 standard is a transaction-based packet technology for cable- or backplane-based environments. Both chassis and peripheral devices can use this technology. The 1394 serial bus is organized as if it were memory space interconnected between devices, or as if devices resided in slots on the main backplane. Device addressing is 64 bits wide, partitioned as 10 bits for bus ID, 6 bits for node ID, and 48 bits for memory addresses. The result is the capability to address up to 1023 buses, each having up to 63 nodes and each with 281 terabytes of memory. Memory-based addressing, rather than channel addressing, views resources as registers or memory that can be accessed with processor-to-memory transactions. Each bus entity is termed a unit, to be individually addressed, reset, and identified. Multiple nodes can reside physically in a single module, and multiple ports can reside in a single node.

Some key features of the 1394 topology are multimaster capabilities, live connect/disconnect (hot plugging) capability, genderless cabling connectors on interconnect cabling, and dynamic node address allocation as nodes are added to the bus. A maximum of 63 nodes can be connected to one network.

The cable-based physical interface uses dc-level line states for signaling during initialization and arbitration. Both environments use dominant mode addresses for arbitration. The backplane environment does not have the initialization requirements of the cable environment because it is a physical bus and does not contain repeaters. Due to the differences, a backplane-to-cable bridge is required to connect these two environments.

The signals transmitted on both the cable and backplane environments are NRZ with data-strobe (DS) encoding. DS encoding allows only one of the two signal lines to change each data bit period, essentially doubling the jitter tolerance with very little additional circuitry overhead in the hardware.

APPLICATION INFORMATION

protocol

Both asynchronous and isochronous data transfers are supported. The asynchronous format transfers data and transaction layer information to an explicit address. The isochronous format broadcasts data based on channel numbers rather than specific addressing. Isochronous packets are issued on the average of each 125 µs in support of time-sensitive applications. Providing both asynchronous and isochronous formats on the same interface allows both non-real-time and real-time critical applications on the same bus. The cable environment's tree topology is resolved during a sequence of events, triggered each time a new node is added or removed from the network. This sequence starts with a bus reset phase, where previous information about a topology is cleared. The tree ID sequence determines the actual tree structure, and a root node is dynamically assigned, or it is possible to force a particular node to become the root. After the tree is formed, a self-ID phase allows each node on the network to identify itself to all other nodes. During the self-ID process, each node is assigned an address. After all the information has been gathered on each node, the bus goes into an idle state, waiting for the beginning of the standard arbitration process.

The backplane physical layer shares some commonality with the cable physical layer. Common functions include: bus-state determination, bus-access protocols, encoding and decoding functions, and synchronization of received data to a local clock.

backplane features

- 25-, 50-, and 100-Mbps data rates for backplane environments
- Live connection/disconnection possible without data loss or interruption
- Configuration ROM and status registers supporting plug and play
- Multidrop or point-to-point topologies supported.
- Specified bandwidth assignments for real-time applications

applicability and typical application for IEEE 1394 backplane

The 1394 backplane serial bus (BPSB) plays a supportive role in backplane systems, specifically GTLP, FutureBus+, VME64, and proprietary backplane bus systems. This supportive role can be grouped into three categories:

- Diagnostics
 - Alternate control path to the parallel backplane bus
 - Test, maintenance, and troubleshooting
 - Software debug and support interface
- System enhancement
 - Fault tolerance
 - Live insertion
 - CSR access
 - Auxiliary 2-bit bus with a 64-bit address space to the parallel backplane bus
- Peripheral monitoring
 - Monitoring of peripherals (disk drives, fans, power supplies, etc.) in conjunction with another externally wired monitor bus, such as defined by the Intelligent Platform Management Interface (IPMI)

The 1394 backplane physical layer (PHY) and the SN74GTLP1395 provide a cost-effective way to add high-speed 1394 connections to every daughter card in almost any backplane. More information on the backplane PHY devices and how to implement the 1394 standard in backplane and cable applications can be found at www.ti.com/sc/1394.

APPLICATION INFORMATION

SN74GTLP1395 interface with the TSB14AA1 1394 backplane PHY

- 1A, 1B, and 1Y are used for the PHY data signals.
- 2A, 2B, and 2Y are used for the PHY strobe signals.
- PHY N_OEB_D or OCDOE connects to 1OEAB and 2OEAB, which control the PHY transmit signals.
- 1 OEBY and 2 OEBY are connected to GND because the transceiver must always be able to receive signals from the backplane and relay them to the PHY.
- $1T/\overline{C}$ and $2T/\overline{C}$ are connected to GND for inverted signals.
- V_{CC} is nominal 3.3 V.
- BIAS V_{CC} is connected to nominal 3.3 V to support live insertion.
- V_{REF} is normally 2/3 of V_{TT}.
- ERC is normally connected to V_{CC} for slow edge-rate operation because frequencies of only 50 MHz (S100) and 25 MHz (S50) are required.

logical representation

APPLICATION INFORMATION

physical representation

- TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OECTM Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
- Y Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required
- LVTTL Interfaces Are 5-V Tolerant
- High-Drive GTLP Outputs (100 mA)
- LVTTL Outputs (-12 mA/12 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Polarity Control Selects True or Complementary Outputs

description

The SN74GTLP21395 is two 1-bit, high-drive, 3-wire bus transceivers that provide LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation for applications, such as primary and secondary clocks, that require individual output-enable and true/complement controls. The device allows for transparent and inverted transparent modes of data transfer with separate LVTTL input and LVTTL output pins, which provide a feedback path for control and diagnostics monitoring. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels and is designed especially to work with the Texas Instruments 3.3-V 1394 backplane physical-layer controller. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuitry minimizes bus settling time, and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes, with equivalent load impedance down to 11 Ω .

The Y outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω resistors to reduce overshoot and undershoot.

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP21395 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, *Texas Instruments GTLP Frequently Asked Questions*, literature number SCEA019, and *GTLP in BTL Applications*, literature number SCEA017.

OEC and TI-OPC are trademarks of Texas Instruments.

DGV, DW, OR PW PACKAGE (TOP VIEW)						
1Y [1T/C [2Y [GND [10EAB [Vcc [1A [GND [20EAB [1 2 3 4 5 6 7 8 9 10	20 19 18 17 16 15 14 13 12 11] 1 <u>0EBY</u>] 2T/C] 20EBY] GND] 1B] ERC] 2B] GND] V _{REF}] BIAS V _{CC}			
4						

SN74GTLP21395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES350B - JUNE 2001 - REVISED AUGUST 2001

description (continued)

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL or 5-V CMOS devices. V_{RFF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS V_{CC}. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

terminal assignments

	1	2	3	4
A	1T/C	1Y	10EBY	2T/C
в	GND	GND	2Y	2 <mark>0EBY</mark>
C	VCC	1OEAB	ERC	1B
D	GND	GND	1A	2B
E	2OEAB	2A	$BIASV_{CC}$	V _{REF}

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		Tube	SN74GTLP21395DW		
	30IC - DW	Tape and reel	SN74GTLP21395DWR	GILP21395	
$-40^{\circ}C$ to $85^{\circ}C$	TSSOP – PW	Tape and reel	SN74GTLP21395PWR		
	TVSOP – DGV	Tape and reel	SN74GTLP21395DGVR		
	VFBGA – GQN	Tape and reel	SN74GTLP21395GQNR		

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The output-enable ($1\overline{OEAB}$, $1\overline{OEBY}$) and polarity-control ($1T/\overline{C}$) inputs control 1A, 1B, and 1Y. $2\overline{OEAB}$, $2\overline{OEBY}$, and $2T/\overline{C}$ control 2A, 2B, and 2Y.

OEAB controls the activity of the B port. When OEAB is low, the B-port output is active. When OEAB is high, the B-port output is disabled.

A separate LVTTL A input and Y output provide a feedback path for control and diagnostics monitoring. <u>OEBY</u> controls the Y output. When <u>OEBY</u> is low, the Y output is active. When <u>OEBY</u> is high, the Y output is disabled.

 T/\overline{C} selects polarity of data transmission in both directions. When T/\overline{C} is high, data transmission is true, and A data goes to the B bus and B data goes to the Y bus. When T/\overline{C} is low, data transmission is complementary, and inverted A data goes to the B bus and inverted B data goes to the Y bus.

	INPUTS			MODE
T/C	OEAB	OEBY	001201	MODE
Х	Н	Н	Z	Isolation
Н	L	Н	A data to B bus	True transparent
Н	Н	L	B data to Y bus	The transparent
н	L	L	A data to B bus, B data to Y bus	True transparent with feedback path
L	L	Н	Inverted A data to B bus	Inverted transparent
L	Н	L	Inverted B data to Y bus	inveneu transparent
L	L	L	Inverted A data to B bus, Inverted B data to Y bus	Inverted transparent with feedback path

Function Tables

OUTPUT EDGE-RATE CONTROL (ERC)

INPUT	OUTPUT
ERC	B-PORT
LOGIC LEVEL	EDGE RATE
Н	Slow
L	Fast

SCES350B – JUNE 2001 – REVISED AUGUST 2001

logic diagram (positive logic)

PRODUCT PREVIEW

Pin numbers shown are for DGV, DW, and PW packages.

SN74GTLP21395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES350B - JUNE 2001 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A inputs, ERC, and control inputs B port and V _{REF}	-0.5 V to 4.6 V -0.5 V to 7 V -0.5 V to 7 V
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1): Y outputs	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : Y outputs	24 mA
B port	200 mA
Current into any output in the high state, I _O (see Note 2)	24 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 3): DGV package	92°C/W
DW package	58°C/W
GQN package	28°C/W
PW package	83°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage			3.3	3.45	V
\/ 	Termination voltage	GTL	1.14	1.2	1.26	V
VII	Termination voltage	GTLP	1.35	1.5	1.65	v
	Poferance voltage	GTL	0.74	0.8	0.87	V
VREF	Relefence voltage	GTLP	0.87	1	1.1	v
١/.	Input voltage	B port			V _{TT}	V
٧I	niput voltage	Except B port		VCC	5.5	v
\/	High lovel input voltage	B port				V
VIH	High-level liput voltage	Except B port				V
\/		B port			V _{REF} -0.05	V
۷IL	Low-level input voltage	Except B port			0.8	v
ΙIK	Input clamp current				-18	mA
ЮН	High-level output current	Y outputs			-12	mA
le:		Y outputs			12	~ ^
OL	Low-level output current	B port			100	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V
TA	Operating free-air temperature		-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally it is two-thirds VTT. TI-OPC is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VREF. If operated in the A-to-B direction, VREF should be set to within 0.6 V of VTT to minimize current drain.

SN74GTLP21395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POL

SCES350B - JUNE 2001 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

	PARAMETER	TEST CONDITIONS MIN TYP [†] MAX				MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
∨он	Y outputs		I _{OH} = -6 mA	2.4			V
		VCC = 3.15 V	I _{OH} = -12 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	
	Y outputs		$I_{OL} = 6 \text{ mA}$			0.55	v
Vei		VCC = 3.13 V	I _{OL} = 12 mA			0.8	
VOL			I _{OL} = 10 mA			0.2	
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
ı _l ‡	A-port and control inputs	V _{CC} = 3.45 V,	$V_{I} = 0$ to 5.5 V		±10		μA
. +	Y outputs	V _{CC} = 3.45 V,	$V_{O} = 0$ to 5.5 V			±10	
loz+	B port	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} ,	$V_{O} = 0$ to 2.3 V			±10	μΑ
		$V_{CC} = 3.45 V_{1} _{C} = 0.$	Outputs high			20	
ICC	Y outputs or B port	V_{I} (A or control inputs) = V_{CC} or GND,	Outputs low			20	mA
		V_I (B port) = V_{TT} or GND	Outputs disabled			20	
∆I _{CC} §		V_{CC} = 3.45 V, One A-port or control input a Other A-port or control inputs at V _{CC} or GN	at V _{CC} – 0.6 V, ND	1.5		mA	
0	A-port inputs	1/ 2.45 1/ or 0					~ Г
	Control inputs						рг
Co	Y outputs	V _O = 3.15 V or 0					pF
C _{io}	B port	V _O = 1.5 V or 0					pF

T All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

hot-insertion specifications for A inputs and Y outputs over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS				UNIT
l _{off}	$V_{CC} = 0,$	V_{I} or $V_{O} = 0$ to 5.5 V		10	μA	
IOZPU	V _{CC} = 0 to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OEBY} = 0$		±30	μΑ
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OEBY} = 0$		±30	μA

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS					UNIT
loff	V _{CC} = 0,	BIAS $V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 1.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V}$ to 1.5 V,	$\overline{OEAB} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V}$ to 1.5 V,	$\overline{OEAB} = 0$		±30	μA
lcc	V _{CC} = 0 to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{e} (P part) – 0 to 1 E V			5	mA
(BIAS V _{CC})	V _{CC} = 3.15 V to 3.45 V	DIAS VCC = 3.15 V (0.3.45 V),	vO(B poil) = 0.001.5 v			10	μA
Vo	V _{CC} = 0,	BIAS $V_{CC} = 3.3 V$,	IO = 0		0.95	1.05	V
10	V _{CC} = 0,	BIAS $V_{CC} = 3.15$ V to 3.45 V,	V _O (B port) = 0.6 V		-1		μA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	re† MIN TYP‡ MAX		
^t PLH	Δ	В	Slow		ns	
^t PHL	~	d	5100		115	
^t PLH	Δ	в	Fast		ns	
^t PHL			1 401		110	
^t PLH	А	Y	Slow		ns	
^t PHL		•			110	
^t PLH	А	Y	Fast		ns	
^t PHL		•			110	
^t PLH	T/C	В	Slow		ns	
^t PHL	1/0				110	
^t PLH	T/C	В	Fast		ns	
^t PHL	1/0				115	
ten		В	Slow		ns	
^t dis	OEAD	-				
ten	OFAB	В	Fast		ns	
^t dis	02/18	_				
tr	Rise time. B outp	uts (20% to 80%)	Slow		ns	
-1	,		Fast			
tr	Fall time. B outpu	uts (80% to 20%)	Slow		ns	
1			Fast		-	
^t PLH	в	Y			ns	
^t PHL					-	
^t PLH	T/C	Y			ns	
^t PHL	1/0					
ten	OFBY	Y			ns	
^t dis		•				

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

skew characteristics over recommended ranges of supply voltage and operating free-air temperature, $V_{REF} = 1 V$, standard lumped loads ($C_L = 30 pF$ for B port and $C_L = 50 pF$ for Y port) (unless otherwise noted)(see Figure 1)^T

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [‡] MIN TYP§ MAX		UNIT
^t sk(LH) [¶]	А	В	Slow		ns
^t sk(HL) [¶]	~	-	0.011		
^t sk(LH) [¶]	Δ	в	Fast		ns
^t sk(HL) [¶]		5	1 401		110
^t sk(LH) [¶]	в	Y			ns
^t sk(HL) [¶]	, B	•			
	Δ	в	Slow		ns
^t sk(t) [¶]		5	Fast		ns
	В	Y			ns
^t sk(prLH) [#]	Δ	в	Slow		ns
^t sk(prHL) [#]	~	d	5100		115
^t sk(prLH) [#]	Δ	в	Fast		ns
^t sk(prHL) [#]	~	0	1 451		115
^t sk(prLH) [#]	B	v			ns
^t sk(prHL) [#]					115

[†] Actual skew values between GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

 \ddagger Slow (ERC = L) and Fast (ERC = H)

§ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Itsk(LH)/tsk(HL) and tsk(t) - Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in the same direction either high to low [tsk(HL)] or low to high [tsk(LH)] or in opposite directions, both low to high and high to low [tsk(t)].

t_{sk(prLH)}/t_{sk(prHL)} – The magnitude of the difference in propagation delay times between corresponding terminals of two logic devices when both logic devices operate with the same supply voltages and at the same temperature, and have identical package types, identical specified loads, and identical logic functions. Furthermore, these values are provided by SPICE simulations.

SN74GTLP21395 TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES350B – JUNE 2001 – REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in the backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]		UNIT
^t PLH	Δ	R	Slow		20
^t PHL	~	D	5100		115
^t PLH	Δ	В	Fast		ns
^t PHL	^	D	1 431		
^t PLH	Δ	v	Slow		ns
^t PHL	^	I	5100		115
^t PLH	Δ	v	Fast		ne
^t PHL	~		Fasi		115
+	Piso timo, Blouto	utc (20% to 80%)	Slow		20
ч	Rise line, B oup	Rise time, B outputs (20% to 80%)			ns
te	Fall time, R outpu	$u_{12} (80\% to 20\%)$	Slow		200
Ч	Fair time, B outp	uis (00% iu 20%)	Fast		ns

[†]Slow (ERC = H) and Fast (ERC = L)

[‡]All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

APPLICATION INFORMATION

operational description

The GTLP21395 is designed specifically for use with the TI 1394 backplane layer controller family to transmit the 1394 backplane serial bus across parallel backplanes. But, it is a versatile two 1-bit device that also can provide multiple 1-bit clocks or an ATM read and write clock in multislot parallel backplane applications.

The 1394–1995 is an IEEE designation for a high-performance serial bus. This serial bus defines both a backplane (e.g., GTLP, VME, FB+, CPCI, etc.) physical layer and a point-to-point cable-connected virtual bus. The backplane version operates at 25, 50, or 100 Mbps, whereas the cable version supports data rates of 100, 200, and 400 Mbps. Both versions are compatible at the link layer and above. The interface standard defines the transmission method, media in the cable version, and protocol. The primary application of the cable version is the interconnection of digital A/V equipment and integration of I/O connectivity at the back panel of personal computers using a low-cost, scalable, high-speed serial interface. The primary application of the backplane version is to provide a robust control interface to each daughter card. The 1394 standard also provides new services such as real-time I/O and live connect/disconnect capability for external devices.

electrical

PRODUCT PREVIEW

The 1394 standard is a transaction-based packet technology for cable- or backplane-based environments. Both chassis and peripheral devices can use this technology. The 1394 serial bus is organized as if it were memory space interconnected between devices, or as if devices resided in slots on the main backplane. Device addressing is 64 bits wide, partitioned as 10 bits for bus ID, 6 bits for node ID, and 48 bits for memory addresses. The result is the capability to address up to 1023 buses, each having up to 63 nodes and each with 281 terabytes of memory. Memory-based addressing, rather than channel addressing, views resources as registers or memory that can be accessed with processor-to-memory transactions. Each bus entity is termed a unit, to be individually addressed, reset, and identified. Multiple nodes can reside physically in a single module, and multiple ports can reside in a single node.

Some key features of the 1394 topology are multimaster capabilities, live connect/disconnect (hot plugging) capability, genderless cabling connectors on interconnect cabling, and dynamic node address allocation as nodes are added to the bus. A maximum of 63 nodes can be connected to one network.

The cable-based physical interface uses dc-level line states for signaling during initialization and arbitration. Both environments use dominant mode addresses for arbitration. The backplane environment does not have the initialization requirements of the cable environment because it is a physical bus and does not contain repeaters. Due to the differences, a backplane-to-cable bridge is required to connect these two environments.

The signals transmitted on both the cable and backplane environments are NRZ with data-strobe (DS) encoding. DS encoding allows only one of the two signal lines to change each data-bit period, essentially doubling the jitter tolerance with very little additional circuitry overhead in the hardware.

APPLICATION INFORMATION

protocol

Both asynchronous and isochronous data transfers are supported. The asynchronous format transfers data and transaction layer information to an explicit address. The isochronous format broadcasts data based on channel numbers rather than specific addressing. Isochronous packets are issued on the average of each 125 µs in support of time-sensitive applications. Providing both asynchronous and isochronous formats on the same interface allows both non-real-time and real-time critical applications on the same bus. The cable environment's tree topology is resolved during a sequence of events, triggered each time a new node is added or removed from the network. This sequence starts with a bus reset phase, where previous information about a topology is cleared. The tree ID sequence determines the actual tree structure, and a root node is dynamically assigned, or it is possible to force a particular node to become the root. After the tree is formed, a self-ID phase allows each node on the network to identify itself to all other nodes. During the self-ID process, each node is assigned an address. After all the information has been gathered on each node, the bus goes into an idle state, waiting for the beginning of the standard arbitration process.

The backplane physical layer shares some commonality with the cable physical layer. Common functions include: bus-state determination, bus-access protocols, encoding and decoding functions, and synchronization of received data to a local clock.

backplane features

- 25-, 50-, and 100-Mbps data rates for backplane environments
- Live connection/disconnection possible without data loss or interruption
- Configuration ROM and status registers supporting plug and play
- Multidrop or point-to-point topologies supported.
- Specified bandwidth assignments for real-time applications

applicability and typical application for IEEE 1394 backplane

The 1394 backplane serial bus (BPSB) plays a supportive role in backplane systems, specifically GTLP, FutureBus+, VME64, and proprietary backplane bus systems. This supportive role can be grouped into three categories:

- Diagnostics
 - Alternate control path to the parallel backplane bus
 - Test, maintenance, and troubleshooting
 - Software debug and support interface
- System enhancement
 - Fault tolerance
 - Live insertion
 - CSR access
 - Auxiliary 2-bit bus with a 64-bit address space to the parallel backplane bus
- Peripheral monitoring
 - Monitoring of peripherals (disk drives, fans, power supplies, etc.) in conjunction with another externally wired monitor bus, such as defined by the Intelligent Platform Management Interface (IPMI)

The 1394 backplane physical layer (PHY) and the SN74GTLP21395 provide a cost-effective way to add high-speed 1394 connections to every daughter card in almost any backplane. More information on the backplane PHY devices and how to implement the 1394 standard in backplane and cable applications can be found at www.ti.com/sc/1394.

APPLICATION INFORMATION

SN74GTLP21395 interface with the TSB14AA1 1394 backplane PHY

- 1A, 1B, and 1Y are used for the PHY data signals.
- 2A, 2B, and 2Y are used for the PHY strobe signals.
- PHY N_OEB_D or OCDOE connects to 1OEAB and 2OEAB, which control the PHY transmit signals.
- 1 OEBY and 2 OEBY are connected to GND because the transceiver must always be able to receive signals from the backplane and relay them to the PHY.
- $1T/\overline{C}$ and $2T/\overline{C}$ are connected to GND for inverted signals.
- V_{CC} is nominal 3.3 V.
- BIAS V_{CC} is connected to nominal 3.3 V to support live insertion.
- V_{REF} is normally 2/3 of V_{TT}.
- ERC is normally connected to V_{CC} for slow edge-rate operation because frequencies of only 50 MHz (S100) and 25 MHz (S50) are required.

logical representation

APPLICATION INFORMATION

physical representation

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

•	Member of the Texas Instruments' Widebus™ Family	DGG PA (TOP	CKAGE VIEW)
•	UBT™ Transceiver Combines D-Type		
	Latches and D-Type Flip-Flops for		
	Operation in Transparent, Latched,		
	Clocked, or Clock-Enabled Mode		61 D B2
•	TI-OPC™ Circuitry Limits Ringing on		
	Unevenly Loaded Backplanes		59 B3
۲	OEC™ Circuitry Improves Signal Integrity		58 BIAS VCC
	and Reduces Electromagnetic Interference	A4 🛛 8	57 B4
٠	Bidirectional Interface Between GTLP	A5 🛿 9	56 🛛 B5
	Signal Levels and LVTTL Logic Levels	GND [10	55 🛛 GND
•	LVTTL Interfaces Are 5-V Tolerant	A6 🚺 11	54 🛛 B6
•	High-Drive GTLP Outputs (100 mÅ)	A7 🚺 12	53 🛛 B7
•		A8 🛛 13	52 🛛 B8
•	LVTTL Outputs (-24 mA/24 mA)	GND 🛛 14	51 🛛 GND
•	Variable Edge-Rate Control (ERC) Input	A9 🛛 15	50 [B9
	Selects GTLP Rise and Fall Times for		⁴⁹ ∐ ^V CC
	Optimal Data-Iransfer Rate and Signal		48 B10
	Integrity in Distributed Loads		47 GND
•	I _{off} , Power-Up 3-State, and BIAS V _{CC}		46 B11
	Support Live Insertion		45 B12
٠	Bus Hold on A-Port Data Inputs		
۲	Distributed V _{CC} and GND Pins Minimize		
	High-Speed Switching Noise		
•	Latch-Up Performance Exceeds 100 mA Per		
	JESD 78, Class II		40 Ц Б I З 20 П V
•	ESD Protection Exceeds JESD 22		39 U VREF
	 – 2000-V Human-Body Model (A114-A) 		
	- 200-V Machine Model (A115-A)		36 B17
	- 1000-V Charged-Device Model (C101)		35 B18
			34 CLKBA
desc	ription	LEBA 32	33 🛛 CEBA

The SN74GTLPH1612 is a high-drive, 18-bit

UBT™ transceiver that provides LVTTL-to-GTLP

and GTLP-to-LVTTL signal-level translation. It allows for transparent, latched, clocked, or clock-enabled modes of data transfer. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC[™] circuitry, and TI-OPC[™] circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω.

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH1612 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels.

OEC, TI, TI-OPC, UBT, and Widebus are trademarks of Texas Instruments.

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

description (continued)

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{RFF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS V_{CC}. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry is provided to hold unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Τ _Α	PACK	AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74GTLPH1612DGGR	GTLPH1612

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH1612 is a high-drive (100 mA), 18-bit UBT transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent, latched, clocked, or clock-enabled modes and can replace any of the functions shown in Table 1. Data polarity is noninverting.

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT	18 BIT
Transceiver	'245, '623, '645	'863	'861	'16245, '16623	'16863
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541	'16825
Latched transceiver	'543			'16543	'16472
Latch	'373, '573	'843	'841	'16373	'16843
Registered transceiver	'646, '652			'16646, '16652	'16474
Flip-flop	'374, '574		'821	'16374	
Standard UBT					'16500, '16501
Universal bus driver					'16835
Registered transceiver with clock enable	'2952			'16470, '16952	
Flip-flop with clock enable	'377	'823			'16823
Standard UBT with clock enable					'16600, '16601
SN74GTLPH	1612 UBT transcei	ver replac	es all abov	ve functions	

Table 1. SN74GTLPH1612 UBT Transceiver Replacement Functions

Data flow in each direction is controlled by the clock enables (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA), and output enables (OEAB and OEBA). CEAB and CEBA and OEAB and OEBA control the 18 bits of data for the A-to-B and B-to-A directions, respectively.

For A-to-B data flow, when \overline{CEAB} is low, the device operates on the low-to-high transition of CLKAB for the flip-flop and on the high-to-low transition of LEAB for the latch path, i.e., if \overline{CEAB} and LEAB are low. the A data is latched regardless of the state of CLKAB (high or low) and if LEAB is high, the device is in transparent mode. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to that of A to B, except that CEBA, OEBA, LEBA, and CLKBA are used.

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

Function Tables

MODE	OUTPUT	INPUTS					
MODE	В	Α	CLKAB	LEAB	OEAB	CEAB	
Isolation	Z	Х	Х	Х	Н	Х	
Latabad storage of A data	в ₀ ‡	Х	Н	L	L	L	
Lateried storage of A data	в ₀ §	Х	L	L	L	L	
	L	L	Х	Н	L	Х	
The transparent	н	Н	Х	Н	L	х	
Clasked storage of A data	L	L	\uparrow	L	L	L	
Clocked storage of A data	н	Н	\uparrow	L	L	L	
Clock inhibit	B0§	Х	Х	L	L	Н	

OUTPUT ENABLE[†]

[†] A-to-B data flow is shown: B-to-A data flow is similar, but uses CEBA, OEBA, LEBA, and CLKBA. The condition when OEAB and OEBA are both low at the same time is not recommended.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

§ Output level before the indicated steady-state input conditions were established

INPU	JT ERC	OUTPUT
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE
L	GND	Slow
н	Vcc	Fast

B-PORT EDGE-RATE CONTROL (ERC)

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

logic diagram (positive logic)

To 17 Other Channels

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A port, ERC, and control inputs B port and V _{REF}	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 4.6 V
(see Note 1). A port	-0.5 V to 7 V
B port	
Current into any output in the low state, I _O : A port	48 mA
B port	200 mA
Current into any A port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ_{JA} (see Note 3)	55°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_{O} > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
\/	Termination valtage	GTL	1.14	1.2	1.26	v	
VTT	Termination voltage	GTLP	1.35	1.5	1.65		
\/	Deference veltere	GTL	0.74	0.8	0.87		
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
ν.	Input voltage	B port			VTT	V	
v	Input voltage	Except B port		Vcc	5.5	V	
	High-level input voltage	B port	V _{REF} +0.05				
VIH		ERC	VCC-0.6	VCC	5.5	V	
		Except B port and ERC	2				
		B port			V _{REF} -0.05	v	
VIL	Low-level input voltage	ERC		GND	0.6		
		Except B port and ERC			0.8		
IК	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
1		A port			24		
OL	Low-level output current	B port			100	mA	
Δt/Δv	Input transition rise or fall rate Outputs enabled				10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V	
Т _А	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS $V_{CC} = 3.3$ V first, I/O second, and $V_{CC} = 3.3$ V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

 V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES287D – OCTOBER 1999 – REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = −100 μA	V _{CC} -0.2			
∨он	A port		I _{OH} = -12 mA	2.4			V
		VCC = 5.15 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	
	A port	Voo - 3 15 V	I _{OL} = 12 mA			0.4	
Voi		VCC = 3.13 V	I _{OL} = 24 mA			0.5	V
VOL			I _{OL} = 10 mA			0.2	v
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
Ц	Control inputs	V _{CC} = 3.45 V,	$V_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μA
. +	A port	V _{CC} = 3.45 V	VO = NCC			10	μA
IOZH+	B port		V _O = 1.5 V			10	
IOZL [‡]	A and B ports	V _{CC} = 3.45 V,	V _O = GND			-10	μΑ
I _{BHL} §	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μΑ
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μΑ
IBHLO [#]	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	500			μΑ
І _{ВННО}	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μA
		$V_{CC} = 3.45 V, I_{O} = 0,$	Outputs high			45	
ICC	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			45	mA
		V _I (B port) = V _{TT} or GND	Outputs disabled			45	
ΔICC*		V_{CC} = 3.45 V, One A-port or control input at V_{CC} Other A-port or control inputs at V_{CC} or GND	– 0.6 V,			1.5	mA
Ci	Control inputs	V _I = 3.15 V or 0			4	5.5	pF
<u>C</u> .	A port	V _O = 3.15 V or 0			6.5	8	рĘ
Cio	B port	V _O = 1.5 V or 0			9.5	11.5	μг

[†] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}$ C.

 \ddagger For I/O ports, the parameters I_{OZH} and I_{OZL} include the input leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to VCC and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 * This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		MIN	MAX	UNIT		
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 1.5 \text{ V}$		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
I _{CC} (BIAS V _{CC})	$V_{CC} = 0$ to 3.15 V	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0 to 1.5 V		5	mA
	$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V}$				10	μA
VO	$V_{CC} = 0,$	BIAS V _{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μA

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (normal mode) (unless otherwise noted)

			MIN	MAX	UNIT	
fclock	Clock frequency			175	MHz	
	LEAB or LEBA high		3		20	
١w	Fulse duration	CLKAB or CLKBA high or low	3		115	
		A before CLKAB↑	2.2			
		B before CLKBA↑	2.4		ns	
	Setup time	A before LEAB \downarrow , CLK = Don't care	1.8			
^t su		B before LEBA↓, CLK = Don't care	2.1			
		CEAB before CLKAB↑	1.5			
		CEBA before CLKBA↑	1.5			
		A after CLKAB↑	0.7			
	Hold time	B after CLKBA↑	0.5		ns	
th		A after LEAB↓, CLK = Don't care	1.2			
		B after LEBA↓, CLK = Don't care	0.9			
		CEAB after CLKAB1	1.5			
		CEBA after CLKBA↑	1.5			

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (normal mode) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	МАХ	UNIT
f _{max}				175			MHz
^t PLH	٨	P	Slow	4.2	5.6	7.1	20
^t PHL	A	D	SIOW	3	4.4	6.3	115
^t PLH	٨	D	Foot	3	4.3	5.7	20
^t PHL	A	D	Fasi	2.6	3.8	5.3	115
^t PLH		D	Slow	4.6	6.1	7.7	20
^t PHL	LEAD	D	510W	3.3	4.7	6.5	115
^t PLH		P	Foot	3.4	4.8	6.2	20
^t PHL	LEAD	D	Fasi	3	4.2	5.7	115
^t PLH		D	Clow	4.7	6.2	7.7	
^t PHL	ULKAD	D	SIOW	3.2	4.7	6.4	ns
^t PLH		D	Foot	3.5	4.9	6.2	
^t PHL	CLKAB	D	Fast	2.9	4.2	5.6	ns
t _{en}			Slow	3	4.6	6.5	20
^t dis	UEAB	D	SIOW	4.6	6	7.5	115
t _{en}		Foot	2.7	4.1	5.6	20	
^t dis	OEAB	D	Fasi	3.4	4.8	6.2	ns
+		Slow		2.5		20	
ч	Rise tille, B outp	uis (20% to 80%)	Fast	1.3			ns
	Foll time. Disutes	ute (80% to 20%)	Slow		3.3		
lf .	Fail time, b outpu	uis (80% io 20%)	Fast		2.5		ns
^t PLH	P	٨		1.3	2.9	4.6	20
^t PHL	D	A		1.6	3	4.2	115
^t PLH		٨		1.5	3.2	4.6	
^t PHL	LEBA	A		1.5	3	3.9	ns
^t PLH		٨		1.5	3.3	4.8	
^t PHL	ULNDA	A		1.5	3	4.2	ns
t _{en}		٨		1.2	2.5	5	
^t dis	OEBA	A		2.3	3.8	5.5	ns

† Slow (ERC = GND) and Fast (ERC = V_{CC})

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

SN74GTLPH1612 18-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE UNIVERSAL BUS TRANSCEIVER

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

SN74GTLPH1612 18-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE UNIVERSAL BUS TRANSCEIVER

SCES287D - OCTOBER 1999 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
^t PLH	٨	Р	Slow	5.3	
^t PHL	A	В	510W	5.3	ns
^t PLH	٨	P	Fact	4	200
^t PHL	A	в	Fasi	4	115
^t PLH	LEAR	в	Slow	5.2	ne
^t PHL	LEAD	D	5100	5.2	ns
^t PLH	LEAR	в	Fact	3.9	ne
^t PHL	LEAD	Ъ	1 451	3.9	115
^t PLH	СГК	в	Slow	5.5	ns
^t PHL	OER	Ъ	5100	5.5	
^t PLH	СГК	в	Fact	4.3	ne
^t PHL	OER	В	1 451	4.3	115
t _{en}		в	Slow	5.7	ns
^t dis	OLAB	Б	0100	4.3	115
t _{en}		в	Fact	4.3	ne
^t dis	OLAB	Ь	1 451	3.8	115
t	Rise time Bouto	ute (20% to 80%)	Slow	2	ne
ч	Rise time, B outputs (20% to 80%)		Fast	1.2	115
te	Fall time, B outpu	ute (80% to 20%)	Slow	2.5	
۲.	Fail time, b outputs (80% to 20%)		Fast	1.8	115

[†] Slow ($\overline{\text{ERC}}$ = GND) and Fast ($\overline{\text{ERC}}$ = V_{CC}) [‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

		50E53460- JAN	JART 2001 - REVISED AUGU
•	Member of Texas Instruments' Widebus™	DGG PA	ICKAGE
	Family	(TOP	VIEW)
•	UBT™ Transceiver Combines D-Type	OEAB[1	64 CEAB
	Latches and D-Type Flip-Flops for	LEAB[2	63 CLKAB
	Operation in Transparent, Latched,	A1[3	62 B1
	Clocked, or Clock-Enabled Modes	A2]4	61 B2
•	TI-OPC™ Circuitry Limits Ringing on	GND[5	60 GND
	Unevenly Loaded Backplanes	A3[6	59 B3
•	OEC™ Circuitry Improves Signal Integrity	V _{CC} [7	58] BIAS V _{CC}
	and Reduces Electromagnetic Interference	A4[8	57] B4
•	Bidirectional Interface Between GTLP	A5[] 9	56 B5
	Signal Levels and LVTTL Logic Levels	GND[] 10	55 GND
•	GTLP Buffered CLKAB Signal (CLKOUT)	A6 11	54 B6
	LVTTL Interfaces Are 5-V Tolerant	A7 12	53 B7
•	High-Drive GTLP Outputs (100 mA)	A8[] 13 GND[] 14	52 B8 51 GND
•	Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads	A9[[15 V _{CC} []16 A10[]17 GND[]18 A11[]19	49 V _{CC} 48 B10 47 GND 46 B11
•	I _{off} , Power-Up 3-State, and BIAS V _{CC}	A12[20	45 B12
	Support Live Insertion	GND[21	44 GND
•	Bus Hold on A-Port Data Inputs Distributed V _{CC} and GND Pins Minimize	A13[22 A14[23 GND[24	43 B13 42 B14 41 GND
•	Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II	A15[]25 V _{CC} []26 A16[]27	40 B15 39 V _{REF} 38 B16
•	ESD Protection Exceeds JESD 22	ERC 28	37 GND
	– 2000-V Human-Body Model (A114-A)	A17 29	36 B17
	– 200-V Machine Model (A115-A)	CLKIN 30	35 CLKOUT
	- 1000-V Charged-Device Model (C101)	OEBA 31 LEBA 32	34 CLKBA 33 CEBA

description

The SN74GTLPH1616 is a high-drive, 17-bit UBTTM transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It allows for transparent, latched, clocked, or clock-enabled modes of data transfer. Additionally, it provides for a copy of CLKAB at GTLP signal levels (CLKOUT) and conversion of a GTLP clock to LVTTL logic levels (CLKIN). The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω .

OEC, TI, TI-OPC, UBT, and Widebus are trademarks of Texas Instruments.

ST 2001

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

description (continued)

GTLP is the Texas Instruments (TI™) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH1616 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{RFF} = 0.8$ V) or GTLP $(V_{TT} = 1.5 \text{ V and } V_{RFF} = 1 \text{ V})$ signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the reference input voltage for the B port.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry is provided to hold unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (OE) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
$-40^{\circ}C$ to $85^{\circ}C$	TSSOP – DGG	Tape and reel	SN74GTLPH1616DGGR	GTLPH1616	

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SN74GTLPH1616 17-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE UNIVERSAL BUS TRANSCEIVER WITH BUFFERED CLOCK OUTPUTS SCES346C- JANUARY 2001 - REVISED AUGUST 2001

functional description

The SN74GTLPH1616 is a high-drive (100 mA), 17-bit UBT transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent, latched, clocked, or clock-enabled modes and can replace any of the functions shown in Table 1. Data polarity is noninverting.

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT	18 BIT			
Transceiver	'245, '623, '645	'863	'861	'16245, '16623	'16863			
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541	'16825			
Latched transceiver	'543			'16543	'16472			
Latch	'373, '573	'843	'841	'16373	'16843			
Registered transceiver	'646, '652			'16646, '16652	'16474			
Flip-flop	'374, '574		'821	'16374				
Standard UBT					'16500, '16501			
Universal bus driver					'16835			
Registered transceiver with clock enable	'2952			'16470, '16952				
Flip-flop with clock enable	'377	'823			'16823			
Standard UBT with clock enable					'16600, '16601			
SN74GTLPH1616 UBT transceiver replaces all above functions								

Table 1. SN74GTLPH1616 UBT Transceiver Replacement Functions

Additionally, the device allows for transparent conversion of CLKAB-to-GTLP signal levels (CLKOUT) and CLKOUT-to-LVTTL logic levels (CLKIN).

Data flow in each direction is controlled by clock enables (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA), and output enables (OEAB and OEBA). CEAB and CEBA enable all 17 bits, and OEAB and OEBA control the 17 bits of data and the CLKOUT/CLKIN buffered clock path for the A-to-B and B-to-A directions, respectively.

For A-to-B data flow, when CEAB is low, the device operates on the low-to-high transition of CLKAB for the flip-flop and on the high-to-low transition of LEAB for the latch path, i.e., if CEAB and LEAB are low, the A data is latched regardless of the state of CLKAB (high or low) and if LEAB is high, the device is in transparent mode. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to A to B, except CEBA, OEBA, LEBA, and CLKBA are used.

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

Function Tables

	COTT OT ENABLE!							
		INPUTS		OUTPUT	MODE			
CEAB	OEAB	LEAB	CLKAB	Α	В	MODE		
Х	Н	Х	Х	Х	Z	Isolation		
L	L	L	Н	Х	в ₀ ‡	Latabad storage of A data		
L	L	L	L	Х	в ₀ §	Laterieu storage of A data		
Х	L	Н	Х	L	L			
х	L	Н	Х	Н	н	inde transparent		
L	L	L	\uparrow	L	L	Clocked storage of A date		
L	L	L	\uparrow	Н	н	CIUCKED SIDIAGE OF A DATA		
Н	L	L	Х	Х	B0§	Clock inhibit		

OUTPUT ENABLET

[†]A-to-B data flow is shown: B-to-A data flow is similar, but uses CEBA, OEBA, LEBA, and CLKBA. The condition when OEAB and OEBA are both low at the same time is not recommended.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

§ Output level before the indicated steady-state input conditions were established

	INPUTS			OPERATION OR	MODE	
CE	LE	OEAB	OEBA	FUNCTION	MODE	
Х	Х	Н	Н	Z	Isolation	
Х	Х	L	Н	CLKAB to CLKOUT	True deleyed cleak signal	
Х	Х	Н	L	CLKOUT to CLKIN	The delayed clock signal	
х	Х	L	L	CLKAB to CLKOUT, CLKOUT to CLKIN	True delayed clock signal with feedback path¶	

BUFFERED CLOCK

This condition is not recommended.

B-PORT EDGE-RATE CONTROL (ERC)

INPU	JT ERC	OUTPUT	
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE	
L	GND	Slow	
н	Vcc	Fast	

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

logic diagram (positive logic)

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A-port, ERC, and control inputs	0.5 V to 4.6 V 0.5 V to 7 V
B port and V _{REF}	–0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1): A port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	200 mA
Current into any A port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Package thermal impedance, θ_{IA} (see Note 3)	55°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_{O} > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
\/	Termination voltage	GTL	1.14	1.2	1.26	V	
vtt	Termination voltage	GTLP	1.35	1.5	1.65	v	
\/	Deference veltage	GTL	0.74	0.8	0.87	N/	
VREF	Reference voltage	GTLP	0.87	1	1.1	V	
M		B port			VTT	V	
vI	input voltage	Except B port		VCC	5.5	V	
VIH	High-level input voltage	B port	V _{REF} +0.05				
		ERC	VCC-0.6	VCC	5.5	V	
		Except B port and ERC	2				
	Low-level input voltage	B port			V _{REF} -0.05		
VIL		ERC		GND	0.6	V	
		Except B port and ERC			0.8		
IIK	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
le:		A port			24		
IOL	Low-level output current	B port			100	ma	
Δt/Δv	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V	
Т _А	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS $V_{CC} = 3.3$ V first, I/O second, and $V_{CC} = 3.3$ V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

7. V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT}>0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES346C-JANUARY 2001 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = −100 μA	V _{CC} -0.2			
VOH	A port		I _{OH} = -12 mA	2.4			V
		VCC = 3.15 V	I _{OH} = -24 mA	2			
		$V_{CC} = 3.15 V$ to 3.45 V,	I _{OL} = 100 μA			0.2	
	A port	Voc - 2 15 V	I _{OL} = 12 mA			0.4	
Ve		VCC = 5.15 V	I _{OL} = 24 mA			0.5	V
VOL			I _{OL} = 10 mA			0.2	v
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
lj –	Control inputs	$V_{CC} = 3.45 V,$	$V_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μA
. +	A port	V _{CC} = 3.45 V	AO = ACC			10	•
IOZH [∓]	B port		V _O = 1.5 V			10	μΑ
I _{OZL} ‡	A and B ports	V _{CC} = 3.45 V,	V _O = GND			-10	μA
I _{BHL} §	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μA
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μA
IBHLO#	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	500			μA
Івнно	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μA
		$V_{CC} = 3.45 V. _{O} = 0.$	Outputs high			45	
ICC	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			45	mA
		VI (B port) = V _{TT} or GND	Outputs disabled			45	
ΔlCC☆		V_{CC} = 3.45 V, One A-port or control input at V_{CC} – 0.6 V, Other A-port or control inputs at V_{CC} or GND				1.5	mA
Ci	Control inputs	V _I = 3.15 V or 0			4	5.5	pF
C.	A port	V _O = 3.15 V or 0			6.5	8	~ Г
Cio	B port or CLKOUT	V _O = 1.5 V or 0			9.5	11.5	рг
Co	CLKIN	V _O = 3.15 V or 0			4.5	5.5	pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameters I_{OZH} and I_{OZL} include the input leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to VCC and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

* This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μA

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS					UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 1.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μA
	$V_{CC} = 0$ to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{0} (P port) – 0 to 1 5 V		5	mA
	V_{CC} = 3.15 V to 3.45 V	DIAS VCC = 3.15 V t0 3.45 V,	VO(B poil) = 0 to 1.5 V		10	μA
VO	$V_{CC} = 0,$	BIAS V _{CC} = 3.3 V	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μA

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (normal mode) (unless otherwise noted)

			MIN	MAX	UNIT	
fclock	Clock frequency			175	MHz	
+	Pulse duration	LEAB or LEBA high	3		20	
١w	Fulse duration	CLKAB or CLKBA high or low	3		115	
		A before CLKAB↑	2.2			
		B before CLKBA↑	2.4			
	Setup time	A before LEAB \downarrow , CLK = Don't care	1.8		20	
^t su		B before LEBA↓, CLK = Don't care	2.1		ns	
		CEAB before CLKAB↑	1.5			
		CEBA before CLKBA↑	1.5			
		A after CLKAB↑	0.7			
		B after CLKBA↑	0.5			
		A after LEAB↓, CLK = Don't care	1.2			
ι'n	Hold time	B after LEBA↓, CLK = Don't care	0.9		ns	
		CEAB after CLKAB↑	1.5			
		CEBA after CLKBA↑	1.5			

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (normal mode) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	МАХ	UNIT
f _{max}				175			MHz
^t PLH	•	P	Clow	4.3	5.6	7.1	
^t PHL		В	SIOW	3.2	4.6	6.4	ns
^t PLH	•	P	Foot	3.2	4.3	5.6	20
^t PHL	A	Б	Fasi	2.7	3.9	5.3	ns
^t PLH		P	Clow	4.8	6.2	7.8	
^t PHL	LEAD	Б	SIOW	3.5	4.9	6.7	ns
^t PLH		P	Foot	3.5	4.8	6.2	20
^t PHL	LEAD	В	Fasi	3.1	4.3	5.8	115
^t PLH	CLKAR	P	Slow	4.8	6.1	7.6	20
^t PHL	CLKAB	Б	510W	3.5	4.8	6.6	ns
^t PLH	CLIKAD	P	Foot	3.6	4.9	6.2	
^t PHL	CLKAB	Б	Fasi	3.1	4.3	5.7	ns
^t PLH	CLKAR	CLKOUT	Slow	5.5	6.9	8.5	20
^t PHL	CLKAD	CLROUT	SIOW	5.5	7	9.3	115
^t PLH	CLKAR	CLKOUT	Foot	4	5.3	6.7	ns
^t PHL	CLKAD	CLKOUT	Fasi	4.4	5.8	7.6	115
^t en			Clow	4.8	6.2	7.8	
^t dis	OEAB	BUICEROUT	SIOW	3.4	5.2	7.8	115
^t en			Foot	3.6	4.8	6.2	
^t dis	UEAB	BUICEROUT	Fasi	3	4.4	6.1	115
+	Dias time. P outp				2.5		20
۲	Rise line, b oup		Fast		1.4		115
+*	Fall time B outpu	utc (80% to 20%)	Slow		3.3		200
Ч			Fast		2.4		115
^t PLH	B	٨		1.1	2.8	4.3	200
tPHL	В	~	_	1.9	3.1	4.1	115
^t PLH		٨		1.3	3.1	4.6	20
^t PHL	LEDA	A	—	1.4	2.6	3.8	115
^t PLH	CLKBA	٨		1.3	3.3	4.8	200
^t PHL	CLRBA	~	_	1.8	2.9	4.1	115
^t PLH	CLKOUT			2.2	3.7	5.3	200
tPHL				2.7	3.9	5.1	IIS IIS
ten	OEBA			1.2	2.9	4.8	200
^t dis			_	2.3	4	5.5	ns

[†]Slow ($\overline{\text{ERC}}$ = GND) and Fast ($\overline{\text{ERC}}$ = V_{CC})

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. $C_{\mbox{L}}$ includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (see Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

SCES346C- JANUARY 2001 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
^t PLH	٨	P	Slow	5.3	200
^t PHL	A	D	SIOW	5.3	115
^t PLH	۵	в	Fast	4	ne
^t PHL	A	В	rasi	4	115
^t PLH	LEAR	в	Slow	5.2	ne
^t PHL	LEAD	В	3100	5.2	115
^t PLH	LEAR	в	Fact	3.9	ne
^t PHL	LLAD	В	rasi	3.9	115
^t PLH		P	Slow	5.5	200
^t PHL	OLK	В	SIOW	5.5	115
^t PLH		P	Fact	4.3	ns
^t PHL	ULK	D	Fasi	4.3	
^t PLH		CLKOUT	Slow	5.9	200
^t PHL	CERAB	CEROUT	SIOW	5.9	115
^t PLH		CLKOUT	Foot	4.8	20
^t PHL	ULKAD	CLKOUT	Fasi	4.8	115
t _{en}			Slow	5.7	20
^t dis	OEAB	BUICLKUUT	SIOW	4.3	115
t _{en}			Fact	4.3	200
^t dis	UEAD	BUICEROUT	rasi	3.8	115
t.	Rise time Bouto	uts (20% to 80%)	Slow	2	ns
ч			Fast	1.2	
+.	Foll time Route	uto (80% to 20%)	Slow	2.5	20
ч Ч		uis (00 /0 10 20 /0)	Fast	1.8	ns

[†] Slow (ERC = GND) and Fast (ERC = V_{CC}) [‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B – JUNE 2001 – REVISED SEPTEMBER 2001

GND 128

A18 🛛 30

A17 29

CLKOUT 31

CKOE 32

37 🛛 GND

35 🛛 B18

I SSCLK

33 SYSCLK

36 **I** B17

34

 Member of the Texas Instruments Widebus™ Family 	DGG PACK (TOP VIE	(AGE :W)
 TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes 		
 OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference 	A1 [] 3 A2 [] 4	32 B1 61 B2
 Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels 	GND [5 A3 [6	50 GND 59 B3
 GTLP Buffered SYSCLK Signal (SSCLK) for Source Synchronous Applications 	V _{CC} [7 A4 [8	58] ERC 57] B4
LVTTL Interfaces Are 5-V Tolerant	A5 9 CMS 10	56 B5 55 VREE
 High-Drive GTLP Outputs (100 mA) LVTTL Outputs (-24 mA/24 mA) 	A6 [11 GND [12	54 B6 53 GND
 GTLP Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal 	A7 [] 13 A8 [] 14	52 B7 51 B8
Integrity in Distributed Loads	A9 [] 15	50 B9 49 Voo
Support Live Insertion	A10[17	
 Bus Hold on A-Port Data inputs Distributed V_{CC} and GND Pins Minimize 	A11 [19	46 B11
High-Speed Switching Noise	GND [21	44 GND
description	A13[22 A14[23	42 B14
The SN74GTLPH1627 is a high-drive, 18-bit bus	A15 25	
GTLP-to-LVTTL signal-level translation. The	V _{CC} Ц ²⁶ А16П27	³⁹ ^V CC 38 B16

output and data output to be minimized for optimum maximum-frequency system performance. In order to reduce this skew, aflexible setup time adjustment (FSTA) feature is incorporated into the device that sets a predetermined delay between the clock and data. The CMS and direction (DIR) inputs control the mode of the device. The system clock (SYSCLK) and CLKOUT pins are LVTTL compatible, while the source synchronous I/O is GTLP compatible. The benefits include compensation for output-to-output skew coming from the driver itself, and compensation for process skew if more than one driver is used. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC[™] circuitry, and TI-OPC[™] circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω.

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments.

device allows for transparent and latched modes

of data transfer. Additionally, with the use of the

clock-mode select (CMS) input, the device can be

used in source synchronous and clock

synchronous applications. Source synchronous

applications require the skew between the clock

SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

description (continued)

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH1627 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{RFF} = 0.8 V) or GTLP (V_{TT} = 1.5 V and V_{RFF} = 1 V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, Texas Instruments GTLP Frequently Asked Questions, literature number SCEA019, and GTLP in BTL Applications, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{RFF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS V_{CC}. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACK	AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	TSSOP – DGG	Tape and reel	SN74GTLPH1627DGGR	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH1627 is a high-drive (100 mA), 18-bit bus transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent or latched modes and can replace any of the functions shown in Table 1. Data polarity is noninverting.

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT	18 BIT				
Transceiver	'245, '623, '645	'863	'861	'16245, '16623	'16863				
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541	'16825				
Latched transceiver	'543			'16543	'16472				
Latch	'373, '573	'573 '843 '841 '16373		'16373	'16843				
SN74G	SN74GTLPH1627 bus transceiver replaces all above functions								

Fable	1. SN74GTL	.PH1627 E	Bus 1	Fransceiver	Rep	placement	Functions
					-		

Additionally, the device allows for conversion of the system clock (SYSCLK) to GTLP signal levels (SSCLK) and LVTTL signal levels (CLKOUT). It also provides conversion of a GTLP source synchronous clock to LVTTL signal levels (CLKOUT).

The device allows for conversion of the LVTTL system clock (SYSCLK) to GTLP (SSCLK) and LVTTL (CLKOUT) signal levels when used as the transmitter and GTLP source synchronous clock (SSCLK) to LVTTL (CLKOUT) signal levels when used as the receiver in source synchronous applications. Source synchronous operation removes time-of-flight restrictions and allows for increased data throughput. CMS is used to switch between system synchronous mode and clock synchronous mode. The clock output-enable (CKOE) input is used to switch between latched and transparent mode.

Data flow in each direction is controlled by \overline{CKOE} , clock (SYSCLK or SSCLK), direction (DIR), and \overline{OE} . \overline{OE} controls the 18 bits of data. The CLKOUT/SSCLK buffered clock path for the A-to-B and B-to-A directions is controlled by \overline{CKOE} . In the data isolation mode (\overline{OE} high, \overline{CKOE} low), A data may be stored in one register and/or B data may be stored in the other register.

SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B – JUNE 2001 – REVISED SEPTEMBER 2001

logic diagram (positive logic)

To Seventeen Other Channels

SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

Function Tables

					A	-IO-B DIRE	CTION		-		
	INPUTS				OUTPUTS			NODE			
CKOE	OE	CMS	DIR	SYSCLK	Α	SSCLK	CLKOUT	В	MODE		
L	L	Х	L	H or L	Х	SYSCLK	SYSCLK	B ₀	Latched storage of A		
L	L	Х	L	\uparrow	L	SYSCLK	SYSCLK	L	Clocked storage of A	Source synchronous	
L	L	Х	L	\uparrow	Н	SYSCLK	SYSCLK	Н	Clocked Storage of A		
L	Н	Х	L	Х	Х	SYSCLK	SYSCLK	Z	Data isolation		
Н	L	Х	L	Х	L	Z	Z	L	Transportant transp	mination of A	
Н	L	Х	L	Х	Н	Z	Z	Н	transparent transf	hission of A	
Н	Н	Х	Х	Х	Х	Z	Z	Z	Isolation	า	
L	Н	Н	Х	\uparrow	Х	SYSCLK	SYSCLK	Z	Transmit 0X00LK		
L	Н	Н	Х	H or L	Х	SYSCLK	SYSCLK	Z	Transmit S f	JULN	

B-TO-A DIRECTION

			INPUT	ſS			C	OUTPUTS		MODE		
CKOE	OE	CMS	DIR	SYSCLK	SSCLK	В	SSCLK	CLKOUT	Α			
L	L	L	Н	Х	H or L	Х	Input	SSCLK	A ₀	Latched storage of B		
L	L	L	Н	Х	\uparrow	L	Input	SSCLK	L	Clocked storage of P	Source	
L	L	L	Н	Х	\uparrow	Н	Input	SSCLK	Н	CIOCKED SIDIAGE OF B	synomonous	
L	Н	L	Н	Х	Х	Х	Input	SSCLK	Z	Data isolat	ion	
L	L	Н	Н	H or L	Output	Х	SYSCLK	SYSCLK	A ₀	Latched storage of B		
L	L	Н	Н	\uparrow	Output	L	SYSCLK	SYSCLK	L	Clocked storage of P	Clock	
L	L	Н	Н	\uparrow	Output	Н	SYSCLK	SYSCLK	Н	CIOCKED SIDIAGE OF B	synchronous	
L	Н	Н	Н	Х	Output	Х	SYSCLK	SYSCLK	Z	Data isolat	ion	
Н	L	Х	Н	Х	Output	L	Z	Z	L		ningion of P	
Н	L	Х	Н	Х	Output	Н	Z	Z	Н	Transparent transf		
Н	Н	Х	Х	Х	Output	Х	Z	Z	Z	Isolation		
L	Н	L	Х	Х	\uparrow	Х	Input	SSCLK	Z	Boooive SS		
L	Н	L	Х	Х	H or L	Х	Input	SSCLK	Z	Receive 55	ULN	

OUTPUT EDGE-RATE CONTROL (ERC)

INPUT ERC LOGIC LEVEL	OUTPUT B-PORT EDGE RATE
Н	Slow
L	Fast

SN74GTLPH1627 **18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER** WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS

SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A-port and control inputs B port and V _{REF}	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 4.6 V
(see Note 1): A port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	200 mA
Current into any A-port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ_{JA} (see Note 3)	55°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74GTLPH1627 **18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER** WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS

SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
	Termination voltage	GTL	1.14	1.2	1.26	V	
VII	Termination voltage	GTLP	1.35	1.5	1.65	v	
Vacc	Poforonco voltago	GTL	0.74	0.8	0.87	V	
VREF	Neletence voltage	GTLP	0.87	1	1.1	v	
. V.		B port and SSCLK			VTT	V	
٧I	input voltage	Except B port and SSCLK		VCC	5.5		
VIH	High lovel input veltage	B port and SSCLK	V _{REF} +0.05			V	
	nigh-level liiput voltage	Except B port and SSCLK	2			v	
\/		B port and SSCLK			V _{REF} -0.05	V	
۷IL	Low-level input voltage	Except B port and SSCLK			0.8	v	
IK	Input clamp current				-18	mA	
ЮН	High-level output current	A port and CLKOUT			-24	mA	
le:		A port and CLKOUT			24	~ ^	
OL	Low-level output current	B port and SSCLK			100	mA	
Δt/Δv	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔVCC	Power-up ramp rate		20			μs/V	
Т _А	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable but, generally, GND is connected first.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VREF. If operated in the A-to-B direction, VREF should be set to within 0.6 V of VTT to minimize current drain.

SN74GTLPH1627 **18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER** WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

P/	RAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT		
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V	
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2				
VOH	A port and		I _{OH} = -12 mA	2.4			V	
	CERCOT	VCC = 3.15 V	I _{OH} = -24 mA	2				
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2		
	A port and		I _{OL} = 12 mA			0.4		
	OLIVOUT	VCC = 3.15 V	I _{OL} = 24 mA			0.5		
VOL		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	I _{OL} = 100 μA			0.2	V	
	P part and SSCI K		I _{OL} = 10 mA			0.2		
	B port and SSCER	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4		
			I _{OL} = 100 mA			0.55		
Ц	SYSCLK and control inputs	V _{CC} = 3.45 V,	$V_{I} = 0$ to 5.5 V			±10	μA	
. +	B port and SSCLK	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} ,	$V_{O} = 0$ to 2.3 V			±10		
loz∓ (CLKOUT	V _{CC} = 3.45 V,	V _O = 0 to 5.5 V			±10	μΑ	
IOZH‡	A port	V _{CC} = 3.45 V,	AO = ACC			10	μΑ	
I _{OZL} ‡	A port	V _{CC} = 3.45 V,	V _O = GND		-	-10	μA	
IBHL§	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μΑ	
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μΑ	
IBHLO#	A port	V _{CC} = 3.45 V,	$V_{I} = 0$ to V_{CC}	500			μΑ	
І _{ВННО}	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μΑ	
		$V_{CC} = 3.45 V_{10} = 0$	Outputs high			50		
ICC	A port, B port, or	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			50	mA	
	OUDER	V_{I} (B port) = V_{TT} or GND	Outputs disabled			50		
ΔICC☆		V_{CC} = 3.45 V, One A-port or control input at V_{CC} – 0.6 V, Other A-port or control inputs at V_{CC} or GND				1.5	mA	
SYSCLK inputs		V _I = 3.15 V or 0						
Ci	Control inputs	V _I = 3.15 V or 0			-		р⊦	
0	A port $V_0 = 3.15 \text{ V or } 0$						_	
Cio	B port or SSCLK	V _O = 1.5 V or 0					р⊢	
Co	CLKOUT	(O = 3.15 V or 0					pF	

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

[‡] For I/O ports, the parameter I₁ includes the off-state output leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to VCC and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

I An external driver must sink at least IBHHO to switch this node from high to low.

* This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS

SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS				MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_I or $V_O = 0$ to 5.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		MIN	MAX	UNIT		
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 1.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
	$V_{CC} = 0$ to 3.15 V	PIAS V a = 2.15 V to 2.45 V	V_{0} (P part) – 0 to 1 5 V		5	mA
	V_{CC} = 3.15 V to 3.45 V	BIAS VCC = 3.15 V 10 3.45 V,	VO(B poil) = 0 to 1.5 V		10	μA
VO	V _{CC} = 0,	BIAS V _{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	V _{CC} = 0,	BIAS V _{CC} = 3.15 V to 3.45 V,	Vo (B port) = 0.6 V	-1		μA

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT	
^f clock	Clock frequency				MHz	
+	Dulas duration	CKOE high				
١w	Fuise duration	SYSCLK or SSCLK high or low			115	
		A before SYSCLK1				
	Setup time	B before SYSCLK↑ or SSCLK↑			ns	
^ı su		A before CKOE↓				
		B before CKOE↓				
		A after SYSCLK↑				
	Lold time	B after SYSCLK↑ or SSCLK↑				
Γh		A after CKOE↓				
	B after CKOE↓					

SN74GTLPH1627 **18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER** WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS

SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	FSTA	ΜΙΝ ΤΥΡ [‡] ΜΑΧ	UNIT
f _{max}						MHz
^t PLH	^	В	Slow			200
^t PHL	~	В	CIOW			115
^t PLH	Δ	в	Fact	_		ne
^t PHL	~	В	1 850	_		113
^t PLH		в	Slow	_		ns
^t PHL	CKOL	5	CIOW			110
^t PLH		в	Fast	_		ns
^t PHL	ONGE	_				
^t PLH	SYSCLK	В	Slow	_		ns
^t PHL						
^t PLH	SYSCLK	в	Fast	-		ns
^t PHL						
ten	OE	В	Slow	_		ns
tdis						
t _{en}	OE	В	Fast	-		ns
^t dis						
tr	Rise time, B and	I SSCLK outputs	Slow	4 –		ns
	(2076)	0 00 %)	Fast			
tf	Fall time, B and	SSCLK outputs	Slow			ns
t 	(00707		Fasi			
^t PLH	в	A	-	-		ns
tPHL						
	CKOE	А	-	-		ns
	SVSCI K or					
toui	SSCLK	A	-	-		ns
to H	SVSCI K or					
трні	SSCLK	CLKOUT	-	GND		ns
tргн	SYSCI K or					
tрні	SSCLK	CLKOUT	-	Vcc		ns
t _{en}						
tdis	OE	A	-	-		ns
ten		011/01/7				
^t dis		CLKOUT	_	_		ns

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B – JUNE 2001 – REVISED SEPTEMBER 2001

skew characteristics over recommended ranges of supply voltage and operating free-air temperature, $V_{REF} = 1 \text{ V}$ (unless otherwise noted); standard lumped loads, $C_L = 30 \text{ pF}$ for B port (see Figure 1)[†]

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [‡]	FSTA	TEST CONDITIONS	MIN TYP§	МАХ	UNIT
^t sk(LH) [¶] ^t sk(HL) [¶]	SYSCLK	В	Slow	-				ns
tsk(LH) [¶] tsk(HL) [¶]	SYSCLK	В	Fast	_				ns
^t sk(LH) [¶]	SYSCLK	SSCLK + Δ B (see Figure 2)	Slow	GND	$V_{CC} = 3.15 \text{ V}, \text{ T} = 85^{\circ}\text{C}$ $V_{CC} = 3.3 \text{ V}, \text{ T} = 25^{\circ}\text{C}$ $V_{CC} = 3.45 \text{ V}, \text{ T} = -40^{\circ}\text{C}$			ns
^t sk(HL) [¶]	SYSCLK	SSCLK + ΔB (see Figure 2)	Slow	GND	$V_{CC} = 3.15 \text{ V}, \text{T} = 85^{\circ}\text{C}$ $V_{CC} = 3.3 \text{ V}, \text{T} = 25^{\circ}\text{C}$ $V_{CC} = 3.45 \text{ V}, \text{T} = -40^{\circ}\text{C}$			ns
^t sk(LH) [¶]	SYSCLK	SSCLK + ΔB (see Figure 2)	Fast	GND	$V_{CC} = 3.15 \text{ V}, \text{ T} = 85^{\circ}\text{C}$ $V_{CC} = 3.3 \text{ V}, \text{ T} = 25^{\circ}\text{C}$ $V_{CC} = 3.45 \text{ V}, \text{ T} = -40^{\circ}\text{C}$			ns
^t sk(HL) [¶]	SYSCLK	SSCLK + ΔB (see Figure 2)	Fast	GND	$V_{CC} = 3.15 \text{ V}, \text{ T} = 85^{\circ}\text{C}$ $V_{CC} = 3.3 \text{ V}, \text{ T} = 25^{\circ}\text{C}$ $V_{CC} = 3.45 \text{ V}, \text{ T} = -40^{\circ}\text{C}$			ns
^t sk(LH) [¶]	SYSCLK	SSCLK + ΔB (see Figure 2)	Slow	VCC	$V_{CC} = 3.15 \text{ V}, \text{ T} = 85^{\circ}\text{C}$ $V_{CC} = 3.3 \text{ V}, \text{ T} = 25^{\circ}\text{C}$ $V_{CC} = 3.45 \text{ V}, \text{ T} = -40^{\circ}\text{C}$			ns
^t sk(HL) [¶]	SYSCLK	SSCLK + ΔB (see Figure 2)	Slow	Vcc	$V_{CC} = 3.15 \text{ V}, \text{ T} = 85^{\circ}\text{C}$ $V_{CC} = 3.3 \text{ V}, \text{ T} = 25^{\circ}\text{C}$ $V_{CC} = 3.45 \text{ V}, \text{ T} = -40^{\circ}\text{C}$			ns
^t sk(LH) [¶]	SYSCLK	SSCLK + ΔB (see Figure 2)	Fast	Vcc	$V_{CC} = 3.15 \text{ V}, \text{ T} = 85^{\circ}\text{C}$ $V_{CC} = 3.3 \text{ V}, \text{ T} = 25^{\circ}\text{C}$ $V_{CC} = 3.45 \text{ V}, \text{ T} = -40^{\circ}\text{C}$			ns
t _{sk(HL)} ¶	SYSCLK	SSCLK + ΔB (see Figure 2)	Fast	Vcc	$V_{CC} = 3.15 \text{ V}, \text{ T} = 85^{\circ}\text{C}$ $V_{CC} = 3.3 \text{ V}, \text{ T} = 25^{\circ}\text{C}$ $V_{CC} = 3.45 \text{ V}, \text{ T} = -40^{\circ}\text{C}$			ns

[†] Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

 \ddagger Slow (ERC = H) and Fast (ERC = L)

§ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

It $t_{sk(LH)}/t_{sk(HL)}$ and $t_{sk(t)}$ – Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature. The specifications apply to any outputs switching in the same direction, either high to low [$t_{sk(HL)}$], low to high [$t_{sk(LH)}$] or in opposite directions, both low to high and high to low [$t_{sk(t)}$].

SN74GTLPH1627 **18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER** WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

skew characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{REF} = 1 V (unless otherwise noted); standard lumped loads, C_L = 30 pF for B port (see Figure 1) (continued)[†]

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [‡]	FSTA	TEST CONDITIONS	MIN	TYP§	МАХ	UNIT
¶	SVSCIK	P	Slow	-					200
tsk(t) II SY	STOCER	В	Fast	-					115
^t sk(prLH) [#]	SYSCI K	P	Slow						ns
^t sk(prHL) [#]	STOCER	Б	510W	_					115
^t sk(prLH) [#]	SVSCI K	Р	Feet						ne
^t sk(prHL) [#]	STOCER	В	Fast	-					115

[†] Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device. [‡]Slow (ERC = H) and Fast (ERC = L)

§ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

 \P t_{sk(LH)}/t_{sk(HL)} and t_{sk(t)} – Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature. The specifications apply to any outputs switching in the same direction, either high to low [tsk(HL)], low to high [tsk(LH)] or in opposite directions, both low to high and high to low [tsk(t)].

[#]tsk(prLH) or tsk(prHL) – Part-to-part skew is designed as the absolute value of the difference between the actual propagation delay for all outputs from device to device. The parameter is specified for a specific worst-case V_{CC} and temperature. Furthermore, these values are provided by SPICE simulations.

SN74GTLPH1627 **18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER** WITH SOURCE SYNCHRONOUS CLOCK OUTPU SCES356B - JUNE 2001 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. Load circuit for A outputs is also used for CLKOUT; load circuit for B outputs is also used for SSCLK.

Figure 1. Load Circuits and Voltage Waveforms

SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B – JUNE 2001 – REVISED SEPTEMBER 2001

NOTES: A. CL includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.

C. The outputs are measured one at a time with one transition per measurement.

D. Load circuit for B outputs is also used for SSCLK.

Figure 2. Load Circuit and SYSCLK to SSCLK + \triangle B Skew Waveforms

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application is probably a distributed load. The physical representation is shown in Figure 3. This backplane, or distributed load, can be closely approximated to a resistor inductance capacitance (RLC) circuit, as shown in Figure 4. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer to better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 3. High-Drive Test Backplane

Figure 4. High-Drive RLC Network

SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356B – JUNE 2001 – REVISED SEPTEMBER 2001

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	FSTA	түр‡	UNIT
^t PLH			Slow			
^t PHL	۸	P	310W	-		20
^t PLH	~		Fast	_		ns
^t PHL			1 851			
^t PLH			Slow	_		
^t PHL	SYSCLK	B	0.00	_		ns
^t PLH	OTOOLIK		Fast	_		
^t PHL			T dot			
^t PLH			Slow			
^t PHL		Fast	GND			
^t PLH			Fast			ns
^t PHL	SYSCLK					
^t PLH	OTOOLIC	COOLIC	Slow			110
^t PHL			0.00	Vcc		
^t PLH			Fast	VCC		
^t PHL			1 431			
t-	Rise time, B and	SSCLK outputs	Slow	_	1.6	ns
Ч	(20% to	o 80%)	Fast	_	1	115
te	Fall time, B and	SSCLK outputs	Slow	_	1.5	ns
ťf	(80% to 20%)		Fast	_	1.6	115

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SN74GTLPH1645 16-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

 Member of the Texas Instruments Widebus™ Family 	DGG OR DGV PACKAGE (TOP VIEW)
 TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes 	1DIR 1 56 10E 1A1 2 55 1B1
 OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference 	1A2 [] 3 54 [] 1B2 GND [] 4 53 [] GND
 Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels 	1A3 [5 52] 1B3 1A4 [6 51] 1B4
 LVTTL Interfaces Are 5-V Tolerant High-Drive GTLP Outputs (100 mA) 	V _{CC} []7 50] V _{CC} GND []8 49] GND
 LVTTL Outputs (-24 mA/24 mA) 	1A5 0 9 48 0 1B5 1A6 0 10 47 0 1B6
 Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal 	GND 11 46 GND 1A7 12 45 1B7
Integrity in Distributed Loads	1A8 [13 44] 1B8 GND [14 43] BIAS V _{CC}
• I _{off} , Power-Up 3-State, and BIAS V _{CC} Support Live Insertion	ERC [15 42] V _{REF} 2A1 [16 41] 2B1
 Bus Hold on A-Port Data Inputs Distributed V_{CC} and GND Pins Minimize 	2A2 U 17 40 U 2B2 GND U 18 39 U GND
 High-Speed Switching Noise Latch-Up Performance Exceeds 100 mA Per 	2A3 [] 19 38 [] 2B3 2A4 [] 20 37]] 2B4
JESD 78, Class II	$V_{CC} \begin{bmatrix} 22 & 35 \end{bmatrix} V_{CC}$
description	2A5 [] 23 34 [] 2B5 2A6 [] 24 33 [] 2B6
transceiver that provides LVTTL-to-GTLP and	2A7 [26 31] 2B7
GILP-to-LVIIL signal-level translation. It is partitioned as two 8-bit transceivers. The device	2A8 ∐27 30 ∐2B8 2DIR [28 29] 2OE

provides a high-speed interface between cards operating at LVTTL logic levels and a backplane opera

operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω .

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH1645 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments

SN74GTLPH1645 16-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

description (continued)

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (\overline{ERC}). Changing the \overline{ERC} input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

GQL PACKAGE (TOP VIEW)

terminal assignments

	1	2	3	4	5	6
A	1A2	1A1	1DIR	1 <mark>0E</mark>	1B1	1B2
в	1A4	1A3	GND	GND	1B3	1B4
С	1A5	GND	VCC	V _{CC}	GND	1B5
D	1A7	1A6	GND	GND	1B6	1B7
E	GND	1A8			1B8	$BIASV_{CC}$
F	ERC	2A1			2B1	V _{REF}
G	2A2	2A3	GND	GND	2B3	2B2
н	2A4	GND	VCC	VCC	GND	2B4
J	2A5	2A6	GND	GND	2B6	2B5
к	2A7	2A8	2DIR	2OE	2B8	2B7

ORDERING INFORMATION

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74GTLPH1645DGGR	GTLPH1645
	TVSOP – DGV	Tape and reel	SN74GTLPH1645DGVR	GL45
	VFBGA – GQL	Tape and reel	SN74GTLPH1645GQLR	GL45

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH1645 is a high-drive (100 mA), 16-bit bus transceiver partitioned as two 8-bit segments and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. \overline{OE} can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.

For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to A to B, except \overline{OE} and DIR are low.

Function Tables

		OUTFUT CONTRO	
INP	UTS		MODE
OE	DIR	001201	WODE
Н	Х	Z	Isolation
L	L	B data to A port	True transporent
L	Н	A data to B port	riue transparent

OUTPUT CONTROL

B-PORT EDGE-RATE CONTROL (ERC)

INPUT ERC		OUTPUT
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE
L	GND	Slow
н	Vcc	Fast

SN74GTLPH1645 16-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

logic diagram (positive logic)

To Seven Other Channels

Pin numbers shown are for the DGG and DGV packages.

SN74GTLPH1645 16-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} 0.5 V Input voltage range, V _I (see Note 1): A port, ERC, and control inputs0.5 V B port and V _{REF}	/ to 4.6 V 5 V to 7 V / to 4.6 V		
Voltage range applied to any output in the high-impedance or power-off state, V _O			
(see Note 1): A port	V to 7 V		
B port	/ to 4.6 V		
Current into any output in the low state, I _O : A port	. 48 mA		
B port	200 mA		
Current into any A port output in the high state, I _O (see Note 2)	. 48 mA		
Continuous current through each V _{CC} or GND	±100 mA		
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA		
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA		
Package thermal impedance, θ_{IA} (see Note 3): DGG package	64°C/W		
	48°C/W		
	42°C/W		
Storage temperature range, T _{stg} –65°C	to 150°C		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V
\/	Termination voltage	GTL	1.14	1.2	1.26	V
VTT	Termination voltage	GTLP	1.35	1.5	1.65	v
\/		GTL	0.74	0.8	0.87	V
VREF	Relefence voltage	GTLP	0.87	1	1.1	V
M.		B port			V _{TT}	V
V	Input voltage	Except B port		VCC	5.5	V
VIH	High-level input voltage	B port	V _{REF} +0.05			V
		ERC	VCC-0.6	VCC	5.5	
		Except B port and ERC	2			
	Low-level input voltage	B port			V _{REF} -0.05	
VIL		ERC		GND	0.6	V
		Except B port and ERC			0.8	
ΙK	Input clamp current				-18	mA
ЮН	High-level output current	A port			-24	mA
1		A port			24	
IOL	Low-level output current	B port			100	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V
Тд	Operating free-air temperature		-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS $V_{CC} = 3.3$ V first, I/O second, and $V_{CC} = 3.3$ V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

 V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

TEST CONDITIONS TYP[†] PARAMETER MIN MAX UNIT $I_{I} = -18 \text{ mA}$ -1.2 V VIK $V_{CC} = 3.15 V,$ V_{CC} = 3.15 V to 3.45 V, $I_{OH} = -100 \ \mu A$ V_{CC}-0.2 $I_{OH} = -12 \text{ mA}$ 2.4 V ∨он A port VCC = 3.15 V $I_{OH} = -24 \text{ mA}$ 2 $I_{OI} = 100 \,\mu A$ 0.2 V_{CC} = 3.15 V to 3.45 V, A port 0.4 IOL = 12 mA V_{CC} = 3.15 V 0.5 $I_{OI} = 24 \text{ mA}$ V VOL 0.2 $I_{OI} = 10 \text{ mA}$ 0.4 B port V_{CC} = 3.15 V $I_{OL} = 64 \text{ mA}$ $I_{OI} = 100 \text{ mA}$ 0.55 $V_{I} = 0 \text{ or } 5.5 \text{ V}$ ±10 Ιį Control inputs V_{CC} = 3.45 V, μΑ VO = VCC10 A port μΑ V_{CC} = 3.45 V IOZH[‡] V_O = 1.5 V B port 10 1071 A and B ports V_{CC} = 3.45 V, $V_0 = GND$ -10 μΑ IBHL§ A port V_{CC} = 3.15 V, $V_{I} = 0.8 V$ 75 μΑ $V_I = 2 V$ -75 I_{BHH}¶ A port V_{CC} = 3.15 V, μΑ $V_I = 0$ to V_{CC} ^IBHLO[#] A port V_{CC} = 3.45 V, 500 μA ^Івнно^{||} V_{CC} = 3.45 V, $V_I = 0$ to V_{CC} -500 A port μΑ Outputs high 40 $V_{CC} = 3.45 \text{ V}, \text{ I}_{O} = 0,$ A or B port V_{I} (A or control input) = V_{CC} or GND, Outputs low 40 ICC mΑ VI (B port) = VTT or GND 40 Outputs disabled $V_{CC} = 3.45$ V, One A-port or control input at $V_{CC} = 0.6$ V, 1.5 mΑ ∆ICC☆ Other A or control inputs at V_{CC} or GND Ci Control inputs $V_{I} = 3.15 V \text{ or } 0$ 4 5 pF A port $V_{O} = 3.15 \text{ V or } 0$ 6.5 7.5 Cio pF B port $V_{O} = 1.5 V \text{ or } 0$ 9.5 11

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] For I/O ports, the parameters I_{OZH} and I_{OZL} include the input leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and _ then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH}min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH}min.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 * This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μA
IOZPU	V _{CC} = 0 to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μĀ

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS					UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 1.5 \text{ V}$		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V} \text{ to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μA
	$V_{CC} = 0$ to 3.15 V	PIAS / a = 2.15 / to 2.45 /	V_{0} (P port) – 0 to 1.5 V		5	mA
	$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V}$	BIAS VCC = 3.15 V to 3.45 V,	vO (В роп) = 0 ю 1.5 v		10	μA
VO	$V_{CC} = 0,$	BIAS $V_{CC} = 3.3 V$,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS $V_{CC} = 3.15$ V to 3.45 V,	$V_O (B \text{ port}) = 0.6 \text{ V}$	-1		μA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	MAX	UNIT
^t PLH	٨	P	Slow	3.9		7.2	20
^t PHL	A	D	310W	3.1		8.4	115
^t PLH	٨	R	Fact	2.6		5.7	200
^t PHL	A	D	Fasi	2.1		5.8	115
t _{en}		B	Slow	4.1		7.3	200
^t dis	ÛE	D	310W	4		9.4	115
^t en		В	Fast	2.9		5.9	ne
^t dis	UE		1 431	4		6.9	115
+	Rise time Bouto	ute (20% to 80%)	Slow		3		ne
۲	Kise time, b outp			1.5		115	
+	Fall time, R outpu	1 = (80% = 20%)	Slow	4			200
Ч	Fair time, B outpu		Fast	Fast 2.5			115
^t PLH	В	٨		0.5		6.7	200
^t PHL	в	A	_	1.2		4.5	115
ten		A		1.1		6.3	ns
^t dis	UE		_	1.7		5.1	

[†] Slow ($\overline{\text{ERC}}$ = GND) and Fast ($\overline{\text{ERC}}$ = V_{CC})

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

 $\mathsf{D}.\;\;\mathsf{The}\;\mathsf{outputs}\;\mathsf{are}\;\mathsf{measured}\;\mathsf{one}\;\mathsf{at}\;\mathsf{a}\;\mathsf{time}\;\mathsf{with}\;\mathsf{one}\;\mathsf{transition}\;\mathsf{per}\;\mathsf{measurement}.$

Figure 1. Load Circuits and Voltage Waveforms

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

switching	characteristics	over recomme	ended ranges	of supply	voltage and	operating	free-air
temperatu	re, V _{TT} = 1.5 V a	and $V_{REF} = 1 V$	for GTLP (see	e Figure 3)	C C		

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
^t PLH	٨	P	Slow	4.9	20
^t PHL	A	D	510W	4.9	115
^t PLH	٨	В	Fact	3.7	200
^t PHL	~	D	Fasi	3.7	115
t _{en}		В	Slow	5.1	ns
^t dis	UE		310W	5.4	
t _{en}		р	Fact	4.1	200
^t dis	UE	d	Fasi	4.1	115
+	Diag time, Plaute	(200/ to 800/)	Slow	2	
۲	Rise time, B outp	Fast	1.2	115	
t.	Fall time, Bouter	ute (80% to 20%)	Slow	2.5	200
Ч	Fall time, B outputs (80% to 20%)		Fast	1.8	ns

[†] Slow ($\overline{ERC} = GND$) and Fast ($\overline{ERC} = V_{CC}$)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

- Member of Texas Instruments' Widebus+™ Family
- TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OECTM Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- LVTTL Interfaces Are 5-V Tolerant
- High-Drive GTLP Outputs (100 mA)

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

- LVTTL Outputs (–24 mA/24 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Bus Hold on A-Port Data Inputs
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise

description

The SN74GTLPH3245 is a high-drive, 32-bit bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It is partitioned as four 8-bit transceivers. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC circuitry, and TI-OPC circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω .

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH3245 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{REF} = 0.8 V) or GTLP (V_{TT} = 1.5 V and V_{REF} = 1 V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry is provided to hold unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

OEC, TI, TI-OPC, and Widebus+ are trademarks of Texas Instruments.

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

description (continued)

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

terminal assignments

	1	2	3	4	5	6
A	1A3	1A2	1A1	1B1	1B2	1B3
в	GND	1A4	1DIR	1 <mark>OE</mark>	1B4	GND
С	1A6	1A5	GND	GND	1B5	1B6
D	1A8	1A7	1V _{CC}	1VCC	1B7	1B8
E	1ERC	GND	GND	GND	1BIAS V _{CC}	1V _{REF}
F	2A2	2A1	GND	GND	2B1	2B2
G	2A4	2A3	1V _{CC}	1VCC	2B3	2B4
н	GND	2A5	GND	GND	2B5	GND
J	2A6	2A7	2A8	2B8	2B7	2B6
κ	NC	3A1	2DIR	2 <mark>0E</mark>	3B1	NC
L	3A3	3A2	3DIR	3 <mark>0E</mark>	3B2	3B3
м	GND	3A4	GND	GND	3B4	GND
N	3A6	3A5	2VCC	2VCC	3B5	3B6
P	3A8	3A7	GND	GND	3B7	3B8
R	2ERC	GND	GND	GND	2BIAS V_{CC}	2V _{REF}
т	4A2	4A1	2V _{CC}	2VCC	4B1	4B2
U	4A4	4A3	GND	GND	4B3	4B4
v	GND	4A5	4A8	4B8	4B5	GND
w	4A6	4A7	4DIR	40E	4B7	4B6

NC – No internal connection

ORDERING INFORMATION

TA	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	LFBGA – GKF	Tape and reel	SN74GTLPH3245GKFR	GM45

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH3245 is a high-drive (100 mA), 32-bit bus transceiver partitioned in four 8-bit segments and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. \overline{OE} can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.

For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to that of A to B, except \overline{OE} and DIR are low.

Function Tables

	OUTFUT CONTROL						
INPUTS			MODE				
OE	DIR	001201	WODE				
н	Х	Z	Isolation				
L	L	B data to A port					
L	Н	A data to B port	riue transparent				

B-PORT EDGE-RATE CONTROL (ERC)

INPU	INPUT ERC OUTPU		
LOGIC NOMINAL LEVEL VOLTAGE		B-PORT EDGE RATE	
L	GND	Slow	
н	Vcc	Fast	

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

logic diagram (positive logic)[†]

To Seven Other Channels

 $^{\dagger}\,\text{IV}_{CC}$ and 1BIAS V_{CC} are associated with these channels.

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

 $^{\dagger}\,^{2}\text{V}_{CC}$ and 2BIAS V_{CC} are associated with these channels.

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A port, ERC, and control inputs B port and V _{REF}	-0.5 V to 4.6 V -0.5 V to 7 V -0.5 V to 4.6 V
(see Note 1): A port	-0.5 V to 7 V
B port	-0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	200 mA
Current into any A port output in the high state, I_{Ω} (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Package thermal impedance, θ_{JA} (see Note 3)	36°C/W
Storage temperature range, T _{stg} –	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V
\/	Termination voltage	GTL	1.14	1.2	1.26	V
VTT	remination voltage	GTLP	1.35	1.5	1.65	V
	Poforonoo voltogo	GTL	0.74	0.8	0.87	V
VREF	Reference voltage	GTLP	0.87	1	1.1	v
<u>\/</u> .	Input voltage	B port			VTT	V
V]	Input voltage	Except B port		VCC	5.5	V
VIH		B port	V _{REF} +0.05			
	High-level input voltage	ERC	VCC-0.6	VCC	5.5	V
		Except B port and ERC	2			
		B port			V _{REF} -0.05	v
VIL	Low-level input voltage	ERC		GND	0.6	
		Except B port and ERC			0.8	
IIK	Input clamp current				-18	mA
ЮН	High-level output current	A port			-24	mA
		A port			24	m (
IOL	Low-level output current	B port			100	mA
Δt/Δv	Input transition rise or fall rate	Outputs enabled			10	ns/V
Δt/ΔVCC	Power-up ramp rate		20			μs/V
ТА	Operating free-air temperature		-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

 V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT	
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V	
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2				
VOH	A port		I _{OH} = -12 mA	2.4			V	
		VCC = 3.15 V	I _{OH} = -24 mA	2				
		V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2		
	A port	Voc - 2 15 V	I _{OL} = 12 mA			0.4		
Ve		$V_{CC} = 3.13$ V	I _{OL} = 24 mA			0.5	V	
VOL			I _{OL} = 10 mA			0.2	v	
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4		
			I _{OL} = 100 mA			0.55		
	A-port and control inputs	nd nputs $V_{CC} = 3.45 V$	$V_I = 0 \text{ or } V_{CC}$			±10	μA	
II [‡]			V _I = 5.5 V			±20		
	B port		V _I = 0 to 1.5 V			±10		
I _{BHL} §	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μA	
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μΑ	
IBHLO [#]	A port	V _{CC} = 3.45 V,	$V_{I} = 0$ to V_{CC}	500			μΑ	
Івнно	A port	V _{CC} = 3.45 V,	$V_{I} = 0$ to V_{CC}	-500			μA	
		$V_{CC} = 3.45 \text{ V}, I_{O} = 0,$	Outputs high			40		
ICC	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			40	mA	
		V _I (B port) = V _{TT} or GND	Outputs disabled			40		
leep	A or B port	$V_{CC} = 3.45 \text{ V}, I_O = 0,$ $V_I \text{ (A-port or control inputs)} = V_{CC} \text{ or GND},$	Outputs enabled					
ICCD	A of B point	VI (B port) = V _{TT} or GND, One data input switching at 50% duty cycle	Outputs disabled				110 01011 12	
ΔICC☆		V_{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V_{CC} or GNI	V _{CC} – 0.6 V,			1.5	mA	
Ci	Control inputs	V _I = 3.15 V or 0					pF	
C.	A port	V _O = 3.15 V or 0					рĒ	
Cio	B port	V _O = 1.5 V or 0					pr	

[†] All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$.

[‡] For I/O ports, the parameter I₁ includes the off-state output leakage current.

S The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to V_{CC} and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 * This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS				MAX	UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μΑ
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μA

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		MIN	MAX	UNIT		
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 1.5 \text{ V}$		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
	$V_{CC} = 0$ to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{0} (P port) – 0 to 1.5 V		5	mA
	V _{CC} = 3.15 V to 3.45 V	DIAS VCC = 3.15 V 10 3.45 V,	vO (В роп) = 0 ю 1.5 v		10	μA
VO	$V_{CC} = 0,$	BIAS V_{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μΑ

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	ΜΙΝ ΤΥΡ [‡] ΜΑΧ	UNIT	
^t PLH	۵	в	Slow		ne	
^t PHL	~	В	5100		115	
^t PLH	Δ	в	Fast		ns	
^t PHL	~	в	1 431		113	
t _{en}		в	Slow		ns	
^t dis	UL	5	0.00		113	
t _{en}	OF	в	Fast		ns	
^t dis	UL	Б	1 451		110	
t.	Rise time Bouto	uts (20% to 80%)	Slow		ns	
ч			Fast		113	
tr	Fall time Boutou	ite (80% to 20%)	Slow		ne	
ч	r an time, b outpu		Fast		115	
^t PLH	в	۵			ne	
^t PHL	5	~			113	
ten		Δ			ns	
^t dis	UL UL	A			113	

[†] Slow ($\overline{\text{ERC}}$ = GND) and Fast ($\overline{\text{ERC}}$ = V_{CC})

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES291C - OCTOBER 1999 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	TYP‡	UNIT	
^t PLH	٨	R	Slow	4.9	20	
^t PHL	A	В	510W	4.9	115	
^t PLH	۸	P	Fact	3.7	20	
^t PHL	A	В	T dSt	3.7	115	
t _{en}		P	Slow	5.1	20	
^t dis	UE	В	SIOW	5.4	115	
t _{en}		P	Fact	4.1		
^t dis	UE	В	T dSt	4.1		
+	Dias time. P sute	uto (200/ to 900/)	Slow	2		
ч	Rise time, B outputs (20% to 80%)		Fast	1.2	115	
+.			Slow	2.5		
Ч		Fast	1.8	115		

[†] Slow ($\overline{\text{ERC}}$ = GND) and Fast ($\overline{\text{ERC}}$ = V_{CC})

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

•	Member of Texas Instruments' Widebus™	DGG P.	ACKAGE
	Family	(TOP	VIEW)
•	UBT [™] Transceiver Combines D-Type	1 <u>OEAB</u> [1	64 CLK
	Latches and D-Type Flip-Flops for	1 <u>OEBA</u> [2	63 1LEAB
	Operation in Transparent, Latched, or	V _{CC} [3	62 1LEBA
	Clocked Mode	1A1 [4	61 ERC
•	TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes	GND []5	60 GND
•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference	1A2 []0 1A3 []7 GND []8	58] 1B2 57] GND
•	Bidirectional Interface Between GTLP	1A4 []9	56] 1B3
	Signal Levels and LVTTL Logic Levels	GND []10	55] 1B4
•	Partitioned as Two 8-Bit Transceivers With	1A5 L 11	54 1B5
	Individual Latch Timing and Output	GND [12	53 GND
	Control, but With a Common Clock	1A6 [13	52 1B6
•	LVTTL Interfaces Are 5-V Tolerant	1A7 [] 14 V _{CC} [] 15	51] 1B7 50] V _{CC}
•	LVTTL Outputs (–24 mA/24 mA)	1A8 [] 16 2A1 [] 17	49] 1B8 48] 2B1
•	Variable Edge-Rate Control (ERC) Input	GND [18	47] GND
	Selects GTLP Rise and Fall Times for	2A2 [19	46] 2B2
	Optimal Data-Transfer Rate and Signal	2A3 [20	45] 2B3
	Integrity in Distributed Loads	GND [21	44] GND
•	I _{off} , Power-Up 3-State, and BIAS V _{CC}	2A4 [22	43] 2B4
	Support Live Insertion	2A5 [23	42] 2B5
•	Bus Hold on A-Port Data Inputs Distributed V _{CC} and GND Pins Minimize	GND 24 2A6 25 GND 26	41 V _{REF} 40 2B6 39 CND
•	High-Speed Switching Noise	2A7 [] 27	38 2B7
	Latch-Up Performance Exceeds 100 mA Per	V _{CC} [] 28	37 2B8
•	JESD 78, Class II	2A8 [29	36] BIAS V _{CC}
	ESD Protection Exceeds JESD 22	GND [30	35] 2LEAB
	 2000-V Human-Body Model (A114-A) 200-V Machine Model (A115-A) 1000-V Charged-Device Model (C101) 	2 <mark>0EAB</mark> [31 20EBA [32	34 2LEBA 33 0E

description

The SN74GTLPH1655 is a high-drive, 16-bit UBTTM transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It is partitioned as two 8-bit transceivers and allows for transparent, latched, and clocked modes of data transfer. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω .

OEC, TI, TI-OPC, UBT, and Widebus are trademarks of Texas Instruments.

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

description (continued)

GTLP is the Texas Instruments (TI™) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH1655 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{RFF} = 0.8$ V) or GTLP $(V_{TT} = 1.5 \text{ V and } V_{RFF} = 1 \text{ V})$ signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74GTLPH1655DGGR	GTLPH1655	

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH1655 is a high-drive (100 mA), 16-bit UBT transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent, latched, or clocked modes. The device is uniquely partitioned as two 8-bit transceivers with individual latch timing and output signals and a common clock for both transceiver words. It can replace any of the functions shown in Table 1. Data polarity is noninverting.

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT		
Transceiver	'245, '623, '645	'863	'861	'16245, '16623		
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541		
Latched transceiver	'543			'16543		
Latch	'373, '573	'843	'841	'16373		
Registered transceiver	'646, '652			'16646, '16652		
Flip-flop	'374, '574		'821	'16374		
SN74GTLPH1655 UBT transceiver replaces all above functions						

 Table 1. SN74GTLPH1655 UBT Transceiver Replacement Functions

Data flow for each word is determined by the respective latch enables (xLEAB and xLEBA), output enables (xOEAB and xOEBA), and clock (CLK). The output enables (1OEAB, 1OEBA, 2OEAB, and 2OEBA) control byte 1 and byte 2 data for the A-to-B and B-to-A directions, respectively. Note that CLK is common to both directions and both 8-bit words. OE also is common and disables all I/O ports simultaneously.

For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB transitions low, the A data is latched independent of CLK high or low. If LEAB is low, the A data is registered on the CLK low-to-high transition. When OEAB is low, the outputs are active. With OEAB high, the outputs are in the high-impedance state.

The data flow for the B-to-A direction is identical, except OEBA, LEBA, and CLK are used.

FUNCTIONT							
	INPU	TS		OUTPUT	MODE		
OEAB	LEAB	CLK	Α	В	MODE		
Н	Х	Х	Х	Z	Isolation		
L	L	Н	Х	в ₀ ‡	Latabad storage of A data		
L	L	L	Х	в ₀ §	Latched Storage of A data		
L	Н	Х	L	L	True transporent		
L	Н	х	Н	н	rrue transparent		
L	L	\uparrow	L	L	Cleaked stars as of A data		
L	L	\uparrow	Н	н	CIUCKEU SICIAGE OF A UAIA		

Function Tables

[†] A-to-B data flow is shown. B-to-A flow is similar, but uses OEBA, LEBA, and CLK. The condition when OEAB and OEBA are both low at the same time is not recommended.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLK was high before LEAB went low

§ Output level before the indicated steady-state input conditions were established

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

Function Tables (Continued)

OUTPUT ENABLE

INPUTS			OUTPUTS		
OE	OEAB	OEBA	A PORT	B PORT	
L	L	L	Active	Active [†]	
L	L	Н	Z	Active	
L	Н	L	Active	Z	
L	Н	н	Z	Z	
н	Х	х	Z	Z	

[†]This condition is not recommended.

B-PORT EDGE-RATE CONTROL (ERC)

INPU	JT ERC	OUTPUT	
LOGIC NOMINAL LEVEL VOLTAGE		B-PORT EDGE RATE	
Н	VCC	Slow	
L	GND	Fast	

logic diagram (positive logic)

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

logic diagram (positive logic) (continued)

To Seven Other Channels

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A port, ERC, and control inputs B port and V _{REF}	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 4.6 V
(see Note 1): A port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	200 mA
Current into any A port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ_{JA} (see Note 3)	55°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_{O} > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V
\/	Termination valtage	GTL	1.14	1.2	1.26	V
V I I	Termination voltage	GTLP	1.35	1.5	1.65	v
\/	Deference veltege	GTL	0.74	0.8	0.87	V
VREF	Reference voltage	GTLP	0.87	1	1.1	v
M		B port			VTT	V
V	Input voltage	Except B port		VCC	5.5	v
		B port	V _{REF} +0.05			
VIH	High-level input voltage	ERC	VCC-0.6	VCC	5.5	V
		Except B port and ERC	2			
		B port			V _{REF} -0.05	
VIL	Low-level input voltage	ERC		GND	0.6	V
		Except B port and ERC			0.8	
ΙK	Input clamp current				-18	mA
ЮН	High-level output current	A port			-24	mA
1		A port			24	
OL	Low-level output current	B port			100	mA
Δt/Δv	Input transition rise or fall rate	Outputs enabled			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V
Т _А	Operating free-air temperature		-40		85	°C

NOTES: 4. All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS $V_{CC} = 3.3$ V first, I/O second, and $V_{CC} = 3.3$ V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

 V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = −100 μA	V _{CC} -0.2			
VOH	A port	V/22 - 2 15 V	I _{OH} = -12 mA	2.4			V
		VCC = 3.15 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2	
	A port	$V_{22} = 3.15 V_{22}$	I _{OL} = 12 mA			0.4	
Ve		VCC = 3.15 V	I _{OL} = 24 mA			0.5	V
VOL		B port V _{CC} = 3.15 V	I _{OL} = 10 mA			0.2	v
	B port		I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
Ц	Control inputs	V _{CC} = 3.45 V,	V _I = 0 or 5.5 V			±10	μΑ
. +	A port		AO = ACC			10	۵
IOZH+	B port	$V_{\rm CC} = 3.45 V$	V _O = 1.5 V			10	μΑ
IOZL [‡]	A and B ports	V _{CC} = 3.45 V,	V _O = GND			-10	μA
I _{BHL} §	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μA
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μA
IBHLO [#]	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	500			μA
І _{ВННО}	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μA
		$V_{CC} = 3.45 V. _{O} = 0.$	Outputs high			40	
ICC	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			40	mA
		V _I (B port) = V _{TT} or GND	Outputs disabled			40	
∆lCC☆		V_{CC} = 3.45 V, One A-port or control input at V Other A-port or control inputs at V_{CC} or GND	V _{CC} – 0.6 V,			1.5	mA
Ci	Control inputs	V _I = 3.15 V or 0			4.5	6.5	pF
0	A port	V _O = 3.15 V or 0			6.5	7.5	۶E
C _{io}	B port	V _O = 1.5 V or 0			8.5	10.5	μr

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

 \ddagger For I/O ports, the parameters I_{OZH} and I_{OZL} include the input leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VII max.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to VCC and then lowering it to VIHmin.

An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 * This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS				MAX	UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μA
IOZPU	V _{CC} = 0 to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μA

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS					UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 1.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μA
	$V_{CC} = 0$ to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{0} (P port) – 0 to 1 5 V		5	mA
	V_{CC} = 3.15 V to 3.45 V	BIAS VCC = 3.15 V 10 3.45 V,	VO(B port) = 0.001.5 V		10	μA
VO	$V_{CC} = 0,$	BIAS V _{CC} = 3.3 V	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS $V_{CC} = 3.15$ V to 3.45 V,	$V_O (B \text{ port}) = 0.6 \text{ V}$	-1		μÂ

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT
fclock	Clock frequency			175	MHz
+	Pulse duration	LEAB or LEBA high	3		00
١w	r use duration	CLK high or low	3		115
		A before CLK	3		
	Setup time	B before CLK	3 2.5		nc
usu		A before LEAB \downarrow , CLK = don't care			115
		B before LEBA \downarrow , CLK = don't care	2.5		
		A after CLK	0.5		
+.	Hold time	B after CLK	0.5		20
Ч		A after LEAB \downarrow , CLK = don't care	0.5		115
		B after LEBA↓, CLK = don't care	0.5		

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	ΤΥΡ[‡] ΜΑΧ	UNIT
f _{max}				175		MHz
^t PLH	۵	в	Slow	3.5	7.7	ne
^t PHL	A	В	3100	2.4	6.3	115
^t PLH	۵	в	Fast	2	6.3	ne
^t PHL	A	D	1 431	2	5.9	115
^t PLH	LEAR	в	Slow	3.5	7.8	ne
^t PHL	LLAD	В	5100	2.7	6.4	115
^t PLH	LEAR	в	Fast	2	6.4	ne
^t PHL	LLAD	В	1 431	2	6	115
^t PLH		в	Slow	4.7	8	ne
^t PHL	OER	D	5100	2.7	6.4	113
^t PLH		в	Fast	3.6	6.8	ne
^t PHL	OLK	В	Fasi	2	6.1	115
ten		в	Slow	3.5	7.3	ne
^t dis	UE	В	5100	3.5	7	113
^t en		в	Fast	2	6	ne
^t dis	UE	D	1 431	2	6.6	113
^t en		в	Slow	3.5	7.4	ne
^t dis	UEAB	D	5100	3.5	7	113
ten		P	Fact	2	6.1	200
^t dis	UEAB	В	Fasi	2	6.3	115
t	Rise time Bouto	ute (20% to 80%)	Slow		2.6	ne
Ч	Rise time, D outp		Fast		1.5	115
tr	Fall time Bouto	ute (80% to 20%)	Slow		3	ne
ч	r an time, b outp		Fast	2.2		115
^t PLH	в	Δ		1.5	5.5	ne
^t PHL	d	~		1.5	5.5	113
^t PLH		Δ		1.3	5.2	ne
^t PHL	LEDA	~	_	1	5	115
^t PLH	СГК	Δ		1.2	6.3	ne
^t PHL	OER	~		1	5	113
t _{en}		Δ		1.5	5.6	ne
^t dis	UE			1.5	6.1	113
ten		٨		1.2	5.4	00
tdis	UEBA		_	2	6.1	115

[†]Slow (ERC = V_{CC}) and Fast (ERC = GND)

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

SCES294C - OCTOBER 1999 - REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
^t PLH	٨	P	Slow	5	
^t PHL	A	В	Slow	5	ns
^t PLH	٨	P	Foot	3.8	20
^t PHL	A	D	Fasi	3.8	115
^t PLH		R	Slow	4.9	200
^t PHL	LLAD	В	310W	4.9	115
^t PLH		R	Fact	3.9	200
^t PHL	LEAD	D	Fasi	3.9	115
^t PLH		P	Slow	4.8	20
^t PHL	ULK	D	510W	4.8	115
^t PLH		P	Foot	3.7	20
^t PHL	OLK	в	Fasi	3.7	
t _{en}		P	Slow	4.9	200
^t dis	OEAD OF OE	Ь	5100	4.7	115
^t en		R	Fact	3.5	200
^t dis	UEAB OF UE	В	Fasi	4.1	115
+	Dica tima. P auto	uto (200/ to 800/)	Slow	2	20
۲			Fast	1.2	115
+.	Fall time Pouter	ute (80% to 20%)	Slow	2.5	200
4	Fail time, B outputs (80% to 20%)		Fast	1.8	ns

[†] Slow (ERC = V_{CC}) and Fast (ERC = GND) [‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SN74GTLP2033 8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER WITH SPLIT LVTTL PORT AND FEEDBACK PATH

SCES352C – JUNE 2001	- REVISED SEPTEMBER 2001

•	Member of the Texas Instruments Widebus™ Family	DGG (DGG OR DGV PACKAGE (TOP VIEW)			
•	TI-OPC [™] Circuitry Limits Ringing on Unevenly Loaded Backplanes	IMODE1 [48		
•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference	AO1 [GND [2 3 4	47 46 45] B1] GND	
•	Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels	AI2 [AO2 [5 6	44 43] OEAB] B2	
•	Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring	V _{CC} [AI3 [7 8	42 41] ERC] OEAB	
•	LVTTL Interfaces Are 5-V Tolerant	AO3	9	40] B3	
•	High-Drive GTLP Open-Drain Outputs (100 mA)	GND [AI4 [10 11	39 38] GND] CLKAB/LEAB	
•	LVTTL Outputs (–24 mA/24 mA)	AO4 [12	37] B4] B5	
•	Variable Edge-Rate Control (ERC) Input	AI5 [14	35] CLKBA/LEBA	
	Optimal Data-Transfer Rate and Signal		15 16	34 33		
	Integrity in Distributed Loads	AI6	17	32	I OEBA	
•	I _{off} , Power-Up 3-State, and BIAS V _{CC} Support Live Insertion	V _{CC} [AO7 [18 19	31 30] V _{CC}] в7	
•	Distributed V _{CC} and GND Pins Minimize	AI7 [GND [20 21	29 28] LOOPBACK] GND	
•	Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II	AO8 [AI8 [22 23	27 26] B8] V _{REF}	
•	ESD Protection Exceeds JESD 22	OMODE0 [24	25	OMODE1	

- ESD Protection Exceeds JESD 22

 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

description

The SN74GTLP2033 is a high-drive, 8-bit, three-wire registered transceiver that provides inverted LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent, latched, and flip-flop modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring, the same functionality as the SN74FB2033. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC[™] circuitry, and TI-OPC[™] circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω.

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments

SN74GTLP2033 8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER WITH SPLIT LVTTL PORT AND FEEDBACK PATH

SCES352C - JUNE 2001 - REVISED SEPTEMBER 2001

description (continued)

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP2033 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{RFF} = 0.8 V) or GTLP (V_{TT} = 1.5 V and V_{RFF} = 1 V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, Texas Instruments GTLP Frequently Asked Questions, literature number SCEA019, and GTLP in BTL Applications, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and can be directly driven by TTL or 5-V CMOS devices. V_{RFF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OEAB should be tied to V_{CC} through a pullup resistor and OEAB and OEBA should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

terminal assignments

	1	2	3	4	5	6
A	IMODE1	NC	NC	NC	NC	IMODE0
в	AO1	Al1	GND	GND	BIAS V _{CC}	B1
0	AO2	Al2	Vcc	ERC	OEAB	B2
D	AO3	AI3	GND	GND	OEAB	B3
E	AO4	Al4			CLKAB/LEAB	B4
F	AO5	AI5			CLKBA/LEBA	B5
G	AO6	Al6	GND	GND	OEBA	B6
н	AO7	AI7	Vcc	VCC	LOOPBACK	B7
J	AO8	Al8	GND	GND	VREF	B8
ĸ	OMODE0	NC	NC	NC	NC	OMODE1

NC = No internal connection

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74GTLP2033DGGR	GTLP2033
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74GTLP2033DGVR	GT2033
	VFBGA – GQL	Tape and reel	SN74GTLP2033GQLR	GR033

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLP2033 is a high-drive (100 mA), 8-bit, three-wire registered transceiver containing D-type latches and D-type flip-flops for data-path operation in the transparent, latched, or flip-flop modes. Data transmission is complementary, with inverted AI data going to the B port and inverted B data going to AO. The split LVTTL AI and AO provides a feedback path for control and diagnostics monitoring.

The logic element for data flow in each direction is configured by two mode (IMODE1 and IMODE0 for B to A, OMODE1 and OMODE0 for A to B) inputs as a buffer, D-type flip-flop, or D-type latch. When configured in the buffer mode, the inverted input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock (CLKAB/LEAB or CLKBA/LEBA) input. In the latch mode, the clock inputs serve as active-high transparent latch enables.

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, B-port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element (prior to inversion) is the B-to-A input.

The AO enable/disable control is provided by OEBA. When OEBA is low or when V_{CC} is less than 1.5 V, AO is in the high-impedance state. When OEBA is high, AO is active (high or low logic levels).

The B port is controlled by OEAB and OEAB. If OEAB is low, OEAB is high, or V_{CC} is less than 1.5 V, the B port is inactive. If OEAB is high and OEAB is low, the B port is active.

The A-to-B and B-to-A logic elements are active, regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO) or inactive (B port) states.

SN74GTLP2033 8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER WITH SPLIT LVTTL PORT AND FEEDBACK PATH

SCES352C - JUNE 2001 - REVISED SEPTEMBER 2001

INPUTS OUTPUT MODE OMODE0 LOOPBACK OEBA OEAB OEAB OMODE1 IMODE1 IMODE0 L L Х Х Х Х Х Х Ζ Isolation Х Х Х Х L Х Н Х Х Х н L L L Х Х Buffer Х Х н L L Н Х Х Inverted AI to B Flip-flop Н Х Х Х Х Х Н L Latch н Х Х L Х L L L Inverted B to AO Buffer Х Х L н Х Н L L Х Х н н L Х L L Inverted B to AO Flip-flop Н Х Н Х Х L Н L н L Х Х Х Н Х L Inverted B to AO Latch Н Х н Х Х Н Х L Х н L Х Х L L Н AI to AO Buffer н Х н Х Х L L н н L Х Х Х L н Н AI to AO Flip-flop Х н Н н Х н Х L Н L Х Х Х н Х Н AI to AO Latch Н Н н Х н Х Х Х Inverted AI to B, Transparent with н L Х Х н Х Х L Inverted B to AO feedback path

Function Tables

ENABLE/DISABLE

	INPUTS	OUT	PUTS	
OEBA	OEAB	OEAB	AO	в
L	Х	Х	Z	
н	Х	Х	Active	
х	L	L		Z
Х	L	Н		Z
х	Н	L		Active
х	Н	Н		Z

BUFFER

INPUT	OUTPUT
L	Н
Н	L

LATCH				
INPUTS				
CLK/LE	DATA	OUIPUI		
Н	L	Н		
н	н	L		
1	х	Qo		

Function Tables (Continued)

LOOPBACK

LOOPBACK	Q†
L	B port
Н	Point P [‡]

 $^{\dagger}\mathrm{Q}$ is the input to the B-to-A

logic element.

[‡] P is the output of the A-to-B logic element (see functional block diagram).

SELECT

INPUTS		SELECTED LOGIC
MODE1	MODE0	ELEMENT
L	L	Buffer
L	Н	Flip-flop
н	Х	Latch

INPUTS			
CLK/LE	DATA	001901	
L	Х	Q ₀	
Ŷ	L	Н	
Ŷ	Н	L	

B-PORT EDGE-RATE CONTROL (ERC)

INPUT ERC	OUTPUT B-PORT EDGE RATE	
LOGIC LEVEL		
Н	Slow	
L	Fast	

SN74GTLP2033 8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER WITH SPLIT LVTTL PORT AND FEEDBACK PATH

SCES352C - JUNE 2001 - REVISED SEPTEMBER 2001

functional block diagram

Pin numbers shown are for the DGG and DGV packages.

SN74GTLP2033 8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER WITH SPLIT LVTTL PORT AND FEEDBACK PATH

SCES352C – JUNE 2001 – REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): AI port, ERC, and control inputs B port and V _{REF}	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, Vo	
(see Note 1): AO port	\ldots –0.5 V to 7 V
B port	\ldots –0.5 V to 4.6 V
Current into any output in the low state, I _O : AO port	48 mA
B port	200 mA
Current into any A-port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES352C - JUNE 2001 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
	Termination voltage	GTL	1.14	1.2	1.26	V	
VTT	Termination voltage	GTLP	1.35	1.5	1.65	V	
	Poforonao voltago	GTL	0.74	0.8	0.87	V	
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
. V.	Input voltage	B port			V _{TT}	V	
vI	Input voltage	Except B port and VREF		VCC	5.5	v	
Vii i	High lovel input veltage	B port	V _{REF} +0.05			V	
VIH	nigh-level input voltage	Except B port	2			v	
		B port			V _{REF} -0.05	V	
۷IL	Low-level input voltage	Except B port			0.8	v	
IК	Input clamp current				-18	mA	
ЮН	High-level output current	AO			-24	mA	
le.		AO			24		
OL	Low-level output current	B port			100	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔVCC	Power-up ramp rate		20			μs/V	
TA	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable but, generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VRFF. If operated in the A-to-B direction, VRFF should be set to within 0.6 V of VTT to minimize current drain.

SCES352C - JUNE 2001 - REVISED SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS		MIN	түр†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			v
VOH	AO	V00 - 3 15 V	I _{OH} = -12 mA	2.4			
		VCC = 3.13 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2	
	AO	$V_{00} = 3.15 V$	I _{OL} = 12 mA			0.4	
Voi		VCC = 3.13 V	I _{OL} = 24 mA			0.5	V
VOL			I _{OL} = 10 mA			0.2	v
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
ıı‡	AI and control inputs	V _{CC} = 3.45 V,	$V_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μΑ
. +	AO	$V_{CC} = 3.45 \text{ V}, \qquad \qquad V_{O} = 0 \text{ to } 5.5 \text{ V}$				±10	
IOZ+	B port	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} ,	$V_{O} = 0$ to 2.3 V		±10		μΑ
		$V_{CC} = 3.45 V. _{O} = 0.$	Outputs high			40	
Icc	AO or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			40	mA
		V _I (B port) = V _{TT} or GND	Outputs disabled			40	
∆I _{CC} §		V_{CC} = 3.45 V, One AI or control input at V_{CC} Other AI or control inputs at V_{CC} or GND	<u>c</u> – 0.6 V,			1.5	mA
C	AI	$V_{1} = 2.15 V_{1} \text{ or } 0$	N 245 V 0		3.5	4.5	рF
	Control inputs	v] = 5.15 v 010			3.5	5.5	
Co	AO	$V_{O} = 3.15 \text{ V or } 0$			5	6	pF
Cio	B port	V _O = 1.5 V or 0			8.5	10	pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS				
l _{off}	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$OEBA = V_{CC}$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$OEBA = V_{CC}$		±30	μA

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITION	S	MIN	MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 1.5 V		10	μΑ
IOZPU	V_{CC} = 0 to 1.5 V, BIAS V	$_{CC}$ = 0 to 1.5 V, BIAS V _{CC} = 0, V _O = 0.5 V to 1.5 V, \overline{OEAB} = 0 and OEAB = V _{CC}				
IOZPD	V_{CC} = 1.5 V to 0, BIAS V	C_{CC} = 1.5 V to 0, BIAS V _{CC} = 0, V _O = 0.5 V to 1.5 V, \overline{OEAB} = 0 and $OEAB$ = V _{CC}				
lcc	V _{CC} = 0 to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{0} (P port) – 0 to 1 5 V		5	mA
(BIAS V _{CC})	V_{CC} = 3.15 V to 3.45 V	BIAS VCC = 3.15 V 10 3.45 V,	VO(B poil) = 0.001.5 V		10	μA
VO	$V_{CC} = 0,$	BIAS V_{CC} = 3.3 V,	IO = 0	0.95	1.05	V
lo	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μA

SCES352C – JUNE 2001 – REVISED SEPTEMBER 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT
fclock	Clock frequency			175	MHz
tw	Pulse duration	CLKAB/LEAB or CLKBA/LEBA	2.8		ns
		AI before CLKAB↑	1.1		
t _{su}		AI before CLKBA↑	1.4		
	Cotup time	B before CLKBA↑	1		ns
	Setup time	AI before LEAB↓	1.6		
		Al before LEBA↓	2.1		
		B before LEBA \downarrow	2.2		
		AI after CLKAB↑	0.3		
		AI after CLKBA↑	0.2		
4.	Lold time	B after CLKBA↑	0.6		20
ιμ	Hold time	AI after LEAB↓	0.3		ns
		AI after LEBA↓	0		
		B after LEBA↓	0		

SCES352C – JUNE 2001 – REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡ мах	UNIT
f _{max}				175		MHz
^t PLH	AI			3	7.4	
^t PHL	(buffer)	В	Slow	3	7.1	ns
^t PLH	AI		Fact	2	5.9	20
^t PHL	(buffer)	В	Fast	2	5.8	115
^t PLH	В	40		1	5.7	20
^t PHL	(buffer)	AO	_	1	5	115
^t PLH	LEAB	D	Clow	4.2	8.6	ne
^t PHL	(latch mode)	В	Slow	3.2	7.7	115
^t PLH	LEAB	D	Faat	3.2	7.6	ne
^t PHL	(latch mode)	В	Fast	2.8	6.7	115
^t PLH	LEAB	40		2	7	ns
^t PHL	(latch mode)	AU	-	1.8	6.3	115
^t PLH	LEBA	40		1	5.7	ns
^t PHL	(latch mode)	70	_	1	4.7	
^t PLH	OEAR	P	Slow	3.8	7.5	ns
^t PHL	ULAB	В	SIOW	3.1	7	
^t PLH	OEAB	P	Foot	2.5	6	ns
^t PHL	OLAB	В	Fasi	2.5	6	113
^t PLH		P	Slow	3.5	7.5	ns
^t PHL	UEAB	В	SIOW	3	7.2	
^t PLH		B	Fact	2.5	6	ns
^t PHL	OLAB	В	T dSt	2.5	6	
^t PZH	OEBA	40 -	_	1	4.7	ns
^t PZL	028/(110		1	3.4	
^t PHZ	OFBA	AO	_	1	5.2	ns
^t PLZ				1	4.9	
^t PLH	CLKAB	в	Slow	4.4	8.8	ns
^t PHL	(flip-flop mode)		0.00	3.6	8.1	
^t PLH	CLKAB	в	Fast	3.2	7.2	ns
^t PHL	(flip-flop mode)		1 451	3.1	6.9	
^t PLH	CLKAB	AO	_	2	6.9	ns
^t PHL	(flip-flop mode)			1.8	6.4	
^t PLH	CLKBA	AO	_	1	5.6	ns
^t PHL	(flip-flop mode)			1	4.9	110
^t PLH	OMODE	в	Slow	3.8	8.7	ns
^t PHL		5	0.00	3.2	8.2	
^t PLH	OMODE	R	Fast	2.7	7.2	ns
^t PHL			1 001	2.7	7.2	
^t PLH	IMODE	AO	_	1	5.6	ns
^t PHL				1	4.6	

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCES352C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1) (continued)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	МАХ	UNIT	
^t PLH		40		2.5	6.2	6.2	ns	
^t PHL	LOUFDACK	AU	-	2	5	5		
^t PLH	AI	40		1	5.6	5.6		
^t PHL	(loopback high)	AO	-	1	5	5	ns	
	Pico timo. P. port outputo (20	9(+++++++++)	Slow		2.8			
tr	Rise time, B-port outputs (20	Rise time, B-port outputs (20% to 80%)			1.5		ns	
	Rise time, AO (10% to 90%)				3.5			
	Fall time. Dinart autoute (200	(to 200()	Slow		3			
t _f		% 10 20%)	Fast		1.8		ns	
	Fall time, AO (90% to 10%)				1.5			

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

skew characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)§

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	ΜΙΝ ΤΥΡ‡	МАХ	UNIT
^t sk(LH) [¶]	Δι	в	Slow	0.5	1	ns
^t sk(HL) [¶]		d	Clow	0.5	1	115
^t sk(LH) [¶]	¶ Al B Fast		0.4	0.9	ns	
t _{sk(HL)} ¶		d	1 431	0.4	0.9	115
^t sk(LH) [¶]	CLKAB/LEAB	В	Slow	0.5	1	ns
^t sk(HL) [¶]	OEN (D/EEND	d	Clow	0.5	1	10
^t sk(LH) [¶]	CI KAB/I FAB	В	Fast	0.4	0.9	ns
^t sk(HL) [¶]	OEN (D/EEND	d	1 dot	0.4	0.9	10
	ΔΙ	в	Slow	1.4	2	
t-1.00¶	7.1	6	Fast	0.6	1.4	ne
чSK(t) "	CLKAB/LEAB	В	Slow	1.8	2.5	115
		6	Fast	0.9	1.8	

[†]Slow (ERC = L) and Fast (ERC = H)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

§ Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

It sk(LH)/tsk(HL) and tsk(t) – Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in the same direction either high to low [tsk(HL)] or low to high [tsk(LH)] or in opposite directions, both low to high and high to low [tsk(t)].

SCES352C - JUNE 2001 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

SCES352C - JUNE 2001 - REVISED SEPTEMBER 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application is probably a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer to better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

SCES352C – JUNE 2001 – REVISED SEPTEMBER 2001

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
^t PLH	AI			4.7	
^t PHL	(buffer)	В	Slow	5	ns
^t PLH	AI		Frat	3.7	20
^t PHL	(buffer)	В	Fast	4	115
^t PLH	LEAB		01	5.5	200
^t PHL	(latch mode)	В	SIOW	5.8	115
^t PLH	LEAB	D	Foot	4.6	ns
^t PHL	(latch mode)	D	Fasi	4.8	
^t PLH	CLKAB	D	Slow	5.8	ns
^t PHL	(flip-flop mode)	D	510W	6	
^t PLH	CLKAB	D	Foot	4.9	ns
^t PHL	(flip-flop mode)	D	Fasi	4.9	
^t PLH	OMODE	D	Slow	5.5	ne
^t PHL	OMODE	D	510W	5.7	115
^t PLH	OMODE	D	Foot	4.5	ne
^t PHL	OMODE	D	Fasi	4.7	115
t.	Rise time B-port outputs (200	(, to 80%)	Slow	1.8	ns
ч			Fast	1.1	115
t.	Fall time B-port outputs (80%	to 20%)	Slow	3.4	ns
Ч		0.02070	Fast	2.6	

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER

WITH SPLIT LVTTL PORT AND FEEDBACK PATH SCES354C – JUNE 2001 – REVISED SEPTEMBER 2001

•	Member of the Texas Instruments Widebus™ Family	DGG	OR DGV PA (TOP VIEV	CKAGE /)
•	TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes	IMODE1 [411 [1 48 2 47	
•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference	AO1 [GND [3 46 4 45	B1 GND
•	Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels	AI2 [AO2 [5 44 6 43] OEAB] B2
•	Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring	V _{CC} [AI3 [7 42 8 41	ERC
•	AO Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required	AO3 [GND [AI4 [9 40 10 39 11 38	U B3 GND CLKAB/LEAB
•	LVTTL Interfaces Are 5-V Tolerant High-Drive GTLP Open-Drain Outputs (100 mA)	AO4 L AO5 [AI5 [12 37 13 36 14 35] B4] B5] CLKBA/LEBA
•	Reduced LVTTL Outputs (–12 mA/12 mA)	AO6	15 34 16 33	B6
•	Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads	AI6 [V _{CC} [AO7 [AI7 [17 32 18 31 19 30 20 29] OEBA] V _{CC}] B7] LOOPBACK
•	I _{off} , Power-Up 3-State, and BIAS V _{CC} Support Live Insertion	GND [AO8 [21 28 22 27] GND] B8
•	Distributed V _{CC} and GND Pins Minimize High-Speed Switching Noise	AI8 OMODE0	23 26 24 25	OMODE1

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22

 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description

The SN74GTLP22033 is a high-drive, 8-bit, three-wire registered transceiver that provides inverted LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent, latched, and flip-flop modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring, the same functionality as the SN74FB2033. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω .

The AO outputs, which are designed to sink up to 12 mA, include equivalent $26 \cdot \Omega$ resistors to reduce overshoot and undershoot.

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

description (continued)

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP22033 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{RFF} = 0.8 V) or GTLP (V_{TT} = 1.5 V and V_{RFF} = 1 V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, Texas Instruments GTLP Frequently Asked Questions, literature number SCEA019, and GTLP in BTL Applications, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and can be directly driven by TTL or 5-V CMOS devices. V_{RFF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OEAB should be tied to V_{CC} through a pullup resistor and OEAB and OEBA should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

terminal assignments

	1	2	3	4	5	6
A	IMODE1	NC	NC	NC	NC	IMODE0
в	AO1	Al1	GND	GND	BIAS V _{CC}	B1
0	AO2	Al2	Vcc	ERC	OEAB	B2
D	AO3	AI3	GND	GND	OEAB	B3
E	AO4	Al4			CLKAB/LEAB	B4
F	AO5	AI5			CLKBA/LEBA	B5
G	AO6	Al6	GND	GND	OEBA	B6
н	AO7	AI7	Vcc	VCC	LOOPBACK	B7
J	AO8	Al8	GND	GND	VREF	B8
ĸ	OMODE0	NC	NC	NC	NC	OMODE1

NC = No internal connection

TA	PACK/	AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING				
	TSSOP – DGG	Tape and reel	SN74GTLP22033DGGR	GTLP22033				
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74GTLP22033DGVR	GT22033				
	VFBGA – GQL	Tape and reel	SN74GTLP22033GQLR	GS033				

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLP22033 is a high-drive (100 mA), 8-bit, three-wire registered transceiver containing D-type latches and D-type flip-flops for data-path operation in the transparent, latched, or flip-flop modes. Data transmission is complementary, with inverted AI data going to the B port and inverted B data going to AO. The split LVTTL AI and AO provides a feedback path for control and diagnostics monitoring.

The logic element for data flow in each direction is configured by two mode (IMODE1 and IMODE0 for B to A, OMODE1 and OMODE0 for A to B) inputs as a buffer, a D-type flip-flop, or a D-type latch. When configured in the buffer mode, the inverted input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock (CLKAB/LEAB or CLKBA/LEBA) input. In the latch mode, the clock inputs serve as active-high transparent latch enables.

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, B-port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element (prior to inversion) is the B-to-A input.

The AO enable/disable control is provided by OEBA. When OEBA is low or when V_{CC} is less than 1.5 V, AO is in the high-impedance state. When OEBA is high, AO is active (high or low logic levels).

The B port is controlled by OEAB and OEAB. If OEAB is low, OEAB is high, or V_{CC} is less than 1.5 V, the B port is inactive. If OEAB is high and OEAB is low, the B port is active.

The A-to-B and B-to-A logic elements are active, regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO) or inactive (B port) states.

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

INPUTS OUTPUT MODE OMODE0 LOOPBACK OEBA OEAB OEAB OMODE1 IMODE1 IMODE0 L L Х Х Х Х Х Х Ζ Isolation Х Х Х Х L Х Н Х Х Х н L L L Х Х Buffer Х Inverted AI to B Х н L L Н Х Х Flip-flop Н Х Х Х Х Х Н L Latch н Х Х L Х L L L Inverted B to AO Buffer Х Х L н Х Н L L Х Х н н L Х L L Inverted B to AO Flip-flop Н Х Н Х Х L Н L н Х Х Х Н Х L L Inverted B to AO Latch Н Х н Х Х Н Х L Х н L Х Х L L Н AI to AO Buffer н Х н Х Х L L н н L Х Х Х L н Н AI to AO Flip-flop н Н н Х н Х Х L Н L Х Х Х н Х Н AI to AO Latch Н Н н Х н Х Х Х Inverted AI to B, Transparent with н Х Х Н L Х Х L Inverted B to AO feedback path

Function Tables

ENABLE/DISABLE

INPUTS			OUT	PUTS
OEBA	OEAB	OEAB	AO	В
L	Х	Х	Z	
н	Х	Х	Active	
Х	L	L		Z
Х	L	Н		Z
х	Н	L		Active
Х	Н	Н		Z

BUFFER

INPUT	OUTPUT
L	Н
Н	L

	LATCH							
INPU								
CLK/LE	DATA	OUIFUI						
Н	L	Н						
н	н	L						

Х

L

Q0

Function Tables (Continued)

LOOPBACK

LOOPBACK	Q†
L	B port
н	Point P [‡]

[†]Q is the input to the B-to-A

. logic element.

[‡] P is the output of the A-to-B logic element (see functional block diagram).

SELECT

INP	UTS	SELECTED
MODE1	MODE0	LOGIC ELEMENT
L	L	Buffer
L	Н	Flip-flop
н	Х	Latch

INPU		
CLK/LE	DATA	001F01
L	Х	Q ₀
Ŷ	L	н
Ŷ	Н	L

B-PORT EDGE-RATE CONTROL (ERC)

INPUT ERC	OUTPUT B-PORT
LOGIC LEVEL	EDGE RATE
Н	Slow
L	Fast

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

functional block diagram

Pin numbers shown are for the DGG and DGV packages.

SCES354C – JUNE 2001 – REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): AI port, ERC, and control inputs B port and V _{REF}	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1): AO port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : AO port	24 mA
B port	200 mA
Current into any A-port output in the high state, I _O (see Note 2)	24 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ_{JA} (see Note 3): DGG package	70°C/W
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
	Termination voltage	GTL	1.14	1.2	1.26	V	
VTT	Termination voltage	GTLP	1.35	1.5	1.65	V	
	Poforonae voltage	GTL	0.74	0.8	0.87	V	
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
. V.	Input voltage	B port			V _{TT}	V	
۷I	input voltage	Except B port and VREF		VCC	5.5		
Maria	High-level input voltage	B port	V _{REF} +0.05			V	
VIH		Except B port	2			v	
		B port			V _{REF} -0.05	V	
۷IL	Low-level input voltage	Except B port			0.8		
IК	Input clamp current				-18	mA	
ЮН	High-level output current	AO			-12	mA	
lei	Low lovel output ourrent	AO			12	m (
OL	Low-level output current	B port	100		ША		
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V	
ТА	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable but, generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VRFF. If operated in the A-to-B direction, VRFF should be set to within 0.6 V of VTT to minimize current drain.

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	түр†	MAX	UNIT	
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V	
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2				
V _{OH} AO	AO	Vac - 2 15 V	I _{OH} = -6 mA	2.4			V	
		VCC = 5.15 V	I _{OH} = -12 mA	2				
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2		
	AO	Voo = 3.15 V	I _{OL} = 6 mA			0.55		
Voi		V() = 3.13 V	I _{OL} = 12 mA			0.8	V	
VOL			I _{OL} = 10 mA			0.2	v	
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4		
			I _{OL} = 100 mA			0.55		
ıı‡	AI and control inputs	V _{CC} = 3.45 V,	$V_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μΑ	
. +	AO	V _{CC} = 3.45 V,	$V_{O} = 0$ to 5.5 V			±10	۵	
IOZ+	B port	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} ,	V_{O} = 0 to 2.3 V			±10	μΑ	
		$V_{CC} = 3.45 V. _{O} = 0.$	Outputs high			40		
Icc	AO or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			40	mA	
		VI (B port) = VTT or GND	Outputs disabled			40		
∆ICC§		V_{CC} = 3.45 V, One AI or control input at V_{CC} Other AI or control inputs at V_{CC} or GND	<u>c</u> – 0.6 V,			1.5	mA	
C.	Al V 245 V at 0				3.5	4.5	۳E	
	Control inputs				3.5	5.5	μr	
Co	AO	V _O = 3.15 V or 0			5	6	pF	
C _{io}	B port	$V_{O} = 1.5 V \text{ or } 0$			8.5	10	pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS				UNIT
l _{off}	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	$V_{O} = 0.5 V$ to 3 V,	$OEBA = V_{CC}$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$OEBA = V_{CC}$		±30	μA

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		MIN	MAX	UNIT		
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 1.5 V		10	μΑ
IOZPU	V_{CC} = 0 to 1.5 V, BIAS V	to 1.5 V, BIAS V_{CC} = 0, V_{O} = 0.5 V to 1.5 V, \overline{OEAB} = 0 and $OEAB$ = V_{CC}				μA
IOZPD	V_{CC} = 1.5 V to 0, BIAS \	to 0, BIAS V _{CC} = 0, V _O = 0.5 V to 1.5 V, \overline{OEAB} = 0 and OEAB = V _{CC}				μA
Icc	$V_{CC} = 0$ to 3.15 V	PIAS V = -2.15 V = 2.45 V			5	mA
(BIAS V _{CC})	V_{CC} = 3.15 V to 3.45 V	BIAS VCC = 3.15 V 10 3.45 V,	VO(B poil) = 0.001.5 V		10	μA
VO	$V_{CC} = 0,$	BIAS V_{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μΑ

SCES354C – JUNE 2001 – REVISED SEPTEMBER 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT	
fclock	Clock frequency			175	MHz	
tw	Pulse duration	CLKAB/LEAB or CLKBA/LEBA	2.8		ns	
		AI before CLKAB↑	1.1			
^t su		AI before CLKBA↑	1.4			
	Cotup time	B before CLKBA↑	1		20	
	Setup time	AI before LEAB↓	1.6		ns	
		Al before LEBA↓	2.1			
		B before LEBA \downarrow	2.2			
		AI after CLKAB↑	0.3			
		AI after CLKBA↑	0.2			
^t h	Lold time	B after CLKBA↑	0.6			
		AI after LEAB↓	0.3		ns	
		AI after LEBA↓	0			
		B after LEBA↓	0			

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	τυρ‡ ΜΑΧ	UNIT
fmax				175		MHz
^t PLH	AI	_		3	7.4	
^t PHL	(buffer)	В	Slow	3	7.1	ns
^t PLH	AI		F (2	5.9	20
^t PHL	(buffer)	В	Fast	2	5.8	115
^t PLH	В	40		1	6.1	00
^t PHL	(buffer)	AU	_	1	5.4	115
^t PLH	LEAB		01	4.2	8.6	20
^t PHL	(latch mode)	В	Slow	3.2	7.7	115
^t PLH	LEAB		Fast	3.2	7.6	20
^t PHL	(latch mode)	В	Fast	2.8	6.7	115
^t PLH	LEAB	40		2	7.3	ne
^t PHL	(latch mode)	AU	-	1.8	6.6	115
^t PLH	LEBA	40		1	6	ne
^t PHL	(latch mode)	70		1	5.2	115
^t PLH	OEAR	D	Clow	3.8	7.5	ne
^t PHL	UEAB	D	SIOW	3.1	7	113
^t PLH	OEAR	D	Foot	2.5	6	ns
^t PHL	OLAB	В	Fast	2.5	6	
^t PLH		P	Slow	3.5	7.5	ns
^t PHL	UEAD	D	310W	3	7.2	113
^t PLH		P	Fact	2.5	6	ns
^t PHL	UEAB	В	Fasi	2.5	6	113
^t PZH	OEBA	AO	_	1	5.3	ns
^t PZL	OLDA	70		1	4.2	113
^t PHZ	OFBA	AO	_	1	5.5	ns
^t PLZ	028/(1	5.2	110
^t PLH	CLKAB	B	Slow	4.4	8.8	ns
^t PHL	(flip-flop mode)	5	0.000	3.6	8.1	
^t PLH	CLKAB	в	Fast	3.2	7.2	ns
^t PHL	(flip-flop mode)	5	1 431	3.1	6.9	
^t PLH	CLKAB	AO	_	2	7.5	ns
^t PHL	(flip-flop mode)			1.8	7	110
^t PLH	CLKBA	AO	_	1	6	ns
^t PHL	(flip-flop mode)			1	5.6	
^t PLH	OMODE	в	Slow	3.8	8.7	ns
^t PHL			0.000	3.2	8.2	
^t PLH	OMODE	R	Fast	2.7	7.2	ns
^t PHL			1 001	2.7	7.2	
^t PLH	IMODE	AO	_	1	6	ns
^t PHL				1	5.1	

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1) (continued)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	МАХ	UNIT	
^t PLH		40		2.5		6.8	20	
^t PHL	LOUFDACK	AU	-	2		5.4	115	
^t PLH	AI	40		1		6	20	
^t PHL	(loopback high)	AU	-	1		5.5	115	
	Pico timo R port outpute (20	time R port outputs $(20\% \text{ to } 90\%)$			2.8			
t _r		// 10 00 //)	Fast		1.5		ns	
	Rise time, AO (10% to 90%)				5.5			
	Fall time R part outputs (909	(to 20%)	Slow 3					
t _f		% 10 20 %)	Fast		1.8		ns	
	Fall time, AO (90% to 10%)				4.5			

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

skew characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)§

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	ΜΙΝ ΤΥΡ‡	МАХ	UNIT
^t sk(LH) [¶]	ΔΙ	В	Slow	0.5	1	ne
^t sk(HL) [¶]		d	0.00	0.5	1	115
^t sk(LH) [¶]	Δι	В	Fast	0.4	0.9	ns
^t sk(HL) [¶]		d	Fasi	0.4	0.9	115
^t sk(LH) [¶]	CI ΚΑΒ/Ι ΕΑΒ	В	Slow	0.5	1	ns
^t sk(HL) [¶]	OERAD/EEAD	d	Clow	0.5	1	115
^t sk(LH) [¶]	CI ΚΑΒ/Ι ΕΑΒ	В	Fast	0.4	0.9	ns
^t sk(HL) [¶]	OERAD/EEAD	d	1 431	0.4	0.9	115
	AI	В	Slow	1.4	2	
tsk(t) [¶]	7.1		Fast	0.6	1.4	ne
		P	Slow	1.8	2.5	115
	ULIVAD/LEAD	6	Fast	0.9	1.8	

[†]Slow (ERC = L) and Fast (ERC = H)

[‡] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}$ C.

§ Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

It sk(LH)/tsk(HL) and tsk(t) - Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in the same direction either high to low [tsk(H)] or low to high [tsk(H)] or in opposite directions, both low to high and high to low [tsk(t)].

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

SCES354C - JUNE 2001 - REVISED SEPTEMBER 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application is probably a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be closely approximated to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer to better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

SCES354C – JUNE 2001 – REVISED SEPTEMBER 2001

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	TYP‡	UNIT
^t PLH	AI	AI _		4.7	
^t PHL	(buffer)	В	Slow	5	ns
^t PLH	AI		Feet	3.7	200
^t PHL	(buffer)	В	Fast	4	115
^t PLH	LEAB		Claur	5.5	ne
^t PHL	(latch mode)	В	SIOW	5.8	115
^t PLH	LEAB	P	Foot	4.6	ne
^t PHL	(latch mode)	В	Fasi	4.8	115
^t PLH	CLKAB	Р	Slow	5.8	ns
^t PHL	(flip-flop mode)	В	510W	6	113
^t PLH	CLKAB	Б	Foot	4.9	ns
^t PHL	(flip-flop mode)	В	Fasi	4.9	
^t PLH	OMODE		Slow	5.5	ns
^t PHL	OMODE	В	510W	5.7	113
^t PLH	OMODE		Fact	4.5	ns
^t PHL	OMODE	В	Fasi	4.7	113
t-	Rise time B-port outputs (20	% to 80%)	Slow	1.8	ns
ч	Rise time, D-port outputs (20	78 10 00 78)	Fast	1.1	115
te	Fall time B-port outputs (809	(to 20%)	Slow	3.4	ns
Ч		0 10 20 /0)	Fast	2.6	ns

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SCES353C – JUNE 2001 – REVISED SEPTEMBER 2001

•	Member of the Texas Instruments Widebus™ Family	DGG (or dgv p. (Top vie	ACKAGE N)
•	TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes	IMODE1 [$1 \qquad 4$	
•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference	AO1 [GND [2 4 3 4 4 4	6] B1 5] GND
•	Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels	AI2 [AO2 [54 64	4] OEAB 3] B2
•	Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring	V _{CC} [AI3 [7 4 8 4	2] ERC 1] OEAB
•	LVTTL Interfaces Are 5-V Tolerant	AO3	94	
•	High-Drive GTLP Open-Drain Outputs (100 mA)	GND [AI4 [10 3 11 3	9 GND 8 CLKAB/LEAB
•	LVTTL Outputs (–24 mA/24 mA)	AO4 [12 3	7 Ц В4 а П в5
•	Variable Edge-Rate Control (ERC) Input	AI5 [13 3 14 3	5 CLKBA/LEBA
	Selects GTLP Rise and Fall Times for Optimal Data Transfor Pate and Signal	GND [15 3	
	Integrity in Distributed Loads		16 3	
•	I _{off} , Power-Up 3-State, and BIAS V _{CC} Support Live Insertion	V _{CC} [A07 [17 3 18 3 19 3	1 V _{CC} 0 B7
•	Distributed V _{CC} and GND Pins Minimize High-Speed Switching Noise	AI7 [GND [20 2 21 2	9 DOOPBACK 8 GND
•	Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II	AO8 [AI8 [22 2 23 2	7] B8 6] V _{REF}
	FCD Protection Exceede JECD 22		24 2	

- ESD Protection Exceeds JESD 22

 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description

The SN74GTLP2034 is a high-drive, 8-bit, three-wire registered transceiver that provides true LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent, latched, and flip-flop modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring, the same functionality as the SN74FB2033, but with true logic. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC[™] circuitry, and TI-OPC[™] circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω.

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

description (continued)

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP2034 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{RFF} = 0.8 V) or GTLP (V_{TT} = 1.5 V and V_{RFF} = 1 V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, Texas Instruments GTLP Frequently Asked Questions, literature number SCEA019, and GTLP in BTL Applications, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and can be directly driven by TTL or 5-V CMOS devices. V_{RFF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OEAB should be tied to V_{CC} through a pullup resistor and OEAB and OEBA should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

terminal assignments

	1	2	3	4	5	6
A	IMODE1	NC	NC	NC	NC	IMODE0
в	AO1	Al1	GND	GND	BIAS V _{CC}	B1
0	AO2	Al2	Vcc	ERC	OEAB	B2
D	AO3	AI3	GND	GND	OEAB	B3
E	AO4	Al4			CLKAB/LEAB	B4
F	AO5	AI5			CLKBA/LEBA	B5
G	AO6	Al6	GND	GND	OEBA	B6
н	AO7	AI7	Vcc	VCC	LOOPBACK	B7
J	AO8	Al8	GND	GND	VREF	B8
ĸ	OMODE0	NC	NC	NC	NC	OMODE1

NC = No internal connection

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	TSSOP – DGG	Tape and reel	SN74GTLP2034DGGR	GTLP2034	
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74GTLP2034DGVR	GT2034	
	VFBGA – GQL	Tape and reel	SN74GTLP2034GQLR	GR034	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLP2034 is a high-drive (100 mA), 8-bit, three-wire registered transceiver containing D-type latches and D-type flip-flops for data-path operation in the transparent, latched, or flip-flop modes. Data transmission is true, with AI data going to the B port and B data going to AO. The split LVTTL AI and AO provides a feedback path for control and diagnostics monitoring.

The logic element for data flow in each direction is configured by two mode (IMODE1 and IMODE0 for B to A, OMODE1 and OMODE0 for A to B) inputs as a buffer, D-type flip-flop, or D-type latch. When configured in the buffer mode, the input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock (CLKAB/LEAB or CLKBA/LEBA) input. In the latch mode, the clock inputs serve as active-high transparent latch enables.

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, B-port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element is the B-to-A input.

The AO enable/disable control is provided by OEBA. When OEBA is low or when V_{CC} is less than 1.5 V, AO is in the high-impedance state. When OEBA is high, AO is active (high or low logic levels).

The B port is controlled by OEAB and OEAB. If OEAB is low, OEAB is high, or V_{CC} is less than 1.5 V, the B port is inactive. If OEAB is high and OEAB is low, the B port is active.

The A-to-B and B-to-A logic elements are active, regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO) or inactive (B port) states.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

INPUTS OUTPUT MODE OMODE0 IMODE0 LOOPBACK OEBA OEAB OEAB OMODE1 IMODE1 L L Х Х Х Х Х Х Ζ Isolation Х Х Х Х Х L Х Н Х Х н L L L Х Х Buffer Х Х Х н L L Н Х AI to B Flip-flop Н Х Х Х Х Х Н L Latch Н Х Х L Х L L L B to AO Buffer Х Х L н Х Н L L Х Х н Н L Х L L B to AO Flip-flop Н Х Н Х Х L Н L н L Х Х Х Н Х L B to AO Latch Н Х н Х Х Н Х L Х н L Х Х L L Н AI to AO Buffer н Х н Х Х L L н н L Х Х Х L н Н AI to AO Flip-flop Х н Н н Х н Х L Н L Х Х Х н Х Н AI to AO Latch Н Н н Х н Х Х Х Transparent with н L Х Х н Х Х L AI to B, B to AO feedback path

Function Tables

ENABLE/DISABLE

	INPUTS		OUT	PUTS
OEBA	OEAB	OEAB	AO	В
L	Х	Х	Z	
н	Х	Х	Active	
Х	L	L		Z
Х	L	Н		Z
х	Н	L		Active
Х	Н	Н		Z

BUFFER

INPUT	OUTPUT
L	L
Н	Н

INPU		
CLK/LE	DATA	001F01
Н	L	L
н	н	Н
L	Х	Q ₀

Function Tables (Continued)

LOOPBACK

LOOPBACK	Q†
L	B port
Н	Point P [‡]

 $^{\dagger}\mathrm{Q}$ is the input to the B-to-A

logic element.

[‡] P is the output of the A-to-B logic element (see functional block diagram).

SELECT

INP	UTS	SELECTED LOGIC
MODE1	MODE0	ELEMENT
L	L	Buffer
L	Н	Flip-flop
н	Х	Latch

INPU	TS	
CLK/LE	DATA	OUIFUI
L	Х	Q ₀
Ŷ	L	L
Ŷ	Н	Н

B-PORT EDGE-RATE CONTROL (ERC)

INPUT ERC	OUTPUT B-PORT
LOGIC LEVEL	EDGE RATE
Н	Slow
L	Fast

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

functional block diagram

Pin numbers shown are for the DGG and DGV packages.

SCES353C – JUNE 2001 – REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): AI port, ERC, and control inputs	0.5 V to 4.6 V 0.5 V to 7 V
B port and V _{REF}	–0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1): AO port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : AO port	48 mA
B port	200 mA
Current into any A-port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ_{JA} (see Note 3): DGG package	70°C/W
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
\/	Termination voltage	GTL	1.14	1.2	1.26	V	
VII	Termination voltage	GTLP	1.35	1.5	1.65	v	
	Poforonao voltago	GTL	0.74	0.8	0.87	М	
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
	Input voltago	B port			V_{TT}	V	
v]	Input voltage	Except B port and VREF		VCC	5.5	v	
Maria	High lovel input veltage	B port	V _{REF} +0.05			V	
VIH	nigh-level linput voltage	Except B port	2			v	
	Low-level input voltage	B port			V _{REF} -0.05	v	
۷IL		Except B port			0.8		
IК	Input clamp current				-18	mA	
ЮН	High-level output current	AO			-24	mA	
lei		AO			24	m (
OL	Low-level output current	B port			100	ma	
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V	
Т _А	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS $V_{CC} = 3.3 V$ first, I/O second, and $V_{CC} = 3.3 V$ first, I/O second, V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable but, generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VRFF. If operated in the A-to-B direction, VRFF should be set to within 0.6 V of VTT to minimize current drain.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS		MIN	түр†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
VOH	AO	V00 - 3 15 V	I _{OH} = -12 mA	2.4			V
		VCC = 0.10 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2	
VOL	AO	$V_{00} = 3.15 V$	I _{OL} = 12 mA			0.4	
		VCC = 3.13 V	I _{OL} = 24 mA			0.5	V
			I _{OL} = 10 mA			0.2	V
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
ıı‡	AI and control inputs	V _{CC} = 3.45 V,	$V_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μΑ
. +	AO	$V_{\rm CC} = 3.45 \text{ V},$ $V_{\rm O} = 0 \text{ to } 5.5 \text{ V}$				±10	
IOZ+	B port	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} ,	$V_{O} = 0$ to 2.3 V			±10	μΑ
		$V_{CC} = 3.45 \text{ V}, I_O = 0,$ V _I (A-port or control input) = V _{CC} or GND,	Outputs high			40	mA
Icc	AO or B port		Outputs low			40	
		V _I (B port) = V _{TT} or GND	Outputs disabled			40	
∆I _{CC} §		$V_{CC} = 3.45$ V, One AI or control input at $V_{CC} - 0.6$ V, Other AI or control inputs at V_{CC} or GND				1.5	mA
C	AI	$V_{1} = 2.15 V_{1} \text{ or } 0$	V _I = 3.15 V or 0		3.5	4.5	nΕ
	Control inputs				3.5	5.5	μ
Co	AO	$V_{O} = 3.15 \text{ V or } 0$	$V_{O} = 3.15 \text{ V or } 0$		5	6	pF
Cio	B port	V _O = 1.5 V or 0			8.5	10	pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MAX	UNIT
l _{off}	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	$V_{O} = 0.5 V$ to 3 V,	$OEBA = V_{CC}$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$OEBA = V_{CC}$		±30	μA

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS				UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 1.5 V		10	μΑ
IOZPU	V_{CC} = 0 to 1.5 V, BIAS V	$V_{\rm CC}$ = 0, $V_{\rm O}$ = 0.5 V to 1.5 V, $\overline{\rm OI}$	$_{C} = 0$, $V_{O} = 0.5$ V to 1.5 V, $\overline{OEAB} = 0$ and $OEAB = V_{CC}$			μA
IOZPD	V_{CC} = 1.5 V to 0, BIAS V	$/_{\rm CC}$ = 0, $V_{\rm O}$ = 0.5 V to 1.5 V, $\overline{\rm O}$	$C = 0$, $V_O = 0.5$ V to 1.5 V, $\overline{OEAB} = 0$ and $OEAB = V_{CC}$			μA
Icc	V _{CC} = 0 to 3.15 V				5	mA
(BIAS V _{CC})	V_{CC} = 3.15 V to 3.45 V	BIAS VCC = 3.15 V to 3.45 V,	VO(B poin) = 0.00 1.5 V		10	μA
VO	$V_{CC} = 0,$	BIAS V_{CC} = 3.3 V,	IO = 0	0.95	1.05	V
lo	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μΑ

SCES353C – JUNE 2001 – REVISED SEPTEMBER 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT	
fclock	Clock frequency			175	MHz	
tw	Pulse duration	CLKAB/LEAB or CLKBA/LEBA	2.8		ns	
		AI before CLKAB↑	1.1			
		Al before CLKBA↑	1.4			
	Setup time	B before CLKBA↑	1.3		ns	
tsu		Al before LEAB↓	1.3			
		Al before LEBA↓	2.1			
		B before LEBA \downarrow	2.2			
		AI after CLKAB↑	0.3			
^t h		Al after CLKBA↑	0.2			
	Hold time	B after CLKBA↑	0.2		ns	
		Al after LEAB↓	0.3			
		Al after LEBA↓	0			
		B after LEBA↓	0			

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	τγρ‡ ΜΑΧ	UNIT
fmax				175		MHz
^t PLH	AI			3	7.1	
^t PHL	(buffer)	В	Slow	3	7	ns
tPLH	AI	_	_	2	5.6	
^t PHL	(buffer)	В	Fast	2	5.7	ns
^t PLH	В	40		1	5.4	
^t PHL	(buffer)	AO	-	1	4.8	ns
^t PLH	LEAB	_		4.2	8.5	
^t PHL	(latch mode)	В	Slow	3.2	7.3	ns
^t PLH	LEAB			3.2	7.1	
^t PHL	(latch mode)	В	Fast	2.8	6.3	ns
^t PLH	LEAB	10		2	6.6	
^t PHL	(latch mode)	AO	-	1.8	5.8	ns
^t PLH	LEBA	40		1	5.3	
^t PHL	(latch mode)	AU	-	1	4.5	ns
^t PLH	0545			3.8	7.5	
^t PHL	OEAB	В	Slow	3.1	7	ns
^t PLH	0545			2.5	6	
^t PHL	OEAB	В	Fast	2.5	6	ns
^t PLH			01	3.5	7.5	20
^t PHL	OEAB	В	Slow	3	7.2	115
^t PLH			Fast	2.5	6	20
^t PHL	OEAB	В	Fast	2.5	6	115
^t PZH		40		1	4.7	
^t PZL	OEBA	AO	-	1	3.4	115
^t PHZ	OERA	40		1	5.2	200
^t PLZ	OLBA	AO	_	1	4.9	115
^t PLH	CLKAB	D	Clow	4.4	8.6	ne
^t PHL	(flip-flop mode)	D	Slow	3.6	8	115
^t PLH	CLKAB	P	Faat	3.2	7.1	ne
^t PHL	(flip-flop mode)	D	Fasi	3.1	6.8	115
^t PLH	CLKAB	40		2	6.9	ne
^t PHL	(flip-flop mode)	70	_	1.8	6.4	115
^t PLH	CLKBA	40		1	5.6	ns
^t PHL	(flip-flop mode)	70		1	4.9	113
^t PLH	OMODE	D	Slow	3.8	8.7	ne
^t PHL	OMODE	D	Slow	3.2	8.2	115
^t PLH		D	Faat	2.7	7	ne
^t PHL		В	Fast	2.7	7	115
^t PLH	IMODE	40		1	5.6	ne
^t PHL			-	1	4.6	115

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1) (continued)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	МАХ	UNIT	
^t PLH	LOOPBACK	AO	-	2.5		5.5	ns	
^t PHL				2		4.7		
^t PLH	Al (loopback high)	AO	-	1		5.3	ns	
^t PHL				1		4.9		
tr	Rise time, B-port outputs (20% to 80%)		Slow		2.8			
			Fast		1.5		ns	
	Rise time, AO (10% to 90%)			3.5				
tf	Fall time, B-port outputs (80% to 20%)		Slow		3		ns	
			Fast		1.8			
	Fall time, AO (90% to 10%)			1.5				

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

skew characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)§

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	ΜΙΝ ΤΥΡ‡	МАХ	UNIT
^t sk(LH) [¶]	AI	В	Slow	0.5	1	ns
^t sk(HL) [¶]				0.5	1	
^t sk(LH) [¶]	AI	В	Fast	0.4	0.9	ns
^t sk(HL) [¶]				0.4	0.9	
^t sk(LH) [¶]	CLKAB/LEAB	В	Slow	0.5	1	ns
^t sk(HL) [¶]				0.5	1	
^t sk(LH) [¶]	CLKAB/LEAB	В	Fast	0.4	0.9	ns
^t sk(HL) [¶]				0.4	0.9	
tsk(t) [¶]	AI	В	Slow	1.4	2	
			Fast	0.6	1.4	ns
	CLKAB/LEAB	В	Slow	1.8	2.5	
			Fast	0.9	1.8	

[†]Slow (ERC = L) and Fast (ERC = H)

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

§ Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

It sk(LH)/tsk(HL) and tsk(t) - Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in the same direction either high to low [tsk(HL)] or low to high [tsk(LH)] or in opposite directions, both low to high and high to low [tsk(t)].

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application is probably a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be closely approximated to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer to better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

SCES353C – JUNE 2001 – REVISED SEPTEMBER 2001

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
^t PLH	AI			5.7	
^t PHL	(buffer)	В	Slow	5.2	ns
^t PLH	AI		Frat	3.7	20
^t PHL	(buffer)	В	Fast	4.1	115
^t PLH	LEAB		01	5.9	200
^t PHL	(latch mode)	В	SIOW	5.7	115
^t PLH	LEAB	P	Feet	4.8	200
^t PHL	(latch mode)	В	Fast	4.8	115
^t PLH	CLKAB	P	Claur	5.7	200
^t PHL	(flip-flop mode)	В	Slow	6.4	115
^t PLH	CLKAB	CLKAB	Foot	4.7	20
^t PHL	(flip-flop mode)	В	Fast	5.2	115
^t PLH	OMODE	_	Claw	5.4	ne
t _{PHL}	OMODE	D	510W	6	115
^t PLH	OMODE	P	Feet	4.5	200
^t PHL	OMODE	D	Fasi	4.9	115
+	Rise time, B-port outputs (20% to 80%)		Slow	2	200
۲			Fast	1.1	115
t.	Fall time B-port outpute (20%	to 20%)	Slow	3.3	ne
4			Fast	2.3	115

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER

WITH SPLIT LVTTL PORT AND FEEDBACK PATH SCES355C – JUNE 2001 – REVISED SEPTEMBER 2001

•	Member of the Texas Instruments Widebus™ Family	DGG OR DGV PACKAGE (TOP VIEW)		
•	TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes	IMODE1 [
•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference	AO1 [GND [3 46 4 45	B1 GND
•	Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels	AI2 [AO2 [5 44 6 43] OEAB] B2
•	Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring	V _{CC} [AI3 [7 42 8 41	ERC
•	AO Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required	AO3 [GND [AI4 [9 40 10 39 11 38	B3 GND CLKAB/LEAB
•	LVTTL Interfaces Are 5-V Tolerant	AO4 [AO5 [12 37 13 36	В4 В В5
•	High-Drive GTLP Open-Drain Outputs (100 mA)	AI5 [14 35 15 34	CLKBA/LEBA
•	LVTTL Outputs (–12 mA/12 mA)	AO6 [16 33	B6
•	Variable Edge-Rate Control (ERC) Input	Al6	17 32	
	Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal	V _{CC} [AO7 [18 31 19 30	
	Integrity in Distributed Loads	GND	20 28 21 28	
•	Support Live Insertion	AO8	22 27	- [] вв
•	Distributed V _{CC} and GND Pins Minimize High-Speed Switching Noise	AI8 [OMODE0 [23 26 24 25	V _{REF} OMODE1

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description

The SN74GTLP22034 is a high-drive, 8-bit, three-wire registered transceiver that provides true LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent, latched, and flip-flop modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring, the same functionality as the SN74FB2033, but with true logic. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC[™] circuitry, and TI-OPC[™] circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω.

The AO outputs, which are designed to sink up to 12 mA, include equivalent $26 \cdot \Omega$ resistors to reduce overshoot and undershoot.

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments

SCES355C - JUNE 2001 - REVISED SEPTEMBER 2001

description (continued)

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP22034 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{RFF} = 0.8 V) or GTLP (V_{TT} = 1.5 V and V_{RFF} = 1 V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, Texas Instruments GTLP Frequently Asked Questions, literature number SCEA019, and GTLP in BTL Applications, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and can be directly driven by TTL or 5-V CMOS devices. V_{RFF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS V_{CC}. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OEAB should be tied to V_{CC} through a pullup resistor and OEAB and OEBA should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

terminal assignments

_	1	2	3	4	5	6
A	IMODE1	NC	NC	NC	NC	IMODE0
в	AO1	Al1	GND	GND	BIAS V _{CC}	B1
c	AO2	Al2	Vcc	ERC	OEAB	B2
D	AO3	AI3	GND	GND	OEAB	B3
E	AO4	Al4			CLKAB/LEAB	B4
F	AO5	AI5			CLKBA/LEBA	B5
G	AO6	Al6	GND	GND	OEBA	B6
н	AO7	AI7	Vcc	VCC	LOOPBACK	B7
J	AO8	Al8	GND	GND	VREF	B8
ĸ	OMODE0	NC	NC	NC	NC	OMODE1

NC = No internal connection

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74GTLP22034DGGR	GTLP22034
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74GTLP22034DGVR	GT22034
	VFBGA – GQL	Tape and reel	SN74GTLP22034GQLR	GS034

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLP22034 is a high-drive (100 mA), 8-bit, three-wire registered transceiver containing D-type latches and D-type flip-flops for data-path operation in the transparent, latched, or flip-flop modes. Data transmission is true, with AI data going to the B port and B data going to AO. The split LVTTL AI and AO provides a feedback path for control and diagnostics monitoring.

The logic element for data flow in each direction is configured by two mode (IMODE1 and IMODE0 for B to A, OMODE1 and OMODE0 for A to B) inputs as a buffer, a D-type flip-flop, or a D-type latch. When configured in the buffer mode, the input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock (CLKAB/LEAB or CLKBA/LEBA) input. In the latch mode, the clock inputs serve as active-high transparent latch enables.

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, B-port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element is the B-to-A input.

The AO enable/disable control is provided by OEBA. When OEBA is low or when V_{CC} is less than 1.5 V, AO is in the high-impedance state. When OEBA is high, AO is active (high or low logic levels).

The B port is controlled by OEAB and OEAB. If OEAB is low, OEAB is high, or V_{CC} is less than 1.5 V, the B port is inactive. If OEAB is high and OEAB is low, the B port is active.

The A-to-B and B-to-A logic elements are active, regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO) or inactive (B port) states.

SCES355C - JUNE 2001 - REVISED SEPTEMBER 2001

INPUTS OUTPUT MODE OMODE0 LOOPBACK OEBA OEAB OEAB OMODE1 IMODE1 IMODE0 L L Х Х Х Х Х Х Ζ Isolation Х Х Х Х Х L Х Н Х Х н L L L Х Х Buffer Х Х Х н L L Н Х AI to B Flip-flop Н Х Х Х Х Х Н L Latch Н Х Х L Х L L L B to AO Buffer Х Х L н Х Н L L Х Х н Н L Х L L B to AO Flip-flop Н Х Н Х Х L Н L н L Х Х Х Н Х L B to AO Latch Н Х н Х Х Н Х L Х н L Х Х L L Н AI to AO Buffer н Х н Х Х L L н н L Х Х Х L н Н AI to AO Flip-flop Х н Н н Х н Х L Н L Х Х Х н Х Н AI to AO Latch Н Н н Х н Х Х Х Transparent with н L Х Х н Х Х L AI to B, B to AO feedback path

Function Tables

ENABLE/DISABLE

INPUTS			OUT	PUTS
OEBA	OEAB	OEAB	AO	В
L	Х	Х	Z	
н	Х	Х	Active	
х	L	L		Z
х	L	Н		Z
х	Н	L		Active
х	Н	Н		Z

BUFFER

INPUT	OUTPUT
L	L
Н	Н

INPU			
CLK/LE DATA		001901	
Н	L	L	
н	н	Н	
L	Х	Q ₀	

Function Tables (Continued)

LOOPBACK

LOOPBACK	Q†
L	B port
н	Point P [‡]

[†]Q is the input to the B-to-A

logic element.

[‡] P is the output of the A-to-B logic element (see functional block diagram).

SELECT

INPUTS		SELECTED LOGIC
MODE1	MODE0	ELEMENT
L	L	Buffer
L	Н	Flip-flop
н	Х	Latch

INPU		
CLK/LE	DATA	OUIFUI
L	Х	Q ₀
Ŷ	L	L
Ŷ	Н	Н

B-PORT EDGE-RATE CONTROL (ERC)

INPUT ERC	OUTPUT B-PORT EDGE RATE	
LOGIC LEVEL		
Н	Slow	
L	Fast	

SCES355C - JUNE 2001 - REVISED SEPTEMBER 2001

functional block diagram

Pin numbers shown are for the DGG and DGV packages.

SCES355C – JUNE 2001 – REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): AI port, ERC, and control inputs	0.5 V to 4.6 V 0.5 V to 7 V
D poil allu VREF	0.5 v t0 4.6 v
voltage range applied to any output in the high-impedance or power-oil state, vo	
(see Note 1): AO port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : AO port	24 mA
B port	200 mA
Current into any A-port output in the high state, I_{Ω} (see Note 2)	24 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_1 < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ_{JA} (see Note 3): DGG package	70°C/W
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES355C - JUNE 2001 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
	Termination voltage	GTL	1.14	1.2	1.26	V	
VTT	Termination voltage	GTLP	1.35	1.5	1.65	v	
	Poforonae voltage	GTL	0.74	0.8	0.87	V	
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
. V.	Input voltage	B port			V _{TT}	V	
vI	input voltage	Except B port and VREF		VCC	5.5	v	
Maria	High-level input voltage	B port	V _{REF} +0.05			V	
VIH		Except B port	2			v	
		B port			V _{REF} -0.05	V	
۷IL	Low-level input voltage	Except B port			0.8	v	
IК	Input clamp current				-18	mA	
ЮН	High-level output current	AO			-12	mA	
lei	Low lovel output ourrent	AO			12	m (
OL	Low-level output current	B port			100	MA	
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V	
ТА	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable but, generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VRFF. If operated in the A-to-B direction, VRFF should be set to within 0.6 V of VTT to minimize current drain.

SCES355C - JUNE 2001 - REVISED SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TEST CONDITIONS		түр†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
Vон	AO	Voo - 3 15 V	I _{OH} = -6 mA	2.4			V
		VCC = 3.13 V	I _{OH} = -12 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2	
	AO	$V_{22} = 3.15 V_{22}$	I _{OL} = 6 mA			0.55	V
Voi		V(() = 3.15 V	I _{OL} = 12 mA			0.8	
VOL			I _{OL} = 10 mA			0.2	v
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
ı _l ‡	AI and control inputs	V _{CC} = 3.45 V,	$V_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μΑ
. +	AO	V _{CC} = 3.45 V,	$V_{O} = 0$ to 5.5 V			±10	۵
IOZ+	B port	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} ,	V_{O} = 0 to 2.3 V			±10	μΑ
		$V_{CC} = 3.45 V. _{C} = 0.$	Outputs high			40	
ICC	AO or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			40	mA
		V _I (B port) = V _{TT} or GND	Outputs disabled			40	
∆ICC§		V_{CC} = 3.45 V, One AI or control input at V_{CC} – 0.6 V, Other AI or control inputs at V_{CC} or GND				1.5	mA
C.	AI	1/1 - 2.15/1 - 0.000			3.5	4.5	۳E
	Control inputs				3.5	5.5	μr
Co	AO	$V_{O} = 3.15 \text{ V or } 0$			5	6	pF
Cio	B port	V _O = 1.5 V or 0			8.5	10	pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS					
l _{off}	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			10	μA	
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$OEBA = V_{CC}$		±30	μA	
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$OEBA = V_{CC}$		±30	μA	

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS				
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 1.5 \text{ V}$		10	μΑ
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$, $V_O = 0.5$ V to 1	1.5 V, $\overline{OEAB} = 0$ and $OEAB = V_{CC}$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$, $V_O = 0.5$ V to 1	1.5 V, $\overline{OEAB} = 0$ and $OEAB = V_{CC}$		±30	μA
Icc	V _{CC} = 0 to 3.15 V	$P AS \rangle = 2.15 \rangle to 2.45 \rangle$	V_{0} (P port) – 0 to 1 5 V		5	mA
(BIAS V _{CC})	V_{CC} = 3.15 V to 3.45 V	BIAS VCC = 3.15 V 10 3.45 V,	VO(B poil) = 0.001.5 V		10	μA
VO	$V_{CC} = 0,$	BIAS V_{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μA

SCES355C – JUNE 2001 – REVISED SEPTEMBER 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT
fclock	Clock frequency			175	MHz
tw	Pulse duration	CLKAB/LEAB or CLKBA/LEBA	2.8		ns
		AI before CLKAB↑	1.1		
		AI before CLKBA↑	1.4		
	Setup time	B before CLKBA↑	1.3		20
lsu		AI before LEAB↓	1.3		ns
		Al before LEBA↓	2.1		
		B before LEBA \downarrow	2.2		
		AI after CLKAB↑	0.3		
		AI after CLKBA↑	0.2		
4.	Lold time	B after CLKBA↑	0.2		20
۲h	Hold time	AI after LEAB↓	0.3		ns
		AI after LEBA↓	0		
		B after LEBA↓	0		

SCES355C – JUNE 2001 – REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	τγρ‡ ΜΑΧ	UNIT
fmax				175		MHz
^t PLH	AI			3	7.1	
^t PHL	(buffer)	В	Slow	3	7	ns
tPLH	AI	_	_	2	5.6	
^t PHL	(buffer)	В	Fast	2	5.7	ns
^t PLH	В	40		1	5.8	
^t PHL	(buffer)	AU	-	1	5.2	ns
^t PLH	LEAB		01	4.2	8.5	20
^t PHL	(latch mode)	В	Slow	3.2	7.3	ns
^t PLH	LEAB		Fast	3.2	7.1	20
^t PHL	(latch mode)	В	Fast	2.8	6.3	115
^t PLH	LEAB	40		2	6.9	200
^t PHL	(latch mode)	AU	-	1.8	6.1	115
^t PLH	LEBA	40		1	5.6	ne
^t PHL	(latch mode)	70	_	1	5	115
^t PLH	OEAR	D	Clow	3.8	7.5	ne
^t PHL	UEAD	D	SIOW	3.1	7	115
^t PLH	OEAB	P	Fact	2.5	6	ns
^t PHL	OLAB	В	Fasi	2.5	6	110
^t PLH		B	Slow	3.5	7.5	ns
^t PHL			5100	3	7.2	110
^t PLH		B	Fast	2.5	6	ns
^t PHL			1 830	2.5	6	
^t PZH	OFBA	AO	_	1	5.3	ns
^t PZL				1	4.2	
^t PHZ	ОЕВА	AO	_	1	5.5	ns
^t PLZ	-	-		1	5.2	-
^t PLH	CLKAB	В	Slow	4.4	8.6	ns
^t PHL	(flip-flop mode)	_		3.6	8	
^t PLH	CLKAB	В	Fast	3.2	7.1	ns
^t PHL	(flip-flop mode)	_		3.1	6.8	
^t PLH	CLKAB	AO	-	2	7.5	ns
^t PHL	(flip-flop mode)			1.8	7	
^t PLH	CLKBA	AO	-	1	6	ns
^t PHL	(TIIP-TIOP mode)			1	5.6	
^t PLH	OMODE	в	Slow	3.8	8.7	ns
^t PHL		-		3.2	8.2	
^t PLH	OMODE	В	Fast	2.7	7	ns
^t PHL	-			2.7	7	-
^t PLH	IMODE	AO	-	1	6	ns
^t PHL	-	-		1	5.1	

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCES355C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5$ V and $V_{RFF} = 1$ V for GTLP (see Figure 1) (continued)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	МАХ	UNIT
^t PLH		40		2.5		6.1	20
^t PHL	LOUFDACK	AU	-	2		5.1	115
^t PLH	AI	40		1		5.7	20
^t PHL	(loopback high)	AU	-	1		5.4	115
	Pico timo R port outpute (20	% to 80%)	Slow		2.8		
t _r		Rise time, B-port outputs (20% to 80%)			1.5		ns
	Rise time, AO (10% to 90%)				5.5		
	Fall time R part outputs (909	(to 20%)	Slow		3		
t _f		% 10 20 %)	Fast		1.8		ns
	Fall time, AO (90% to 10%)				4.5		

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

skew characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)§

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	ΜΙΝ ΤΥΡ‡	МАХ	UNIT
^t sk(LH) [¶]	Δι	В	Slow	0.5	1	ne
^t sk(HL) [¶]		d	5100	0.5	1	115
^t sk(LH) [¶]	AI	в	Fast	0.4	0.9	ns
t _{sk(HL)} ¶		d	1 431	0.4	0.9	115
t _{sk(LH)} ¶		в	Slow	0.5	1	ns
t _{sk(HL)} ¶	OEIND/EEND	0	CIOW	0.5	1	115
t _{sk(LH)} ¶	<u>CLKAB/LEAB</u>	в	Fast	0.4	0.9	ns
^t sk(HL) [¶]	OER (D/EER D	5	1 401	0.4	0.9	110
	AI	В	Slow	1.4	2	
t _{sk(t)} ¶ CLKAB/LEAB	74	5	Fast	0.6	1.4	ne
	B	Slow	1.8	2.5	115	
		CLKAB/LEAB B	Fast	0.9	1.8	

[†]Slow (ERC = L) and Fast (ERC = H)

[‡] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}$ C.

§ Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

Itsk(LH)/tsk(HL) and tsk(t) – Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in the same direction either high to low [tsk(HL)] or low to high [tsk(LH)] or in opposite directions, both low to high and high to low [tsk(t)].

SCES355C - JUNE 2001 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

SCES355C - JUNE 2001 - REVISED SEPTEMBER 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application is probably a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer to better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

SCES355C – JUNE 2001 – REVISED SEPTEMBER 2001

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
^t PLH	AI			5.7	
^t PHL	(buffer)	В	Slow	5.2	ns
^t PLH	AI	_	Fact	3.7	20
^t PHL	(buffer)	В	Fast	4.1	115
^t PLH	LEAB		01	5.9	200
^t PHL	(latch mode)	В	Slow	5.7	115
^t PLH	LEAB	Р	Feet	4.8	200
^t PHL	(latch mode)	В	Fast	4.8	115
^t PLH	CLKAB	Р	Claur	5.7	200
^t PHL	(flip-flop mode)	В	Slow	6.4	115
^t PLH	CLKAB		Feet	4.7	200
^t PHL	(flip-flop mode)	В	Fast	5.2	115
^t PLH	OMODE	D	Slow	5.4	ne
t _{PHL}	OMODE	D	510W	6	115
^t PLH	OMODE	D	Foot	4.5	ne
^t PHL	OMODE	D	Fasi	4.9	115
t.	Rise time B-port outputs (20%	(to 80%)	Slow	2	ne
۲		8 10 80 78)	Fast	1.1	115
tr	Fall time B-port outputs (80%	to 20%)	Slow	3.3	ne
tf	Fall time, B-port outputs (80% to 20%)		Fast	2.3	115

[†]Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SCES326C - MARCH 2000 - REVISED AUGUST 2001

•	Member of Texas Instruments' Widebus™ Family	DGG O (1	R DL PAC	KAGE)
•	UBT™ Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode	OEAB	1 56 2 55 3 54 1 52	CEAB CLKAB B1
•	OEC™ Circuitry Improves Signal Integrity	A2 []5	5 52	B2
	and Reduces Electromagnetic Interference	A3 []6	5 51	B3
•	Bidirectional Interface Between GTLP	7 V _{CC} (3.3 V)	7 50	V _{CC} (5 V)
	Signal Levels and LVTTL Logic Levels	A4 [ع	3 49	B4
•	LVTTL Interfaces are 5-V Tolerant	A5 []9	9 48	B5
	Medium-Drive GTLP Outputs (34 mA)	A6 []1	10 47	B6
•	LVTTL Outputs (-32 mA/64 mA) GTLP Rise and Fall Times Designed for	GND []1 A7 []1 A8 []1	11 46 12 45 13 44	GND B7 B8
	Optimal Data-Transfer Rate and Signal	A9 [] 1	14 43	B9
	Integrity in Distributed Loads	A10 [] 1	15 42	B10
•	I _{off} Supports Partial-Power-Down Mode	A11 U1	16 41	B11
	Operation	A12 U1	17 40	B12
•	Bus Hold on A-Port Inputs	GND [[1	18 39	GND
	Distributed V _{CC} and GND Pins Minimize	A13 []1	19 38	B13
	High-Speed Switching Noise	A14 []2	20 37	B14
•	Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II	A15 []2 V _{CC} (3.3 V) []2 A16 []2	21 36 22 35 23 34	B15 V _{REF} B16
•	ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A)	A17 [2 GND [2	24 33 25 32	B17 GND
.	- 1000-V Charged-Device Model (C101)	A18 []2 OEBA []2 LEBA []2	26 31 27 30 28 29	J B18] CLKBA] CEBA

description

The SN74GTLPH16612 is a medium-drive, 18-bit UBT[™] transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It allows for transparent, latched, clocked, or clock-enabled modes of data transfer. This device provides a high-speed interface between cards operating at LVTTL logic levels and backplanes operating at GTLP signal levels. High-speed (about two times faster than standard LVTTL or TTL) backplane operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC[™] circuitry. These improvements minimize bus-settling time and have been designed and tested using several backplane models.

GTLP is a TITM derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH16612 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels.

The B port normally operates at GTLP levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{REF} is the reference input voltage for the B port.

To improve signal integrity, the SN74GTLPH16612 B-port output transition time is optimized for distributed backplane loads.

OEC, TI, UBT, and Widebus are trademarks of Texas Instruments

SCES326C - MARCH 2000 - REVISED AUGUST 2001

description (continued)

V_{CC} (5 V) supplies the internal and GTLP circuitry, while V_{CC} (3.3 V) supplies the LVTTL output buffers.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Tube	SN74GTLPH16612DL	
–40°C to 85°C	330F - DL	Tape and reel	SN74GTLPH16612DLR	GILFHI0012
	TSSOP – DGG	Tape and reel	SN74GTLPH16612GR	GTLPH16612

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH16612 is a medium-drive (34 mA), 18-bit UBT transceiver, containing D-type latches and D-type flip-flops to allow data flow in transparent, latched, clocked, and clock-enabled modes can replace any of the functions shown in Table 1. Data polarity is noninverting.

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT	18 BIT		
Transceiver	'245, '623, '645	'863	'861	'16245, '16623	'16863		
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541	'16825		
Latched transceiver	'543			'16543	'16472		
Latch	'373, '573	'843	'841	'16373	'16843		
Registered transceiver	'646, '652			'16646, '16652	'16474		
Flip-flop	'374, '574		'821	'16374			
Standard UBT					'16500, '16501		
Universal bus driver					'16835		
Registered transceiver with clock enable	'2952			'16470, '16952			
Flip-flop with clock enable	'377	'823			'16823		
Standard UBT with clock enable					'16600, '16601		
SN74GTLPH1	16612 UBT transce	iver repla	aces all ab	ove functions			

Table 1. SN74GTLPH16612 UBT Transceiver Replacement Functions

Data flow in each direction is controlled by the clock enables (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA), and output enables (OEAB and OEBA).

For A-to-B data flow, when \overline{CEAB} is low, the device operates on the low-to-high transition of CLKAB for the flip-flop and on the high-to-low transition of LEAB for the latch path, i.e., if \overline{CEAB} and LEAB are low, the A data is latched, regardless of the state of CLKAB (high or low) and if LEAB is high, the device is in transparent mode. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state.

The data flow for B-to-A is similar to that of A-to-B, except that CEBA, OEBA, LEBA, and CLKBA are used.

SCES326C - MARCH 2000 - REVISED AUGUST 2001

	FUNCTION TABLE [†]								
		INPUTS	5		OUTPUT	MODE			
CEAB	OEAB	LEAB	CLKAB	Α	В	MODE			
Х	Н	Х	Х	Х	Z	Isolation			
L	L	L	Н	Х	в ₀ ‡	Latabad storage of A data			
L	L	L	L	Х	в ₀ §	Latoried Storage of A data			
Х	L	Н	Х	L	L	True transparent			
х	L	Н	Х	Н	н	The transparent			
L	L	L	\uparrow	L	L	Clocked storage of A date			
L	L	L	\uparrow	Н	н	Ciocked Storage of A data			
Н	L	L	Х	Х	B ₀ §	Clock inhibit			

[†] A-to-B data flow is shown. B-to-A data flow is similar, but uses CEBA, OEBA, LEBA, and CLKBA. The condition when OEAB and OEBA are both low at the same time is not recommended.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low.

§ Output level before the indicated steady-state input conditions were established.

logic diagram (positive logic)

SCES326C - MARCH 2000 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} : 3.3 V 5 V Input voltage range, V _I (see Note 1): A port and control inputs	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 7 V 0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, V_{Ω}	
(see Note 1): A port	–0.5 V to 7 V
B port	\ldots –0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	128 mA
B port	80 mA
Current into any A port output in the high state, I _O (see Note 2)	64 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	64°C/W
DL package	56°C/W
Storage temperature range, T _{stg}	\dots –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
Vaa	Supply voltage	3.3 V	3.15	3.3	3.45	V	
VCC	Supply voltage	5 V	4.75	5	5.25	v	
V _{TT} Termination	Termination voltage	GTL	1.14	1.2	1.26	V	
	Termination voltage	GTLP	1.35	1.5	1.65	v	
Vare	Poforonoo voltogo	GTL	0.74	0.8	0.87	V	
VREF	Relefence voltage	GTLP	0.87	1	1.1	v	
VI		B port			V _{TT}	V	
	input voitage	Except B port		VCC	5.5	v	
	High-level input voltage	B port	V _{REF} +50 mV			V	
VIН		Except B port	2			v	
	Low lovel input voltage	B port		,	VREF-50 mV	V	
VIL	Low-level input voltage	Except B port			0.8	v	
IIK	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-32	mA	
		A port			64		
OL	Low-level output current	B port			34	mA	
TA	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Normal connection sequence is GND first, $V_{CC} = 5 V$ second, and $V_{CC} = 3.3 V$, I/O, control inputs, V_{TT} , and V_{REF} (any order) last.

6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded.

7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT.

SCES326C - MARCH 2000 - REVISED AUGUST 2001

TYP[†] PARAMETER **TEST CONDITIONS** MIN MAX UNIT -1.2 V VIK V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V, $I_{I} = -18 \text{ mA}$ V_{CC} (3.3 V) = 3.15 V to 3.45 V, VCC (3.3 V) IOH = -100 μA V_{CC} (5 V) = 4.75 V to 5.25 V -0.2 A port V ∨он IOH = -8 mA 2.4 V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V 2 IOH = -32 mA $I_{OI} = 100 \,\mu A$ 0.2 IOL = 16 mA 0.4 A port V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V VOL V 0.5 $I_{OI} = 32 \text{ mA}$ 0.55 $I_{OI} = 64 \text{ mA}$ 0.65 V_{CC} (3.3 V) = 3.15 V, I_{OL} = 34 mA B port V_{CC} (5 V) = 4.75 V, Control V_{CC} (3.3 V) = 0 or 3.45 V, V_{CC} (5 V) = 0 or 5.25 V, $V_{I} = 5.5 V$ 10 inputs $V_{I} = 5.5 V$ 20 V_{CC} (3.3 V) = 3.45 V, VCC (5 V) = 5.25 V $V_{I} = V_{CC} (3.3 V)$ 1 lį. A port μΑ $V_I = 0$ -30 $V_{I} = V_{CC} (3.3 V)$ 5 B port V_{CC} (3.3 V) = 3.45 V, VCC (5 V) = 5.25 V $V_{I} = 0$ -5 loff $V_{CC} = 0,$ $V_I \text{ or } V_O = 0 \text{ to } 4.5 \text{ V}$ 100 μΑ $V_{I} = 0.8 V$ 75 -75 A port V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V $V_I = 2 V$ μΑ I(hold) ±500 $V_{I} = 0$ to $V_{CC} (3.3 V)^{\ddagger}$ A port V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, $V_{O} = V_{CC} (3.3 V)$ 1 **I**OZH μΑ Vo = 1.5 V B port V_{CC} (3.3 V) = 3.45 V, $V_{C,C}$ (5 V) = 5.25 V, 10 A port V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, VO = 0-1 μΑ IOZL -10 B port V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, $V_{O} = 0.65 V$ Outputs high 1 ICC (3.3 V) A or B Outputs low 5 mΑ port Outputs disabled 1 Outputs high 120 ICC A or B Outputs low 120 mΑ (5 V) port Outputs disabled 120 V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, One A-port or control input at 2.7 V, ΔICC (3.3 V)# 1 mΑ Other A-port or control inputs at V_{CC} (3.3 V) or GND Control Ci VI = 3.15 V or 0 4 pF inputs V_O = 3.15 V or 0 8.5 A port Cio pF $V_{O} = 1.5 V \text{ or } 0$ B port 8

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

[‡]This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. § This is the V_I for A-port or control inputs.

 \P This is the V_I for B port.

[#]This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES326C - MARCH 2000 - REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted) (see Figure 1)

			MIN	MAX	UNIT	
fclock	Clock frequency			85	MHz	
t _w Pulse duration	Dulas duration	LEAB or LEBA high	3.3		20	
		CLKAB or CLKBA high or low	5.7		ns	
		A before CLKAB↑	1			
	Setup time	B before CLKBA↑	1.8		ns	
t _{su}		A before LEAB↓	0.5			
		B before LEBA↓	1.2			
		CEAB before CLKAB↑	1.2			
		CEBA before CLKBA↑	1.4			
		A after CLKAB↑	1.9			
	Hold time	B after CLKBA↑	0.5			
		A after LEAB↓	2.7		20	
τ'n		B after LEBA↓	3.5		ns	
		CEAB after CLKAB↑	1.2			
		CEBA after CLKBA↑	1.1			

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
fmax			85			MHz
^t PLH	0	Р	2.5		6.9	20
^t PHL	A	D	2.5		6.9	115
^t PLH		P	3.2		7.3	200
^t PHL	LEAD	D	3.2		7.3	115
^t PLH	CLKAR	Р	3.4		7.8	20
^t PHL	CERAB	D	3.4		7.8	ns
t _{en}		Р	2.8		7	20
^t dis	OEAB	D	2.8		7	115
tr	Transition time, B outputs (20% to 80%)			2.6		ns
tf	Transition time, B or	utputs (80% to 20%)		2.6		ns
^t PLH	Р	0	1.5		5.7	
^t PHL	Б	A	1.5		5.7	ns
^t PLH		0	1.8		5.7	
^t PHL	LEBA	A	1.8		5.7	ns
^t PLH		0	2.3		5.5	20
^t PHL	CLKBA	A	2.3		5.5	115
ten		0	1.8		6.1	20
tdis	UEDA	A	1.8		6.1	ns

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

SCES326C - MARCH 2000 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. $\ensuremath{\mathsf{C}}_L$ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

SCES326C - MARCH 2000 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The previous switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to an RLC circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. Medium-Drive Test Backplane

Figure 3. Medium-Drive RLC Network

switching	characteristics	over recommer	nded ranges	of supply	voltage and	operating fr	ee-air
temperatu	re, V _{TT} = 1.5 V a	and $V_{RFF} = 1 V for$	or GTLP (see	Figure 3)	•		

PARAMETER	FROM (INPUT)	TO (OUTPUT)	ΜΙΝ ΤΥΡ	UNIT
fmax			85	MHz
^t PLH	~	В	3.	6
^t PHL	~	В	3.	6
^t PLH		В	4.	3
^t PHL	LLAD	В	4.	3
^t PLH		В	4.	ne
^t PHL	GERAB	В	4.	4
t _{en}		В	4.	1
^t dis	OEAB	d	4.	3
tr	Rise time, B outp	1.	4 ns	
tf	Fall time, B outpu	uts (80% to 20%)	2.	1 ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI SPICE models.

SCES288C - OCTOBER 1999 - REVISED JULY 2001

•	Member of Texas Instruments' Widebus™ Family	DGG OR DGV PACKAGE (TOP VIEW)		
•	UBT™ Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, and Clock-Enabled Modes	OEAB 1 LEAB 2 A1 3 GND 4	56] CEAB 55] CLKAB 54] B1 53] GND	
•	TI-OPC [™] Circuitry Limits Ringing on Unevenly Loaded Backplanes	A2 [] 5 A3 [] 6	52 B2 51 B3	
•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference	V _{CC} [] 7 A4 [] 8	50 BIAS V _{CC} 49 B4	
•	Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels	A5 🛛 9 A6 🚺 10	48 B5 47 B6	
•	LVTTL Interfaces Are 5-V Tolerant	GND 🛛 11	46 GND	
•	Medium-Drive GTLP Outputs (50 mA)			
•	LVTTL Outputs (–24 mA/24 mA)	A8 [] 13 A9 [] 14	44 U B8 43 U B9	
•	GTLP Rise and Fall Times Designed for	A10 15	42 B10	
	Optimal Data-Transfer Rate and Signal	A11 🛛 16	41 🛛 B11	
	Integrity in Distributed Loads	A12 🛛 17	40 B12	
•	l _{off} , Power-Up 3-State, and BIAS V _{CC}	GND 18	39 GND	
	Support Live Insertion		38 B13	
•	Bus Hold on A-Port Data Inputs			
•	Distributed V _{CC} and GND Pins Minimize		36 B B 15	
	High-Speed Switching Noise	VCC U22 A16 U23		
•	Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II	A17 24	33 B17	
•	ESD Protection Exceeds JESD 22			
	– 2000-V Human-Body Model (A114-A)			
	– 200-V Machine Model (A115-A)			
	– 1000-V Charged-Device Model (C101)			

description

The SN74GTLPH16912 is a medium-drive, 18-bit UBTTM transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It allows for transparent, latched, clocked, and clock-enabled modes of data transfer. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The medium drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 19 Ω .

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH16912 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels.

OEC, TI, TI-OPC, UBT, and Widebus are trademarks of Texas Instruments.

SCES288C - OCTOBER 1999 - REVISED JULY 2001

description (continued)

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ТА	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
40°C to 95°C	TSSOP – DGG	Tape and reel	SN74GTLPH16912GR	GTLPH16912	
-40 C 10 65 C	TVSOP – DGV	Tape and reel	SN74GTLPH16912VR	GL912	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH16912 is a medium-drive (50 mA), 18-bit UBT transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent, latched, clocked, or clock-enabled modes and can replace any of the functions shown in Table 1. Data polarity is noninverting.

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT	18 BIT
Transceiver	'245, '623, '645	'863	'861	'16245, '16623	'16863
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541	'16825
Latched transceiver	'543			'16543	'16472
Latch	'373, '573	'843	'841	'16373	'16843
Registered transceiver	'646, '652			'16646, '16652	'16474
Flip-flop	'374, '574		'821	'16374	
Standard UBT					'16500, '16501
Universal bus driver					'16835
Registered transceiver with clock enable	'2952			'16470, '16952	
Flip-flop with clock enable	'377	'823			'16823
Standard UBT with clock enable					'16600, '16601
SN74GTLPH	16912 UBT transce	iver replac	ces all abo	ve functions	

Table 1. SN74GTLPH16912 UBT Transceiver Replacement Functions

Data flow in each direction is controlled by clock enables (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA), and output enables (OEAB and OEBA). CEAB and CEBA and OEAB and OEBA control the 18 bits of data for the A-to-B and B-to-A directions, respectively.

For A-to-B data flow, when CEAB is low, the device operates on the low-to-high transition of CLKAB for the flip-flop and on the high-to-low transition of LEAB for the latch path, i.e., if CEAB and LEAB are low, the A data is latched, regardless of the state of CLKAB (high or low). If LEAB is high, the device is in transparent mode. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to that of A to B, except CEBA, OEBA, LEBA, and CLKBA are used.

INPUTS					OUTPUT	MODE	
CEAB	OEAB	LEAB	CLKAB	Α	В	MODE	
Х	Н	Х	Х	Х	Z	Isolation	
L	L	L	Н	Х	в ₀ ‡	Latabad starage of A data	
L	L	L	L	Х	в ₀ §	Laterieu storage of A data	
Х	L	Н	Х	L	L		
Х	L	Н	Х	Н	н	nue transparent	
L	L	L	\uparrow	L	L	Clocked storage of A data	
L	L	L	\uparrow	Н	н	Ciocked Storage of A dat	
Н	L	L	Х	Х	в ₀ §	Clock inhibit	

FUNCTION TABLET

[†] A-to-B data flow is shown. B-to-A data flow is similar, but uses CEBA, OEBA, LEBA, and CLKBA. The condition when OEAB and OEBA are both low at the same time is not recommended.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

§ Output level before the indicated steady-state input conditions were established

SCES288C - OCTOBER 1999 - REVISED JULY 2001

logic diagram (positive logic)

To 17 Other Channels

SCES288C - OCTOBER 1999 - REVISED JULY 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A-port and control inputs B port and V _{REF}	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1): A port	$\dots \dots \dots -0.5 \text{ V to 7 V}$
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	100 mA
Current into any A port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 3): DGG package	64°C/W
DGV package	48°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES288C - OCTOBER 1999 - REVISED JULY 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
\/ 	Tanalastinasultan	GTL	1.14	1.2	1.26	V	
VII	Termination voltage	GTLP	1.35	1.5	1.65	v	
	Poforonoo voltago	GTL	0.74	0.8	0.87	М	
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
V.	B port				V_{TT}	V	
VI.	input voltage	Except B port		Vcc	5.5	v	
\/	High-level input voltage	B port	V _{REF} +0.05			V	
VIН		Except B port	2			v	
\/u	Low-level input voltage	B port			V _{REF} -0.05	V	
۷IL		Except B port			0.8	v	
ΙIK	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
		A port			24	m (
OL		B port			50	ША	
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V	
TA	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

 V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES288C - OCTOBER 1999 - REVISED JULY 2001

PARAMETER		TEST CONDITIONS			TYPT	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
VOH	A port	Vec. 245.V	I _{OH} = -12 mA	2.4			V
		VCC = 3.15 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	
	A port		I _{OL} = 12 mA			0.4	
		VCC = 3.15 V	I _{OL} = 24 mA			0.5	
VOL		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	V
	P. port		I _{OL} = 10 mA			0.2	
	вроп	V _{CC} = 3.15 V	I _{OL} = 40 mA			0.4	
			I _{OL} = 50 mA			0.55	
	A-port and	V _{CC} = 3.45 V	$V_I = 0 \text{ or } V_{CC}$			±10	
ı _l ‡	control inputs V _{CC} =		V _I = 5.5 V			±20	μA
	B port		V _I = 0 to 1.5 V			±10	
IBHL§	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μA
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μA
IBHLO [#]	A port	V _{CC} = 3.45 V,	$V_{I} = 0$ to V_{CC}	500			μA
^і внно	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μA
		$V_{CC} = 3.45 V_{1} _{C} = 0.$	Outputs high			50	
ICC	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			50	mA
		V_{I} (B port) = V_{TT} or GND	Outputs disabled			50	
∆ICC☆		V_{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V_{CC} or GNE	V _{CC} – 0.6 V,			1.5	mA
Ci	Control inputs	V _I = 3.15 V or 0			4	5.5	pF
<u>C.</u>	A port	V _O = 3.15 V or 0			7	8.5	ъĘ
C _{io}	B port	$V_0 = 1.5 V \text{ or } 0$			8.5	9.5	μr

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

[‡] For I/O ports, the parameter I₁ includes the off-state output leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL}max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL}max.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to VCC and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

*This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
l _{off}	V _{CC} = 0,	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μΑ
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μA

SCES288C - OCTOBER 1999 - REVISED JULY 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 1.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
I _{CC} (BIAS V _{CC})	$V_{CC} = 0$ to 3.15 V	BIAS V _{CC} = 3.15 V to 3.45 V,	V_{O} (B port) = 0 to 1.5 V		5	mA
	V _{CC} = 3.15 V to 3.45 V				10	μA
VO	$V_{CC} = 0,$	BIAS V _{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V_{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μÂ

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT
fclock	Clock frequency	_		175	MHz
tw	Pulse duration LEAR	LEAB or LEBA high	2.8		~~
		CLKAB or CLKBA high or low	2.8		ns
		A before CLKAB1	1.8		
		B before CLKBA↑	1.5		
t _{su}	Setup time	A before LEAB↓	1		ns
		B before LEBA↓	2		
		CEAB before CLKAB↑	1.5		
		CEBA before CLKBA↑	1.4		
		A after CLKAB↑	0.3		
		B after CLKBA↑	0.4		
	Habite	A after LEAB↓	1.1		
th	Hold time	B after LEBA↓	0.4		ns
		CEAB after CLKAB↑	1		
		CEBA after CLKBA↑	1		

SCES288C - OCTOBER 1999 - REVISED JULY 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
f _{max}			175			MHz
^t PLH	A	Р	2.1		6	20
^t PHL	~	D	2.1		6	115
^t PLH		R	2.2		6.3	200
^t PHL	LEAD	D	2.2		6.3	115
^t PLH	CLKAR	Р	2.2		6.5	20
^t PHL	CLRAB	D	2.2		6.5	115
t _{en}	OEAB	Р	2		6.5	20
^t dis		D	2		6.1	115
t _r	Rise time, B outp	Rise time, B outputs (20% to 80%)		2.4		ns
t _f	Fall time, B output	Fall time, B outputs (80% to 20%)		2		ns
^t PLH	Р	0	1.8		5.8	20
^t PHL	В	A	1.8		5.8	115
^t PLH		0	0.4		5.3	20
^t PHL	LEBA	~	0.4		5.3	115
^t PLH		0	.6		5.6	20
^t PHL		A	.6		5.7	115
t _{en}		0	0.3		6.2	
tdis	OEBA	A	0.3		5.9	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCES288C - OCTOBER 1999 - REVISED JULY 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. $C_{\mbox{L}}$ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

SCES288C - OCTOBER 1999 - REVISED JULY 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 3. Medium-Drive RLC Network

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TYPT	UNIT
^t PLH	٨	P	4.5	20
^t PHL	X	D	4.5	ns
^t PLH	LEAB	В	4.7	ne
^t PHL		6	4.7	115
^t PLH	CLIKAR	В	4.7	ne
^t PHL	CERAB		4.7	115
t _{en}		P	4.8	200
t _{dis}	OEAB	0	4.4	115
tr	Rise time, B outputs (20% to 80%)			ns
t _f	Fall time, B outputs (80% to 20%)			ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SCES347B - JANUARY 2001 - REVISED AUGUST 2001

•	Member of Texas Instruments' Widebus™ Family	DGG OR DGV PACKAGE (TOP VIEW)				
•	UBT™ Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, and Clock-Enabled Mode	OEAB	56] CEAB 55] CLKAB 54] B1 53] CND			
•	TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes	A2 [5 A3 [6	52 B2 51 B3			
•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference	V _{CC} [] 7 A4 [] 8	50 BIAS V _{CC} 49 B4			
•	Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels	A5 🛛 9 A6 🗖 10	48 B5 47 B6			
•	GTLP Buffered CLKAB Signal (CLKOUT) LVTTL Interfaces Are 5-V Tolerant		46 GND 45 B7			
•	Medium-Drive GTLP Outputs (50 mA) LVTTL Outputs (–24 mA/24 mA)	A8 L 13 A9 L 14 A10 L 15	44 88 43 89 42 810			
•	GTLP Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal	A11 [16 A12 [17 CND [18	41] B11 40] B12			
•	Integrity in Distributed Loads I _{off} , Power-Up 3-State, and BIAS V _{CC} Support Live Insertion	A13 [19 A14 [20	38 B13 37 B14			
•	Bus Hold on A-Port Data Inputs Distributed V _{CC} and GND Pins Minimize	A15 U 21 V _{CC} [] 22 A16 [] 23	36 B15 35 V _{REF} 34 B16			
•	Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II	A17 [] 24 GND [] 25 CLKIN [] 26	33 B17 32 GND 31 CLKOUT			
•	ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A)	OEBA [] 27 LEBA [] 28	30 CLKBA 29 CEBA			

- 1000-V Charged-Device Model (C101)

description

The SN74GTLPH16916 is a medium-drive, 17-bit UBT transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It allows for transparent, latched, clocked, and clock-enabled modes of data transfer. Additionally, it provides for a copy of CLKAB at GTLP signal levels (CLKOUT) and conversion of a GTLP clock to LVTTL logic levels (CLKIN). The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC circuitry, and TI-OPC circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The medium drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 19 Ω .

OEC, TI, TI-OPC, UBT, and Widebus are trademarks of Texas Instruments.

SCES347B - JANUARY 2001 - REVISED AUGUST 2001

description (continued)

GTLP is the Texas Instruments (TI™) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH16916 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{RFF} = 0.8$ V) or GTLP $(V_{TT} = 1.5 \text{ V and } V_{RFF} = 1 \text{ V})$ signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (OE) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
40°C to 95°C	TSSOP – DGG	Tape and reel	SN74GTLPH16916GR	GTLPH16916
-40 C 10 85 C	TVSOP – DGV	Tape and reel	SN74GTLPH16916VR	GL916

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH16916 is a medium-drive (50 mA), 17-bit UBT transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent, latched, clocked, or clock-enabled modes and can replace any of the functions shown in Table 1. Data polarity is noninverting.

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT	18 BIT
Transceiver	'245, '623, '645	'863	'861	'16245, '16623	'16863
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541	'16825
Latched transceiver	'543			'16543	'16472
Latch	'373, '573	'843	'841	'16373	'16843
Registered transceiver	'646, '652			'16646, '16652	'16474
Flip-flop	'374, '574		'821	'16374	
Standard UBT					'16500, '16501
Universal bus driver					'16835
Registered transceiver with clock enable	'2952			'16470, '16952	
Flip-flop with clock enable	'377	'823			'16823
Standard UBT with clock enable					'16600, '16601
SN74GTLPH	16916 UBT transce	iver replac	ces all abo	ve functions	

Table 1. SN74GTLPH16916 UBT Transceiver Replacement Functions

Additionally, it allows for transparent conversion of CLKAB-to-GTLP signal levels (CLKOUT) and CLKOUT-to-LVTTL logic levels (CLKIN).

Data flow in each direction is controlled by clock enables (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA), and output enables (OEAB and OEBA). CEAB and CEBA enable all 17 bits, and OEAB and OEBA control the 17 bits of data and the CLKOUT/CLKIN buffered clock path for the A-to-B and B-to-A directions, respectively.

For A-to-B data flow, when CEAB is low, the device operates on the low-to-high transition of CLKAB for the flip-flop and on the high-to-low transition of LEAB for the latch path, i.e., if CEAB and LEAB are low, the A data is latched regardless of the state of CLKAB (high or low) and if LEAB is high, the device is in transparent mode. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to A to B, except CEBA, OEBA, LEBA, and CLKBA are used.

SCES347B - JANUARY 2001 - REVISED AUGUST 2001

Function Tables

		-					
MODE	OUTPUT		INPUTS				
MODE	В	Α	CLKAB	LEAB	OEAB	CEAB	
Isolation	Z	Х	Х	Х	Н	Х	
Latabad storage of A data	в ₀ ‡	Х	Н	L	L	L	
Laterieu storage of A data	в ₀ §	Х	L	L	L	L	
True transporent	L	L	Х	Н	L	Х	
The transparent	н	Н	Х	Н	L	х	
Clasked starses of A data	L	L	\uparrow	L	L	L	
CIUCKEU SIOLAYE OF A UAIA	н	Н	\uparrow	L	L	L	
Clock inhibit	B0§	Х	Х	L	L	Н	

OUTPUT ENABLE[†]

[†] A-to-B data flow is shown. B-to-A data flow is similar, but uses CEBA, OEBA, LEBA, and CLKBA. The condition when OEAB and OEBA are both low at the same time is not recommended.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

§ Output level before the indicated steady-state input conditions were established

	IN	PUTS		OPERATION OR	MODE		
CE	LE	OEAB	OEBA	FUNCTION	MODE		
Х	Х	Н	Н	Z	Isolation		
Х	Х	L	Н	CLKAB to CLKOUT	True delayed cleak signal		
Х	Х	Н	L	CLKOUT to CLKIN	The delayed clock signal		
х	Х	L	L	CLKAB to CLKOUT, CLKOUT to CLKIN	True delayed clock signal with feedback path¶		

BUFFERED CLOCK

This condition is not recommended.

SCES347B - JANUARY 2001 - REVISED AUGUST 2001

logic diagram (positive logic)

SCES347B - JANUARY 2001 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A port and control inputs B port and V _{REF}	-0.5 V to 4.6 V -0.5 V to 7 V -0.5 V to 7 V -0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, V _O	
	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	100 mA
Current into any A port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	64°C/W
DGV package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current flows only when the output is in the high state and V_O > V_{CC}.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES347B – JANUARY 2001 – REVISED AUGUST 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
\/ ~~	Termination voltage	GTL	1.14	1.2	1.26	V	
vii	remination voltage	GTLP	1.35	1.5	1.65	v	
Vara	Reference voltage	GTL	0.74	0.8	0.87	V	
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
ν.	Input voltage	B port			V _{TT}	V	
v		Except B port		VCC	5.5	v	
Maria	High-level input voltage	B port	V _{REF} +0.05			V	
۷IH		Except B port	2			v	
\/		B port			V _{REF} -0.05	N	
۷L	Low-level input voltage	Except B port			0.8	V	
IК	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
Le :		A port			24	A	
OL	Low-level output current	B port			50	mA	
Δt/Δv	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V	
ТА	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

 VREF can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES347B – JANUARY 2001 – REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS			TYP†	MAX	UNIT		
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V		
VOH		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2					
	A port		I _{OH} = -12 mA	2.4			V		
		VCC = 3.15 V	I _{OH} = -24 mA	2					
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2			
	A port		I _{OL} = 12 mA			0.4			
		VCC = 3.15 V	I _{OL} = 24 mA			0.5			
VOL		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	V		
	P. port		I _{OL} = 10 mA			0.2			
	Броп	V _{CC} = 3.15 V	I _{OL} = 40 mA			0.4			
			I _{OL} = 50 mA			0.55			
	A-port and control inputs	A-port and	A-port and		$V_{I} = 0 \text{ or } V_{CC}$			±10	
II‡		V _{CC} = 3.45 V	V _I = 5.5 V			±20	μA		
	B port		V _I = 0 to 1.5 V			±10			
IBHL§	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μA		
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μA		
IBHLO [#]	A port	V _{CC} = 3.45 V,	$V_{I} = 0$ to V_{CC}	500			μA		
І _{ВННО}	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μA		
		$V_{CC} = 3.45 V. I_{C} = 0.$	Outputs high			50			
ICC	A or B port	V_{I} (A port or control input) = V_{CC} or GND,	Outputs low			50	mA		
		V_{I} (B port) = V_{TT} or GND	Outputs disabled			50			
ΔICC☆		V_{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V_{CC} or GNI	V _{CC} – 0.6 V, D			1.5	mA		
Ci	Control inputs	V _I = 3.15 V or 0			4	5.5	pF		
C.	A port	V _O = 3.15 V or 0			7	8.5	۶E		
Cio	B port or CLKOUT	V _O = 1.5 V or 0			8.5	9.5	р⊢		
Co	CLKIN	V _O = 3.15 V or 0			6	6.5	pF		

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I₁ includes the off-state output leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL}max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL}max.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to V_{CC} and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

* This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μA
IOZPU	V _{CC} = 0 to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	V_{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μA

SCES347B – JANUARY 2001 – REVISED AUGUST 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 1.5 \text{ V}$		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
	$V_{CC} = 0$ to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{0} (P part) – 0 to 1.5 V		5	mA
	V_{CC} = 3.15 V to 3.45 V	BIAS VCC = $3.15 \times 10 3.45 \text{ V}$,	VO(B poil) = 0 to 1.5 V		10	μA
VO	$V_{CC} = 0,$	BIAS V _{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μA

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

				MIN	MAX	UNIT
fclock	Clock frequency	CLKAB to B or CLKBA to A			175	MHz
+	Dulas duration	LEAB or LEBA high		2.8		20
١w	Puise duration	CLKAB to B or CLKBA to A	High or low	2.8		115
		A before CLKAB [↑]		1.8		
		B before CLKBA↑		1.5		
	Setup time	A before LEAB \downarrow		1		~~~
۲su		B before LEBA \downarrow	2		115	
		CEAB before CLKAB↑	1.5			
		CEBA before CLKBA↑	1.4			
		A after CLKAB↑		0.3		
		B after CLKBA↑		0.4		
+.	Hold time	A after LEAB↓		1.1		20
۲'n		B after LEBA \downarrow		0.4		115
		CEAB after CLKAB↑		1		
		CEBA after CLKBA↑		1		

SCES347B – JANUARY 2001 – REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
f _{max}	CLKAB or CLKBA	B or A	175			MHz
^t PLH		P	2.1		6	~~
^t PHL	~	D	2.1		6	115
^t PLH		В	2.2		6.3	50
^t PHL	LEAD	Ь	2.2		6.3	115
^t PLH		P	2.2		6.3	20
^t PHL	CLRAB	Ь	2.2		6.3	115
^t PLH			3.2		8	20
^t PHL	CEIAB	CERCOT	3.2		8	115
^t en	OFAB		2.6		6.5	ns
^t dis	UEAB	BOICEROOT	2.6		6.1	
tr	Rise time, B outp	uts (20% to 80%)		2.4		ns
t _f	Fall time, B outpu	uts (80% to 20%)		2		ns
^t PLH	в	۵	1.8		5.8	ne
^t PHL	d	~	1.8		5.8	115
^t PLH		٥	1.7		5.3	20
^t PHL	LEBA	~	1.7		5.3	115
^t PLH		٨	1.8		5.7	20
^t PHL	CERBA	~	1.8		5.7	115
^t PLH			2.5		6.5	20
^t PHL			2.5		6.5	115
ten	OEBA	A or CLKIN	1.5		6.2	200
tdis	OLDA		1.5		5.9	113

[†] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$.

SCES347B - JANUARY 2001 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES347B - JANUARY 2001 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. Medium-Drive Test Backplane

Figure 3. Medium-Drive RLC Network

switching characteris	tics over recommer	nded ranges of	supply voltage	and operating	free-air
temperature, V _{TT} = 1.5	ວ່ V and V _{REF} = 1 V fo	or GTLP (see Fi	gure 3)		

PARAMETER	FROM (INPUT)	TO (OUTPUT)	түр†	UNIT
^t PLH	A	в	4.5	200
^t PHL	~	d	4.5	115
^t PLH		в	4.7	ns ns
^t PHL	LEAD	d	4.7	
^t PLH	CLKAR	Р	4.7	
^t PHL	CENAB	D	4.7	
^t PLH	CLKAR		6	ns
^t PHL	CENAB	CERODI	6	
^t en			4.8	
^t dis	OEAB	BOICEROUT	4.4	115
tr	Rise time, B outputs (20% to 80%)			ns
t _f	Fall time, B outpu	uts (80% to 20%)	2.5	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SCES292C - OCTOBER 1999 - REVISED SEPTEMBER 2001

 Member of the Texas Instruments Widebus™ Family 	DGG, DGV, OR DL PACKAGE (TOP VIEW)		
 TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes 		48 10E	
 OECTM Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference 	1A2 [3 GND [4	46 1B2 45 GND	
 Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels 	1A3 🛛 5 1A4 🕁 6	44] 1B3 43] 1B4	
 LVTTL Interfaces Are 5-V Tolerant Medium Drive CTL B Outputs (50 m A) 	V _{CC} 7 1A5 8	42 BIAS V _{CC} 41 1B5	
 LVTTL Outputs (-24 mA/24 mA) 	1A6 9 GND 10	40 39 GND	
 GTLP Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads 	1A7 [11 1A8 [12	38 1B7 37 1B8	
 I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion 	2A1 L 13 2A2 [14 GND [15	36 2B1 35 2B2 34 GND	
 Bus Hold on A-Port Data Inputs 	2A3 [16	33 2B3	
 Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise 	V _{CC} 18	31 V _{REF}	
 Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 	2A5 [] 19 2A6 [] 20	29 2B6	
description	GND [21 2A7 [22	28 GND 27 2B7	
The SN74GTLPH16945 is a medium-drive, 16-bit	2A8 23 2DIR 24	26 2B8 25 2 0E	

The SN74GTLPH16945 is a medium-drive, 16-bit bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It is partitioned as two 8-bit transceivers. The device provides a high-speed interface between cards

operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The medium drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 19 Ω .

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH16945 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments

SCES292C - OCTOBER 1999 - REVISED SEPTEMBER 2001

description (continued)

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

terminal assignments

	1	2	3	4	5	6
۹	1DIR	NC	NC	NC	NC	1 <mark>0E</mark>
в	1A2	1A1	GND	GND	1B1	1B2
C	1A4	1A3	Vcc	$BIAS V_{CC}$	1B3	1B4
D	1A6	1A5	GND	GND	1B5	1B6
E	2A8	1A7			1B7	1B8
F	2A1	2A2			2B2	2B1
G	2A3	2A4	GND	GND	2B4	2B3
H	2A5	2A6	Vcc	VREF	2B6	2B5
J	2A7	2A8	GND	GND	2B8	2B7
ĸ	2DIR	NC	NC	NC	NC	2 <mark>0E</mark>

NC - No internal connection

ORDERING INFORMATION

TA	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DL	Tape and reel	SN74GTLPH16945DLR	
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74GTLPH16945GR	GTLPH16945
	TVSOP – DGV	Tape and reel	SN74GTLPH16945VR	GL945
	VFBGA – GQL	Tape and reel	SN74GTLPH16945KR	GL945

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH16945 is a medium-drive (50 mA), 16-bit bus transceiver partitioned as two 8-bit segments and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. \overline{OE} can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.

For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to that of A to B, except \overline{OE} and DIR are low.

INP	UTS		
OE	DIR	001201	WODE
Н	Х	Z	Isolation
L	L	B data to A port	
L	н	A data to B port	riue transparent

ELINIOTION TADI	
FUNCTION TABL	F

logic diagram (positive logic)

Pin numbers shown are for the DGG, DGV, and DL packages.

SCES292C - OCTOBER 1999 - REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A port and control inputs	0.5 V to 4.6 V 0.5 V to 7 V -0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state Vo	
(see Note 1): A port	-0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, In: A port	48 mA
B port	100 mA
Current into any A port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	70°C/W
DGV package	58°C/W
DL package	63°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	$\dots -65^{\circ}C$ to $150^{\circ}C$

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES292C - OCTOBER 1999 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
	Termination voltage	GTL	1.14	1.2	1.26	V	
vii	Termination voltage	GTLP	1.35	1.5	1.65	v	
Vara	Poforonoo voltogo	GTL	0.74	0.8	0.87	V	
VREF	Reference voltage	GTLP	0.87	1	1.1	v	
ν.	Input voltage	B port			V _{TT}	v	
vj	Input voltage	Except B port		Vcc	5.5		
VIH	High-level input voltage	B port	V _{REF} +0.05			v	
		Except B port	2				
\/	Level Secol Secol colleges	B port			V _{REF} -0.05	v	
νIГ	Low-level input voltage	Except B port			0.8		
IК	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
	Law law bardent compart	A port			24		
OL	Low-level output current	B port			50	mA	
Δt/Δv	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate	-	20			μs/V	
Тд	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

 VREF can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES292C - OCTOBER 1999 - REVISED SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
VOH A port		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
	Vec - 2.15.V	I _{OH} = -12 mA	2.4			V	
		VCC = 3.15 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2	
	A port	V _{CC} = 3.15 V	I _{OL} = 12 mA			0.4	
			I _{OL} = 24 mA			0.5	
VOL		V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2	V
B port	B port	V _{CC} = 3.15 V	I _{OL} = 10 mA			0.2	
	D port		I _{OL} = 40 mA			0.4	
			I _{OL} = 50 mA			0.55	
lj	Control inputs	V _{CC} = 3.45 V,	V _I = 0 or 5.5 V			±10	μA
IOZH [‡] A port B port		AO = ACC			10		
	B port	$V_{CC} = 3.45 V$	V _O = 1.5 V			10	μΑ
IOZL [‡]	A and B ports	V _{CC} = 3.45 V,	V _O = GND			-10	μA
IBHL§	A port	V _{CC} = 3.15 V,	VI = 0.8 V	75			μA
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μA
IBHLO [#]	A port	V _{CC} = 3.45 V,	$V_{I} = 0$ to V_{CC}	500			μA
Івнно	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μA
		$V_{CC} = 3.45 V. I_{C} = 0.$	Outputs high			50	
lcc	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			50	mA
		V_I (B port) = V_{TT} or GND	Outputs disabled			50	
∆ICC☆		V_{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V_{CC} or GNI	V _{CC} – 0.6 V, D			1	mA
Ci	Control inputs	V _I = 3.15 V or 0			4.5	5	pF
C.	A port	V _O = 3.15 V or 0			7.5	9	۶E
C _{iO}	B port	/O = 1.5 V or 0			7.5	9	pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

 \ddagger For I/O ports, the parameters I_{OZH} and I_{OZL} include the input leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to V_{CC} and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 * This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 3 V,	$\overline{OE} = 0$		±30	μA

SCES292C - OCTOBER 1999 - REVISED SEPTEMBER 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS				
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 1.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μΑ
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μΑ
I _{CC} (BIAS V _{CC})	$V_{CC} = 0$ to 3.15 V	PIAS V = -2.15 V = 2.45 V	V_{O} (B port) = 0 to 1.5 V		5	mA
	V _{CC} = 3.15 V to 3.45 V	BIAS $V_{CC} = 3.15 \ V \ to \ 3.45 \ V,$			10	μΑ
VO	$V_{CC} = 0,$	BIAS V _{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μΑ

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
^t PLH	٨	P	2.1		6.3	200
^t PHL	~	ם	2.1		6.3	115
t _{en}		В	2		6.9	20
^t dis	OE		2		6.9	115
tr	Rise time, B outp	uts (20% to 80%)		2.5		ns
t _f	Fall time, B outpu	uts (80% to 20%)		2.1		ns
^t PLH	P	٨	2.1		5.3	20
^t PHL	D	×.	2.1		5.3	115
ten		<u> </u>	0.3		5.7	20
tdis	<u> </u>	A	0.3		5.7	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCES292C - OCTOBER 1999 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES292C - OCTOBER 1999 - REVISED SEPTEMBER 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 3. Medium-Drive RLC Network

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TYP†	UNIT
^t PLH	^	P	4.3	20
^t PHL	~	ם 1	4.3	115
t _{en}		В	5	ne
^t dis	0E	C	4.4	115
t _r	Rise time, B outp	Rise time, B outputs (20% to 80%)		
tf	Fall time, B outpu	uts (80% to 20%)	2	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

- Member of Texas Instruments' Widebus+™ Family
- TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- LVTTL Interfaces Are 5-V Tolerant
- Medium-Drive GTLP Outputs (50 mA)

LVTTL Outputs (–24 mA/24 mA)

- GTLP Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Bus Hold on A-Port Data Inputs
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise

description

The SN74GTLPH32945 is a medium-drive, 32-bit bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It is partitioned as four 8-bit transceivers. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC circuitry, and TI-OPC circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The medium drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 19 Ω .

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH32945 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{REF} = 0.8 V) or GTLP (V_{TT} = 1.5 V and V_{REF} = 1 V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

OEC, TI, TI-OPC, and Widebus+ are trademarks of Texas Instruments.

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

	GKE PACKAGE (TOP VIEW)						
	1	2	3	4	5	6	_
Α	C	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
в	С	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
С	С	\circ \circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
D	С	\circ \circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Е	С	\circ \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
F	C	\circ \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
G	C	\circ \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
н	C	\circ \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J	C	\circ \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
κ	С	\circ \circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
L	С	\circ \circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
М	С	\circ \circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Ν	С	\circ \circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Ρ	C	\circ \circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
R	С	\circ \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
т		\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	J

terminal assignments

	1	2	3	4	5	6
A	1A2	1A1	1DIR	1 0E	1B1	1B2
в	1A4	1A3	GND	GND	1B3	1B4
С	1A6	1A5	1VCC	1BIAS V _{CC}	1B5	1B6
D	1A8	1A7	GND	GND	1B7	1B8
E	2A2	2A1	GND	GND	2B1	2B2
F	2A4	2A3	1VCC	^{1V} REF	2B3	2B4
G	2A6	2A5	GND	GND	2B5	2B6
н	2A7	2A8	2DIR	2 0E	2B8	2B7
J	3A2	3A1	3DIR	3 0E	3B1	3B2
ĸ	3A4	3A3	GND	GND	3B3	3B4
L	3A6	3A5	2VCC	2BIAS V_{CC}	3B5	3B6
м	3A8	3A7	GND	GND	3B7	3B8
N	4A2	4A1	GND	GND	4B1	4B2
P	4A4	4A3	2VCC	2V _{REF}	4B3	4B4
R	4A6	4A5	GND	GND	4B5	4B6
т	4A7	4A8	4DIR	4OE	4B8	4B7

ORDERING INFORMATION

Τ _Α	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ}C$ to $85^{\circ}C$	LFBGA – GKE	Tape and reel	SN74GTLPH32945KR	GM45

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH32945 is a medium-drive (50 mA), 32-bit bus transceiver partitioned as four 8-bit segments and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. OE can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.

For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to that of A to B, except \overline{OE} and DIR are low.

FUNCTION	TARI	F
1 011011011	IADE	-

INP	UTS	OUTPUT	MODE		
OE	DIR	001201	MODE		
Н	Х	Z	Isolation		
L	L	B data to A port	True transporent		
L	н	A data to B port	riue iransparent		

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

logic diagram (positive logic)[†]

To Seven Other Channels

 $^{\dagger}\,\text{IV}_{CC}$ and 1BIAS V_{CC} are associated with these channels.

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

logic diagram (positive logic) (continued)[†]

To Seven Other Channels

PRODUCT PREVIEW

 $^{\dagger}\,\text{2V}_{CC}$ and 2BIAS V_{CC} are associated with these channels.

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A port and control inputs B port and V _{REF}	0.5 V to 4.6 V 0.5 V to 7 V 0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1): A port	–0.5 V to 7 V
B port	. –0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	100 mA
Current into any A port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Package thermal impedance, θ_{JA} (see Note 3)	40°C/W
Storage temperature range, T _{stg}	$-65^{\circ}C$ to $150^{\circ}C$

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
\/ 	Termination voltage	GTL	1.14	1.2	1.26	V	
VTT	Termination voltage	GTLP	1.35	1.5	1.65	v	
	Peference voltage	GTL	0.74	0.8	0.87	V	
VREF	Relefence voltage	GTLP	0.87	1	1.1	v	
	Input voltage	B port			VTT	V	
٧I	input voltage	Except B port		Vcc	5.5	v	
\ <i>\</i>	High-level input voltage	B port	V _{REF} +0.05			V	
VIH		Except B port	2			v	
\/	Law lovel Second and the sec	B port			V _{REF} -0.05	V	
۷IL	Low-level liput voltage	Except B port			0.8	v	
ΙK	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
le:		A port			24	~	
OL	Low-level output current	B port			50	^{mA}	
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		20			μs/V	
Т _А	Operating free-air temperature		-40		85	°C	

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

 VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VREF. If operated in the A-to-B direction, VREF should be set to within 0.6 V of VTT to minimize current drain.

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

P	ARAMETER	TEST CONDITIONS	TEST CONDITIONS		TYP†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
∨он	A port	N 045 V	I _{OH} = -12 mA	2.4			V
		VCC = 3.15 V	I _{OH} = -24 mA	2			1
		V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2	
	A port	V _{CC} = 3.15 V	I _{OL} = 12 mA			0.4	1
			I _{OL} = 24 mA			0.5	1
VOL	V _{OL} V _{CC} = :	V _{CC} = 3.15 V to 3.45 V,	l _{OL} = 100 μA			0.2	V
	Datast		I _{OL} = 10 mA			0.2	1
	вроп	V _{CC} = 3.15 V	I _{OL} = 40 mA			0.4	1
			I _{OL} = 50 mA			0.55	1
	A-port and		$V_{I} = 0 \text{ or } V_{CC}$			±10	
II‡	control inputs	V _{CC} = 3.45 V	V _I = 5.5 V			±20	μA
	B port		V _I = 0 to 1.5 V			±10	1
IBHL§	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μA
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μA
IBHLO#	A port	V _{CC} = 3.45 V,	$V_{I} = 0$ to V_{CC}	500			μΑ
Івнно	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μA
		$V_{CC} = 345 V I_{C} = 0$	Outputs high			50	
ICC	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			50	mA
		V_I (B port) = V_{TT} or GND	Outputs disabled			50	1
	A or B port	V_{CC} = 3.45 V, I_O = 0, V _I (A-port or control inputs) = V_{CC} or GND,	Outputs enabled				m ≬ /\\/∐z
		V_I (B port) = V_{TT} or GND, One data input switching at 50% duty cycle	Outputs disabled				
ΔICC≭	ΔI_{CC} \forall $V_{CC} = 3.45$ V, One A-port or control input at Other A-port or control inputs at V_{CC} or GNE		V _{CC} – 0.6 V,			1	mA
Ci	Control inputs	V _I = 3.15 V or 0					pF
0	A port	V _O = 3.15 V or 0					
Cio	B port $V_0 = 1.5 V \text{ or } 0$						l b⊢

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I_I includes the off-state output leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to VCC and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

 \parallel An external driver must sink at least $\rm I_{BHHO}$ to switch this node from high to low.

 * This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS				MAX	UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μΑ
IOZPD	V _{CC} = 1.5 V to 0,	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μA

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS					UNIT
l _{off}	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 1.5 \text{ V}$		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μA
IOZPD	V _{CC} = 1.5 V to 0,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μΑ
	V _{CC} = 0 to 3.15 V				5	mA
	BIAS $V_{CC} = 3.15$ V to 3.45 V V _{CC} = 3.15 V to 3.45 V, V _C	vO (в роп) = 0 ю 1.5 v		10	μΑ	
VO	$V_{CC} = 0,$	BIAS V_{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μΑ

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	ΜΙΝ ΤΥΡ [†] ΜΑΧ	UNIT
^t PLH	۵	В		ne
^t PHL	A	B		115
t _{en}		В		200
t _{dis}	0E			115
tr	Rise time, B outputs (20% to 80%)			ns
t _f	Fall time, B outputs (80% to 20%)			ns
^t PLH	В	۵		ne
^t PHL	נ	~		115
ten	ŌĒ	Δ		ne
^t dis	<u>, L</u>	~		115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

 ${\sf D}. \ \ {\sf The outputs are measured one at a time with one transition per measurement.}$

Figure 1. Load Circuits and Voltage Waveforms

SCES293B - OCTOBER 1999 - REVISED AUGUST 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

Figure 2. Medium-Drive Test Backplane

Figure 3. Medium-Drive RLC Network

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	түр†	UNIT
^t PLH	٨	P	4.3	200
^t PHL	τ.	ם 1	4.3	115
^t en		P	5	20
^t dis	OE	B	4.4	115
tr	Rise time, B outputs (20% to 80%)		1	ns
tf	Fall time, B outputs (80% to 20%)			ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

General Information	1
GTL	2
GTLP	3
ETL	4
BTL/FB+	5
VME	6
Application Reports	7
Mechanical Data	8

		Page
SN74ABTE16245	16-Bit Incident-Wave Switching Bus Transceiver With 3-State Outputs	. 4–3
SN74ABTE16246	11-Bit Incident-Wave Switching Bus Transceiver With 3-State and Open-Collector Outputs	. 4–11

Contents

SN74ABTE16245 16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCBS226H - JULY 1993 - REVISED JUNE 2001

 Member of Texas Instruments' Widebus™ Family 	DGG OR DL PACKAGE (TOP VIEW)	
 Supports the VME64 ETL Specification 		
 Reduced, TTL-Compatible, Input Threshold Range 		40 V _{CC} ыАЗ 47 1А1
• High-Drive Outputs ($I_{OU} = -60 \text{ mA}$		
$I_{OL} = 90 \text{ mA}$) Support 25- Ω Incident-Wave Switching		44] 1A2 43] 2A2
 V_{CC}BIAS Pin Minimizes Signal Distortion During Live Insertion 	V _{CC} [7 1B3 [8	42 V _{CC} 41 1A3
 Internal Pullup Resistor on OE Keeps 	2B3 9	
Power Up or Power Down	1B4 [11	38 1A4
 Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise 	2B4 L 12 1B5 L 13	37 2A4 36 1A5
 Equivalent 25-Ω Series Damping Resistor an B Port 	2B5 14 GND 15	35 2A5 34 GND
	1B6 🛛 16	33 🛛 1A6
Bus Hold on Data Inputs Eliminates the	2B6 [17	32 2A6
Need for External Pullup/Pulldown Resistors	V _{CC} [18 1B7 [19	31 V _{CC} 30 1A7
de el cale de ca	2B7 🛛 20	29 2A7
description	GND 🛛 21	28 GND
The SN74ABTE16245 is a 16-bit (dual-octal)	1B8 🛛 22	27 🛛 1A8
noninverting 3-state transceiver designed for	2B8 🛛 23	26 2A8
synchronous two-way communication between data buses. The control-function implementation	2DIR [24	25 OE

one 16-bit transceiver. The device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. When \overline{OE} is low, the device is active.

The B port has an equivalent $25 \cdot \Omega$ series output resistor to reduce ringing. Active bus-hold inputs are also on the B port to hold unused or floating inputs at a valid logic level.

The A port provides for the precharging of the outputs via $V_{CC}BIAS$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

Widebus is a trademark of Texas Instruments.

minimizes external timing requirements. This device can be used as two 8-bit transceivers or

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74ABTE16245 16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCBS226H – JULY 1993 – REVISED JUNE 2001

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C		Tube	SN74ABTE16245DL	ABTE16245	
	550P - DL	Tape and reel	SN74ABTE16245DLR		
	TSSOP – DGG	Tape and reel	SN74ABTE16245DGGR	ABTE16245	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each 8-bit section)			
INPUTS			
OE	DIR	OPERATION	
L	L	A data to B bus	
L	Н	B data to A bus	
н	Х	Isolation	

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC}	-0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O}	
Current into any output in the low state, IO	128 mA
Input clamp current, I _{IK} (V _I < 0)	18 mA
Output clamp current, I_{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DL package	63°C/W
Storage temperature range, T _{stg}	\ldots

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74ABTE16245 16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCBS226H – JULY 1993 – REVISED JUNE 2001

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
Vcc	V _{CC} Supply voltage		4.5	5	5.5	V
N		OE	2			v
VIH	righ-level liput voltage	Except OE	1.6			
V.	Low-level input voltage	OE			0.8	v
VIL		Except OE			1.4	
V _I Input voltage		0		VCC	V	
Law	High-level output current	B bus			-12	mA
ЮН		A bus			-60	
1.0.		B bus			12	mA
OL	Low-level output current	A bus			90	
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V
ТА	Operating free-air temperature		-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74ABTE16245 **16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER** WITH 3-STATE OUTPUTS SCBS226H - JULY 1993 - REVISED JUNE 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CC	ONDITIONS	MIN	TYP†	MAX	UNIT
VIK		V _{CC} = 4.5 V,	l _l = –18 mA			-1.2	V
		V _{CC} = 5.5 V,	I _{OH} = −100 μA			V _{CC} -0.2	
	B port		I _{OH} = -1 mA	2.4			
Val		VCC = 4.5 V	I _{OH} = -12 mA	2			
⊻он		V _{CC} = 5.5 V,	$I_{OH} = -1 \text{ mA}$			4.5	v
	A port		I _{OH} = -32 mA	2.4			
		VCC - 4.5 V	I _{OH} = -64 mA	2			
	B port		I _{OL} = 1 mA			0.4	
Voi	B poit	VCC - 4.5 V	I _{OL} = 12 mA			0.8	V
VOL	A port		I _{OL} = 64 mA			0.55	v
	Apon	VCC = 4.5 V	I _{OL} = 90 mA			0.9	
		$V_{00} = 45 V$	V _I = 0.8 V	100			
ll(hold)	B port	VCC = 4.5 V	V _I = 2 V	-100		μA ±500 ±1	μA
		V _{CC} = 5.5 V,	$V_{ } = 0 \text{ to } 5.5 \text{ V}$			±500	
4.	Control inputs	V _{CC} = 5.5 V,	$V_I = V_{CC}$ or GND			±1	ΠA
''	A or B ports	V _{CC} = 5.5 V,	$V_I = V_{CC}$ or GND			±20	μΛ
IOZH [‡]	A port	V _{CC} = 5.5 V,	V _O = 2.7 V			10	μA
I _{OZL} ‡	A port	V _{CC} = 5.5 V,	V _O = 0.5 V			-10	μΑ
	A port		1/2 - 25 1/2	-50		-180	mΑ
0	B port	VCC = 5.5 V,	V() = 2.3 V	-25		-90	
l _{off}	_	V_{CC} = 0, V_{I} or V_{O} \leq 4.5 V,	$V_{CC}BIAS = 0$			±100	μΑ
			Outputs high		28	36	
ICC	A or B ports	$V_{CC} = 5.5 V, I_{O} = 0,$ $V_{I} = V_{CC} \text{ or } GND$	Outputs low		38	48	mA
			Outputs disabled		20	32	
loop	A or B ports		OE high		0.02		mA/
ICCD	A of B poils	VCC = 5 V, CL = 50 PF	OE low		0.33		MHz
Ci	Control inputs	V _I = 2.5 V or 0.5 V			2.5	4	pF
Cio	I/O ports	$V_{O} = 2.5 \text{ V or } 0.5 \text{ V}$			4.5	8	pF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

SN74ABTE16245 **16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER** WITH 3-STATE OUTPUTS

SCBS226H - JULY 1993 - REVISED JUNE 2001

live-insertion specifications over recommended operating free-air temperature range

PA	RAMETER		TEST CONDITIONS					UNIT	
		$V_{CC} = 0$ to 4.5 V,	$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V,$	$I_{O(DC)} = 0$		250	700	A	
	ССыхэ)	$V_{CC} = 4.5 V \text{ to } 5.5 V^{\ddagger},$	$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V,$	$I_{O(DC)} = 0$			20	μΑ	
	Anort	A port	$\lambda = 0$	$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V$		1.1	1.5	1.9	V
۷Ö	Apon	VCC = 0	$V_{CC}BIAS = 4.75 V \text{ to } 5.25 V$		1.3	1.5	1.7	v	
IO A port	A port		V _{CC} BIAS = 4.5 V	$V_{O} = 0$	-20		-100		
	Apon	$\nabla CC = 0,$		V _O = 3 V	20		100	μΑ	

† All typical values are at V_{CC} = 5 V, T_A = 25°C. $V_{CC} = 0.5 V < V_{CC}$ BIAS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPLIT)		V _{CC} = 5 V, T _A = 25°C		, ;	MIN	МАХ	UNIT
		(001101)	MIN	TYP	MAX			
^t PLH	٨	в	1.5	3.3	4.2	1.5	5.2	ne
^t PHL	~	Ь	1.5	3.8	4.6	1.5	5.2	115
^t PLH	P	٨	1.5	3	3.8	1.5	4.5	200
^t PHL	В		1.5	3.1	4	1.5	4.5	115
^t PZH		A	2	3.9	5.3	2	6.2	ns
^t PZL	UE		2	4.4	5.9	2	6.8	
^t PZH			2	4.5	6	2	7.1	20
^t PZL	OE	D	2	5	6.4	2	7.3	115
^t PHZ		٨	2	4.9	5.9	2	6.7	20
^t PLZ	OE	A	2	3.7	4.6	2	5.1	115
^t PHZ		P	2	5.2	6.2	2	7	200
tPLZ	UE	0	2	4	5	2	5.5	115

SN74ABTE16245 **16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER** WITH 3-STATE OUTPUTS SCBS226H - JULY 1993 - REVISED JUNE 2001

extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM		LOAD	V(Tj	CC = 5 V A = 25°C	,	MIN	МАХ	UNIT
		(001101)		MIN	TYP	MAX		MAX U 4.8 - 5.6 - 4.9 - 4.5 - 4.7 - 2 -	
^t PLH	P	٨	Pv = 12.0	1.5	3.2	4	1.5	4.8	200
^t PHL	в	~	$K\chi = 13.22$	1.5	3.8	4.7	1.5	5.6	115
^t PLH	P	٨	$P_{\rm M} = 26.0$	1.5	3.1	4	1.5	4.6	-
^t PHL	В	A	κχ = 20 32	1.5	3.5	4.4	1.5	4.9	ns
^t PLH	Р	٨	Rχ = 56 Ω	1.5	3	3.8	1.5	4.5	ns
^t PHL	В	A		1.5	3.3	4.2	1.5	4.7	
	В	A	Rχ = Open		0.1	0.6		2	ns
^t sk(p)	А	В			0.4	0.8		2	
	В	A	Rχ = 26 Ω		0.3	0.8		2	
	В	A	Rχ = Open		0.3	0.7		1.3	
^t sk(o)	A	В			0.7	1.1		1.3	ns
	В	A	Rχ = 26 Ω		0.5	1		1.3	
tt [†]	В	A	Rχ = 26 Ω	0.5	0.8	1.5	0.5	1.5	ns
tt‡	A	В	Rise or fall time 10%–90%	3.5	5.5	7.3	3.5	7.9	ns

[†] t_t is measured between 1 V and 2 V of the output waveform. [‡] t_t is measured between 10% and 90% of the output waveform.

extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS LOAD		MIN MAX	UNIT
^t sk(temp)	A	В	V _{CC} = constant,		2.5	200
	В	A	$\Delta T_A = 20^{\circ}C$	Rχ = 56 Ω	4	115
^t sk(load)	В	В	V _{CC} = constant, Temperature = constant	R_X = 13, 26, or 56 Ω	4	ns

SN74ABTE16245 16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCBS226H - JULY 1993 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Pulse skew, t_{Sk(p)}, is defined as the difference in propagation-delay times t_{PLH1} and t_{PHL1} on the same terminal at identical operating conditions.
 - B. Output skew, t_{sk(0)}, is defined as the difference in propagation delay of any two outputs of the same device switching in the same direction (e.g., |t_{PLH1} t_{PLH2}|).
 - C. Temperature skew, t_{sk(temp)}, is the output skew of two devices, both having the same value of V_{CC} ± 1% and with package temperature differences of 20°C.
 - D. Load skew, $t_{sk(load)}$, is measured with R_X in Figure 2 at 13 Ω for one unit and 56 Ω for the other unit.

Figure 1. Voltage Waveforms for Extended Characteristics

SN74ABTE16245 **16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER** WITH 3-STATE OUTPUTS SCBS226H - JULY 1993 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CI includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tt is measured between 1 V and 2 V of the output waveform.
- F. tt is measured between 10% and 90% of the output waveform.

Figure 2. Load Circuit and Voltage Waveforms

SN74ABTE16246 11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS SCB5227G – JULY 1993 – REVISED JUNE 2001

● Member of Texas Instruments' Widebus™	DGG OR DL PACKAGE (TOP VIEW)
 Supports the VME64 ETL Specification 	
 Reduced TTL-Compatible Input Threshold Range 	11OE LI 1 48 LI V _{CC} BIAS 11DIR 2 47 11A 11B 3 46 10DIR
 High-Drive Outputs (I_{OH} = -60 mA, I_{OL} = 90 mA) Support Equivalent 25-Ω Incident-Wave Switching 	GND [4 45] GND 10B [5 44] 10A 9B [6 43] 9A
 V_{CC}BIAS Pin Minimizes Signal Distortion During Live Insertion 	V _{CC} [] 7 42 [] V _{CC} 8BI [] 8 41 [] 9DIR
 Internal Pullup Resistor on OE Keeps Outputs in High-Impedance State During Power Up or Power Down 	8BO U 9 40 U 8A GND U 10 39 U GND 7BO U 11 38 7A
 Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise 	6BI L 12 37 L 7BI 6BO L 13 36 L 6A
 Equivalent 25-Ω Series Damping Resistor on B Port 	GND [14 35] 5A GND [15 34] GND 4BO [16 33] 5BI
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
description	2BI 20 29 3BI GND 21 28 GND
The SN74ABTE16246 is an 11-bit noninverting transceiver designed for asynchronous two-way communication between buses. This device has open-collector and 3-state outputs. The device	2BO [22 27] 2A 1BO [23 26] 1A 1BI [24 25] OE

allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. When \overline{OE} is low, the device is active.

The B port has an equivalent 25- Ω series output resistor to reduce ringing. Active bus-hold inputs on the B port hold unused or floating inputs at a valid logic level.

The A port provides for the precharging of the outputs via $V_{CC}BIAS$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

TA	PACKA	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		Tube	SN74ABTE16246DL		
–40°C to 85°C	550P - DL	Tape and reel	SN74ABTE16246DLR	ADIE10240	
	TSSOP – DGG	Tape and reel	SN74ABTE16246DGGR	ABTE16246	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74ABTE16246 11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS SCBS227G - JULY 1993 - REVISED JUNE 2001

	FUNCTION TABLE										
		INPUTS			OPERATION						
OE	9DIR	10DIR	11DIR	11 <u>0E</u>	OPERATION						
Н	Х	Х	Х	Х	Isolation						
L	Х	Х	Х	Х	1BI–8BI data to 1A–8A bus (OC [†]), 1A–8A data to 1BO–8BO bus						
L	L	Х	Х	Х	9A data to 9B bus						
L	Н	Х	Х	Х	9B data to 9A bus						
L	Х	L	Х	Х	10A data to 10B bus						
L	Х	Н	Х	Х	10B data to 10A bus						
L	Х	Х	L	L	11A data to 11B bus						
L	Х	Х	L	Н	11A, 11B isolation						
L	Х	Х	Н	Х	11B data to 11A bus						

 † OC = Open-collector outputs

SN74ABTE16246 11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS SCBS227G – JULY 1993 – REVISED JUNE 2001

logic diagram (positive logic)

SCBS227G - JULY 1993 - REVISED JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (except I/O ports) (see Note 1)	-0.5 V to 7 V -0.5 V to 7 V -0.5 V to 5.5 V -0.5 V to 5.5 V -128 mA -18 mA -18 mA -50 mA -50 mA -70°C/W 63°C/W
DL package	63°C/W . –65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage	_	4.5	5	5.5	V
V	High lovel input veltage	ŌĒ	2			V
VIН	nigh-level hiput voltage	Except OE	1.6			v
V		OE			0.8	V
VIL	Low-level input voltage	Except OE			1.4	v
VOH	High-level output voltage	1A–8A	0		5.5	V
VI	Input voltage		0		VCC	V
lau	High lovel output outpost	B bus			V _{CC} -12	~^^
ЮН	nigh-level output current	9A–11A			-64	ША
		B bus			12	~^
IOL		A bus			90	ША
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V
TA	Operating free-air temperature				85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS227G - JULY 1993 - REVISED JUNE 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CC	ONDITIONS	MIN	TYP†	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	l _l = –18 mA			-1.2	V	
		V _{CC} = 5.5 V,	I _{OH} = -100 μA			V _{CC} -0.2		
	B port		$I_{OH} = -1 \text{ mA}$	2.4			4.5 V 20 μA 0.4 V 0.55 V 0.9 mV	
Val		VCC = 4.5 V	I _{OH} = -12 mA	2				
∣∨он		V _{CC} = 5.5 V,	I _{OH} = -1 mA			4.5	v	
	9A–11A	Voo - 45 V	I _{OH} = -32 mA	2.4				
		VCC = 4.3 V	I _{OH} = -64 mA	2				
ЮН	1A–8A	V _{CC} = 4.5 V,	V _{OH} = 5.5 V			20	μΑ	
	B port	$V_{00} = 45 V$	I _{OL} = 1 mA			0.4		
Vol	D poit	VCC = 4.3 V	I _{OL} = 12 mA			0.8	V	
VOL	A port		I _{OL} = 64 mA			0.55	V	
	Apon	VCC = 4.3 V	I _{OL} = 90 mA			0.9		
V _{hys}					100		mV	
			V _I = 0.8 V	100				
II(hold)	B port	VCC = 4.5 V	V _I = 2 V	-100			μA	
		V _{CC} = 5.5 V,	V _I = 0 to 5.5 V			±500	μA)	
	Control inputs					±1		
ц ц	A or B ports	VCC = 5.5 V,	vI = vCC or GND			±20	μΛ	
IOZH [‡]	9A–11A	V _{CC} = 5.5 V,	V _O = 2.7 V			10	μA	
lozl‡	9A–11A	V _{CC} = 5.5 V,	$V_{O} = 0.5 V$			-10	μΑ	
	A port			-50		-180	m (
0	B port	VCC = 5.5 V,	VO = 2.5 V	-25		-90	IIIA	
loff		V_{CC} = 0, V_{I} or $V_{O} \le 4.5$ V,	$V_{CC}BIAS = 0$			±100	μA	
			Outputs high		28	36		
ICC	A or B ports	$V_{CC} = 5.5 V$, $I_{O} = 0$, $V_{L} = V_{CC}$ or GND	Outputs low		38	48	mA	
			Outputs disabled		20	32		
	A or B ports		OE high		0.02		mA/	
			OE low		0.33		MHz	
Ci	Control inputs	$V_{I} = 2.5 \text{ V or } 0.5 \text{ V}$			2.5	4	pF	
Cio	I/O ports	$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$			4.5	8	pF	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

SCBS227G – JULY 1993 – REVISED JUNE 2001

live-insertion specifications over recommended operating free-air temperature range

PA	RAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
ICC (VCCBIAS)		$V_{CC} = 0$ to 4.5 V,	$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V,$	$I_{O(DC)} = 0$		250	700	uА
		$V_{CC} = 4.5 V \text{ to } 5.5 V^{\ddagger},$	$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V,$	$I_{O(DC)} = 0$			20 μA	
	A port	port $V_{CC} = 0$	$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V$		1.1	1.5	1.9	V
V0	Apon		$V_{CC}BIAS = 4.75 V \text{ to } 5.25 V$		1.3	1.5	1.7	v
IO A port	A port		V _{CC} BIAS = 4.5 V	$V_{O} = 0$	-20	-10	-100	
	А роп	$v_{CC} = 0,$		V _O = 3 V	20		100	μΑ

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] V_{CC} - 0.5 V < V_{CC}BIAS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM		V ₍ T	CC = 5 V A = 25°C	, ;	MIN	МАХ	UNIT
	(INFOT)			TYP	MAX			
^t PLH	٨	B	1.5	3.1	4.2	1.5	5.2	ne
^t PHL	~	D	1.5	3.5	4.6	1.5	5.2	115
^t PLH	0P 11P	04 114	1.5	3	3.8	1.5	4.5	200
^t PHL	90-110	9A-11A	1.5	3.2	4	1.5	4.5	115
t _{PLH} §			1.5	3.2	4	1.5	4.5	
t _{PLH} ¶	1B–8B	1A–8A	7.5	8.9	9.7	7.5	10.3	ns
^t PHL			1.5	3.2	4	1.5	4.5	
^t PZH		9A–11A	2	4.3	5.3	2	6.2	ne
^t PZL	UE	1A–11A	2	4.4	5.4	2	6.8	115
^t PZH		P	2	4.3	6	2	7.1	200
^t PZL	UE	Ь	2	4.5	6.4	2	7.3	115
^t PHZ		9A–11A	2	4.2	5.9	2	6.7	ne
^t PLZ	UE	1A–11A	2	3.5	4.6	2	5.1	115
^t PHZ	OF	B	2.5	4.3	6.2	2.5	7	ne
tPLZ			2	3.6	5	2	5.5	115

Measurement point is V_{OL} + 0.3 V.

¶ Measurement point is V_{OL} + 1.5 V.

SCBS227G - JULY 1993 - REVISED JUNE 2001

extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_1 = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER			LOAD	V ₍ T	CC = 5 V A = 25°C	, ;	MIN	МАХ	UNIT
		(001-01)		MIN	TYP	MAX			
^t PLH	0P 11P	04 114	By = 12.0	1.5	3.2	4	1.5	4.8	50
^t PHL	90-110	9A-11A	Rχ = 13 Ω	1.5	3.8	4.7	1.5	5.6	115
^t PHL	1B–8B	1A–8A	Rχ = 13 Ω	1.5	3.3	4.2	1.5	4.8	ns
^t PLH	0P. 11P	04 114	Dr. 26.0	1.5	3.1	4	1.5	4.6	
^t PHL	9D-11D	9A-11A	Rχ = 20 Ω	1.5	3.5	4.4	1.5	4.9	ns
^t PHL	1B–8B	1A–8A	Rχ = 26 Ω	1.5	3.1	4	1.5	4.4	ns
^t PLH	0P 11P	10.00	By - 56 O	1.5	3	3.8	1.5	4.5	50
^t PHL	9D-11D	TA-6A	KX = 56 22	1.5	3.3	4.2	1.5	4.7	
^t PHL	1B–8B	1A–8A	Rχ = 56 Ω	1.5	3	4	1.5	4.4	ns
	В	A	R _X = Open		0.1	0.6		2	
^t sk(p)	A	В			0.4	0.8		2	ns
	В	А	Rχ = 26 Ω		0.3	0.8		2	
	В	А	Rχ = Open		0.3	0.7		1.3	
^t sk(o)	A	В			0.7	1.1		1.3	ns
	В	A	Rχ = 26 Ω		0.5	1		1.3	
tt [†]	В	A	Rχ = 26 Ω	0.5	0.8	1.5	0.5	1.5	ns
tt‡	A	В	Rise or fall time 10%–90%	3.5	5.5	7.3	3.5	7.9	ns

[†] t_t is measured between 1 V and 2 V of the output waveform. [‡] t_t is measured between 10% and 90% of the output waveform.

extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	LOAD	MIN MAX	UNIT
+	A	В	$V_{CC} = constant,$		2.5	
^t sk(temp)	В	А	$\Delta T_A = 20^{\circ}C$	Rχ = 56 Ω	4	115
^t sk(load)	В	А	V _{CC} = constant, Temperature = constant	Rχ = 13, 26, or 56 Ω	4	ns

SCBS227G - JULY 1993 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Pulse skew, tsk(p), is defined as the difference in propagation-delay times tpLH1 and tpHL1 on the same terminal at identical operating conditions.
 - B. Output skew, tsk(0), is defined as the difference in propagation delay of any two outputs of the same device switching in the same direction (e.g., |tPLH1 - tPLH2|).
 - C. Temperature skew, $t_{sk(temp)}$, is the output skew of two devices, both having the same value of $V_{CC} \pm 1\%$ and with package temperature differences of 20°C.
 - D. Load skew, $t_{sk(load)}$, is measured with R_X in Figure 2 at 13 Ω for one unit and 56 Ω for the other unit.

Figure 1. Voltage Waveforms for Extended Characteristics

SCBS227G - JULY 1993 - REVISED JUNE 2001

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tt is measured between 1 V and 2 V of the output waveform.
 - F. tt is measured between 10% and 90% of the output waveform.

Figure 2. Load Circuit and Voltage Waveforms

General Information	1
GTL	2
GTLP	3
ETL	4
BTL/FB+	5
VME	6
Application Reports	7
Mechanical Data	8

Contents

		Page
SN74FB1650	18-Bit TTL/BTL Universal Storage Transceiver	5–3
SN74FB1651	17-Bit TTL/BTL Universal Storage Transceiver With Buffered Clock Line	5–11
SN74FB1653	17-Bit LVTTL/BTL Universal Storage Transceiver	
	With Buffered Clock Line	5–21
SN74FB2031	9-Bit TTL/BTL Address/Data Transceiver	5–31
SN74FB2033A	8-Bit TTL/BTL Registered Transceiver	5–39
SN74FB2033K	8-Bit TTL/BTL Registered Transceiver	5–51
SN74FB2040	8-Bit TTL/BTL Transceiver	5–63
SN74FB2041A	7-Bit TTL/BTL Transceiver	5–69

SCBS178N - AUGUST 1992 - REVISED JUNE 2001

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- BIAS V_{CC} Minimizes Signal Distortion During Live Insertion or Withdrawal
- High-Impedance State During Power Up and Power Down
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping to Aid in Line Termination

NC – No internal connection

SCBS178N - AUGUST 1992 - REVISED JUNE 2001

description

The SN74FB1650 contains two 9-bit transceivers designed to translate signals between TTL and backplane transceiver-logic (BTL) environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991.

The \overline{B} port operates at BTL-signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off.

The A port operates at TTL-signal levels. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or when V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

BG V_{CC} and BG GND are the supply inputs for the bias generator.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	TQFP – PCA	Tube	SN74FB1650PCA	FB1650

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables

TRANSCEIVER

	INP	UTS		FUNCTION			
OEA	OEA	OEB	OEB	FUNCTION			
Х	Х	Н	L	A data to B bus			
L	н	Х	х	\overline{B} data to A bus			
L	Н	Н	L	\overline{A} data to B bus, \overline{B} data to A bus			
Х	Х	L	Х	P hus isolation			
х	Х	Х	н	B-bus isolation			
н	Х	Х	Х				
Х	L	Х	х	A-bus isolation			

STORAGE MODE

	INPU	TS	EUNCTION
l	E	CLK	FUNCTION
	Н	Х	Transparent
	L	Ŷ	Store data
	L	L	Storage

SCBS178N - AUGUST 1992 - REVISED JUNE 2001

To Eight Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} , BIAS V _{CC} , BG V _{CC}	–0.5 V to 7 V
Input voltage range, VI: Except B port	\ldots –1.2 V to 7 V
B port	\ldots —1.2 V to 3.5 V
Voltage range applied to any \overline{B} output in the disabled or power-off state, V _O	\ldots –0.5 V to 3.5 V
Voltage range applied to any output in the high state, Vo	\dots –0.5 V to V _{CC}
Input clamp current, I _{IK} : Except B port	
B port	–18 mA
Current applied to any single output in the low state, I _O : A port	48 mA
B port	200 mA
Package thermal impedance, θ_{JA} (see Note 1)	22°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SCBS178N - AUGUST 1992 - REVISED JUNE 2001

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT	
V _{CC,} BG V _{CC} , BIAS V _{CC}	Supply voltage		4.5	5	5.5	V	
VIH	High lovel input veltage	B port	1.62		2.3	V	
	nigh-level liiput voltage	Except B port	2			V	
N/		B port	0.75		1.47	V	
VIL	Except B port				0.8	v	
IIК	Input clamp current				-18	mA	
ІОН	High-level output current	A port			-3	mA	
		A port			24	m۸	
OL	B port				100		
TA	Operating free-air temperature		0		70	°C	

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			TYP [†]	MAX	UNIT
Mark	B port	V _{CC} = 4.5 V,	l _l = –18 mA			-1.2	V
vік	Except B port	V _{CC} = 4.5 V,	l _l = -40 mA			-0.5	v
VOH	AO port	V _{CC} = 4.5 V,	I _{OH} = –3 mA	2.5	3.3		V
	AO port	V _{CC} = 4.5 V,	I _{OL} = 24 mA		0.35	0.5	
VOL	B ased		I _{OL} = 80 mA	0.75		1.1	V
	B port	VCC = 4.5 V	I _{OL} = 100 mA			1.15	
Ц	Except B port	V _{CC} = 5.5 V,	V _I = 5.5 V			50	μA
ι _Η ‡	Except B port	V _{CC} = 5.5 V,	V _I = 2.7 V			50	μA
. +	Except B port	V _{CC} = 5.5 V,	V _I = 0.5 V			-50	
'IL+	B port	V _{CC} = 5.5 V,	Vj = 0.75 V			-100	μΑ
IOZH	AO port	V _{CC} = 5.5 V,	V _O = 2.7 V			50	μA
IOZL	AO port	V _{CC} = 5.5 V,	V _O = 0.5 V			-50	μA
IOZPU	AO port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V			50	μA
IOZPD	AO port	V _{CC} = 2.1 V to 0,	V_{O} = 0.5 V to 2.7 V			-50	μA
ЮН	B port	$V_{CC} = 0$ to 5.5 V,	V _O = 2.1 V			100	μA
los§	A port	V _{CC} = 5.5 V,	$V_{O} = 0$	-30		-150	mA
	A port to \overline{B} port					100	س ۸
'CC	B port to A port	vCC = 5.5 v,	IO = 0			120	mA
C.	Al port				5.5		ъĘ
	Control inputs				5.5		PΓ
Co	AO ports	$V_{O} = V_{CC} \text{ or } GND$			5.5		pF
Cio	B port per IEEE Std 1194.1-1991	V _{CC} = 0 to 5.5 V				5.5	pF

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}C$. [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SCBS178N - AUGUST 1992 - REVISED JUNE 2001

live-insertion specifications over recommended operating free-air temperature range

PAR	AMETER	TEST CONDITIONS				MAX	UNIT
I _{CC} (BIAS V _{CC})		$V_{CC} = 0$ to 4.5 V	$V_{\rm D} = 0$ to 2 V			450	
		V_{CC} = 4.5 V to 5.5 V	$v_{\rm B} = 0.02 v_{\rm v}$	V (BIAS VCC) = 4.5 V to 5.5 V		10	μΑ
Vo	B port	V _{CC} = 0,	V_{I} (BIAS V_{CC}) = 5 V		1.62	2.1	V
		V _{CC} = 0 ,	V _B = 1 V,	V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V	-1		
IO	B port	$V_{CC} = 0$ to 5.5 V,	OEB = 0 to 0.8 V			100	μA
		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V			100	

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			V _{CC} =	= 5 V, 25°C	MIN	МАХ	UNIT
			MIN	MAX			
fclock	Clock frequency			150		150	MHz
tw	Pulse duration	CLK or LE	3.3		3.3		ns
+	Satur time	Data before LE	4.8		4.8		20
۲su	Setup time	Data before CLK↑	4.9		4.9		115
4.	Lold time	Data after LE	1.8		1.8		20
۲h		Data after CLK↑	1.1		1.1		ns

SCBS178N - AUGUST 1992 - REVISED JUNE 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то (оитрит)	V C	CC = 5 \ A = 25°C	/, ;	MIN	МАХ	UNIT
		(001201)	MIN	TYP	MAX			
fmax			150			150		MHz
^t PLH		_	1.8	3.7	5.3	1.8	6.2	
^t PHL		В	2.9	4.4	6	2.9	7.2	ns
^t PLH		_	2.7	4.2	5.8	2.7	6.4	~~
^t PHL	LEAD	В	3.5	5	6.5	3.5	7.3	ns
^t PLH	CLIKAD	5	2.3	3.9	5.5	2.3	6	~~
^t PHL	CLAAD	В	2.9	4.5	6.1	2.9	6.7	ns
^t PLH	5	40	3.5	5.9	7.9	3.5	8.6	~~
^t PHL	В	AU	2.2	3.7	5.3	2.2	5.7	ns
^t PLH		10	1.8	3.2	4.6	1.8	5.1	
^t PHL	LEBA	AU	1.7	3	4.4	1.7	4.7	ns
^t PLH		40	1.8	3.1	4.6	1.8	5.1	~~
^t PHL	CLKBA	AU	1.7	3.1	4.6	1.7	4.9	ns
^t PLH	050	_	2.7	4.6	6.4	2.7	6.7	
^t PHL	OEB	В	2.9	4.1	5.9	2.9	6.6	ns
^t PLH		_	2.6	4.3	6.2	2.6	6.6	
^t PHL	OEB	В	3.4	4.6	6.4	3.4	7	ns
^t PZH	054	40	1.4	2.9	4.4	1.4	4.9	20
^t PZL	OEA	AU	1.4	2.6	4	1.4	4.6	ns
^t PHZ	054	40	1.7	3.4	5.1	1.7	5.8	~~
^t PLZ	UEA	AU	2.2	3.6	5	2.2	5.5	115
^t PZH	054	40	1.7	3.3	4.7	1.7	5.5	~~
^t PZL	OEA	AU	1.7	3.1	4.4	1.7	5.1	ns
^t PHZ		40	1.5	2.9	4.5	1.5	5.1	
^t PLZ	OEA	AU	2	3.1	4.6	2	4.8	ns
t _{sk(p)} †	Pulse skew, AI to \overline{B} or \overline{B} to A	<i>\</i> O		1				ns
tsk(o) [†]	Output skew, AI to \overline{B} or \overline{B} to	AO		0.5				ns
t _t	B outputs (1.3 V to 1.8 V)		0.9	1.7	3.1	0.5	4.6	
Transition time	AO outputs (10% to 90%)		0.5	2	3.6	0.4	4.2	ns
^t (pr)	B-port input pulse rejection		1			1		ns

[†] Skew values are applicable for through mode only.

SCBS178N - AUGUST 1992 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 All input pulses are supplied by generators having the following characteristics: TTL inputs: PRP < 10 MHz Zo = 50.0 t < 2.5 ns
- C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- BIAS V_{CC} Minimizes Signal Distortion During Live Insertion or Withdrawal

 High-Impedance State During Power Up and Power Down

17-BIT TTL/BTL UNIVERSAL STORAGE TRANSCEIVER

SN74FB1651

WITH BUFFERED CLOCK LINE SCBS177N – OCTOBER 1993 – REVISED JUNE 2001

- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping to Aid in Line Termination

NC - No internal connection

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74FB1651 17-BIT TTL/BTL UNIVERSAL STORAGE TRANSCEIVER WITH BUFFERED CLOCK LINE SCBS177N – OCTOBER 1993 – REVISED JUNE 2001

description

The SN74FB1651 contains an 8-bit and 9-bit transceiver with a buffered clock. The clock and the transceivers are designed to translate signals between TTL and backplane transceiver-logic (BTL) environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991.

The \overline{B} port operates at BTL-signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off.

The A port operates at TTL-signal levels. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or when V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

BG $V_{\mbox{CC}}$ and BG GND are the supply inputs for the bias generator.

ORDERING INFORMATION

TA	PACKAG	Eţ	ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	TQFP – PCA	Tube	SN74FB1651PCA	FB1651

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables

TRANSCEIVER

	INP	UTS		FUNCTION				
OEA	OEA	OEB	OEB	FUNCTION				
Х	Х	Н	L	\overline{A} data to B bus				
L	н	Х	Х	\overline{B} data to A bus				
L	Н	Н	L	\overline{A} data to B bus, \overline{B} data to A bus				
Х	Х	L	Х	P hus isolation				
Х	Х	Х	н	B-bus isolation				
Н	Х	Х	Х	A-bus isolation				
х	L	Х	Х					

STORAGE MODE

INP	UTS	EUNCTION				
LE	CLK	FUNCTION				
Н	Х	Transparent				
L	\uparrow	Store data				
L	L	Storage				

functional block diagram

To Eight Other Channels

SCBS177N – OCTOBER 1993 – REVISED JUNE 2001

functional block diagram (continued)

To Seven Other Channels

SCBS177N – OCTOBER 1993 – REVISED JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} , BIAS V _{CC} , BG V _{CC}	–0.5 V to 7 V
Input voltage range, VI: Except B port	\dots –1.2 V to 7 V
\overline{B} port	–1.2 V to 3.5 V
Voltage range applied to any \overline{B} output in the disabled or power-off state, V _O	–0.5 V to 3.5 V
Voltage range applied to any output in the high state, Vo	–0.5 V to V _{CC}
Input clamp current, IIK: Except B port	
B port	–18 mA
Current applied to any single output in the low state, I _O : A port	48 mA
B port	200 mA
Package thermal impedance, θ_{IA} (see Note 1)	22°C/W
Storage temperature range, T _{stg}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT
V _{CC,} BG V _{CC} , BIAS V _{CC}	Supply voltage		4.5	5	5.5	V
Mar.			1.62		2.3	V
VIH	nigh-level liput voltage	Except B port	2			v
		B port	0.75		1.47	V
VIL	Low-level liput voltage	Except B port			0.8	v
IIК	Input clamp current				-18	mA
Іон	High-level output current	A port			-3	mA
		A port			24	m۸
	Low-level output current	B port			100	ША
TA	Operating free-air temperature		0		70	°C

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCBS177N – OCTOBER 1993 – REVISED JUNE 2001

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST C	ONDITIONS	MIN	түр†	MAX	UNIT
Mur	B port	V _{CC} = 4.5 V,	lı = –18 mA			-1.2	V
VIК	Except B port	V _{CC} = 4.5 V,	II = -40 mA			-0.5	v
Vон	AO port	V _{CC} = 4.5 V,	I _{OH} = –3 mA	2.5	3.3		V
	AO port	V _{CC} = 4.5 V,	I _{OL} = 24 mA		0.35	0.5	
VOL		$V_{00} = 45 V$	I _{OL} = 80 mA	0.75		1.1	V
	вроп	VCC = 4.5 V	I _{OL} = 100 mA			1.15	
Ц	Except B port	V _{CC} = 5.5 V,	V _I = 5.5 V			50	μΑ
ι _Η ‡	Except B port	V _{CC} = 5.5 V,	V _I = 2.7 V			50	μΑ
. +	Except B port	V _{CC} = 5.5 V,	V _I = 0.5 V			-50	
'IL+	B port	V _{CC} = 5.5 V,	V _I = 0.75 V			-100	μA
I _{OZH}	AO port	V _{CC} = 5.5 V,	V _O = 2.7 V			50	μΑ
IOZL	AO port	V _{CC} = 5.5 V,	$V_{O} = 0.5 V$			-50	μA
IOZPU	AO port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V			50	μA
IOZPD	AO port	V _{CC} = 2.1 V to 0,	V_{O} = 0.5 V to 2.7 V			-50	μA
ЮН	B port	$V_{CC} = 0$ to 5.5 V,	V _O = 2.1 V			100	μA
los§	A port	V _{CC} = 5.5 V,	$V_{O} = 0$	-30		-150	mA
	A port to \overline{B} port					100	س ۸
	B port to A port	$v_{CC} = 5.5 v_{,}$	IO = 0			120	ША
C	AI port	$V_{\rm H} = 0.5 V_{\rm or} 2.5 V_{\rm or}$			5.5		۶E
<u>Ч</u>	Control inputs	vi = 0.5 v 0i 2.5 v			5.5		μ
Co	AO ports	$V_{O} = 0.5 \text{ V or } 2.5 \text{ V}$			5.5		pF
Cio	B port per IEEE Std 1194.1-1991	V _{CC} = 0 to 5.5 V				5.5	pF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

live-insertion specifications over recommended operating free-air temperature range

PAR	PARAMETER TEST CONDITIONS			DNS	MIN	MAX	UNIT
		$V_{CC} = 0$ to 4.5 V	$V_{P} = 0 \text{ to } 2 \text{ V}$ $V_{I} (\text{BIAS V}_{CC}) = 45 \text{ V} \text{ to } 55 \text{ V}$			450	
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	$v_{\rm B} = 0.02 v_{\rm s}$	B = 0.002 V, V (BIAS VCC) = 4.5 V 10.5.5 V		10	μA
Vo	B port	$V_{CC} = 0,$	V_{I} (BIAS V_{CC}) = 5 V		1.62	2.1	V
		$V_{CC} = 0$,	V _B = 1 V,	V _I (BIAS V _{CC}) = 4.5 V to 5.5 V	-1		
IO	B port	$V_{CC} = 0$ to 5.5 V,	OEB = 0 to 0.8 V			100	μA
		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V			100	

SCBS177N - OCTOBER 1993 - REVISED JUNE 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		V _{CC} = 5 V, T _A = 25°C		MIN	МАХ	UNIT	
			MIN	MAX			
fclock	Clock frequency			150		150	MHz
tw	Pulse duration	CLK or LE	3.3		3.3		ns
+	Sotup time	Data before LE	4.8		4.8		20
۲su	Setup time	Data before CLK↑	4.9		4.6		115
+.	Hold time	Data after LE	1.8		1.8		20
Ч		Data after CLK↑	1.1		1.1		115

SCBS177N – OCTOBER 1993 – REVISED JUNE 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO		CC = 5 V A = 25°C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MIN	МАХ	UNIT
			MIN	TYP	MAX			
fmax			150			150		MHz
^t PLH	A1	5	1.8	3.7	5.3	1.8	6.2	
^t PHL	AI	В	2.9	4.4	6	2.9	6.6	ns
^t PLH		_	2.7	4.2	5.8	2.7	6.4	20
^t PHL	LEAD	В	3.5	5	6.5	3.5	7.3	115
^t PLH		<u> </u>	2.3	3.9	5.5	2.3	6	20
^t PHL	CLNAD	В	2.9	4.5	6.1	2.9	6.7	115
^t PLH		0011/(41)	4.6	6.9	8.8	4.6	9.9	20
^t PHL	ZULKAD	ZCLKAB	4.9	6.5	8.1	4.9	8.8	115
^t PLH	_	40	3.5	5.9	7.9	3.5	8	20
^t PHL	В	AO	2.2	3.7	5.3	2.2	5.7	115
^t PLH		10	1.8	3.2	4.6	1.8	5.1	200
^t PHL	LLDA	AO	1.7	3	4.4	1.7	4.7	115
^t PLH		40	1.8	3.1	4.6	1.8	5.1	20
^t PHL	CLKDA	AO	1.7	3.1	4.6	1.7	4.9	115
^t PLH	001.1/4.0	201 K	6.4	9.7	11.8	6.4	13.4	20
^t PHL	ZCLKAB	ZULK	4.1	6.9	8.9	4.1	10.3	115
tPLH	OEP	<u>–</u>	2.7	4.6	6.4	2.7	6.7	ne
^t PHL	UEB	В	2.9	4.1	5.9	2.9	6.6	115
t _{PLH}		<u> </u>	2.6	4.3	6.2	2.6	6.6	ne
^t PHL	UEB	В	3.4	4.6	6.4	3.4	7	115
^t PZH		40	1.4	2.9	4.4	1.4	4.9	ne
t _{PZL}	UEA	70	1.4	2.6	4	1.4	4.6	115
^t PHZ		40	1.7	3.4	5.1	1.7	5.8	ne
^t PLZ	UEA	70	2.2	3.6	5	2.2	5.5	115
^t PZH		40	1.7	3.3	4.7	1.7	5.5	ns
^t PZL	OEA	7.0	1.7	3.1	4.4	1.7	5.1	115
^t PHZ		40	1.5	2.9	4.5	1.5	5.1	ne
^t PLZ	OLA	70	2	3.1	4.6	2	4.8	115
^t sk(p) [†]	Pulse skew, AI to \overline{B} or \overline{B} to \overline{A}	40		1				ns
t _{sk(o)} †	Output skew, AI to \overline{B} or \overline{B} to	AO		0.5				ns
tt	B outputs (1.3 V to 1.8 V)		0.9	1.7		0.5	4.6	nc
Transition time	AO outputs (10% to 90%)		0.5	2		0.4	4.2	115
B-port input pulse rejection			1			1		ns

[†] Skew values are applicable for through mode only.

SCBS177N - OCTOBER 1993 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, tf \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, tf \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated

SN74FB1653 17-BIT LVTTL/BTL UNIVERSAL STORAGE TRANSCEIVER WITH BUFFERED CLOCK LINE SCBS702E - AUGUST 1997 - REVISED JUNE 2001

description

The SN74FB1653 contains an 8-bit and a 9-bit transceiver with a buffered clock. The clock and transceivers are designed to translate signals between LVTTL and BTL environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991 (BTL).

The A port operates at LVTTL signal levels. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or when V_{CC}(5 V) typically is less than 2.5 V, the A outputs are in the high-impedance state.

The \overline{B} port operates at BTL signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is low, \overline{OEB} is high, or V_{CC}(5 V) typically is less than 2.5 V, the \overline{B} port is turned off.

The clock-select (2SEL1 and 2SEL2) inputs are used to configure the TTL-to-BTL clock paths and delays (refer to the *Mux-Mode Delay* table).

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when $V_{CC}(5 V)$ is not connected.

BG V_{CC} and BG GND are the supply inputs for the bias generator.

 V_{REF} is used to bypass the internal threshold reference voltage of the device. It is recommended that this terminal be decoupled with a 0.1- μ F capacitor.

Enhanced heat-dissipation techniques should be used when operating this device from AI to A0 at frequencies greater than 50 MHz, or from AI to \overline{B} or \overline{B} to A0 at frequencies greater than 100 MHz.

TA	PACKAG	Eţ	ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	TQFP – PCA	Tube	SN74FB1653PCA	FB1653

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables

TRANSCEIVER

	INP	UTS		FUNCTION	
OEA	OEA	OEB	OEB	FUNCTION	
Х	Х	Н	L	\overline{A} data to B bus	
L	н	Х	х	B data to A bus	
L	н	Н	L	\overline{A} data to B bus, \overline{B} data to A bus	
Х	Х	L	Х	B-bus isolation	
х	Х	Х	н		
Н	Х	Х	Х	A-bus isolation	
X	L	Х	х		

STORAGE MODE

INF	UTS	FUNCTION	
LE	CLK		
Н	Х	Transparent	
L	\uparrow	Store data	
L	L	Storage	

functional block diagram

To Eight Other Channels

SCBS702E - AUGUST 1997 - REVISED JUNE 2001

functional block diagram (continued)

To Seven Other Channels

MUX-MODE DELAY								
INPUTS		DELAY PATH [†]						
2SEL1	2SEL2	2CLKAB TO 2CLKAB	2CLKAB TO 2CLK					
L	L	No delay	No delay					
L	Н	No delay	Delay1					
Н	L	Delay2	Delay1					
Н	Н	Delay3	Delay1					

[†] Refer to delay1 through delay3 in the functional block diagram.

SCBS702E - AUGUST 1997 - REVISED JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range: V _{CC} (5 V), BIAS V _{CC} , BG V _{CC}	–0.5 V to 7 V
V _{CC} (3.3 V)	–0.5 V to 4.6 V
Input voltage range, VI: Except B port	1.2 V to 7 V
B port	–1.2 V to 3.5 V
Input clamp current, IIK: Except B port	–40 mA
B port	–18 mA
Voltage range applied to any \overline{B} output in the disabled or power-off state	–0.5 V to 3.5 V
Voltage range applied to any output in the high state	$\dots -0.5$ V to V _{CC}
Current applied to any single output in the low state: A port	48 mÅ
B port	200 mA
Package thermal impedance, θ_{IA} (see Note 1)	22°C/W
Storage temperature range, T _{stg}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT	
V _{CC,} BG V _{CC} , BIAS V _{CC}	Supply voltage		4.5	5	5.5	V	
V _{CC} (3.3 V)	Supply voltage		3	3.3	3.6	V	
VIH	High-level input voltage	B port	1.62		2.3	V	
		Except B port	2			v	
	Low-level input voltage B port Except B port	B port	0.75		1.47	V	
VIL		Except B port			0.8	v	
IК	Input clamp current				-18	mA	
ЮН	High-level output current	AO port			-3	mA	
		AO port			24		
UL IOL	B port				100	ША	
TA	Operating free-air temperature		0		70	°C	

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS702E - AUGUST 1997 - REVISED JUNE 2001

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CON	DITIONS	MIN	TYP [†]	MAX	UNIT
	B port	$V_{CC}(5 V) = 4.5 V,$	lı = –18 mA			-1.2	
VIK	Except B port	$V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$	lı = -40 mA			-0.5	V
VOH	AO port	$V_{CC}(5 V) = 4.5 V,$ $V_{CC}(3.3 V) = 3 V$	I _{OH} = -3 mA	2.5			V
.,	AO port	$V_{CC}(5 V) = 4.5 V,$ $V_{CC}(3.3 V) = 3 V$	I _{OL} = 24 mA		0.35	0.5	
VOL	B port	$V_{CC}(5 V) = 4.5 V,$ $V_{CC}(3.3 V) = 3 V$	$I_{OL} = 80 \text{ mA}$	0.75		1.1	V
II	Except B port	$V_{CC}(5 V) = 5.5 V,$ $V_{CC}(3.3 V) = 3.6 V$	V _I = 5.5 V			50	μΑ
IIH‡	Except B port	$V_{CC}(5 V) = 5.5 V,$ $V_{CC}(3.3 V) = 3.6 V$	VI = 2.7 V			50	μΑ
t	Except \overline{B} port	$V_{CC}(5 V) = 5.5 V,$ $V_{CC}(3.3 V) = 3.6 V$	VI = 0.5 V			-50	
'IL+	B port	$V_{CC}(5 V) = 5.5 V,$ $V_{CC}(3.3 V) = 3.6 V$	V _I = 0.75 V			-100	μΑ
ЮН	B port	$V_{CC}(5 V) = 0 \text{ to } 5.5 V,$ $V_{CC}(3.3 V) = 3.6 V$	V _O = 2.1 V			100	μΑ
Iоzн	AO port	$V_{CC}(5 V) = 5.5 V,$ $V_{CC}(3.3 V) = 3.6 V$	V _O = 2.7 V			50	μΑ
IOZL	AO port	$V_{CC}(5 V) = 5.5 V,$ $V_{CC}(3.3 V) = 3.6 V$	V _O = 0.5 V			-50	μΑ
IOZPU	AO port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V			-50	μA
IOZPD	AO port	$V_{CC} = 2.1 V \text{ to } 0,$	V_{O} = 0.5 V to 2.7 V			-50	μΑ
	AI port to \overline{B} port					145	
ICC(5 V)	B port to AO port	$V_{CC}(5 V) = 5.5 V,$	IO = 0			130	mA
	Outputs disabled					120	
I _{CC} (3.3 V)	\overline{B} port to AO port	$V_{CC}(5 V) = 5.5 V,$ $V_{CC}(3.3 V) = 3.3 V$	I ^O = 0			1	mA
Ci	Control and AI inputs	VI = 0.5 V or 2.5 V			6.5		pF
Co	AO port	$V_{O} = 0.5 V \text{ or } 2.5 V$			3.5		pF
C _{io}	B port per IEEE Std 1194.1-1991	$V_{CC}(5 V) = 0 \text{ to } 5.5 V,$	V _{CC} (3.3 V) = 3.3 V			6.5	pF

[†] All typical values are at V_{CC}(5 V) = 5 V and V_{CC}(3.3 V) = 3.3 V, T_A = 25°C. [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

SCBS702E - AUGUST 1997 - REVISED JUNE 2001

live-insertion specifications over recommended operating free-air temperature range

PARA	PARAMETER		TEST CONDITIO	NS	MIN	MAX	UNIT
		$V_{CC}(5 V) = 0 \text{ to } 4.5 V,$ $V_{CC}(3.3 V) = 3.3 V$	$V_{\rm T} = 0$ to $2 V_{\rm T}$	$V_{\rm L}$ (PIAS $V_{\rm CO}$) - 4 5 $V_{\rm L}$ to 5 5 $V_{\rm L}$		450	
ICC (PIA	$V_{CC}(5 V) = 4.5 V \text{ to } 5.5 V \\ V_{CC}(3.3 V) = 3.3 V$		$v_{\rm B} = 0$ to 2 v,	VI (BIAS VCC) = 4.5 V to 5.5 V		10	μΑ
۷ _O	B port	$V_{CC}(5 V) = 0,$ $V_{CC}(3.3 V)= 0 V$	V_{I} (BIAS V_{CC}) = 5 V		1.62	2.1	V
		$V_{CC}(5 V) = 0,$ $V_{CC}(3.3 V) = 0 V$	V _B = 1 V,	VI (BIAS V _{CC}) = 4.5 V to 5.5 V	-1		
IO B port	B port	$V_{CC}(5 V) = 0 \text{ to } 5.5 V,$ $V_{CC}(3.3 V) = 3.3 V$	OEB = 0 to 0.8 V			100	μA
		$V_{CC}(5 V) = 0 \text{ to } 2.2 V,$ $V_{CC}(3.3 V) = 3.3 V$	OEB = 0 to 5 V			100	

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			MIN	MAX	UNIT
fclock	Clock frequency			90	MHz
+	Dulas duration	LE high	3		ns
τw	Pulse duration	CLK high or low	3		
t _{su}	Setup time	Al or \overline{B} before LE \downarrow	3.5		
		AI or B before CLK↑	3.5		115
^t h	Lald time	AI or \overline{B} after LE \downarrow	1		20
		AI or B after CLK↑	0.7		115

SCBS702E – AUGUST 1997 – REVISED JUNE 2001

switching characteristics over recommended operating free-air temperature range, $V_{CC}(5 \text{ V}) = 5 \text{ V} \pm 0.5 \text{ V}$ and $V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	МАХ	UNIT
fmax			90		MHz
^t PLH		-	1.8	6.2	
^t PHL	AI	AI B		6.6	ns
^t PLH		<u> </u>	2.7	6.9	
^t PHL	LEAD	В	3.5	7.3	ns
^t PLH	CLKAR	<u> </u>	2.3	6.4	
^t PHL	CLKAB	В	2.9	6.7	ns
^t PLH	2CLKAB		2.3	6	20
^t PHL	(no delay)	2CLKAB	2.9	6.7	ns
^t PLH	2CLKAB	001//405	4.5	9.5	
^t PHL	(delay2)	2CLKAB	4.5	9.5	ns
^t PLH	2CLKAB	001//45	9.3	15.4	
^t PHL	(delay3)	2CLKAB	9.3	15.4	ns
^t PLH	-	10	2	6.5	
^t PHL	В	AO	2	6.5	ns
^t PLH		10	1.8	6.3	
^t PHL	LEBA	AO	1.8	6.3	ns
^t PLH	01.1/10.4	10	1.8	6.3	
^t PHL	CLKBA AO		1.8	6.3	ns
^t PLH	2CLKAB	2011/	5.7	12.3	
^t PHL	(delay1)	ZCLK	5.7	12.3	ns
^t PLH	2CLKAB		2	6.5	
^t PHL	(no delay)	ZOLK	2	6.5	ns
^t PLH	0.55	-	2.6	7	
^t PHL	OEB or OEB	В	2.6	7	ns
^t PZH	054 054	10	1.4	5.5	
^t PZL	OEA or OEA	AO	1.4	5.5	ns
^t PHZ		10	1.4	6.5	
^t PLZ	OEA or OEA	AO	1.4	5.8	ns
	Pulse skew, AI to \overline{B} or \overline{B} to AO	•		1.6	
^t sk(p) ¹	Pulse skew, 2CLKAB to 2CLK			1.8	ns
	Pulse skew, CLKAB to \overline{B} or CLKBA to	AO		1.5	
^t sk(p)	Pulse skew, CLKAB to 2CLKAB	Pulse skew, CLKAB to 2CLKAB			ns
^t sk(HL) ^{, t} sk(LH) [†]	Output skew, AI to \overline{B} or \overline{B} to AO			1	ns
tsk(o) [‡]	Output skew, nondelayed mode for 20	Output skew, nondelayed mode for 2CLKAB, CLKAB to AO			
	Output skew, nondelayed mode for $2\overline{\text{CLKAB}}$, CLKAB to $\overline{\text{B}}$ and $2\overline{\text{CLKAB}}$			1	ns
tsk(o) [‡]	Output skew, nondelayed mode for 20	Output skew, nondelayed mode for $2\overline{\text{CLKAB}}$, CLKAB to $\overline{\text{B}}$ and $2\overline{\text{CLKAB}}$			ns
, ,	Transition time, \overline{B} outputs (1.3 V to 1.3	Transition time, B outputs (1.3 V to 1.8 V)		4.6	
^t t	Transition time, AO outputs (10% to 9	0%)	0.4	4.2	ns
tPR	B-port input pulse rejection				ns

[†] Skew values are applicable for through mode only, with single-output switching.

\$ Skew values are applicable for CLK mode only, with all outputs simultaneously switching high-to-low or low-to-high.

SCBS702E - AUGUST 1997 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2.5 ns, t_f ≤ 2.5 ns; BTL inputs: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 1 ns.
- D. The outputs are measured one at a time with one transition per measurement.

SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- High-Impedance State During Power Up and Power Down
- BIAS V_{CC} Minimizes Signal Distortion During Live Insertion or Withdrawal
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping to Aid in Line Termination

description

The SN74FB2031 is a 9-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991.

The \overline{B} port operates at BTL-signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off.

The A port operates at TTL signal levels. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state.

Pins are allocated for the four-wire IEEE Std 1149.1 (JTAG) test bus, although currently there are no plans to release a JTAG-featured version. TMS and TCK are not connected and TDI is shorted to TDO.

SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

description (continued)

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

BG $V_{\mbox{CC}}$ and BG GND are the supply inputs for the bias generator.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	QFP – RC	Tube	SN74FB2031RC	FB2031

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables

TRANSCEIVER

	INPUTS		FUNCTION			
OEA	OEB	OEB	FUNCTION			
L	Н	L	\overline{A} data to B bus			
Н	L	Х				
н	Х	н	B data to A bus			
Н	Н	L	\overline{A} data to B bus, \overline{B} data to A bus			
L	L	Х	Icolation			
L	Х	Н	isolation			

STORAGE MODE

LCA, LCB RESULT	
0	Transparent
1	Latches latched
\uparrow	Flip-flops triggered

SEL1	SEL0	MUX A B	MUX B A
0	0	Latch	Latch
0	1	Through	Through
1	0	Flip-flop	Flip-flop
1	1	Flip-flop	Latch

SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

functional block diagram

To Eight Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, VI: Except B port	–1.2 V to 7 V
B port	–1.2 V to 3.5 V
Voltage range applied to any \overline{B} output in the disabled or power-off state, V _O	–0.5 V to 3.5 V
Voltage range applied to any output in the high state, V _O	–0.5 V to V _{CC}
Input clamp current, IIK: Except B port	
B port	–18 mA
Current applied to any single output in the low state, I _O : A port	48 mA
	200 mA
Package thermal impedance, θ_{JA} (see Note 1)	44°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT
V _{CC,} BIAS V _{CC} , BG V _{CC}	Supply voltage		4.5	5	5.5	V
Mar.	High lovel input veltage	B port	1.62		2.3	V
VIН	High-level liput voltage	Except B port	2			v
	Low-level input voltage	B port	0.75		1.47	V
VIL		Except B port			0.8	
Іон	High-level output current	A port			-3	mA
lol	Low-level output current A port B port	A port			24	~^
		B port			100	ША
ТА	Operating free-air temperature		0		70	°C

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST C	TEST CONDITIONS		түр†	MAX	UNIT	
Mark	B port	V _{CC} = 4.5 V,	lj = –18 mA			-1.2	V	
vік	Except B port	V _{CC} = 4.5 V,	I _I = -40 mA			-0.5	v	
VOH	A port	V _{CC} = 4.5 V,	I _{OH} = –3 mA	2.5	3.3		V	
	A port	V _{CC} = 4.5 V,	I _{OL} = 24 mA		0.35	0.5		
VOL		$V_{00} = 45 V$	I _{OL} = 80 mA	0.75		1.1	V	
	в роп	VCC = 4.5 V	I _{OL} = 100 mA			1.15		
l	Except B port	V _{CC} = 5.5 V,	V _I = 5.5 V			50	μA	
ι _Η ‡	Except B port	V _{CC} = 5.5 V,	VI = 2.7 V			50	μA	
. +	Except B port	V _{CC} = 5.5 V,	V _I = 0.5 V			-50		
' ∟+	B port	V _{CC} = 5.5 V,	V _I = 0.75 V			-100) µA	
IOZH	A port	V _{CC} = 2.1 V to 5.5 V,	V _O = 2.7 V			50	μA	
IOZL	A port	V _{CC} = 2.1 V to 5.5 V,	V _O = 0.5 V			-50	μA	
IOZPU	A port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V			50	μA	
IOZPD	A port	V _{CC} = 2.1 V to 0,	V_{O} = 0.5 V to 2.7 V			-50	μA	
ЮН	B port	$V_{CC} = 0$ to 5.5 V,	V _O = 2.1 V			100	μA	
los§	A port	V _{CC} = 5.5 V,	$V_{O} = 0$	-30		-150	mA	
1.0.0	A port to B port					78		
'CC	B port to A port	$v_{\rm CC} = 5.5 v,$	IO = 0			78	mA	
Ci		VI = 0.5 V or 2.5 V			4.5		pF	
	A port	V _O = 0.5 V or 2.5 V			8.5			
C _{io}	B port per IEEE Std 1194.1-1991	$V_{CC} = 0$ to 5.5 V				6	pF	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

live-insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT	
		$V_{CC} = 0$ to 4.5 V	$V_{\rm D} = 0$ to 2 V	$V_{\rm H}$ (RIAS $V_{\rm HO}$) = 4.5 V to 5.5 V		450	
СС (ы)	AS VCC)	V_{CC} = 4.5 V to 5.5 V	$v_{\rm B} = 0.02 v,$	V (BIAS VCC) = 4.5 V to 5.5 V		10	μΑ
Vo	B port	V _{CC} = 0,	V_{I} (BIAS V_{CC}) = 5 V		1.62	2.1	V
		V _{CC} = 0,	V _B = 1 V,	V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V	-1		
IO	B port	$V_{CC} = 0$ to 5.5 V,	OEB = 0 to 0.8 V			100	μA
		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V			100	

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

				MIN	MAX	UNIT
fclock	Clock frequency				150	MHz
tw	Pulse duration	LCA or LCB	-	3.3		ns
t _{su} Setup time		Data before LCA↑	1.4			
	Satur time	CIOCK MODe	Data before LCB↑	2.8		ns
	Setup time	Latch mode	Data before LCA↑	1.1		
			Data before LCB↑	2.4		
			Data after LCA↑	0.6		
t _h Hold time	Hold time	Clock mode	Data after LCB↑	0		00
		Latch mode	Data after LCA↑	0.9		115
			Data after LCB↑	0		

SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	V T	V _{CC} = 5 V, T _A = 25°C			мах	UNIT
	(INPUT)	(001901)	MIN	TYP	MAX			
f _{max}			150			150		MHz
^t PLH	A	5	3.7	4.5	5.9	3.2	6.6	
^t PHL	(through mode)	В	2.9	4	5.7	2.6	5.9	ns
^t PLH	A	-	4.1	5	6.5	3.6	7.3	20
^t PHL	(transparent)	В	3.3	4.5	6.1	3	6.5	115
^t PLH		5	4.5	5.4	7	3.9	7.8	20
^t PHL	LCA	В	4	5.1	6.7	3.4	7.4	115
^t PLH		٨	2.8	3.7	4.7	1.9	6	
^t PHL	LCB	A	2.5	3.4	4.9	1.8	5.5	ns
^t PLH		٨	2.5	3.8	5.3	1.9	6.3	
^t PHL	SELT OF SELU	А	2.2	3.5	5.1	1.6	5.6	ns
^t PLH		B -	4.1	5.3	6.9	3.7	7.8	ns
^t PHL	SELT OF SELU		3.7	5.2	6.9	3.3	7.7	
^t PLH	B	А	3.1	4	5.6	2.2	7.1	ne
^t PHL	(through mode)		2.6	3.4	4.9	1.4	5.7	115
^t PLH	B	۸	3.3	4.2	5.9	2.4	7.6	20
^t PHL	(transparent)	~	2.8	3.9	5.5	1.8	6.3	115
^t PLH		B	3.7	4.6	6.1	3.2	6.7	ns
^t PHL	OEB OF OEB		2.9	4.3	5.8	2.5	6.4	
^t PZH	OEA	Δ	2.3	3.1	4.5	1.6	5	ne
^t PZL	ULA	~	1.9	2.7	4.1	1.6	4.4	115
^t PHZ	OEA	Δ	2.2	3.1	4.5	1.5	5.2	ne
^t PLZ	ULA	~	2.5	3.3	4.9	2	5.2	115
^t sk(p)	А	B		0.5				20
Pulse skew	B	А		0.3				115
tsk(o)	А	B		0.2				
Output skew	B A			0.3				ns
	Transition time, \overline{B} outputs (1.3)	3 V to 1.8 V)	0.6	2	2.8	0.4	2.9	
t	Transition time, \overline{A} outputs (10	0% to 90%)	0.5	3.5	4.7	0	5.4	ns
^t (pr)	B-port input pulse rejection		1			1		ns

SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion or Withdrawal
- High-Impedance State During Power Up and Power Down
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination

description

The SN74FB2033A is an 8-bit transceiver featuring a split input (AI) and output (AO) bus on the TTL-level A port. The common-I/O, open-collector \overline{B} port operates at backplane transceiver logic (BTL) signal levels.

The logic element for data flow in each direction is configured by two mode inputs (IMODE1 and IMODE0 for B-to-A, OMODE1 and OMODE0 for A-to-B) as a buffer, a D-type flip-flop, or a D-type latch. When configured in the buffer mode, the inverted input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock input (CLKAB/LEAB or CLKBA/LEBA). In the latch mode, the clock inputs serve as active-high transparent latch enables.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

description (continued)

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, \overline{B} -port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element (prior to inversion) is the B-to-A input.

The AO port-enable/-disable control is provided by OEA. When OEA is low or when V_{CC} is less than 2.5 V, the AO port is in the high-impedance state. When OEA is high, the AO port is active (high or low logic levels).

The \overline{B} port is controlled by OEB and \overline{OEB} . If OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.5 V, the \overline{B} port is inactive. If OEB is high and \overline{OEB} is low, the \overline{B} port is active.

BG V_{CC} and BG GND are the bias-generator reference inputs.

The A-to-B and B-to-A logic elements are active, regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO port) or inactive (B port) states.

Output clamps are provided on the BTL outputs to reduce switching noise. One clamp reduces inductive ringing effects on V_{OH} during a low-to-high transition. The other clamps out ringing below the BTL V_{OL} voltage of 0.75 V. Both clamps are active only during ac switching and do not affect the BTL outputs during steady-state conditions.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

т _А	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
0°C to 70°C	QFP – RC	Tube	SN74FB2033ARC	FB2033A	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

				INPUTS				
OEA	OEB	OEB	OMODE1	OMODE0	IMODE1	IMODE0	LOOPBACK	FUNCTION/MODE
L	L	Х	Х	Х	Х	Х	Х	loolation
L	Х	Н	Х	Х	Х	Х	Х	ISUIAUUT
Х	Н	L	L	L	Х	Х	Х	AI to \overline{B} , buffer mode
Х	Н	L	L	Н	Х	Х	Х	AI to \overline{B} , flip-flop mode
Х	Н	L	Н	Х	Х	Х	Х	AI to \overline{B} , latch mode
Н	L	Х	Х	Х	L	L	L	
н	Х	Н	Х	Х	L	L	L	B to AO, buffer mode
Н	L	Х	Х	Х	L	Н	L	
н	Х	Н	Х	Х	L	Н	L	B to AO, flip-flop mode
Н	L	Х	Х	Х	Н	Х	L	
н	Х	Н	Х	Х	н	Х	L	B to AO, latch mode
н	L	Х	Х	Х	L	L	Н	Alto AQ buffor mode
н	Х	Н	Х	Х	L	L	н	AI to AO, builer mode
н	L	Х	Х	Х	L	Н	Н	Alte AQ flip flop mode
н	Х	Н	Х	Х	L	Н	н	AI to AO, flip-liop mode
Н	L	Х	Х	Х	Н	Х	Н	Al to AQ latch made
н	Х	Н	Х	Х	н	Х	Н	
н	Н	L	Х	Х	Х	Х	L	AI to \overline{B} , \overline{B} to AO

FUNCTION/MODE

ENABLE/DISABLE

INPUTS			OUTPUTS		
OEA	OEB	OEB	AO	B	
L	Х	Х	Hi Z		
н	Х	Х	Active		
х	L	L		Inactive (H)	
х	L	н		Inactive (H)	
x	Н	L		Active	
х	Н	Н		Inactive (H)	

BUFFER

INPUT	OUTPUT				
L	Н				
Н	L				

LATCH

INPU					
CLK/LE	DATA	001F01			
н	L	Н			
н	н	L			
L	Х	Q ₀			

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

Function Tables (Continued)

LOOPBACK

LOOPBACK	Qt
L	B port
Н	Point P [‡]

[†]Q is the input to the B-to-A logic element.

[‡] P is the output of the A-to-B logic element (see functional block diagram).

SELECT

INP	UTS	SELECTED LOGIC
MODE1	MODE0	ELEMENT
L	L	Buffer
L	Н	Flip-flop
н	Х	Latch

FLIP-FLOP

INPU		
CLK/LE	DATA	OUIFUI
L	Х	Q ₀
↑	L	н
↑	н	L

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

functional block diagram

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input clamp current range, V _I : Except B port	–1.2 V to 7 V
B port	–1.2 V to 3.5 V
Voltage range applied to any \overline{B} output in the disabled or power-off state, V _O	–0.5 V to 3.5 V
Voltage range applied to any output in the high state, V _O : A port	$\dots -0.5$ V to V _{CC}
Input clamp current, IIK: Except B port	
B port	–18 mA
Current applied to any single output in the low state, I _O : A port	48 mA
Package thermal impedance, θ_{JA} (see Note 1)	44°C/W
Storage temperature range, T _{stg}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT
V _{CC} , BG V _{CC}	Supply voltage	4.75	5	5.25	V	
BIAS V _{CC}	Supply voltage		4.5	5	5.5	V
\/	High lovel input voltage	B port	1.62		2.3	V
VIH	High-level liput voltage	Except B port	2			v
\/		B port	0.75		1.47	V
VIL	Low-level input voltage	Except B port			0.8	v
ЮН	High-level output current	AO port			-3	mA
le:		AO port			24	
IOL Low-level output current		B port			100	ma
$\Delta t/\Delta v$	Input transition rise or fall rate	Except B port			10	ns/V
TA	Operating free-air temperature		0		70	°C

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

-40

-80

45

5

5

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

-50

-150

70

6

6

μA

mΑ

mΑ

pF

pF

pF

PARAMETER		TEST C	ONDITIONS	MIN	TYP†	MAX	UNIT
VIК		V _{CC} = 4.75 V,	l _l = –18 mA			-1.2	V
		$V_{CC} = 4.75 V \text{ to } 5.25 V,$	I _{OH} = −10 μA			V _{CC} -1.1	
∨он	AO port		I _{OH} = –3 mA	2.5	2.85	3.4	V
		VCC = 4.75 V	I _{OH} = -32 mA	2			
			I _{OL} = 20 mA		0.33	0.5	
	AU port	VCC = 4.75 V	I _{OL} = 55 mA			0.8	N
VOL	VOL B port		I _{OL} = 100 mA	0.75		1.1	V
		$V_{CC} = 4.75 V$	I _{OL} = 4 mA	0.5			
Ц	Except B port	$V_{CC} = 0,$	V _I = 5.25 V			100	μA
Lu .	Except B port	V _{CC} = 5.25 V,	V _I = 2.7 V			50	
ЧН	B port‡	$V_{CC} = 0$ to 5.25 V,	V _I = 2.1 V			100	μΑ
	Except B port		V _I = 0.5 V			-50	
11∟	B port‡	VCC = 5.25 V	V _I = 0.75 V			-100	μΑ
ЮН	B port	$V_{CC} = 0$ to 5.25 V,	V _O = 2.1 V			100	μA
IOZPU	÷	V _{CC} = 0 to 2.1 V,	V_{O} = 0.5 V to 2.7 V			50	μA
IOZPD		V _{CC} = 2.1 V to 0,	$V_{O} = 0.5 \text{ V to } 2.7 \text{ V}$			-50	μA
Іолн	AO port	V _{CC} = 5.25 V,	V _O = 2.7 V			50	μA

Vo = 0.5 V

VO = 0

IO = 0

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at $V_{CC} = 5 V$.

AO port

AO port

AO port

B port

All outputs on

AI port and control inputs

per IEEE Std 1194.1-1991

IOZL los§

ICC

Ci

Co

Cio

For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

V_{CC} = 5.25 V,

V_{CC} = 5.25 V,

V_{CC} = 5.25 V,

VI = 0.5 V or 2.5 V

V_O = 0.5 V or 2.5 V

V_{CC} = 0 to 4.75 V

V_{CC} = 4.75 V to 5.25 V

live-insertion characteristics over recommended operating free-air temperature range (see Note 3)

PAR	AMETER		TEST CONDIT	MIN	MAX	UNIT	
		$V_{CC} = 0$ to 4.5 V	$V_{\rm D} = 0$ to 2 V			10	
		V_{CC} = 4.5 V to 5.5 V	$v_{\rm B} = 0.02 v_{\rm s}$	V (BIAS VCC) = 4.5 V (0.5.5 V)		10	μА
Vo	B port	$V_{CC} = 0,$	V_{I} (BIAS V_{CC}) = 4.5 V	/ to 5.5 V	1.62	2.1	V
		$V_{CC} = 0,$	V _B = 1 V,	VI (BIAS V _{CC}) = 4.5 V to 5.5 V	-1		
IO	B port	$V_{CC} = 0$ to 5.5 V,	OEB = 0 to 0.8 V			100	μA
		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V			100	

NOTE 3: The power-up sequence is GND, BIAS VCC, VCC.

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

			V _{CC} = T _A = 2	= 5 V, 25°C	MIN	МАХ	UNIT
			MIN	MAX			
fclock	Clock frequency			150		150	MHz
tw	Pulse duration	CLKAB/LEAB or CLKBA/LEBA	3.3		3.3		ns
t _{su}	Setup time	Data before CLKAB/LEAB or CLKBA/LEBA↑	2.7		2.7		ns
th	Hold time	Data after CLKAB/LEAB or CLKBA/LEBA	0.7		0.7		ns

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

PARAMETER	FROM		V C	CC = 5 \ A = 25°C	/, C	MIN MAX		UNIT
	(INFOT)	(001201)	MIN	TYP	MAX			
fmax			150			150		MHz
^t PLH	AI	-	2.3	3.6	4.6	2.3	5.6	
^t PHL	(through mode)	В	1.9	3	4.2	1.9	4.5	ns
^t PLH	B	40	2.5	4.2	5.5	2.5	6.1	
^t PHL	(through mode)	AU	3	4.2	5.6	3	5.7	ns
^t PLH	AI	5	2.3	3.6	4.6	2.3	5.6	
^t PHL	(transparent)	В	1.9	3	4.1	1.9	4.5	ns
^t PLH	B	40	2.5	4.2	5.5	2.5	6.1	
^t PHL	(transparent)	AU	3	4.2	5.6	3	5.7	ns
^t PLH	055	_	2.4	3.7	4.7	2.4	5.8	
^t PHL	OEB	В	1.8	3	4.1	1.8	4.4	ns
^t PLH		_	2	3.4	4.3	2	5.2	
^t PHL	OEB	В	2	3.3	4.4	2	4.8	ns
^t PZH	054	AO	2	3.5	4.6	2	5.1	ns
^t PZL	OEA		2.7	4.2	5.1	2.7	5.4	
^t PHZ	054	10	2.1	4	5	2.1	5.5	
^t PLZ	OEA	AU	1.6	2.8	3.9	1.6	4.3	ns
^t PLH		_	3	4.7	5.8	3	6.9	
^t PHL	CLNAD/LEAD	В	2.8	4.3	5.6	2.8	6.1	ns
^t PLH		10	2	3.6	4.9	2	5.4	
^t PHL	CLNDA/LEDA	AU	2.2	3.5	4.7	2.2	5.1	ns
^t PLH	OMODE	5	2.4	5	6.1	2.4	7.2	
^t PHL	OMODE	В	2.4	4.5	6	2.4	6.7	115
^t PLH	IMODE	40	1.8	4	5.3	1.8	5.9	
^t PHL	IMODE	AU	2.3	4.1	5.2	2.3	5.4	ns
^t PLH		40	2.4	5	7	2.4	8	20
^t PHL	LOOFBACK	AO	3.1	4.6	5.7	3.1	5.9	115
^t PLH	A1	40	1.9	3.7	5.5	1.9	6.1	20
^t PHL	AI	AO	2.6	4.2	5.6	2.6	5.8	115
t _r	Rise time,1.3 V to 1.8 V, B port		0.5	1.2	2.1	0.5	3	20
tf	Fall time, 1.8 V to 1.3 V, \overline{B} po	Fall time, 1.8 V to 1.3 V, B port		1.4	2.3	0.5	3	115
tr	Rise time, 10% to 90%, AO		2	3.3	4.2	2	5	00
tf	Fall time, 90% to 10%, AO		1	2.5	3.4	1	5	ns
B-port input pulse rejection					1		ns	

output-voltage characteristics

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
VOHP	Peak output voltage during turnoff of 100 mA into 40 nH	B port	See Figure 1		4.5	V
VOHV	Minimum output voltage during turnoff of 100 mA into 40 nH	See Figure 1	1.62		V	
VOLV	Minimum output voltage during high-to-low switch	B port	l _{OL} = -50 mA	0.3		V

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

SCBS174M - NOVEMBER 1991 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \le 10 MHz, Z_O = 50 Ω , t_r \le 2.5 ns, tf \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, tf \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion/Withdrawal
- High-Impedance State During Power Up and Power Down
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination

description

The SN74FB2033K is an 8-bit transceiver featuring a split input (AI) and output (AO) bus on the TTL-level A port. The common I/O, open-collector \overline{B} port operates at backplane transceiver logic (BTL) signal levels. The SN74FB2033K is specifically designed to be compatible with IEEE Std 1194.1-1991.

The logic element for data flow in each direction is configured by two mode inputs (IMODE1 and IMODE0 for B-to-A, OMODE1 and OMODE0 for A-to-B) as a buffer, a D-type flip-flop, or a D-type latch. When configured in the buffer mode, the inverted input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock input (CLKAB/LEAB or CLKBA/LEBA). In the latch mode, the clock inputs serve as active-high transparent latch enables.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

description (continued)

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, \overline{B} -port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element (before inversion) is the B-to-A input.

The AO port-enable/-disable control is provided by OEA. When OEA is low or when V_{CC} is less than 2.5 V, the AO port is in the high-impedance state. When OEA is high, the AO port is active (high or low logic levels).

The \overline{B} port is controlled by OEB and \overline{OEB} . If OEB is low, or \overline{OEB} is high, or when V_{CC} is less than 2.5 V, the \overline{B} port is inactive. If OEB is high and \overline{OEB} is low, the \overline{B} port is active.

BG V_{CC} and BG GND are the bias-generator reference inputs.

The A-to-B and B-to-A logic elements are active, regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO port) or inactive (B port) states.

Output clamps are provided on the BTL outputs to reduce switching noise. One clamp reduces inductive ringing effects on V_{OH} during a low-to-high transition. The other clamps out ringing below the BTL V_{OL} voltage of 0.75 V. Both of these clamps are active only during ac switching and do not affect the BTL outputs during steady-state conditions.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

т _А	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	QFP – RC	Tube	SN74FB2033KRC	FB2033K

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

	FUNCTION										
				INPUTS				FUNCTION/MODE			
OEA	OEB	OEB	OMODE1	OMODE0	IMODE1	IMODE0	LOOPBACK	FUNCTION/MODE			
L	L	Х	Х	Х	Х	Х	Х	Isolation			
L	Х	Н	Х	Х	Х	Х	Х	ISUIALION			
Х	Н	L	L	L	Х	Х	Х	AI to \overline{B} , buffer mode			
Х	Н	L	L	Н	Х	Х	Х	AI to \overline{B} , flip-flop mode			
Х	Н	L	Н	Х	Х	Х	Х	AI to \overline{B} , latch mode			
Н	L	Х	Х	Х	L	L	L				
Н	Х	Н	Х	Х	L	L	L	B to AO, buffer mode			
н	L	Х	Х	Х	L	Н	L				
н	Х	Н	Х	Х	L	Н	L	B to AO, flip-flop mode			
Н	L	Х	X	X	Н	X	L				
н	Х	Н	Х	Х	Н	Х	L	B to AO, latch mode			
Н	L	Х	Х	Х	L	L	Н				
н	х	Н	Х	Х	L	L	Н	Al to AO, buller mode			
Н	L	Х	Х	Х	L	Н	н	Alto AQ flip flop mode			
н	Х	Н	Х	Х	L	Н	н	AI to AO, IIIP-IIOP IIIOue			
Н	L	Х	Х	Х	Н	Х	Н	Al to AQ lotab mode			
н	Х	Н	Х	Х	Н	X	н	AI to AO, laten mode			
н	Н	L	Х	Х	Х	Х	L	AI to \overline{B} , \overline{B} to AO			

Function Tables

ENABLE/DISABLE

	INPUTS		OL	ITPUTS
OEA	OEB	OEB	AO	В
L	Х	Х	Hi Z	
н	Х	Х	Active	
X	L	L		Inactive (H)
х	L	н		Inactive (H)
x	Н	L		Active
Х	Н	Н		Inactive (H)

BUFFER

INPUT	OUTPUT
L	Н
Н	L

LATCH

INPU		
CLK/LE	DATA	001F01
Н	L	Н
н	н	L
L	Х	Q ₀

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

Function Tables (Continued)

10	<u>_</u>	•	~	v
LO	UF	DF	ŝ	n

LOOPBACK	Q†
L	B port
Н	Point P [‡]

[†]Q is the input to the B-to-A logic element.

‡ P is the output of the A-to-B logic element (see functional block diagram).

SELECT

INP	UTS	SELECTED-LOGIC ELEMENT			
MODE1	MODE0				
L	L	Buffer			
L	Н	Flip-flop			
Н	Х	Latch			

FLIP-FLOP

INPU	тѕ	
CLK/LE	DATA	001201
L	Х	Q ₀
Ŷ	L	Н
↑	н	L

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range. Vcc	-0.5 V to 7 V
Voltage range applied to any B output in the disabled or power-off state, V _O	-0.5 V to 3.5 V
Voltage range applied to any output in the high state, V_{Ω} : A port	-0.5 V to Vcc
Input voltage range, VI: Except B port	. –1.2 V to 7 V
	-1.2 V to 3.5 V
Input clamp current, IIK: Except B port	–40 mA
B port	–18 mA
Current applied to any single output in the low state, I _O : A port	48 mA
B port	200 mA
Package thermal impedance, θ_{IA} (see Note 1)	44°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT	
V _{CC} , BG V _{CC}	CC, BG VCC Supply voltage		4.75	5	5.25	V	
BIAS V _{CC}	Supply voltage		4.5	5	5.5	V	
	High lovel input voltage	B port	1.62		2.3	N	
VН	nigh-level linput voltage	Except B port	2			v	
Mu	Low lovel input veltage	B port	0.75		1.47	V	
۲L	Low-level input voltage	Except B port			0.8	v	
ЮН	High-level output current	AO port			-3	mA	
		AO port			24	س ۸	
'OL		B port			100	IIIA	
Δt/Δv	Input transition rise or fall rate	Except B port			10	ns/V	
ТА	Operating free-air temperature		0		70	°C	

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

	PARAMETER	TEST CONDITIONS			түр†	MAX	UNIT
Mark	B port	V _{CC} = 4.75 V,	lı = –18 mA			-1.2	V
VIК	Except B port	V _{CC} = 4.75 V,	lı = -40 mA			-0.5	V
		V_{CC} = 4.75 V to 5.25 V,	I _{OH} = −10 μA			V _{CC} -1.1	
∨он	AO port	1/22 = 4.75	$I_{OH} = -3 \text{ mA}$	2.5	2.85	3.4	V
		VCC = 4.75 V	I _{OH} = -32 mA	2			
	AO port	$V_{00} = 4.75 V_{0}$	I _{OL} = 20 mA		0.33	0.5	
Vol		VCC = 4.75 V	I _{OL} = 55 mA			0.8	V
VOL	D a a st	1/22 = 4.75	I _{OL} = 100 mA	0.75		1.1	v
	вроп	VCC = 4.75 V	$I_{OL} = 4 \text{ mA}$	0.5			
Ц	Except B port	$V_{CC} = 0,$	V _I = 5.25 V			100	μA
IIН	Except B port	V _{CC} = 5.25 V,	V _I = 2.7 V			50	μΑ
	B port‡	$V_{CC} = 0$ to 5.25 V,	VI = 2.1 V			100	
1	Except B port	V _{CC} = 5.25 V,	V _I = 0.5 V			-50	
'IL	B port‡	V _{CC} = 5.25 V,	V _I = 0.75 V			-100	μΑ
ЮН	B port	$V_{CC} = 0$ to 5.25 V,	V _O = 2.1 V			100	μΑ
I _{OZH}	AO port	V_{CC} = 2.1 V to 5.25 V,	V _O = 2.7 V			50	μΑ
IOZL	AO port	V _{CC} = 2.1 V to 5.25 V,	$V_{O} = 0.5 V$			-50	μA
IOZPU	A port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V			50	μA
IOZPD	A port	V _{CC} = 2.1 V to 0,	V_{O} = 0.5 V to 2.7 V			-50	μA
los§	AO port	V _{CC} = 5.25 V,	$V_{O} = 0$	-40	-80	-150	mA
ICC	All outputs on	V _{CC} = 5.25 V,	I <mark>O</mark> = 0		45	70	mA
Ci	AI port and control inputs	$V_{I} = 0.5 V \text{ or } 2.5 V$			5		pF
Co	AO port	$V_{O} = 0.5 V \text{ or } 2.5 V$			5		pF
<u></u>	B port	V _{CC} = 0 to 4.75 V				6	۶F
Cio	per IEEE Std 1194.1-1991	V _{CC} = 4.75 V to 5.25 V				6	рг

electrical characteristics over recommended operating free-air temperature range

[†] All typical values are at V_{CC} = 5 V, TA = 25°C [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

live-insertion characteristics over recommended operating free-air temperature range (see Note 3)

PARAMETER TEST CONDITIONS			DNS	MIN	MAX	UNIT	
		$V_{CC} = 0$ to 4.75 V,	$V_B = 0$ to 2 V,	BIAS V _{CC} = 4.5 V to 5.5 V		1.2	mA
СС (ы)	AS VCC)	V _{CC} = 4.75 V to 5.25 V,	$V_{B} = 0$ to 2 V,	BIAS V _{CC} = 4.5 V to 5.5 V		10	μA
Vo	B port	$V_{CC} = 0,$	BIAS $V_{CC} = 5 V$		1.62	2.1	V
		$V_{CC} = 0,$	V _B = 1 V,	V_I (BIAS V_{CC}) = 4.75 V to 5.25 V	-1		
IO	B port	$V_{CC} = 0$ to 5.25 V,	OEB = 0 to 0.8 V			100	μA
		$V_{CC} = 0 \text{ to } 2.2 \text{ V},$	OEB = 0 to 5 V			100	

NOTE 3: Power-up sequence is GND, BIAS V_{CC}, V_{CC}.

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

		V _{CC} = 5 V, T _A = 25°C		MIN	МАХ	UNIT
		MIN	MAX			
fclock	Clock frequency	0	150	0	150	MHz
tw	Pulse duration, CLKAB/LEAB or CLKBA/LEBA	3.3		3.3		ns
t _{su}	Setup time, data before CLKAB/LEAB or CLKBA/LEBA↑	2.7		2.7		ns
^t h	Hold time, data after CLKAB/LEAB or CLKBA/LEBA [↑]	0.7		0.7		ns

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

PARAMETER		TO (OUTPUT)	V C	CC = 5 V A = 25°C	l, ;	MIN	МАХ	UNIT
	(INFUT)	(001701)	MIN	TYP	MAX			
fmax			150			150		MHz
^t PLH	Al (through mode)	Ē	2.8	5.1	6.8	2.8	8.1	200
^t PHL	Al (infough mode)	В	2.5	4.2	5.7	2.5	6.1	115
^t PLH	$\overline{\mathbf{D}}$ (through mode)	40	3.1	4.3	5.1	2.2	6.6	ns
^t PHL	B (through mode)	A0	3.1	4.2	5.1	2.6	6	113
^t PLH	Al (transparent)	B	2.8	5.1	6.8	2.8	8.1	ns
^t PHL	Ar (transparent)	в	2.6	4.2	5.7	2.6	6.1	113
^t PLH	$\overline{\mathbf{P}}$ (transportant)	40	2.2	4.3	6	2.2	6.6	ns
^t PHL	B (transparent)	70	2.5	4.2	5.6	2.5	6	113
^t PLH	OEB	D	2.7	5.1	6.8	2.7	8.3	ns
^t PHL	OLB	D	2.4	4.2	5.7	2.4	6.1	115
^t PLH		B	2.5	4.8	6.4	2.5	7.7	ns
^t PHL	UEB	В	2.5	4.3	5.9	2.5	6.4	113
^t PZH	OFA	40	1.6	3.6	5.1	1.6	5.6	ns
tPZL	OEA		2.3	4.3	5.7	2.3	6	113
^t PHZ	OFA	40	1.7	4	5.5	1.7	5.9	ns
^t PLZ	0E/		1.2	2.9	4.4	1.2	4.7	110
^t PLH	CI KAB/I FAB	B	5.2	6.5	7.8	3.7	9.9	ns
^t PHL		В	3.8	5.4	7.1	3.4	7.7	
^t PLH	CLKBA/LEBA	AO	1.7	3.8	5.5	1.7	5.9	ns
^t PHL	OEI(B) VEEB/(1.8	3.6	5.1	1.8	5.5	
^t PLH	OMODE	B	2.9	6.6	8.4	2.9	10	ns
^t PHL	OMODE		3	5.7	7.5	3	8.3	
^t PLH	IMODE	AO	1.4	4.1	5.8	1.4	6.4	ns
^t PHL	intope		1.9	4.2	5.7	1.9	5.9	
^t PLH		AO	2	5.2	7.3	2	8.2	ns
^t PHL			2.6	4.8	6.3	2.6	6.4	
^t PLH	AI	AO	1.7	3.9	5.6	1.7	6.1	ns
^t PHL	, ,		2.2	4.3	5.7	2.2	5.9	
t_r Rise time, 1.3 V to 1.8 V, \overline{B} port			1.8	2.5	3.8	1.7	4	ns
t _f Fall time, 1.8 V to 1.3 V, B port			1.7	2.5	3.8	1.5	4	
t _r Rise time, 10% to 90%, AO			2.5	3.4	4.8	2	5	ns
t _f Fall time, 90% to 10%, AO			1.5	2.5	3.8	1	5	
B-port input pulse rejection						1		ns

output-voltage characteristics

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
VOHP	Peak output voltage during turnoff of 100 mA into 40 nH	B port	See Figure 1		3	V
VOHV	Minimum output voltage during turnoff of 100 mA into 40 nH	B port	See Figure 1	1.62		V
VOLV	Minimum output voltage during high-to-low switch	B port	I _{OL} = -50 mA	0.3		V

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

SCBS472G - MAY 1994 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

- - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, tf \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, tf \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

SCBS173M - NOVEMBER 1991 - REVISED JUNE 2001

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- High-Impedance State During Power Up and Power Down
- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion or Withdrawal
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage

description

The SN74FB2040 is an 8-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments.

The \overline{B} port operates at BTL-signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is high and \overline{OEB} is low, the \overline{B} port is active and reflects the inverse of the data present at the A-input pins. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off.

The A port operates at TTL-signal levels and has separate input and output pins. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or when V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state.

Pins are allocated for the four-wire IEEE Std 1149.1 (JTAG) test bus, although currently there are no plans to release a JTAG-featured version. TMS and TCK are not connected, and TDI is shorted to TDO.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

SN74FB2040 8-BIT TTL/BTL TRANSCEIVER

SCBS173M - NOVEMBER 1991 - REVISED JUNE 2001

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING				
0°C to 70°C	QFP – RC	Tube	SN74FB2040RC	FB2040				
t Deskars drawings, standard polying availation the model data symptotic standard								

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

INPUTS			FUNCTION	
OEB	OEB	OEA	FUNCTION	
L	Х	L	Isolation	
Х	Н	L		
L	Х	Н	B data to AO bus	
х	н	н		
Н	L	L	Al data to B bus	
Н	L	Н	\overline{AI} data to B bus, \overline{B} data to AO bus	

functional block diagram

To Seven Other Channels

SCBS173M - NOVEMBER 1991 - REVISED JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I : Except B port	–1.2 V to 7 V
B port	–1.2 V to 3.5 V
Voltage range applied to any \overline{B} output in the disabled or power-off state, V _O	–0.5 V to 3.5 V
Voltage range applied to any output in the high state, V _O : A port	–0.5 V to V _{CC}
Input clamp current, I _{IK} : Except B port	–40 mA
B port	–18 mA
Current applied to any single output in the low state, I _O : A port	48 mA
B port	200 mA
Package thermal impedance, θ_{JA} (see Note 1)	44°C/W
Storage temperature range, T _{stg}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC} , BG V _{CC}	Supply voltage		4.5	5	5.5	V
	High lovel input voltage	B port	1.62		2.3	V
VIH		Except B port	2			v
Ma	Low level input voltage	B port	0.75		1.47	V
VIL	Except B				0.8	v
IIК	Input clamp current	-			–18	mA
ЮН	High-level output current	AO port			-3	mA
		AO port			24	m۸
UL	B port				100	ША
Т _А	Operating free-air temperature		0		70	°C

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCBS173M - NOVEMBER 1991 - REVISED JUNE 2001

	PARAMETER	TEST CO	NDITIONS	MIN	TYP†	MAX	UNIT
Var	B port	V _{CC} = 4.5 V,	lj = –18 mA			-1.2	V
⊻IK	Except B port	V _{CC} = 4.5 V,	lj = -40 mA			-0.5	v
VOH	AO port	V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5	3.3		V
	AO port	V _{CC} = 4.5 V,	I _{OL} = 24 mA		0.35	0.5	
VOL	-	$\lambda = 45 \lambda$	I _{OL} = 80 mA	0.75		1.1	V
	B port	VCC = 4.5 V	I _{OL} = 100 mA			1.15	
lj	Except B port	V _{CC} = 5.5 V,	Vj = 5.5 V			50	μA
IIH‡	Except B port	V _{CC} = 5.5 V,	VI = 2.7 V			50	μA
. +	Except B port	V _{CC} = 5.5 V,	V _I = 0.5 V			-50	
'IL+	B port	V _{CC} = 5.5 V,	VI = 0.75 V			-100	μA
IOH	B port	V _{CC} = 0 to 5.5 V,	V _O = 2.1 V			100	μA
IOZH	AO port	V _{CC} = 5.5 V,	V _O = 2.7 V			50	μA
IOZL	AO port	V _{CC} = 5.5 V,	V _O = 0.5 V			-50	μA
IOZPU	A port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V			50	μA
IOZPD	A port	$V_{CC} = 2.1 V \text{ to } 0,$	$V_{O} = 0.5 \text{ V to } 2.7 \text{ V}$			-50	μA
los§	AO port	V _{CC} = 5.5 V,	$V_{O} = 0$	-30		-180	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT		
100	Al port to \overline{B} port			40		m۸		
ICC	B port to AO port	$V_{CC} = 5.5 V,$ $I_{C} = 0$		70		ША		
C.	AI port					3.5		۶E
U U	Control inputs			3		рг		
Co	AO port	$V_{O} = V_{CC}$ or GND		6		pF		
		$V_{CC} = 0$ to 4.5 V			5	۶E		
Cio	B port per IEEE Sto 1194.1-1991	V_{CC} = 4.5 V to 5.5 V			5	μг		

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

live-insertion specifications over recommended operating free-air temperature range

PA	PARAMETER TEST CONDITIONS			MIN	MAX	UNIT	
I _{CC} (BIAS V _{CC})		$V_{CC} = 0$ to 4.5 V,	$V_{B} = 0$ to 2 V,	V_I (BIAS V_{CC}) = 4.5 V to 5.5 V		450	
		V_{CC} = 4.5 to 5.5 V,	$V_{B} = 0$ to 2 V,	V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V		10	μΑ
VO	B port	V _{CC} = 0,	V_{I} (BIAS V_{CC}) = 5 V		1.62	2.1	V
		$V_{CC} = 0,$	V _B = 1 V,	V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V	-1		
IO	B port	$V_{CC} = 0$ to 5.5 V,	OEB = 0 to 0.8 V			100	μA
		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V			100	

SCBS173M - NOVEMBER 1991 - REVISED JUNE 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	V(Tj	CC = 5 V A = 25°C	, ;	MIN	МАХ	UNIT
		(001101)	MIN	TYP	MAX			
^t PLH	Δ1	10	3.2	4.5	6	2.4	6.5	2
^t PHL	AI	В	2.8	4.2	5.6	2.7	5.8	115
^t PLH	<u>–</u>	40	2.3	3.8	5.7	1.9	6.2	20
^t PHL	В	AO	2.3	4.2	5.9	2	8.2	115
^t PLH		<u> </u>	3.7	5.1	6.7	3	7	20
^t PHL	UEB	В	3.1	4.6	5.9	3	6.1	115
^t PLH		-	3.6	5.2	6.8	3.3	7	20
^t PHL	OEB	В	2.9	4.4	5.9	2.6	6.1	115
^t PZH		40	2.5	4	5.5	2.1	5.8	20
^t PZL	UEA	AO	2.1	3.6	4.8	2	5	115
^t PHZ	OFA	40	2.3	4.1	5.9	1.9	6.5	20
^t PLZ	UEA	AO	1.6	3.1	4.5	1.4	4.7	115
^t sk(p)	Skew for any single channel tp	$HL - t_{PLH}$, AI to \overline{B} or \overline{B} to AO		0.5				ns
^t sk(o)	Skew between drivers in the same package, AI to \overline{B} or \overline{B} to AO			0.4				ns
tr	Rise time, 1.3 V to 1.8 V, B port		2	2.8	3.8	1.7		ns
tf	Fall time, 1.8 V to 1.3 V, \overline{B} port		1	1.9	3	1	4.2	ns
t(pr)	B-port input pulse rejection					1	3.4	ns

SCBS173M - NOVEMBER 1991 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - $f_{f} \le 2.5$ ns, $B \ge 10$ mpus. PRR ≤ 10 mHz, 2O = 50 Ω , $t_{f} \le 2.5$ ns, $t_{f} \le 2.5$ ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCBS172L - NOVEMBER 1991 - REVISED JUNE 2001

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion or Withdrawal
- High-Impedance State During Power Up and Power Down
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping to Aid in Line Termination

description

The SN74FB2041A is a 7-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments. The device is specifically designed to be compatible with IEEE Std 1194.1-1991.

The \overline{B} port operates at BTL signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is high and \overline{OEB} is low, the \overline{B} port is active and reflects the inverse of the data present at the A-input pins. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off. The enable/disable logic partitions the device as two 3-bit sections and one 1-bit section.

The A port operates at TTL signal levels and has split input and output pins. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or when V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state.

SCBS172L - NOVEMBER 1991 - REVISED JUNE 2001

description (continued)

Pins are allocated for the four-wire IEEE Std 1149.1 (JTAG) test bus, although currently there are no plans to release a JTAG-featured version. TMS and TCK are not connected and TDI is shorted to TDO.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

ORDERING INFORMATION

T _A	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	QFP – RC	Tube	SN74FB2041ARC	FB2041A

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

	INPUTS		FUNCTION			
OEB	OEB	OEA	FUNCTION			
L	Х	L	Isolation			
Х	Н	L	Isolation			
L	Х	Н				
Х	Н	Н	B data to AO bus			
Н	L	L	Al data to B bus			
н	L	Н	$\overline{\text{AI}}$ data to B bus, $\overline{\text{B}}$ data to AO bus			

FUNCTION TABLE

SCBS172L - NOVEMBER 1991 - REVISED JUNE 2001

functional block diagram

SCBS172L - NOVEMBER 1991 - REVISED JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I : Except B port	–1.2 V to 7 V
\overline{B} port	–1.2 V to 3.5 V
Voltage range applied to any \overline{B} output in the disabled or power-off state, V _O	–0.5 V to 3.5 V
Voltage range applied to any output in the high state, V _O : A port	–0.5 V to V _{CC}
Input clamp current, IIK: Except B port	
B port	–18 mA
Current applied to any single output in the low state, IO: A port	48 mA
B port	200 mA
Package thermal impedance, θ_{JA} (see Note 1)	44°C/W
Storage temperature range, T _{stg}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT
V _{CC,} BIAS V _{CC} , BG V _{CC}	Supply voltage		4.5	5	5.5	V
Mar.	High lovel input veltage	B port	1.62		2.3	V
VIH	nigh-level linput voltage	Except B port	2			v
Mii		B port	0.75		1.47	V
۷IL	Low-level liput voltage	Except B port			0.8	v
IIК	Input clamp current				-18	mA
IOH	High-level output current	AO port			-3	mA
		AO port			24	س ۸
OL	B port				100	ША
TA	Operating free-air temperature		0		70	°C

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCBS172L - NOVEMBER 1991 - REVISED JUNE 2001

	PARAMETER	TEST	TEST CONDITIONS		TYP†	MAX	UNIT
Maria	B port	V _{CC} = 4.5 V,	lı = –18 mA			-1.2	V
VIК	Except B port	V _{CC} = 4.5 V,	lj = -40 mA			-0.5	v
VOH	AO port	V _{CC} = 4.5 V,	I _{OH} = –3 mA	2.5	3.3		V
	AO port	$V_{CC} = 4.5 V,$	I _{OL} = 24 mA		0.35	0.5	
VOL	B read	$\gamma = 4 E \gamma$	I _{OL} = 80 mA	0.75		1.1	V
	B bou	VCC = 4.3 V	I _{OL} = 100 mA			1.15	
Ц	Except B port	V _{CC} = 5.5 V,	V _I = 5.5 V			50	μA
IIH‡	Except B port	V _{CC} = 5.5 V,	V _I = 2.7 V			50	μA
. +	Except B port	V _{CC} = 5.5 V,	V _I = 0.5 V			-50	
'1∟+	B port	V _{CC} = 5.5 V,	V _I = 0.75 V			-100	μΑ
ЮН	B port	$V_{CC} = 0$ to 5.5 V,	V _O = 2.1 V			100	μΑ
IOZH	AO port	V _{CC} = 5.5 V,	V _O = 2.7 V			50	μA
IOZL	AO port	V _{CC} = 5.5 V,	V _O = 0.5 V			-50	μA
IOZPU	AO port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V			50	μA
IOZPD	AO port	$V_{CC} = 2.1 V \text{ to } 0,$	V_{O} = 0.5 V to 2.7 V			-50	μA
los§	AO port	V _{CC} = 5.5 V,	$V_{O} = 0$	-30		-180	mA
1	AI port to B port		1- 0			45	
'CC	B port to AO port	VCC = 5.5 V,	IO = 0			65	mA
0	AI port				3		~ [
Ci	Control inputs	v] = 0.5 v or 2.5 v			3		рг
Co	AO port	V _O = 0.5 V or 2.5 V			5.5		pF
	B port per	$V_{CC} = 0$ to 4.5 V				5	рĒ
Cio	IEEE Std 1194.1-1991	V _{CC} = 4.5 V to 5.5 V			5		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

live-insertion specifications over recommended operating free-air temperature range

PAR	AMETER		TEST CONDITIONS			MAX	UNIT
I _{CC} (BIAS V _{CC})		$V_{CC} = 0$ to 4.5 V	$\sqrt{2} = 0$ to $2\sqrt{2}$			450	
		V_{CC} = 4.5 V to 5.5 V	$V_{B} = 0 \text{ to } 2 \text{ v},$ $V_{I} (BIAS V_{CC}) = 4.5 \text{ V to } 5.5 \text{ V}$			10	μΑ
Vo	B port	$V_{CC} = 0,$	V_{I} (BIAS V_{CC}) = 5 V		1.62	2.1	V
		$V_{CC} = 0,$	V _B = 1 V,	V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V	-1		
IO	B port	$V_{CC} = 0$ to 5.5 V,	OEB = 0 to 0.8 V			100	μA
U U		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V			100	

SCBS172L - NOVEMBER 1991 - REVISED JUNE 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM		V ₍ T	CC = 5 V A = 25°C	/, ;	MIN	МАХ	UNIT
		(001201)	MIN	TYP	MAX			
^t PLH	ΔΙ	Ē	2.3	3.9	5.1	2	5.6	200
^t PHL		В	2.6	4.1	5	2.5	5.3	115
^t PLH	Ē	40	2	3.6	4.8	1.7	5.3	ne
^t PHL	В	AO	2.3	3.8	4.9	2	6.4	115
^t PLH	OER	Ē	3	4.6	5.8	2.6	6.3	200
^t PHL	ULB	В	3.1	4.7	6	3.1	6.2	115
^t PLH		<u>-</u>	2.7	4.3	5.6	2.6	5.8	20
^t PHL	OEB	В	2.7	4.2	5.3	2.5	6.4	115
^t PZH		40	1.5	3.2	5.2	1.5	5.2	200
^t PZL	OLA	AO	1.1	2.8	5	1	5	115
^t PHZ		40	1	2.4	3.9	1	4.2	200
^t PLZ	OLA	AO	2.2	3.8	5.6	1.7	5.8	115
^t sk(p) [†]	Pulse skew, AI to \overline{B} or \overline{B} to AO			0.5				ns
^t sk(o) [†]	Output skew, AI to \overline{B} or \overline{B} to AO			0.4				ns
	Rise time, 1.3 V to 1.8 V, B outputs		1	1.6	2.4	1	2.5	~~
⁴ t	Fall time, 1.8 V to 1.3 V, B out	tputs	1	1.4	2.3	1	2.4	115
t _(pr)	B-port input pulse rejection		1			1		ns

[†] Skew values are applicable for through mode only.

SCBS172L - NOVEMBER 1991 - REVISED JUNE 2001

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. $\ensuremath{\mathsf{C}}_L$ includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

General Information	1
GTL	2
GTLP	3
ETL	4
BTL/FB+	5
VME	6
Application Reports	7
Mechanical Data	8

Contents

SN74VMEH22501	LVTTL-to-ETL 8-Bit Universal Bus Transceiver and
	Two 1-Bit Bus Transceivers With Split LVTTL Port, Feedback Path, and
	3-State Outputs

Page

•	Member of the Texas Instruments Widebus™ Family	DGG C	OR DGV PA (TOP VIEV	ACKAGE V)
•	UBT™ Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Modes	10EBY [1A [1Y [GND [$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3] 10EAB 7] V _{CC} 6] 1B
•	OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference (EMI)	2A [2Y [Vcc [5 44 6 43 7 42	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1$
•	Compliant With 2eVME and 2eSST Protocol	20EBY	8 4 [.]	1 20EAB
•	Bidirectional Interface Between ETL and	3A1 [9 40	3B1
	LVTTL Logic Levels	GND	10 39	GND
•	Bus Transceiver Split LVTTL Port Provides	LE	11 38	³ V _{CC}
	a Feedback Path for Control and	3A2 L	12 3	7 3B2
	Diagnostics Monitoring	3A3 L	13 30	3B3
•	ETL and LVTTL Interfaces Are 5-V Tolerant	OEL	14 3	
•	Very Low Ground Bounce		15 34	
	ETL Outputs (A^{2} mA/ A^{2} mA)		16 3	
	ETE Outputs (-40 mA/40 mA)		10 2	
•	LVIIL Outputs (-12 mA/12 mA)	VCC L 245 [10 3	
•	I _{off} , Power-Up 3-State, and BIAS V _{CC}	346	20 20	30 386
	Support Live Insertion		20 20	
•	Bus Hold on 3A-Port Data Inputs	347	27 2	7 3B7
•	26- Ω Equivalent Series Resistor on	348	23 20	31 3B8
	3A Ports and Y Outputs		24 2!	
•	Flow-Through Architecture Facilitates			

Printed Circuit Board Layout

 Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise

description

This 8-bit universal bus transceiver has two integral 1-bit three-wire bus transceivers and is designed for 3.3-V V_{CC} operation with 5-V tolerant inputs. The SN74VMEH22501 provides true LVTTL-to-ETL and ETL-to-LVTTL signal-level translation. The UBT[™] transceiver allows transparent, latched, and flip-flop modes of data transfer, and the separate LVTTL input and outputs on the bus transceivers provide a feedback path for control and diagnostics monitoring. This device provides a high-speed interface between cards operating at LVTTL logic levels and VME64x or VME320[†] backplanes operating at ETL signal levels.

High-speed backplane operation is a direct result of the improved OEC^{TM} circuitry and high drive that has been designed and tested into the VME64x backplane model. The ETL outputs are optimized for driving large capacitive loads and include modified input level (V_{IH}/V_{IL}) for increased noise immunity and reduced input skew. These specifications support the 2eVME protocols in VME64x (ANSI/VITA 1.1) and 2eSST protocols in VITA 1.5. With proper design of a 21-slot VME system, a designer can achieve 320-Mbyte transfer rates on linear backplanes and possibly 1-Gbyte transfer rates on the VME320 backplane.

[†] VME320 is a patented backplane construction by Arizona Digital, Inc.

OEC, UBT, and Widebus are trademarks of Texas Instruments.

description (continued)

The B port operates at ETL levels, while the 1A and 2A inputs, 1Y and 2Y outputs, 3A port, and control inputs operate at LVTTL logic levels. All are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs.

Active bus-hold circuitry holds unused or undriven 3A-port inputs at a valid logic state. Bus-hold circuitry is not provided on 1A or 2A inputs, any B-port input, or any control input. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS V_{CC}. The Ioff circuitry prevents damaging current to backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the ETL B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, output-enable (OE and OEBY) inputs should be tied to V_{CC} through a pullup resistor and output-enable (OEAB) inputs should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the drive capability of the device connected to this input.

	GQL PACKAGE (TOP VIEW)							
		1	2	3	4	5	6	_
Α	ſ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
в		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Е		\bigcirc	\bigcirc			\bigcirc	\bigcirc	
F		\bigcirc	\bigcirc			\bigcirc	\bigcirc	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
κ	l	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	J

terminal assignments

	1	2	3	4	5	6
A	10EBY	NC	NC	NC	NC	10EAB
в	1Y	1A	GND	GND	V _{CC}	1B
c	2Y	2A	V _{CC}	V _{CC}	$BIASV_{CC}$	2B
D	3A1	2OEBY	GND	GND	20EAB	3B1
E	3A2	LE			VCC	3B2
F	3A3	ŌĒ			VCC	3B3
G	3A4	CLKBA	GND	GND	CLKAB	3B4
н	3A5	3A6	Vcc	VCC	3B6	3B5
J	3A7	3A8	GND	GND	3B8	3B7
ĸ	DIR	NC	NC	NC	NC	VCC

NC - No internal connection

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74VMEH22501DGGR	
0°C to 85°C	TVSOP – DGV	Tape and reel	SN74VMEH22501DGVR	
	VFBGA – GQL	Tape and reel	SN74VMEH22501GQLR	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SCES357A - JULY 2001 - REVISED SEPTEMBER 2001

functional description

The SN74VMEH22501 is a high-drive (±48 mA), 8-bit UBT transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent, latched, or flip-flop modes. Data transmission is true. The device is uniquely partitioned as 8-bit UBT transceivers with two integrated 1-bit three-wire bus transceivers.

functional description for two 1-bit bus transceivers

The OEAB inputs control the activity of the 1B or 2B port. When OEAB is high, the B-port outputs are active. When OEAB is low, the B-port outputs are disabled.

Separate 1A and 2A inputs and 1Y and 2Y outputs provide a feedback path for control and diagnostics monitoring. The OEBY input controls the 1Y or 2Y outputs. When OEBY is low, the Y outputs are active. When OEBY is high, the Y outputs are disabled.

The OEBY and OEAB inputs can be tied together to form a simple direction control where an input high yields A data to B bus and an input low yields B data to Y bus.

INPUTS			MODE
OEAB			WIODE
L	Н	Z	Isolation
Н	Н	A data to B bus	
LL		B data to Y bus	
Н	L	A data to B bus, B data to Y bus	True driver with feedback path

1-BIT BUS TRANSCEIVER FUNCTION TABLE

functional description for 8-bit UBT transceiver

The 3A and 3B data flow in each direction is controlled by the OE and direction-control (DIR) inputs. When OE is low, all 3A- or 3B-port outputs are active. When OE is high, all 3A- or 3B-port outputs are in the high-impedance state.

FUNCTION TABLE				
INP	UTS	OUTDUT		
ŌE	DIR	001901		
н	Х	Z		
L	н	3A data to 3B bus		
L	L	3B data to 3A bus		

The UBT transceiver functions are controlled by latch-enable (LE) and clock (CLKAB and CLKBA) inputs. For 3A-to-3B data flow, the UBT operates in the transparent mode when LE is high. When LE is low, the 3A data is latched if CLKAB is held at a high or low logic level. If LE is low, the 3A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB.

The UBT transceiver data flow for 3B to 3A is similar to that of 3A to 3B, but uses CLKBA.

	INP	UTS		OUTPUT	MODE	
OE	LE	CLKAB	3A	3B	MODE	
Н	Х	Х	Х	Z	Isolation	
L	L	Н	Х	в ₀ ‡	Latabad storage of 24 date	
L	L	L	Х	в ₀ §	Laterieu storage of SA data	
L	Н	Х	L	L	True trapaparant	
L	Н	Х	Н	Н	riue transparent	
L	L	\uparrow	L	L	Clocked storage of 3A data	
L	L	\uparrow	Н	Н		

UBT TRANSCEIVER FUNCTION TABLE[†]

T 3A-to-3B data flow is shown; 3B-to-3A flow is similar, but uses CLKBA.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LE went low

§ Output level before the indicated steady-state input conditions were established

The UBT transceiver can replace any of the functions shown in Table 1.

Table 1. SN74VMEH22501 UBT Transceiver Replacement Functions

FUNCTION	8 BIT	
Transceiver	'245, '623, '645	
Buffer/driver	'241, '244, '541	
Latched transceiver	'543	
Latch	'373, '573	
Registered transceiver	'646, '652	
Flip-flop	'374, '574	
SN74VMEH22501 UBT transceiver replaces all above functions		

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1)	0.5 V to 4.6 V 0.5 V to 7 V
or power-off state, V_{O} (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high or low state, VO	
(see Note 1): 3A port or Y outputC).5 V to V _{CC} + 0.5 V
B port	–0.5 V to 4.6 V
Output current in the low state, I _O : 3A port or Y output	50 mA
B port	100 mA
Output current in the high state, I _O : 3A port or Y output	
B port	–100 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$): B port	
Package thermal impedance, θ_{IA} (see Note 2): DGG package	70°C/W
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Notes 3 and 4)

			MIN	TYP	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V
\/ı	Input voltage	Control inputs or A port		VCC	5.5	V
٧I	input voltage	B port		VCC	5.5	v
\/	High lovel input veltage	Control inputs or A port	2			V
۷IH	High-level input voltage	B port	0.5 V _{CC} + 50 mV			v
\/	Low lovel input veltage	Control inputs or A port			0.8	V
VIL	B	B port			$0.5 V_{CC} - 50 \text{ mV}$	v
IIK	Input clamp current				-18	mA
lou	High lovel output ourrent	3A port and Y output			-12	س ۸
ЮН	High-level output current	B port			-48	ША
le:		3A port and Y output			12	~ ^
OL	Low-level output current	B port			48	ША
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		20			μs/V
TA	Operating free-air temperature		0		85	°C

NOTES: 3. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

4. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS $V_{CC} = 3.3$ V first, I/O second, and $V_{CC} = 3.3$ V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable but, generally, GND is connected first.

SCES357A - JULY 2001 - REVISED SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range for A and B ports (unless otherwise noted)

	PARAMETER	TEST CC	ONDITIONS	MIN	TYP†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	l _l = –18 mA			-1.2	V
	3A port, any B ports, and Y outputs	V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
	3A port and V outputs	1/20 = 3.15	I _{OH} = -6 mA	2.4			
VIK VOH VOH 3/ Ar 3/ Ar 3/ Ar 3/ Ar 3/ Ar 1/ 1/ 1/ 3/ 10ZH [‡] A 10ZH [‡] A 10ZH [‡] A 10ZH [‡] A 10ZH [‡] A 10ZH [‡] 3/ 10ZH [‡] 3/	SA port and T outputs	VCC = 5.15 V	I _{OH} = -12 mA	2			V
	Any B port	1/20 = 3.15	I _{OH} = -24 mA	2.4			
	Any D port	VCC = 3.13 V	I _{OH} =48 mA	2			
	3A port, any B ports, and Y outputs	V_{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	
.,	3A port, any B ports,	1/22 = 3.15	$I_{OL} = 6 \text{ mA}$			0.55	.,
VOL	and Y outputs	VCC = 5.15 V	I _{OL} = 12 mA			0.8	V
	Any B port	$V_{00} = 3.15 V_{00}$	I _{OL} = 24 mA			0.4	
	Any B port	V(() = 0.10 V	I _{OL} = 48 mA			0.55	
	Control inputs,	V _{CC} = 3.45 V,	$V_I = V_{CC}$ or GND			±1	
	1A and 2A	V _{CC} = 0 or 3.45 V,	V _I = 5.5 V			10	
VOH VOH VOL		$V_{CC} = 0$ to 3.45 V,	V _I = 5.5 V			10	μΑ
	3A port and any B port	and any B port $V_{CC} = 3.45 V$	$V_I = V_{CC}$			1	
		VCC = 3.43 V	V _I = 0			-5	
1+	A port	V _{CC} = 3.45 V,	VO = VCC			10	
'OZH+	B port	V _{CC} = 3.45 V,	$V_{O} = V_{CC}$			5	μΑ
. +	A port	V _{CC} = 3.45 V,	$V_{O} = GND$			-10	
IOZL ⁺	B port	V _{CC} = 3.45 V,	V _O = GND			-5	μΑ
			$V_I = 0$ to V_{CC}			10	
	3A port and any B ports	V/22 245 V/	V _I = 5.5 V			5	
^I OZ		VCC = 3.45 V	$V_I = 0$ to V_{CC}			-10	μΑ
	Y output		V _I = 5.5 V			-5	
loff		$V_{CC} = 0$, BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V			±100	μΑ
IBHL¶	3A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μΑ
IBHH#	3A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μΑ
IBHLO	3A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	500			μΑ
I _{BHHO} ☆	3A port	$V_{CC} = 3.45 V,$	$V_{I} = 0$ to V_{CC}	-500			μA
IOZ(PU/F	 סי	$V_{CC} \le 1.5 \text{ V}, V_O = 0.5 \text{ V} \text{ to}$ V _I = GND or V _{CC} , \overline{OE} = dor	V _{CC} , n't care			±100	μA

[†] All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$.

[‡] For I/O ports, the parameters IOZH and IOZL include the input leakage current.

§ This parameter includes input leakage current.

The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND, then raising it to VIL max.

[#] The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to V_{CC}, then lowering it to VIH min.

I An external driver must source at least IBHLO to switch this node from low to high.

 \star An external driver must sink at least IBHHO to switch this node from high to low.

[□]High-impedance state during power up or power down

electrical characteristics over recommended operating free-air temperature range for A and B ports (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS		MIN	TYP†	MAX	UNIT	
			Outputs high			30		
ICC		V_{CC} = 3.45 V, I _O = 0, V _I = V _{CC} or GND	Outputs low			30	mA	
			Outputs disabled			30		
		$V_{CC} = 3.45$ V, $I_O = 0$, $V_I = V_{CC}$ or GND,	Outputs enabled	MIN TYP1 MAX 30 30 30 30 30 30 750 750	~ ^			
'CCD		50% duty cycle	Outputs disabled			MAX 30 30 30 750 	mA	
∆ICC [⟨])	V_{CC} = 3.15 V to 3.45 V, One input at V_{CC} – 0.6 V Other inputs at V_{CC} or GND	1 3			750	μΑ	
<u> </u>	1A and 2A inputs	$V_{1} = 2.15 V_{1} \text{ or } 0$					ъĘ	
	Control inputs	v] = 3.15 v 0i 0					рг	
Co	1Y or 2Y outputs	V _O = 3.15 V or 0					pF	
<u> </u>	3A port	Voo - 2 2 V	$V_{0} = 3.3 V_{0} r_{0}$				ъĘ	
00	Any B port	$v_{CC} = 3.3 v,$	$v_{0} = 3.3 \ v_{0} \ 0$				μг	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

[◊] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

live-insertion specifications over recommended operating free-air temperature range for B port

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
	V _{CC} = 0 to 3.15 V,	BIAS V _{CC} = 3.15 V to 3.45 V,	$I_{O(DC)} = 0$			5	mA
	$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V}^{\ddagger},$	BIAS V _{CC} = 3.15 V to 3.45 V,	$I_{O(DC)} = 0$			10	μΑ
VO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V		1.3	1.5	1.7	V
		$V_{O} = 0,$	BIAS V_{CC} = 3.15 V	-20		-100	
Ċ	VCC = 0	V _O = 3 V,	BIAS V _{CC} = 3.15 V	20		100	μΑ

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

 $V_{CC} = 0.5 V < BIAS V_{CC}$

timing requirements over recommended operating conditions for UBT transceiver (unless otherwise noted) (see Figures 1 and 2)

				MIN	MAX	UNIT
fclock	Clock frequency					MHz
	Dulas duration	LE high				
ťw	Pulse duration	CLK high or low			ns	
			Data high			
		3A Defore CLK	Data low			
			CLK high			
	O the line	3A before LE↓	CLK low			
^t su	$ \begin{array}{c c} \hline \mbox{Clock frequency} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		ns			
3B before CLK↑ 3B before LE↓	Data low					
	$\begin{array}{c c c c c c c } t_W & Pulse duration & \hline LE high & \hline CLK high or low & \hline CLK high or low & \hline Data high & \hline Data low & \hline Data high & \hline Data low & \hline CLK high & \hline CLK high & \hline Data low & \hline Data low & \hline Data high & \hline Data low & \hline Data high & \hline Data low & \hline CLK high & \hline CLK high & \hline CLK high & \hline CLK high & \hline Data high & \hline Data low & \hline Data high & \hline Data low & \hline Data high & \hline Data low & \hline Data low & \hline Data high & \hline Data low & \hline CLK high & \hline CLK high & \hline Data low & \hline Data high & \hline Data high & \hline Data low & \hline Data high & \hline Data low & \hline Data high & \hline Dat$					
		3B before LE↓	CLK low			
			Data high			
		3A after CLK	Data low			
tsu Setup time $\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
		3A after LE↓	CLK low			20
th	Hold time		Data high			ns
t _h Hold tim		3B after CLK1	Data low			ns
			CLK high			
		3B after LE↓	CLK low			

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN TYP MAX	UNIT
^t PLH	14 07 24	1B or 2B		
^t PHL	TA OF ZA			115
^t PLH	14 07 24	1V or 2V		
^t PHL	TA OF ZA	11 01 21		115
^t PZH		1B or 2B		
^t PZL	UEAB			115
^t PHZ	OEAR	1B or 2B		ns
^t PLZ	OLAB			113
tr	Transition time, B	s port (10%–90%)		ns
t _f	Transition time, B	s port (90%–10%)		ns
^t PLH	1D of 2D	1V or 2V		
^t PHL	16 01 26	11 01 21		115
^t PZH		1V or 2V		
^t PZL	OEB I	11 01 21		115
^t PHZ	OERY	1V or 2V		ns
^t PLZ		110121		

switching characteristics over recommended operating conditions for UBT transceiver (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN TYP MAX	UNIT
fmax				MHz
^t PLH	24	28		20
^t PHL	3A	38		115
^t PLH	15	38		ne
^t PHL	LE	30		115
^t PLH		3B		ns
^t PHL	CERAB			115
^t PZH	OF	38		ns
^t PZL				110
^t PHZ	OF	38		ns
^t PLZ				110
t _r	Transition time, B	port (10%–90%)		ns
t _f	Transition time, B	port (90%–10%)		ns
^t PLH	20	24		200
^t PHL	ЗВ	55		115
^t PLH	15	34		ns
^t PHL				113
^t PLH		34		ns
^t PHL				110
^t PZH	OF	34		ns
^t PZL				110
^t PHZ	OF	34		ns
^t PLZ	Ű,	6.0		110

skew characteristics for bus transceiver for specific worst-case V_{CC} and temperature within the recommended ranges of supply voltage and operating free-air temperature (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	ΜΙΝ ΤΥΡ [†] ΜΑΧ	UNIT
^t sk(LH)	14 or 24	1B or 2B		ns
^t sk(HL)				110
^t sk(LH)	1B or 2B	1Y or 2Y		ns
^t sk(HL)	10 01 20	11 01 21		113
+, †	1A or 2A	1B or 2B		ns
^t sk(t)⁺	1B or 2B	1Y or 2Y		113
† • ()	1A or 2A	1B or 2B		200
^t sk(pp)	1B or 2B	1Y or 2Y		115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] t_{sk(t)} – Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in opposite directions, both low to high (LH) and high to low (HL) [t_{sk(t)}].

SCES357A - JULY 2001 - REVISED SEPTEMBER 2001

skew characteristics for UBT for specific worst-case V_{CC} and temperature within the recommended ranges of supply voltage and operating free-air temperature (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	ΜΙΝ ΤΥΡΤ ΜΑΧ	UNIT
^t sk(LH)	34	38		ns
^t sk(HL)	0,1			110
^t sk(LH)	CLKAB	3B		ns
^t sk(HL)	CERTIS			110
^t sk(LH)	3B	34		ns
^t sk(HL)	05	0/1		110
^t sk(LH)	CLKBA	3A		ns
^t sk(HL)	OEKB/(0/1		110
	3A	3B		
• †	CLKAB	3B		ne
^t sk(t)+	3B	3A		115
	CLKBA	3A		
	3A	3B		
<u>.</u>	CLKAB	3B		20
'sk(pp)	3B	3A		115
	CLKBA	ЗA		

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

‡ t_{sk(t)} – Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in opposite directions, both low to high (LH) and high to low (HL) [tsk(t)].

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_r \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics tables show the switching characteristics of the device into the lumped load shown in the parameter measurement information (PMI) (see Figures 1 and 2). All logic devices are currently tested into this type of load. However, the designer's backplane application is probably a distributed load. For this reason, this device has been designed for optimum performance in the VME64x backplane as shown in Figure 3.

[†] Unloaded backplane trace natural impedence (Z_O) is 45 Ω . 45 Ω to 60 Ω is allowed, with 50 Ω being ideal. [‡] Card stub natural impedence (Z_O) is 60 Ω .

Figure 3. VME64x Backplane

The following switching characteristics tables derived from TI-SPICE models show the switching characteristics of the device into the backplane under full and minimum loading conditions, to help the designer better understand the performance of the VME device in this typical backplane. See www.ti.com/sc/etl for more information.

driver in slot 11, with receiver cards in all other slots (full load)

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	ΤΥΡ§	МАХ	UNIT
^t PLH	10 20	1P or 2P	5.9		8.5	20
^t PHL	TA OF ZA	TB OF 2B	5.5		8.7	115
t _r ¶	Transition time, B	port (10%–90%)	9	8.6	11.4	ns
tf¶	Transition time, B	port (90%–10%)	8.9	9	10.8	ns

§ All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

 \P All t_{f} and t_{f} times are taken at the first receiver.

SCES357A - JULY 2001 - REVISED SEPTEMBER 2001

driver in slot 11, with receiver cards in all other slots (full load) (continued)

switching characteristics over recommended operating conditions for UBT (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
^t PLH	24	28	6.2		8.9	20
^t PHL	3A	38	5.6		9	115
^t PLH	15	28	6.1		9.1	ns
^t PHL	LE	30	5.6		9	115
^t PLH		28	6.2		9.1	
^t PHL	CLKAB	30	5.7		9	115
t _r ‡	Transition time, B	port (10%–90%)	9	8.6	11.4	ns
t _f ‡	Transition time, B	port (90%–10%)	8.9	9	10.8	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

[‡] All t_r and t_f times are taken at the first receiver.

skew characteristics for bus transceiver for specific worst-case V_{CC} and temperature within the recommended ranges of supply voltage and operating free-air temperature (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN 1	түр†	МАХ	UNIT
^t sk(LH)	14 or 24	1B or 2B			2.5	ns
^t sk(HL)			0.		3	
t _{sk(t)} §	1A or 2A	1B or 2B		0.5	3.4	ns
^t sk(pp)	1A or 2A	1B or 2B				ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

§ tsk(t) - Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in opposite directions, both low to high (LH) and high to low (HL) [tsk(t)].

skew characteristics for UBT for specific worst-case V_{CC} and temperature within the recommended ranges of supply voltage and operating free-air temperature (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN TYP†	МАХ	UNIT
^t sk(LH)	34	3B		2.4	ns
^t sk(HL)	55	55	3.4		115
^t sk(LH)	CLKAB	2P		2.7	ns
^t sk(HL)	OEIAD	55		3.4	115
t\$	3A	3B	0.5	3.4	ns
^t sk(t) ³	CLKAB	3B	0.6	3.5	113
^t sk(pp)	3A	3B			ne
	CLKAB	3B			115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

§ tsk(t) - Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in opposite directions, both low to high (LH) and high to low (HL) [tsk(t)].

driver in slot 1, with one receiver in slot 21 (minimum load)

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	MAX	UNIT
^t PLH	44 24	1B or 2B	5.5		7.4	20
^t PHL	1A or 2A		5.3		7.4	115
t _r ‡	Transition time, B port (10%–90%)			3.4	4.4	ns
tf‡	Transition time, B port (90%–10%)			3.4	4.8	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

[‡] All t_r and t_f times are taken at the first receiver.

switching characteristics over recommended operating conditions for UBT (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	түр†	МАХ	UNIT
^t PLH	24	3B	5.8		7.9	ns
^t PHL	34		5.5		7.7	
^t PLH	15	3B	5.9		8	200
^t PHL	LE		5.5		7.8	115
^t PLH		3B	5.9		8.1	20
^t PHL	CLKAB		5.5		7.7	115
t _r ‡	Transition time, B port (10%–90%)			3.4	4.4	ns
t _f ‡	Transition time, B port (90%–10%)			3.4	4.8	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

[‡] All t_r and t_f times are taken at the first receiver.

skew characteristics for bus transceiver for specific worst-case V_{CC} and temperature within the recommended ranges of supply voltage and operating free-air temperature (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN TYP [†] MAX		UNIT	
^t sk(LH)	14 or 24	1B or 2B	1.7		ns	
^t sk(HL)					2.1	115
^t sk(t) [§]	1A or 2A	1B or 2B		0.2	2.1	ns
^t sk(pp)	1A or 2A	1B or 2B				ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

§ tsk(t) - Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in opposite directions, both low to high (LH) and high to low (HL) [tsk(t)].

SCES357A - JULY 2001 - REVISED SEPTEMBER 2001

driver in slot 1, with one receiver in slot 21 (minimum load) (continued)

skew characteristics for UBT for specific worst-case V_{CC} and temperature within the recommended ranges of supply voltage and operating free-air temperature (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN TYP†	MAX	UNIT	
^t sk(LH)	30	3B		2	ns	
^t sk(HL)	07	50		2.3	113	
^t sk(LH)	СІКАВ	2 P		2.1	1	
^t sk(HL)	OLIVE	50		2.4	115	
t. ot	3A	3B	0.2	2.5	ne	
^t sk(t)+	CLKAB	3B	0.2	2.9	115	
^t sk(pp)	ЗA	3B			ne	
	CLKAB	3B			115	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

t tsk(t) - Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in opposite directions, both low to high (LH) and high to low (HL) [tsk(t)].

By simulating the performance of the device using the VME64x backplane (see Figure 3), the maximum peak current in or out of the B-port output as the devices switch from one logic state to another was found to be equivalent to driving the lumped load shown in Figure 4.

Figure 4. Equivalent AC Peak Output Current Lumped Load

driver in slot 1, with one receiver in slot 21 (minimum load) (continued)

In general, the rise- and fall-time distribution is shown in Figure 5. Since VME devices were designed for use into distributed loads like the VME64x backplane (B/P), there are significant differences between low-to-high (LH) and high-to-low (HL) values in the lumped load shown in the PMI (see Figures 1 and 2).

Characterization-laboratory data in Figures 6 and 7 show the absolute ac peak output current with different supply voltages as the devices change output logic state. Strong, nominal, and weak process variations are shown to demonstrate the devices' capability.

TYPICAL CHARACTERISTICS

Figure 12. UBT Propagation Delay

SCES357A - JULY 2001 - REVISED SEPTEMBER 2001

VMEbus SUMMARY

In 1981, the VMEbus was introduced as a backplane bus architecture for industrial and commercial applications. The data-transfer protocols used to define the VMEbus came from the Motorola VERSA bus architecture that owed its heritage to the then recently introduced Motorola 68000 microprocessor. The VMEbus, when introduced, defined two basic data-transfer operations: single-cycle transfers consisting of an address and a data transfer, and a block transfer (BLT) consisting of an address and a sequence of data transfers. These transfers were asynchronous, using a master-slave handshake. The master puts address and data on the bus and waits for an acknowledgment. The selected slave either reads or writes data to or from the bus, then provides a data-acknowledge (DTACK*) signal. The VMEbus system data throughput was 40 Mbyte/s. Previous to the VMEbus, it was not uncommon for the backplane buses to require elaborate calculations to determine loading and drive current for interface design. This approach made designs difficult and caused compatibility problems among manufacturers. To make interface design easier and to ensure compatibility, the developers of the VMEbus architecture defined specific delays based on a 21-slot terminated backplane and mandated the use of certain high-current TTL drivers, receivers, and transceivers.

In 1989, multiplexing block transfer (MBLT) effectively increased the number of bits from 32 to 64, thereby doubling the transfer rate. In 1995, the number of handshake edges was reduced from four to two in the double-edge transfer (2eVME) protocol, doubling the data rate again. In 1997, the VMEbus International Trade Association (VITA) established a task group to specify a synchronous protocol to increase data-transfer rates to 320 Mbyte/s, or more. The new specification, VITA 1.5-199X [double-edge source synchronous transfer (2eSST)], is based on the asynchronous 2eVME protocol. It does not wait for acknowledgement of the data by the receiver and requires incident-wave switching. Sustained data rates of 1 Gbyte/s, more than ten times faster than traditional VME64 backplanes, are possible by taking advantage of 2eSST and the 21-slot VME320 star-configuration backplane. The VME320 backplane approximates a lumped load, allowing substantially higher-frequency operation over the VME64x distributed-load backplane.

From BLT to 2eSST -A Look at the Evolution of VMEbus Protocols by John Rynearson, Technical Director, VITA, provides additional information on VMEbus and can be obtained at www.vita.com. TI, in conjunction with VITA, is designing the SN74VMEH22501 to support the 2eSST protocol in either the traditional VME64x distributed-capacitance backplane or the new star-configuration VME320 lumped-capacitance backplane.

DATE	TOPOLOGY	PROTOCOL	DATA BITS PER CYCLE	DATA TRANSFERS PER CLOCK CYCLE	PER SYSTEM (Mbyte/s)	FREQUENCY (MHz)	
						BACKPLANE	CLOCK
1981	VMEbus IEEE-1014	BLT	32	1	40	10	10
1989	VME64	MBLT	64	1	80	10	10
1995	VME64x	2eVME	64	2	160	10	20
1997	VME64x	2eSST	64	2-No Ack	160–320	10–20	20–40
1999	VME320	2eSST	64	2-No Ack	320-1000	20-62.5	40–125

maximum data transfer rates

protocol

The basic single-cycle VMEbus data-transfer protocol is straightforward. The master puts addresses on the bus, delays a minimum of 35 ns, then asserts address strobe (AS^*). For a write operation, the master puts data on the bus, delays a minimum of 35 ns, then asserts one or both of its data strobes ($D50^*$ and/or $DS1^*$). All slave cards on the bus monitor the addresses. Each slave is set up to decode a unique address. The assertion of AS^* tells the slave that the address is valid. In a write cycle, the selected slave must then read data off the bus. The assertion of data strobe tells the slave that data is valid on the bus and can be strobed into memory. The slave then asserts $DTACK^*$ to signal that the data has been captured.

The 2eVME protocol uses the same asynchronous protocol as the basic single-cycle protocol, but clocks data across the bus on both the rising and falling edges of the data strobes, thus, gaining a 2× speed up for each cycle. 2eSST, on the other hand, uses a synchronous protocol that clocks data using DS0* for writes and DTACK* for reads. 2eSST increases the speed of the clocks to speed up the data transfers and requires the use of a backplane that ensures monotonic signals, such as provided by the VME320 star-configuration backplane.

applicability

Target applications for VME backplanes and ETL devices include industrial controls, military, aerospace, transportation, telecommunications, simulation, medical, high-energy physics, office automation, and instrumentation systems.

SCES357A - JULY 2001 - REVISED SEPTEMBER 2001

APPLICATION INFORMATION

The SN74VMEH3222501KR is a two-die solution of the SN74VMEH22501 in the 96-ball LFBGA package (GKER). More information on the LFBGA package can be found at www.ti.com/sc/lfbga.

terminal assignments

	1	2	3	4	5	6
Α	1Y	1A	1/OEBY	10EAB	1VCC	1B
в	2Y	2A	GND	GND	BIAS V _{CC}	2B
С	3A1	2/OEBY	1VCC	1VCC	20EAB	3B1
D	3A2	1LE	GND	GND	1V _{CC}	3B2
Е	1/OE	3A3	GND	GND	3B3	1V _{CC}
F	1CLKBA	3A4	1VCC	1VCC	3B4	1CLKAB
G	3A6	3A5	GND	GND	3B5	3B6
н	3A7	3A8	1DIR	1V _{CC}	3B8	3B7
J	4Y	4A	4/OEBY	40EAB	2V _{CC}	4B
к	5Y	5A	GND	GND	$BIASV_{CC}$	5B
L	6A1	5/OEBY	2V _{CC}	2V _{CC}	50EAB	6B1
м	6A2	2LE	GND	GND	2V _{CC}	6B2
Ν	2/OE	6A3	GND	GND	6B3	2V _{CC}
Р	2CLKBA	6A4	2V _{CC}	2VCC	6B4	2CLKAB
R	6A6	6A5	GND	GND	6B5	6B6
т	6A7	6A8	2DIR	2V _{CC}	6B8	6B7

There has been no decision to release the SN74VME3222501KR. For completness of the design-goal data sheet, the pinout has been included. A separate data sheet will be generated if the SN74VMEH3222501KR is released.

SN74VMEH22501 LVTTL-TO-ETL 8-BIT UNIVERSAL BUS TRANSCEIVER AND TWO 1-BIT BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND 3-STATE OUTPUTS SCES357A – JULY 2001 – REVISED SEPTEMBER 2001

VITA 2.1 SIMULATION PROPOSAL FOR THE SN74VMEH22501

introduction

This document is intended to form the basis of a statement of work for performance of simulation studies on standard VME64x backplanes using VITA 1.5 (draft, 2eSST) protocol.

scope

The scope of this VITA 2.1 simulation effort is to:

- Determine the optimum driver characteristics (rise/fall time, rise/fall time variation, or output current) that will support 2eSST protocol over a maximum number of slots (goal is 21 slots) with the SN74VMEH22501 model and a standard VME64x backplane. This will be performed over worst-case variations in backplane loading, unbalanced signal loading, driving slot, transceiver drive strength, transceiver rise/fall time, and line impedance.
- Verify support of 2eSST protocol over 21 slots with SN74VMEH22501 model and a standard VME64x backplane. This will be performed over worst-case variations in backplane loading, unbalanced signal loading, driving slot, transceiver drive strength, transceiver rise/fall time, and line impedance.

topology

The exact topology and transceiver loading need to be defined. The strawman proposal is that we use:

- Single-line connector models for all slots except driver and monitored receiver slots, and except for the crosstalk simulation, which requires multiline connector models for all slots
- Multiline connector models for all driver and monitored receiver slots
- 0.841-in. backplane traces at 174-ps/in. single-line model, except for crosstalk simulation, which requires multiline coupled transmission-line models for backplane, based on two traces routed between rows of the DIN connector
- 1.5-in. VME board traces at 174 ps/in.
- 1.5 pF for the via on the backplane associated with the press-fit connector hole
- 0.5 pF for the via on the VME board that brings the inner-layer trace to the surface-mount receiver pad
- 0.5 pF for the via on the VME board associated with press-fit connector hole
- TI driver model with adjustable rise/fall time and adjustable drive strength
- TI diode model for the receiver clamp diode
- 8-pF lumped receiver load (total, including the capacitance of diode model). This does not represent worst case of all legacy boards, but is representative of modern designs.
- Drive strength for weak and strong start out using TI-defined values. This must be defined before work can start (defined in the models, action complete).
- TI to define process variation (percentage process variation from minimum to maximum) for high/low drive strength and rise/fall time. This must be defined before work can start (defined in the models, action complete).

SN74VMEH22501 LVTTL-TO-ETL 8-BIT UNIVERSAL BUS TRANSCEIVER AND TWO 1-BIT BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND 3-STATE OUTPUTS SCES357A - JULY 2001 - REVISED SEPTEMBER 2001

simulation matrix

The simulation matrix of the adjustable-transceiver study shows the range of simulations to be carried out. Each case might have a number of different simulation runs, for example, multiple rise times in search of the boundary condition.

For cases 1 and 2 of the adjustable-transceiver study, the weak-driver high and/or low output current is increased, if required, to find a case that works. If this is required, the strong-driver output current is increased, based on TI's defined percentage process variation from minimum to maximum, and these values are used in subsequent cases for the weak and strong models.

All simulations are performed with the five-row DIN connector.

MAX UNBALANCED TRANSCEIVER BACKPLANE DRIVING FREQUENCY TRANSCEIVER LINE CASE SIGNAL DRIVE (MHz) LOADING SLOT **RISE/FALL TIME (**Ω) LOADING STRENGTH 9-15-00 10-10-00 Find fastest that works 4 ns to 8 ns. If no case works, increase weak All lines 11 Weak 45 1 All slots driver current until a case works. Find fastest that works 4 ns to 8 ns (start at fastest that works above). If no case 2 All slots All lines 1 Weak 45 20 works, increase weak driver current until a case works. Find fastest that works 4 ns to 8 ns (start at 3 All slots All lines 1 Strong 45 fastest that works above) Find fastest that works 4 ns to 8 ns (start at 4 All slots All lines 11 Strong 45 fastest that works above) Find fastest that works 4 ns to 8 ns (start at 5 Slots 11 and 12 All lines 11 Strong 45 fastest that works above) Find fastest that works 4 ns to 8 ns (start at 6 Slots 1 and 21 All lines 1 Strong 45 _ fastest that works above) Find fastest that works Slots 1, 11, and 4 ns to 8 ns (start at 7 All lines 1 Strong 45 20 17–21 fastest that works above)

adjustable-transceiver study

20

20

20

20

20

20

20

General Information	1
GTL	2
GTLP	3
ETL	4
BTL/FB+	5
VME	6
Application Reports	7
Mechanical Data	8

Contents

	Page
Fast GTLP Backplanes With the GTLPH1655	7–3
High-Performance Backplane Design With GTL+	7–53
Increase the Speed of Parallel Backplanes 3× With GTLP	7–69
Texas Instruments GTLP Frequently Asked Questions	7–75
Understanding Advanced Bus-Interface Products	7–125
Implications of Slow or Floating CMOS Inputs	7–173
GTL/BTL: A Low-Swing Solution for High-Speed Digital Logic	7–189
Next-Generation BTL/Futurebus Transceivers Allow Single-Sided SMT Manufacturing	7–205
Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices	7–217
Basic Design Considerations for Backplanes	7–231
Achieving Maximum Speed on Parallel Buses With Gunning Transceiver Logic (GTLP)	7–255
GTLP in BTL Applications	7–281
GTLP Evaluation Module (EVM) User's Guide	7–299

Fast GTLP Backplanes With the GTLPH1655

Peter Forstner and Johannes Huchzermeier

Standard Linear & Logic

ABSTRACT

This revision of the *Fast GTL Backplanes With the GTL1655* application report addresses improvements, such as the improved OEC[™] circuitry and implementation of the Texas Instruments TI-OPC[™] circuitry, that have been incorporated in the GTLPH1655 device. These improvements significantly improve signal integrity in distributed loads.

This application report describes the physical principles of fast bus systems and the problems that can arise in their development. These descriptions are based on line theory, and various specifications of TTL, backplane transceiver logic (BTL), Gunning transceiver logic (GTL), and Gunning transceiver logic plus (GTLP) integrated circuits are compared.

In addition, this application report presents the performance of the SN74GTLPH1655. This new UBT[™] device provides an optimum solution for the design of backplanes for future high-speed bus systems.

Comprehensive measurement results of the SN74GTLPH1655 also are included in this application report.

Contents Introduction 7-6 Physical Principles 7-7 Does a Line Behave Like a Capacitive Load? Transmission-Line Theory in Practice 7-7 Transmission-Line Theory in Practice 7-9 Effects on Bus Lines 7-13 Beginning of the Line: The Incident Wave 7-13 End of the Line: The Reflected Wave 7-15 New Bus Systems Are Needed 7-17 BTL Bus 7-18 GTL Bus 7-19 Comparison Between BTL and GTL 7-20 New Backplane Solution: SN74GTLPH1655 From TI 7-21

OEC, TI-OPC, and UBT are trademarks of Texas Instruments.

Features of the SN74GTLPH1655	7–22
Functional Description: SN74GTLPH1655 – UBT	7–22
SN74GTLPH1655: Link Between a GTLP Backplane and an LVTTL Module	7–23
Termination Voltage, V _{TT}	7–24
Reference Voltage, V _{REF}	7–25
Static Characteristics of the SN74GTLPH1655	7–26
TI-OPC Circuitry	7–31
Edge-Rate Control (ERC)	7–31
Removal and Insertion Under Voltage and Partially Switched-Off Systems	7–34
Measurements on GTLPH1655 Test Board	7–36
Measurement Results With an Unloaded Backplane (Z_{Ω} = 30 Ω , R_{TT} = 25 Ω)	7–38
Measurement Results With a Loaded Backplane ($Z_O = 25 \Omega$, $R_{TT} = 25 \Omega$)	7–44
Summary	7–50
References	7–51
Glossary	7–52

List of Figures

1	Physical Relationships on a Connecting Line Between Two Components	. 7–7
2	Physical Relationships on a Bus Line	. 7–8
3	Waveform on a Line Compared to Waveform With a Load Capacitor	. 7–9
4	Wavefronts on Lines	7–10
5	Signals at End of the Line	7–12
6	Example of a Bus Line	7–13
7	Load on a Driver in the Middle of the Bus is $0.5 \times Z_O$	7–14
8	Termination Methods With TTL and CMOS Circuits	7–16
9	Circuit Concept of BTL Bus	7–18
10	Circuit Concept of GTL Bus	7–19
11	Comparison of Logic Voltage Levels of BTL and GTL	7–20
12	Typical Bus Application for a UBT	7–22
13	LVTTL and GTLP Signal Levels of SN74GTLPH1655	7–23
14	Proposed Layout of Termination Resistors and Bypass Capacitor on a Circuit Board	7–24
15	Suggested Connection of V _{REF} Pin	7–25
16	Input Characteristics of SN74GTLPH1655	7–26
17	Bus-Hold Characteristics at LVTTL Input of SN74GTLPH1655	7–27
18	GTLP Bus: An Open-Drain Bus	7–28
19	Output Characteristics of GTLP Port of SN74GTLPH1655	7–29
20	Output Characteristics of LVTTL Side of SN74GTLPH1655	7–30
21	TI-OPC Circuitry Replacement of GTLP	7–31
22	Setup for Measuring Edge Rate at GTLP Side of SN74GTLPH1655	7–32
23	Falling Edge, ERC = V_{CC} (Slow Edges), Input Signals $t_f = 2 \text{ ns}$, 10 ns	7–32
24	Falling Edge, ERC = GND (Fast Edges), Input Signals t _f = 2 ns, 10 ns	7–33
25	Rising Edge, ERC = V_{CC} (Slow Edges), Input Signals $t_r = 2 \text{ ns}$, 10 ns	7–33
26	Rising Edge, ERC = GND (Fast Edges), Input Signals t _r = 2 ns, 10 ns	7–34
27	Influence of Precharge Function on Bus Signal	7–35
28	Principle of Construction of GTLP Bus on GTLPH1655 Test Board	7–36

29	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V_{CC} , Unloaded, 10 MHz	7–38
30	GTLP Bus Signal, Slow Rise and Fall Times, ERC = V _{CC} , Unloaded, 10 MHz	7–38
31	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Unloaded, 10 MHz	7–39
32	GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Unloaded, 10 MHz	7–39
33	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V _{CC} , Unloaded, 50 MHz	7–40
34	GTLP Bus Signal, Slow Rise and Fall Times, ERC = V _{CC} , Unloaded, 50 MHz	7–40
35	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Unloaded, 50 MHz	7–41
36	GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Unloaded, 50 MHz	7–41
37	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V _{CC} , Unloaded, 160 MHz	7–42
38	GTLP Bus Signal, Slow Rise and Fall Times, ERC = V _{CC} , Unloaded, 160 MHz	7–42
39	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Unloaded, 160 MHz	7–43
40	GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Unloaded, 160 MHz	7–43
41	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V _{CC} , Loaded, 10 MHz	7–44
42	GTLP Bus Signal, Slow Rise and Fall Times, ERC = V _{CC} , Loaded, 10 MHz	7–44
43	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Loaded, 10 MHz	7–45
44	GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Loaded, 10 MHz	7–45
45	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V _{CC} , Loaded, 50 MHz	7–46
46	GTLP Bus Signal, Slow Rise and Fall Times, ERC = V _{CC} , Loaded, 50 MHz	7–46
47	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Loaded, 50 MHz	7–47
48	GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Loaded, 50 MHz	7–47
49	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V _{CC} , Loaded, 160 MHz	7–48
50	GTLP Bus Signal, Slow Rise and Fall Times, ERC = V _{CC} , Loaded, 160 MHz	7–48
51	LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Loaded, 160 MHz	7–49
52	GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Loaded, 160 MHz	7–49

List of Tables

1	Additional Capacitive Loading of a Bus Line by a Module	7–8
2	Typical Characteristic Properties of Lines	7–10
3	Signal Delay Using Figure 6 as an Example	7–13
4	Comparison of Characteristics of BTL and GTL	7–20
5	SN74GTLPH1655 Compared With BTL and GTL	7–21
6	Choice of GTL/GTLP Level (Using V _{TT} and V _{REF})	7–23
7	Measurement Results on SN74GTLPH1655 Demonstration Board	7–37

Introduction

Since the 1970s, bus systems have been used in every microprocessor system. In the early systems, the delay time of the driver was in the range of 15 ns to 20 ns, and the frequency of the system clock was about 1 MHz. The speed of the total system was determined primarily by the delay time of the active electronics, for example, the processor, gates, and bus drivers.

With increasing clock rates, the bus began to limit the performance of the total system. To circumvent this limitation, numerous improvements have been introduced in modern bus systems:

Pipelining	By pipelining, instructions and data are transmitted continually from the memory to the processor.
Cache memory	To avoid having the fast processor continually waiting for the slow main memory (DRAM, EPROM), an intermediate storage of the current data is implemented in a fast cache memory.
Block transfer	The transfer of individual words of data is replaced by the transmission of complete data blocks.
Multimaster	Every device connected to the bus can initiate the transmission of data. The cumbersome and slow route of transferring data exclusively via the CPU is, therefore, no longer necessary.
Bus width	The bus width has grown from 8 bits to 64 bits, and larger.
Clock rate	The clock rate of the backplane has increased into the range of many tens of megahertz, e.g., with a PCI bus to 33 MHz or 66 MHz. The processor itself operates internally at far higher clock rates, e.g., at 400 MHz. The memory is connected by a dedicated bus that operates at very high clock rates, e.g., up to 400 MHz. The memory is connected by a special bus (e.g., the Direct <i>RAMBUS</i> TM), operating at 800 MHz) to the processor.

The first sections of this application report deal exclusively with general physical principles and conditions. The engineer developing a bus system must be concerned with these to achieve high data rates on the bus.

Circuit solutions based on TTL, BTL, and GTL logic families are compared. Particular attention is devoted to the GTLP transceiver circuit having increased drive capability and support for live insertion.

The SN74GTLPH1655 is presented and examined in detail.

Direct *RAMBUS* is a trademark of Rambus Inc.

Physical Principles

In data sheets, the delay times of driver circuits are commonly given with a load circuit of 50 pF and 500 Ω at the outputs. However, this load circuit does not correspond well to the actual effective loads in current application. Rather, it is intended to match the conditions existing with IC testers. In particular, a load of this kind does not correspond to reality with bus systems. If the connecting line between two components is compared with the relationship on a bus line, significant differences exist.

Does a Line Behave Like a Capacitive Load?

The conditions shown in Figure 1 represent a typical connecting line between two components. If the connecting line is 20 cm long, then there is a very small capacitive load of 12 pF. As shown in Figure 2, modules are connected to a bus line with a 2-cm space between them, and these contribute an additional capacitive loading of 20 pF/2 cm (= 10 pF/cm) (see Table 1). A typical bus line on the backplane wiring of a 19-inch rack having a length of 40 cm, therefore, has a total capacitance of 424 pF (10.6 pF/cm \times 40 cm).

The development engineer needs to know the effect of the capacitive load on the signal delay of drivers under the previously mentioned conditions ($C_L = 12 \text{ pF}$, or $C_L = 424 \text{ pF}$). The delay times given in data sheets assume a load of 50 pF.

However, now the line cannot be considered a capacitive load, but instead must be treated from the point of view of transmission-line theory. With the bus line described previously, a signal delay of 10 ns ($25 \text{ ns/m} \times 0.4 \text{ m}$) from one end of the line to the other is observed. If a pulse edge is applied at the beginning of the line having a rise time of 2 ns, the signal proceeds 8 cm (2 ns/25 ns/m) within this rise time. During this pulse edge, nothing happens over the length of the rest of the bus line (32 cm). Therefore, during this time, the capacitance of a 32-cm line (340 pF) has not been charged. The capacitance of this part of the line has no influence on the waveform or the signal delay of the driver circuit.

Figure 1. Physical Relationships on a Connecting Line Between Two Components

Figure 2. Physical Relationships on a Bus Line

Table 1.	Additional Ca	nacitive Loadin	d of a	Bus Line	by a Module
	Auditional Ca	pacitive Luaum	yua		by a mouule

CONTRIBUTOR	CAPACITANCE (pF)
Capacitance of the connector plug	≈5
Capacitance of the feedline from the driver I/O	≈5
Capacitance of the driver I/O	≈10
Capacitive loading from a module (total)	≈20

To illustrate this situation, Figure 3 shows a comparison between the waveform on a line with that from a load consisting of a lumped capacitance. It can be seen clearly in the diagram on the left that the length of a line and, therefore, its capacitance, has no influence on the waveform. To better observe the various loads, the rising edge is shown shifted by 10 ns. In the diagram on the right, instead of a line, a capacitor having the equivalent total capacitance value has been connected to the output of the test circuit. In this case, the output edge takes the form of a capacitor-charging curve. If the two measurement results are compared, it is clear that signals on a line behave very differently than in the case of a capacitive load. Therefore, an analysis using transmission-line theory is necessary.

Figure 3. Waveform on a Line Compared to Waveform With a Load Capacitor

Transmission-Line Theory in Practice

With lines of more than a certain length, the behavior of signals must be analyzed using transmission-line theory. There is a simple rule that applies in this situation:

If the rise time or fall time of a signal is shorter than twice the line propagation delay time, transmission-line theory must be used.

In practice, transmission-line theory must be used for a bus line with a propagation delay of 25 ns/m and a signal with an edge rise time of 2 ns, from a line length of 4 cm (2 ns/25 ns/m \times 2). Because buses usually are longer than 4 cm, transmission-line theory is a necessary basis for examining the physical characteristics of bus lines.

With the frequencies and lengths of lines that now are used commonly in bus systems, the transmission-line theory can be simplified by neglecting any resistive component of the impedance. Equations 1 and 2 can be used for lossless lines with sufficient accuracy. Table 2 lists typical values for the characteristic properties of point-to-point lines between two components and bus lines.

$$Z_{\rm O} = \sqrt{\frac{{\rm L}'}{{\rm C}'}} \tag{1}$$

 $\tau\,=\,\sqrt{L'\,\times\,C'}$

Where:

 Z_{O} = impedance of the line (Ω)

 τ = propagation delay of the line (ns/m)

L' = inductive component of the line (nH/cm)

C' = capacitive component of the line (pF/cm)

Table 2.	Typical	Characteristic	Properties	of Lines
----------	---------	----------------	-------------------	----------

	L′ (nH/cm)	C′ (pF/cm)	Ζ_Ο (Ω)	τ (ns/m)
Point-to-point line between two components	5 to 10	0.5 to 1.5	70 to 100	≈5
Bus line	5 to 10	10 to 30	20 to 40	10 to 20

If a signal edge is fed into the beginning of the line (see Figure 4), a signal amplitude is created that can be calculated from the simple voltage divider, consisting of the internal resistance of the signal generator and the impedance of the line (Equation 3). The termination resistor R_{TT} has no influence on the edge because, at this point, the edge changes the voltage only at the beginning of the line, and at the end of the line no voltage change occurs.

$$U_{i} = U_{G} \frac{Z_{O}}{Z_{O} + R_{G}}$$
(3)

Where:

 U_i = amplitude of the incident wave (V)

 U_G = open-circuit voltage of the signal generator (V)

 R_G = output resistance of the signal generator (Ω)

 Z_{O} = impedance of the line (Ω)

....

TEXAS

INSTRUMENTS

(2)

(5)

This voltage edge now runs from the beginning of the line to the end. This first wave is called the incident wave. When the voltage wave reaches the end of the line, a reflected voltage wave is generated, the amplitude of which can be calculated from the reflection factor ρ , as shown in Equations 4 and 5.

$$\rho = \frac{\mathsf{R}_{\mathsf{T}\mathsf{T}} - \mathsf{Z}_{\mathsf{O}}}{\mathsf{R}_{\mathsf{T}\mathsf{T}} + \mathsf{Z}_{\mathsf{O}}} \tag{4}$$

 $U_r = U_i \times \rho$

Where:

 U_r = amplitude of the reflected wave (V)

 U_i = amplitude of the incident wave (V)

 ρ = reflection factor

 R_{TT} = termination resistor at the end of the line (Ω)

 Z_{Ω} = impedance of the line (Ω)

Using Equations 3, 4, and 5, results at the end of the line can be predicted:

 $R_{TT} = 0 \Rightarrow \rho = -1$ (see Figure 5a)

The incident wave is inverted and reflected at the end of the line. Incident and reflected waves therefore cancel out each other, and there is no voltage increase at the end of the line.

 $R_{TT} = Z_O \Rightarrow \rho = 0$ (see Figure 5b)

No line reflections occur. The end of the line is perfectly terminated.

 $R_{TT} = \infty \Rightarrow \rho = +1$ (see Figure 5c)

The incident wave is fully reflected at the end of the line. There is a doubling of the amplitude at the end of the line.

A detailed analysis follows in End of the Line: The Reflected Wave.

SCBA015A

TEXAS INSTRUMENTS

Figure 5. Signals at End of the Line

Effects on Bus Lines

Beginning of the Line: The Incident Wave

A fundamental characteristic of bus drivers is their output resistance. Together with the line impedance, this forms a voltage divider (Equation 3) and, thus, is responsible for the amplitude of the incident voltage wave.

If the driver can generate an incident voltage edge that has an amplitude above (below) the defined voltage threshold for the high logic state (low logic state), the logic level of all inputs that are connected on the bus will be changed over with the incident wave. For TTL-compatible bus systems, the rising edge of the incident voltage wave must exceed 2 V, and the falling edge must fall below 0.8 V. To calculate the maximum signal delay on the bus for an incident-wave-switching system, only the simple line propagation delay must be added to the delay time of the driver circuit (see Table 3).

	SWITCHING WITH THE INCIDENT WAVE	SWITCHING WITH THE REFLECTED WAVE		
A \Rightarrow B t_{pd} Driver + t_{pd} Receiver = 5 ns + 5 ns = 10 ns		^t pd Driver ^{+ t} pd Line ^{+ t} pd Line ^{+ t} pd Receiver = 5 ns + 10 ns + 10 ns + 5 ns = 30 ns		
A⇒C	^t pd Driver ^{+ t} pd Line ^{+ t} pd Receiver = 5 ns + 10 ns + 5 ns = 20 ns	^t pd Driver ^{+ t} pd Line ^{+ t} pd Receiver = 5 ns + 10 ns + 5 ns = 20 ns		
Worst case	20 ns	30 ns		

Table 3. Signal Delay Using Figure 6 as an Example

Figure 6. Example of a Bus Line

However, if the amplitude of the incident wave is insufficient, it is necessary to wait until the reflected wave returns from the end of the line to the beginning. Only then is a valid logic level reached on the entire bus line. In the example of Figure 6, according to Table 3, the signal delay time of 30 ns maximum results. Thus, when compared with switching with the incident wave, the signal delay time of the system is increased by 10 ns, or 50%.

This demonstrates one of the basic problems of bus systems. Since the amplitude of the incident wave depends on the voltage divider between the output resistance of the driver and the impedance of the line ($\approx 25 \Omega$), a driver is needed with a particularly low output impedance. Only then is it possible to switch over a bus line with the incident wave. This is made more difficult because there are only two bus drivers at the beginning or end of the line. Most drivers sit in the middle of the bus line and, from there, must effectively drive two lines, one to the left and one to the right (see Figure 7). In this case, the resulting load impedance for drivers in the middle of the bus line effectively is halved ($\approx 12.5 \Omega$).

Taking into account the voltage-divider rule for the incident wave, with TTL-compatible systems, an output resistance of <10 Ω is needed for the rising edge, and <4 Ω for the falling edge; the assumption here is that V_{OH} = 3.5 V, V_{OL} = 0 V. Even the most modern bus-driver families (such as the ABT family) do not have an output resistance that meets this requirement. For such applications, Texas Instruments (TITM) offers special TTL-compatible circuits, featuring the low output resistances that are needed: the incident wave switching (IWS) devices from TI, SN74ABT25xxx, for example, the SN74ABT25245. All other circuits that have the required low-resistance outputs were developed for new bus systems that are not TTL compatible. Examples of these new bus systems include BTL and GTLP.

Figure 7. Load on a Driver in the Middle of the Bus is $0.5 \times Z_{O}$

TI is a trademark of Texas Instruments.

End of the Line: The Reflected Wave

As explained in *Transmission-Line Theory in Practice*, a voltage wave is reflected at the end of a line, and this reflected wave moves back to the beginning of the line. The amplitude of the reflected wave is determined by the amplitude of the incident wave and the reflection factor (Equation 5). This reflection factor is determined by the line impedance and the termination resistance (Equation 4). Therefore, the termination resistance has a major influence on the waveform of a bus line.

For the case of no termination resistance at the end of the line $(R_{TT} = \infty)$, as shown in Figure 8a, the reflection factor is $\rho = 1$. The amplitude of the reflected wave is, therefore, exactly the same as the amplitude of the incident wave. In practice, this means that a low-resistance driver that generates an incident wave of 3 V, generates a reflected wave that also has an amplitude of 3 V. This results in an overshoot at the end of the line of 6 V (V_{incident} + V_{reflected} = 3 V + 3 V). The worst case would be a very low-resistance CMOS driver with an incident wave of 5 V, which would result in an overshoot of 10 V at the end of the line.

If the value of the termination resistance is assumed to be exactly the same as that of the line impedance, a reflection factor of $\rho = 0$ (Figure 8b) results. In this case, no reflection of the arriving wave occurs; thus, it is an ideal line termination. However, this method cannot be used with TTL and CMOS-compatible bus systems, because the impedance of the line would make it necessary to have a termination resistor of 25 Ω . With bidirectional lines, it would be necessary to connect this termination resistor at both ends, and each driver then would have to drive a load of 12.5 Ω . The maximum current through these resistors would be 280 mA (3.5 V/12.5 Ω) per line. Because, in practice, a bus often has more than 100 lines, the maximum total current of the bus termination would be >28 A. For this reason, with TTL systems, one operates with other terminating networks (Figure 8c to 8f) and, in such cases, accepts a mismatch ($R_{TT} > Z_O$).

TEXAS INSTRUMENTS

Figure 8. Termination Methods With TTL and CMOS Circuits

New Bus Systems Are Needed

The cause of most problems with bus lines is the distributed capacitive loading on the line by the modules connected to it. The impact on TTL and CMOS buses is:

- Very low signal speed on the line (about 25 ns/m, instead of 5 ns/m)
- The impedance of the line is reduced from about 80 Ω to about 25 Ω .
- As a result of the low impedance, adequate incident-wave amplitude is possible only with extremely low-resistance drivers.
- Correct termination is not possible because, otherwise, excessively high currents would flow through the terminating resistors.

It is not possible to solve these problems adequately with the circuit techniques commonly used with TTL- and CMOS-compatible circuits. With the commonly used techniques, it always would be necessary to accept a compromise in the circuit layout.

To develop a new bus system meeting the requirements imposed by the situation mentioned above requires the following:

- The capacitance of a module must be reduced, and also the capacitance of the I/O pins of the bus-driver circuit.
 - Because of the reduced capacitive component of the bus line, the impedance is reduced only to about 30 Ω.
 - The smaller capacitive component also results in less degradation of the signal speed (to about 20 ns/m).
- The drivers must be of low resistance to switch the bus with the incident wave.
- The signal amplitude must be reduced to allow correct termination of the line impedance. For example, with a signal amplitude of 1 V, a termination resistor of 30 Ω is adequate because the current flowing is only 33 mA per signal line.

The two bus systems that meet these basic physical requirements are BTL and GTL.

BTL Bus

The specification of the BTL bus was conceived especially for large backplane systems. The basic circuit layout of a BTL bus is shown in Figure 9.

Figure 9. Circuit Concept of BTL Bus

The outputs of a BTL driver are provided with open-collector pins. The maximum capacitance of an I/O pin was fixed at 5 pF. To attain this goal, a diode is connected in series with the output transistor. The series connection of the capacitance of the transistor with the capacitance of the diode results in a reduction of the total capacitance. This circuit results in a low level of 1 V.

To allow switching of the bus lines with the incident wave, the specification for the drive capability was fixed at $I_{OL} = 100$ mA.

The high level is generated using a terminating resistor connected to 2.1 V at the end of the line. With bidirectional lines, a termination resistor must be provided at both ends of the line. As a result of the low signal amplitude of 1.1 V, the bus line can be terminated correctly with BTL systems. The maximum output current ($I_{OL} = 100 \text{ mA}$) allows driving a terminating resistor of as low as 11 Ω (1.1 V/100 mA). If the BTL driver is in the middle of the bus line, the lower limit for the impedance is 22 Ω . This is sufficient for all bus systems that are used, particularly when the impedance and the signal speed are kept high, as a result of the limitation in the I/O capacitance.

By definition, the threshold voltage is 1.55 V, exactly midway between the low and high levels.

In large systems, it is essential that it be possible to remove and reinsert boards during system operation (live insertion). To meet this requirement, the precharge function has been implemented in BTL circuits. By means of this function, the capacitance of the pin, the stub line, and the I/O pin on the insertable board can be charged to the threshold voltage (1.55 V) before this pin comes in contact with the signal line on the backplane. Thus, it is possible to prevent signals on the backplane wiring from being so seriously interfered with that the data is corrupted.

The most serious disadvantage of the BTL bus is its high power consumption. If the transistor of a driver stage is operated to the limits of its specification, at the low level, a current of 100 mA can flow, with a voltage drop of 1 V. This results in the output stage dissipating 100 mW. If a 16-bit bus driver is used, in the worst case, 1.6 W may be consumed in the output transistors alone. With small surface-mounted components, this power consumption makes it necessary to use packages with a special heat sink.

GTL Bus

As shown in Figure 10, the basic circuit layout of the GTL bus is very similar to that of BTL. In this case, there also is a system with open-drain drivers and correct bus termination. The voltage levels of the logic states are 0.4 V in the low-logic state, and 1.2 V in the high-logic state. The signal amplitude is reduced to 0.8 V, whereby the threshold voltage lies exactly between the low and high levels, also at 0.8 V.

Figure 10. Circuit Concept of GTL Bus

In contrast to the BTL circuits, the drive capability of the output transistor is 40 mA. Therefore, the lower limit of the termination resistance (also of the line impedance) is 20Ω (0.8 V/40 mA). For a driver connected to the middle of a bus line, the limit for the impedance of the line is 40 Ω . To attain impedance of the bus lines of 40 Ω , the capacitive component of the line must not be too high. Therefore, GTL is not the first choice when driving extensive backplane wiring with many modules.

Since the GTL bus was conceived for smaller buses on a circuit board, for example a memory bus between CPU and memory modules, the specification does not include the precharge function. The reason is that, when the bus is on a circuit board, there is no question of withdrawal and reinsertion during operation.

Comparison Between BTL and GTL

The structure of the two bus concepts (BTL and GTL) is similar. Both operate with open-collector/open-drain outputs and correct line termination. The most obvious difference is the definition of the logic voltage levels (Figure 11). The characteristics are listed and compared in Table 4. For large backplane wiring systems, the BTL circuits have the better characteristics, whereas the GTL bus features significantly lower power consumption. The target applications, which were considered when designing each of these bus systems, are apparent: BTL for large backplane systems, and GTL for smaller buses on a circuit board.

CHARACTERISTICS	BTL	GTL
Capacitance of an I/O pin	5 pF	Not defined, typically 5 pF to 9 pF
IOL	100 mA	40 mA
Maximum power consumption of an output driver	100 mW	16 mW
Minimum Z _O for point-to-point connection	11 Ω	20 Ω
Minimum Z _O for a bus system	22 Ω	40 Ω
Precharge for withdrawing and reinserting boards during operation	Yes	No

Table 4.	Comparison of	Characteristics	of BTL a	and GTL

New Backplane Solution: SN74GTLPH1655 From TI

It would be ideal to have a bus concept that combines all the desirable characteristics of both BTL and GTL. Meanwhile, TI offers a new generation of GTLP drivers that is compatible with existing GTL systems, but provides both the advantages of BTL and also the positive aspects of GTL drivers. A comparison is given in Table 5.

- The logic levels are compatible with GTL buses, and also bus systems with GTLP levels. GTLP represents a modification of the GTL specification that uses different termination voltage (V_{TT}) and reference voltage (V_{REF}) (see Table 6).
- Low capacitive loading of the bus (typical 6 pF)
- High drive capability (100 mA)
- Switching of a $11-\Omega$ unidirectional line with the incident wave
- Switching of a 22- Ω bidirectional line with the incident wave
- Built-in precharge function

CHARACTERISTICS	BTL	GTL	GTL1655	GTLP MEDIUM	GTLP HIGH
Supply	5 V	5 V/3.3 V	3.3 V	3.3 V†	3.3 V†
Icc	120 mA	120 mA	80 mA	50 mA	40 mA
I/O capacitance	<6 pF	<9 pF	8 pF	<9 pF	<9 pF
IOL	100 mA	40 mA	100 mA	50 mA	100 mA
Maximum power consumption per output driver	100 mW	16 mW	40 mW	20 mW	55 mW
Minimum line impedance for point-to-point connection	11 Ω	20 Ω	11 Ω	19 Ω	9.5 Ω
Minimum line-impedance bus system	22 Ω	40 Ω	22 Ω	38 Ω	19 Ω
Precharge for line insertion	Yes	No	Yes	Yes	Yes
Overshoot-protection circuit	No	No	No	Yes	Yes
Edge-rate control (ERC)	No	No	Yes	Yes	Yes
Bus hold (A port)	No	Yes	Yes	Yes	Yes
Backplane switching characteristics in data sheet	No	No	No	Yes	Yes
Operational frequency on the backplane	≤30 MHz	≤40 MHz	~100 MHz	~100 MHz	~100 MHz

Table 5. SN74GTLPH1655 Compared With BTL and GTL

[†] Features 5-V tolerance at A port

The individual characteristics of the SN74GTLPH1655 are discussed in detail in the following sections.

Features of the SN74GTLPH1655

Functional Description: SN74GTLPH1655 – UBT

The SN74GTLPH1655 is described as a UBT, i.e., a bus driver for a wide variety of applications.

The function of this component can be controlled and changed in accordance with the signals and static voltage levels applied to the various control inputs.

By means of the control inputs OE, OEAB, OEBA, LEAB, and LEBA, one of the following three operating modes for the SN74GTLPH1655 can be selected:

• Transparent mode

The SN74GTLPH1655 behaves like a bidirectional bus driver, for example, the '245.

• Level-sensitive storage (latch) mode

The SN74GTLPH1655 behaves like a level-sensitive register (latch), for example, a '373. However, in this case, it can be used bidirectionally.

• Edge-triggered storage (flip-flop) mode

The circuit behaves like an edge-triggered register, for example, a '374. In this mode, it can be used bidirectionally.

The operating mode can be set separately for each direction of transmission. An example of a typical application is shown in Figure 12.

Figure 12. Typical Bus Application for a UBT

SN74GTLPH1655: Link Between a GTLP Backplane and an LVTTL Module

The SN74GTLPH1655 converts LVTTL-level signals (A port) into GTL- or GTLP-level signals (B port), and *vice versa*. The user decides, by choosing the termination voltage and the reference voltage, which level will be provided on the B-port side (see Table 6). The A port is, in every case, compatible with LVTTL.

This conversion is useful when continuing to work with LVTTL levels on the module, while the GTL and GTLP levels, specially developed for this application, are transmitted on the backplane. The low-voltage TTL and GTLP signal levels are shown in Figure 13. The SN74GTLPH1655 needs 3.3 V as the operating voltage.

Figure 13. LVTTL and GTLP Signal Levels of SN74GTLPH1655

LE	VEL	MIN	TYP	MAX	UNIT
GTL	VTT	1.14	1.2	1.26	V
	VREF	0.74	0.8	0.87	v
GTLP	VTT	1.35	1.5	1.65	V
	V _{REF}	0.87	1	1.1	v

Table 6. Choice of GTL/GTLP Level (Using V_{TT} and V_{REF})

Termination Voltage, V_{TT}

There are various rules and techniques regarding proper line termination that should be observed for a successful development using SN74GTLPH1655.

The termination voltage (V_{TT}) should be derived from a voltage regulator. The current requirements, e.g., up to 100 mA per output, must be observed. There are various voltage regulators available that meet these requirements. Depending on the application, the regulators should be situated either directly on the backplane or on the module boards connected to it.

If several signal lines are switched simultaneously, considerable current fluctuations may occur at the termination voltage. For this reason, bypass capacitors should be provided close to the termination resistors (Figure 14).

Figure 14. Proposed Layout of Termination Resistors and Bypass Capacitor on a Circuit Board

Since the bypass capacitor should have the lowest possible inductance, it is recommended that ceramic capacitors in surface-mount packages be used. The value of capacitance can be calculated from Equation 6.

$$C = I \frac{\Delta t}{\Delta U}$$
(6)

- I = 50 mA For bidirectional lines with a termination resistor at both ends of each line, a maximum of one-half the output current of an SN74GTLPH1655 ($I_O = 100$ mA) can flow through one of the two termination resistors.
- $\Delta U = 10 \text{ mV}$ In this example, the collapse of the termination voltage V_{TT} must not exceed 10 mV.
- $\Delta t = 4 \text{ ns}$ The collapse of the termination voltage V_{TT} should be postponed for at least 4 ns.

$$C = I \frac{\Delta t}{\Delta U} = 50 \text{ mA} \times \frac{4 \text{ ns}}{10 \text{ mV}} = 20 \text{ nF}$$
(7)

If 82-nF ceramic capacitors are used, a bypass capacitor should be provided for every four signal lines. A proposed layout for the four termination resistors and the bypass capacitor on a circuit board is shown in Figure 14.

Reference Voltage, V_{REF}

The GTL or GTLP reference voltage (V_{REF}) can be derived, using a simple voltage divider and a bypass capacitor (0.01 μ F to 0.1 μ F), from the termination voltage. The circuit shown in Figure 15 has the advantage that V_{REF} follows voltage fluctuations of the termination voltage, V_{TT} . In this way, the maximum possible signal-to-noise ratio (SNR) always is ensured, even with an unstable termination voltage. Since only a very small current (maximum 10 μ A) flows in the V_{REF} pin of the SN74GTLPH1655, the pin can be connected to the voltage divider without adversely affecting the GTL/GTLP reference voltage.

Ensure that the bypass capacitor is placed as close as possible to the $V_{\mbox{REF}}$ pin of the SN74GTLPH1655.

Figure 15. Suggested Connection of V_{REF} Pin

Static Characteristics of the SN74GTLPH1655

An understanding of the static characteristics of a component is necessary for a circuit development to be successful. The input and output characteristics of the SN74GTLPH1655 were, therefore, measured under laboratory conditions.

Input Characteristics

In principle, the input characteristics appear identical on both sides (A and B ports) of the device.

In Figure 16, the input protection diode easily is recognized; it is found both at the inputs of the LVTTL side (A port) and also at the inputs of the GTLP side (B port) of the device. The diode circuit provides protection against high negative-voltage spikes, which can occur as the result of electrostatic discharges or line reflections. In such cases, the diode conducts and prevents more-sensitive components from being destroyed.

Figure 16. Input Characteristics of SN74GTLPH1655

Bus-Hold Circuit

If the input characteristics of the LVTTL side (A port) are recorded in small increments, and over a narrow range of current, the curve shown in Figure 17 results. This curve clearly demonstrates the effectiveness of the bus-hold circuit.

To change the logic state stored by the bus-hold circuit, a current of about 250 μA must be overridden.

This circuit is useful when, for example, all drivers on the bus are in a high-impedance state. Thus, an undefined state can be prevented.

Figure 17. Bus-Hold Characteristics at LVTTL Input of SN74GTLPH1655

There is no bus-hold circuit on the GTLP side (B port). A bus-hold circuit on the GTLP side would defeat the principle of operation of the open-drain outputs, which take on the high-impedance state to allow the bus to achieve a logic high state (via the pullup resistors).

GTLP Output Characteristics

Because the SN74GTLPH1655 has been conceived as an interface between LVTTL partial systems and a GTLP backplane, the output characteristics of both sides are shown here. The characteristics for the various logic states of the output stage are shown in a single voltage-current diagram.

The principle of the GTLP bus is based on open-drain drivers, as shown in Figure 18.

Figure 18. GTLP Bus: An Open-Drain Bus

The device actively drives only the low state on the bus; whereas, for the high state, the required current flows directly from the termination voltage source, V_{TT} . The current is limited only by a pullup resistor (R_{TT}), which usually is of very low resistance. According to the specification, the pullup resistor must be not less than the minimum value of 22 Ω . A primary purpose of resistor R_{TT} is to provide an optimum termination of the bus to avoid line reflections (see *Transmission-Line Theory in Practice*).

Figure 19 shows that in the low state, the output resistance of the GTLP output stage is in the range of about 4 Ω .

Figure 19. Output Characteristics of GTLP Port of SN74GTLPH1655

In the high state, the output transistor is blocking up to V_{REF} + one diode forward voltage. Thus, the output is at a very high resistance, as shown in Figure 19. Above V_{REF} + 0.7 V, a low resistive part follows, and then a high-resistive section, up to 7 V. Above 7 V, the curve again shows diode behavior. The special curve of output characteristics is caused by implementation of the TI-OPC into the GTLP outputs.

Because of the bidirectionality of the SN74GTLPH1655, the input protection diode also can be seen at the output during off state (for $V_{CC} = 0$ V) and 3-state. The outputs and inputs of the device are connected together and routed to a single pin.

LVTTL Output Characteristics

The output characteristics of the LVTTL output side of the SN74GTLPH1655 are shown in Figure 20, recorded with a supply voltage $V_{CC} = 3.3$ V. The output resistance for the low state is around 10 Ω , and in the case of the high state, a value of about 25 Ω is typical.

Figure 20. Output Characteristics of LVTTL Side of SN74GTLPH1655

TI-OPC Circuitry

TI-OPC circuitry is a new feature of the GTLP backplane family.

This circuit improves signal integrity by using a control circuit that compares the output voltage at the GTLP port with the reference voltage. The principle is shown in Figure 21.

Figure 21. TI-OPC Circuitry Replacement of GTLP

If the output voltage exceeds about one diode forward voltage referred to the reference voltage, the TI-OPC circuitry limits currents below about 14 mA to the voltage to $V_{REF} + V_{diode}$. If this output current is exceeded, the output resistance increases again rapidly (compare to Figure 19).

Edge-Rate Control (ERC)

In the GTLP output stage, a circuit is included that allows two different values of edge rate to be set. With the use of the ERC input pin, different rise and fall times can be set, allowing the optimum configuration under various loading conditions of the backplane. If the SN74GTLPH1655 ERC is connected to the supply voltage (V_{CC}), the GTLP outputs are switched with longer rise and fall times than when it is connected to GND. Some GTLP devices have the ERC feature, which is the opposite of ERC. If ERC is connected to GND, the GTLP outputs are switched with a longer rise and fall time.

In two series of measurements, the voltage at the control input ERC was varied to determine the influence of the ERC circuit on the behavior of the signal.

As shown in Figure 22, the measurements on the SN74GTLPH1655 were made with a single device under no-load conditions, using GTLP voltage levels. During the measurement, only the 25- Ω pullup resistor was at the GTLP output. There were LVTTL signals from a signal generator at the A port of the device, each having different rise and fall times: t_r, t_f = 2 ns and t_r, t_f = 10 ns.

Figure 22. Setup for Measuring Edge Rate at GTLP Side of SN74GTLPH1655

Additional measurement results on the SN74GTLPH1655 test board are presented in a later section, which explains the behavior with a bus under realistic conditions.

The measurement results for falling edges are shown in Figures 23 and 24; Figures 25 and 26 show the curves for rising edges.

Using the definition of edge rate (slew rate) $dV/dt = (V_{OH} - V_{OL})/t_r$, t_f , a slew rate results in 0.2 V/ns for slow edge rate (ERC = V_{CC}) and 0.35 V/ns for fast edge rate (ERC = GND). As a comparison, these values are significantly less than those of standard TTL devices, which are usually about 1 V/ns, or more.

Figure 23. Falling Edge, ERC = V_{CC} (Slow Edges), Input Signals t_f = 2 ns, 10 ns

Figure 24. Falling Edge, ERC = GND (Fast Edges), Input Signals t_f = 2 ns, 10 ns

Figure 25. Rising Edge, ERC = V_{CC} (Slow Edges), Input Signals t_r = 2 ns, 10 ns

Figure 26. Rising Edge, ERC = GND (Fast Edges), Input Signals $t_r = 2 \text{ ns}$, 10 ns

Removal and Insertion Under Voltage and Partially Switched-Off Systems

If it is possible to remove and reinsert plug-in boards in a system while it remains in operation (live insertion), special precautions must be taken with the signal lines.

- The outputs of the boards to be inserted or removed must be at a high impedance when the boards are inserted or removed.
- Before inserting a board, all pins must be charged to the threshold voltage (1.5 V with TTL-compatible systems, or V_{CC}/2 with CMOS-compatible systems). Thus, destructive voltage spikes on the signal line in excess of the threshold voltage range, which might otherwise corrupt the data on the bus, can be avoided.

Figure 27 shows this principle. The data pins are charged to the switching threshold (V_{TH}). As a maximum, the switching threshold can be reached when inserting; however, it no longer can be exceeded as a result of a voltage spike.

Figure 27. Influence of Precharge Function on Bus Signal

The SN74GTLPH1655 has the characteristics discussed above, which are necessary for the successful development of a live-insertion application.

Using the OE control input, it is possible to set the outputs of the SN74GTLPH1655 on both sides simultaneously to a high-resistance state. As a result of the integrated power-up 3-state circuit, the device is definitely inactive at a V_{CC} of less than 1.5 V.

To ensure that there is also a definite high-resistance state at a supply voltage between 1.5 V and the operating voltage, it is recommended that OE be connected to V_{CC} via a pullup resistor.

High-impedance outputs can be precharged to a definite voltage level by means of the precharge circuitry (BIAS V_{CC}). Disturbances to the active bus arising from insertion (charging/discharging of the I/O capacitance) will thus be kept to a minimum.

In a similar fashion, in modern applications, particular parts of a system are switched off from the source of power without having first removed them from the complete system. This is a partial switching off of the system, or a partial power down.

If a device is used in a partial power-down application, the inputs and outputs for $V_{CC} = 0$ V must be at high impedance, and thus be able to tolerate active bus signals.

The property of being partial-power-down compatible is reflected in the parameter I_{OFF}, which specifies the maximum leakage current in an input or output.

I_{OFF} is defined as:

- The device is disconnected from the operating voltage (V_{CC} = 0 V), and
- A logic level is applied to the input or output.

With the SN74GTLPH1655, the maximum value of I_{OFF} is 100 μ A.

Refer to the TI application report *Live Insertion*, literature number SDYA012, which discusses this subject in detail.

Measurements on GTLPH1655 Test Board

A GTLPH1655 test board has been constructed to examine the characteristics of the SN74GTLPH1655 in a practical application. The principle of this board is shown in Figure 28.

Figure 28. Principle of Construction of GTLP Bus on GTLPH1655 Test Board

This bus consists of a straight connecting line, 40 cm long, between two SN74GTLPH1655 devices.

In practice, a backplane wiring system provides the option for multiple plug-in modules. The bus impedance is reduced as a result of the additional input capacitances of the modules that are connected to it (see Figure 2). This effect can be approximated by connecting capacitors between the bus line and ground at intervals of 2 cm.

Both sides of the bus are provided with termination resistors that are connected to V_{TT} . The termination voltage is set at 1.5 V. A 1-V reference voltage (V_{REF}) was chosen. In this way, GTLP signals are transmitted on the bus.

The termination resistors for this setup were chosen to match the line impedance, which, for a fully loaded backplane, results in $Z_0 = 25 \Omega$. This case provides optimum line termination, with a reflection factor very close to $\rho = 0$.

For the measurements, the slew rate of the GTLP output stage was varied by means of the edge-rate control input ERC. The measurements were carried out under two different bus conditions: a fully loaded bus (with distributed capacitors) and the bus unloaded (without capacitors). The clock frequencies used were 10 MHz, 50 MHz, and 160 MHz, the last being close to the maximum value of 175 MHz specified in the data sheet.

For the case of a fully loaded bus, the result is a line impedance of about 25 Ω , and a delay time on the line of about 7 ns.

With the bus unloaded, i.e., operated without capacitors connected to it, the line impedance is about 30 Ω , and the delay time on the line reaches a value below 3 ns.

The measurement results presented in Figures 29 through 52 show:

- The LVTTL input signal of the SN74GTLPH1655 that drives the bus line, together with the LVTTL output signal of the SN74GTLPH1655 receiver that is situated at the end of the GTLP bus. For this, the load of the receiver was varied. The diagrams show the curves for $R_L = \infty$ (unloaded output) and for $R_L = 50 \Omega$.
- Waveforms on the GTLP bus line:
 - GTLP output signal of the SN74GTLPH1655 that drives the bus line, i.e., the signal at the beginning of the line
 - Bus signal in the middle of the GTLP bus
 - Signal at the end of the GTLP bus line, which also is applied to the input of the SN74GTLPH1655 receiver device.

All curves are shown together for the frequencies 10 MHz, 50 MHz, and 160 MHz, and for the two different edge-rate settings (with ERC = V_{CC} and ERC = GND).

For these measurements, care was taken to ensure that the timing relationships between them remained constant. A summary of the measurement results is given in Table 7.

		BUS LINE UNLOADED (WITHOUT CAPACITORS)		BUS LINE LOADED (WITH CAPACITORS)	
	SIGNAL	SLOW EDGE RATE ERC = V _{CC}	FAST EDGE RATE ERC = GND	SLOW EDGE RATE ERC = V _{CC}	FAST EDGE RATE ERC = GND
f = 10 MHz	I/O LVTTL level	Figure 29	Figure 31	Figure 41	Figure 43
	Beginning, middle, end of GTLP bus	Figure 30	Figure 32	Figure 42	Figure 44
f = 50 MHz	I/O LVTTL level	Figure 33	Figure 35	Figure 45	Figure 47
	Beginning, middle, end of GTLP bus	Figure 34	Figure 36	Figure 46	Figure 48
f =160 MHz	I/O LVTTL level	Figure 37	Figure 39	Figure 49	Figure 51
	Beginning, middle, end of GTLP bus	Figure 38	Figure 40	Figure 50	Figure 52

Table 7. Measurement Results on SN74GTLPH1655 Demonstration Board

Measurement Results With an Unloaded Backplane (Z_O = 30 Ω , R_{TT} = 25 Ω)

Figure 29. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V_{CC}, Unloaded, 10 MHz

Figure 30. GTLP Bus Signal, Slow Rise and Fall Times, ERC = V_{CC} , Unloaded, 10 MHz

Figure 31. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Unloaded, 10 MHz

Figure 32. GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Unloaded, 10 MHz

Figure 33. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V_{CC}, Unloaded, 50 MHz

Figure 34. GTLP Bus Signal, Slow Rise and Fall Times, ERC = V_{CC} , Unloaded, 50 MHz

Figure 35. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Unloaded, 50 MHz

Figure 36. GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Unloaded, 50 MHz

Figure 37. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V_{CC}, Unloaded, 160 MHz

Figure 38. GTLP Bus Signal, Slow Rise and Fall Times, ERC = V_{CC} , Unloaded, 160 MHz

Figure 39. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Unloaded, 160 MHz

Figure 40. GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Unloaded, 160 MHz

Measurement Results With a Loaded Backplane (Z_O = 25 Ω , R_{TT} = 25 Ω)

Figure 41. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V_{CC}, Loaded, 10 MHz

Figure 42. GTLP Bus Signal, Slow Rise and Fall Times, ERC = V_{CC} , Loaded, 10 MHz

Figure 43. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Loaded, 10 MHz

Figure 44. GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Loaded, 10 MHz

Figure 45. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V_{CC} , Loaded, 50 MHz

Figure 46. GTLP Bus Signal, Slow Rise and Fall Times, ERC = V_{CC} , Loaded, 50 MHz

Figure 47. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Loaded, 50 MHz

Figure 48. GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Loaded, 50 MHz

Figure 49. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = V_{CC}, Loaded, 160 MHz

Figure 50. GTLP Bus Signal, Slow Rise and Fall Times, ERC = V_{CC} , Loaded, 160 MHz

Figure 51. LVTTL Input and Output Signal of SN74GTLPH1655, ERC = GND, Loaded, 160 MHz

Figure 52. GTLP Bus Signal, Fast Rise and Fall Times, ERC = GND, Loaded, 160 MHz

Summary

The SN74GTLPH1655 from TI provides engineers who develop fast and complex bus systems with a high-performance bus driver that is particularly suitable for the design of modern low-voltage systems.

Very high signal-propagation speeds are possible, as a result of the increased drive capability of 100 mA, compared with standard GTL circuits (40 mA), and the selectable edge rate. Bus lines with low line impedances of about 22 Ω can be used with the SN74GTLPH1655.

Bus lines with low line impedances of about 22 Ω can be matched using GTLP drivers that have a four-digit identifier, such as the SN74GTLPH1655. The four digits indicate the high drive capability of I_{OL} = 100 mA, while all other GTLP devices have a drive capability of 50 mA.

The four-digit GTLP devices allow optimum termination of low-impedance bus lines, thereby preventing interference and signal distortion that may otherwise occur as a result of line reflections. Reduced signal-voltage amplitude improves signal integrity.

The power-up 3-state and precharge functions provided by the SN74GTLPH1655 and, also, the bus-hold cells at the input of the LVTTL side, allow the design of modern high-speed systems requiring minimum development effort.

References

SN74GTLPH1655 16-Bit LVTTL-to-GTL+ Adjustable-Edge-Rate Universal Bus Transceiver, Data Sheet, October 1999, literature number SCES294.

GTL, BTL, and ETL Logic – High-Performance Backplane Drivers, Data Book, 1997, literature number SCED004.

Logic Selection Guide and Data Book, CD-ROM, April 1998, literature number SCBC001B.

GTL/BTL: A Low-Swing Solution for High-Speed Digital Logic, March 1997, literature number SCEA003A.

Next-Generation BTL/FutureBus Transceivers Allow Single-Sided SMT Manufacturing, March 1997, literature number SCBA003C.

Design Considerations for Logic Products, Application Book, 1997, literature number SDYA002.

Digital Design Seminar, Reference Manual, 1998, literature number SDYDE01B.

Designing With Logic, March 1997, literature number SDYA009B.

The Bergeron Method: A Graphic Method for Determining Line Reflections in Transient Phenomena, October 1996, literature number SDYA014.

Live Insertion, October 1996, literature number SDYA012.

Thin Very-Small Outline Package (TVSOP), March 1997, literature number SCBA009C.

Low-Voltage Logic Families, April 1997, literature number SCVAE01A.

Bus-Hold Circuit, July 1992, literature number SDZAE15.

Electromagnetic Emission from Logic Circuits, November 1998, literature number SZZA007.

PCB Design Guidelines for Reduced EMI, November 1998, literature number SZZA009.

Glossary

BTL	Backplane Transceiver Logic
ERC	Edge-Rate Control
GND	Ground potential
GTL	Gunning Transceiver Logic
GTLP	Gunning Transceiver Logic Plus
I/O	Input/Output
Live insertion	Removal and reinsertion of modules during operation
LVTTL levels	3.3-V logic levels, compatible with TTL logic levels
Partial power down	Switching off parts of a system that is in operation without removing them from the system
Precharge	Charging I/O pins to the threshold voltage
TTL	Transistor-Transistor Logic
V _{CC}	Supply voltage

High-Performance Backplane Design With GTL+

SCEA011A October 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Contents

Title

Title	Page
Abstract	7–57
Introduction	7–57
Background	7–57 7–57 7–58
Backplane Demonstration System Architecture Backplane Driver/Receiver (GTL16622A) Backplane Motherboard Interconnect and Impedance Calculations	7–61 7–61 7–61 7–61 7–62
Results	7–64 7–64 7–64 7–65
Moving Forward With the GTL16612A	7–66
Summary	7–67
Acknowledgment	7–67
References	7–67
Glossary	7–68

List of Illustrations

Figure	Title	Page
1	GTL/GTL+ Switching Levels	7–58
2	Lumped-Load Effects	7–58
3	Transmission Line	7–59
4	GTL16622A H-SPICE Simulation (Lumped Load, 33 MHz)	7–60
5	GTL16622A H-SPICE Simulation of a Backplane (Distributed Load, 33 MHz)	7–60
6	Backplane Demonstration Board Physical Layout	7–62
7	Backplane Physical Representation	7–62
8	Impedance Calculator	7–63
9	GTL16622A Signal Integrity (Laboratory Results)	7–64
10	GTL16622A Signal Integrity (HSPICE Simulation Results)	7–64
11	GTL16622A Signal Integrity (Hardware vs Simulation at 66 MHz)	7–65
12	GTL16622A vs GTL16612A (50 MHz)	7–66
13	GTL16622A vs GTL16612A (66 MHz)	7–66
14	GTL16612A Simulation Results at 80 MHz and 100 MHz	7–67

Abstract

Results from a system that demonstrates the performance of GTL+ devices in a backplane are provided. The Texas Instruments (TI^{TM}) GTL16622A is the example used in the design of the physical backplane. The TI backplane demonstration system is a useful tool for designers in understanding issues related to loading effects, termination, signal integrity, and data-transfer rate in a high-performance backplane environment. Simulation results are compared to laboratory measurements to validate the performance of TI GTL+ devices, and simulation results for the new TI GTL16612A in a very high-performance backplane are provided.

Introduction

High-performance backplane is becoming common terminology in the rapidly evolving data-communications market. Designers are developing innovative methods for multiplexing data to achieve higher throughput on the system bus or backplanes. High-speed backplanes that can handle large amounts of data are extremely important to high-performance systems.

The backplane is a physical and electrical interconnection between various modules in a system. Each module in the backplane communicates with other modules through the backplane bus. The backplane traces and the load capacitance affect signal integrity.

The discussion of the backplane demonstration system in this application report describes the various issues that should be considered while designing a backplane. The type of termination, backplane topology and layout, connector capacitance and stub lengths, along with the effect of the number of loads, all are investigated in this report. This report explains a demonstration backplane and its elements, followed by results that have been obtained using the TI GTL+ devices. HSPICE, a simulation tool, is used to model the performance of the system and to compare it to the hardware.

Background

In the past, increased throughput was achieved by increasing the frequency, or clock rate, or by increasing the bit width of the bus. Logic families that were used as backplane drivers included Advanced BiCMOS Technology (ABT), Fast CMOS Technology (FCT), Advanced CMOS Technology (ACT) and Backplane Transceiver Logic (BTL). These backplane drivers do not perform well in backplanes operating at frequencies over 33 MHz, but are sufficient for lower throughput requirements. With the trend toward higher system bandwidth requirements, into the hundreds of multimegabits per second, using a technology that supports these higher performance requirements is essential.

These increased speeds and performance requirements in designs created a need for higher-speed devices. Newer technologies developed by TI have helped to create devices that can drive these high-performance backplanes.

GTL/GTL+

Gunning Transceiver Logic (GTL), a technology invented by William Gunning at Xerox Corporation and standardized by JEDEC, was a low-swing input/output (I/O) driver technology that helped address these high-performance requirements. This technology was further modified by Intel[™] and TI by increasing the voltage swing to create the GTL+ switching standard (see Figure 1). Subsequently, the standard was used by TI and Fairchild to create stand-alone devices to drive backplanes.

Figure 1. GTL/GTL+ Switching Levels

GTL+ achieves high performance with the help of the low signal voltage swing.¹ The typical swing for GTL+ is from 0.6-V low (V_{OL}) to 1.5-V high (V_{OH}) maximum. TI uses tighter threshold regions, V_{IH} at 1.05 V, V_{IL} at 0.95 V, and V_{OL} at 0.55 V, to provide better signal integrity in its stand-alone devices. This report demonstrates the performance of the newest TI GTL+ devices operating at clock rates of 100 MHz, providing bit rates of up to 10 Gbit/s in a 100-bit-wide backplane bus.

The TI GTL family offers edge control, which reduces signal noise and electromagnetic interference (EMI). The basic GTL output structure is an open-drain transistor, whereas the input is a differential receiver.² Also, the GTL I/Os have been designed to minimize their capacitance, an extremely important factor for distributed-load high-performance backplanes.

Backplane Design Considerations

This section covers the electrical elements of the backplane. The backplane bus connects the different modules in a backplane. The wires and traces on the bus and the traces on the modules are electrical elements that are a connection point for the various electrical modules. It is necessary to understand these electrical elements (such as impedance, capacitance, inductance, termination, connectors, stub lengths, vias, and driver and receiver characteristics) to design a successful backplane.

All of the above parameters contribute to the performance of the backplane. Backplanes can be categorized as low performance, medium performance, or high performance. A low-performance backplane can be modeled as a lumped load; medium- and high-performance backplanes must be viewed as a distributed load, by applying transmission-line theory.

With a low-performance backplane, the backplane driver sees the load as a lumped capacitance. The capacitive load in many cases is still distributed; however, it is modeled as a lumped load. This lumped model is used where the rise time of the signal is small compared to the transition time along the backplane. Here, only the final state matters, and bus performance is not the highest concern. The lumped capacitance is charged or discharged by the driver (see Figure 2) and is controlled by the RC time constant. The low-to-high signal transition is indicated by $1 - e^{-t/RC}$ and the high-to-low signal transition is of the form $e^{-t/RC}$. This lumped capacitance is referred to in the industry as a lumped load.

Figure 2. Lumped-Load Effects

Medium- and high-performance backplanes can be modeled as a distributed load. This is because performance drives a multidrop architecture, where the capacitance is distributed over the length of the backplane. To design an optimized mediumor high-performance backplane, a few concepts must be understood. These include the characteristic impedance of the backplane, (Z₀), the characteristic delay per unit length (τ_0), and the reflection coefficient (ρ), defined as the ratio of the amplitude of the reflected wave to the incident wave.

Figure 3 shows the transmission line as a distributed inductance and capacitance. The backplane driver charges the capacitance and is delayed by the inductance along the line. The signal sees the line as a characteristic impedance, given as:

$$Z_{o} = \sqrt{(L_{o}/C_{o})}$$
(1)

Where:

 L_0 , C_0 = distributed inductance and capacitance per unit length

The current flowing into the transmission line is of the form:

$$I = V_{in}/Z_{o}$$

The transition time or the time it takes for the signal to travel along the transmission line is:

$$\tau_{\rm o} = \sqrt{(L_{\rm o}/C_{\rm o})} \tag{3}$$

The intrinsic per-unit delay along the line is multiplied by the distance to give the overall delay across the line.

Figure 3. Transmission Line

The connectors on the backplane connect the backplane traces to branch transmission lines called stubs. These stubs are the communication ports between the backplane and the plug-in modules. These stubs, which have inductance and capacitance, change the overall impedance of the transmission line, and affect the signals that feed into the plug-in modules. This lumped capacitance changes the impedance and delay constants along the line by the following relationships:

$$Z_{\rm L} = Z_{\rm o} / \sqrt{(1 + C_{\rm d}/C_{\rm o})}$$

$$\tau_{\rm d} = \tau_{\rm o} \sqrt{(1 + C_{\rm d}C_{\rm o})}$$
(5)

Where:

 $\begin{array}{ll} C_d &= \mbox{added capacitance per unit length} \\ C_o &= \mbox{intrinsic capacitance (as defined previously)} \end{array}$

A point on the backplane where the impedance changes is called a discontinuity. A discontinuity on a backplane can occur if the drivers are placed too far from the backplane, there is improper termination, or the driver and receiver characteristics are not properly matched. At each point where a voltage wave that travels down the backplane meets a discontinuity, some of the signal is reflected, while the rest is transmitted along the backplane. The reflection coefficient determines the amount of signal that is reflected and is defined as the ratio of the reflected wave to the incident wave.

Figures 4 and 5 show the effects described above by using the GTL16622A to drive lumped and distributed loads, respectively. The lumped load consists of 25 Ω to 1.5 V, 30 pF to GND, whereas, the backplane (distributed load) consists of 16 slots separated by 0.875 in. Each load is approximately 14 pF.

(2)

Figure 4. GTL16622A H-SPICE Simulation (Lumped Load, 33 MHz)

Figure 5. GTL16622A H-SPICE Simulation of a Backplane (Distributed Load, 33 MHz)

The added capacitance and inductance in the distributed load cause reflections that result in problems that include reduced noise margins.³ In this case, the signal on the bus must settle before being sampled, hence, the bus settling time is required before valid data can obtained. Table 1 shows the comparison for the noise margins obtained for GTL and GTL+. GTL+ provides a wider noise margin than GTL, an important factor for designing signal-integrity-critical applications. In high-performance backplane designs, termination voltage, bus impedance, termination resistance, stub lengths, and driver and receiver characteristics must be controlled carefully to achieve good signal integrity, so that valid data can be presumed at the incident wave of the signal.

DEVICE	NOISE MARGIN (mV)			
	UPPER	LOWER		
GTL	350	350		
GTL+	450	400		

Table 1. Noise-Margin Comparison

Another issue to consider in backplane design is crosstalk. Crosstalk, an effect of capacitive coupling in backplanes, can also result in false switching. Crosstalk between signal lines can be approximated as being inversely proportional to the distance between the signal lines and directly proportional to the distance between the signal lines and the ground plane. The most popular technique used to avoid crosstalk is fine-line technology that increases the distance between the signal lines while decreasing the distance between the signal line and the reference plane.

Backplane Demonstration System

The TI backplane demonstration board represents a typical industry backplane. The following section explains the elements of the demonstration backplane.

Architecture

Backplane Driver/Receiver (GTL16622A)

The GTL16622A 18-bit LVTTL-to-GTL/GTL+ bus transceiver translates between GTL/GTL+ signal levels and LVTTL or 5-V TTL signal levels. The device supports mixed-mode signal operation (3.3-V and 5-V signal) on the A port and control pins and is hot insertable with an output drive capability of 50 mA.⁴ The device is used as both the driver and the receiver on the individual plug-in modules in the backplane.

Backplane Motherboard

The TI backplane demonstration board was constructed after studying various backplane loads. The 36-bit backplane consists of 14-in. traces with 16 slots separated by 0.875-in. pitch. Figure 6 shows the physical layout of the backplane board and its elements. The power supplies are represented as PS1 (5 V) and PS2 (3 V) and connectors by points P1 to P16. The connectors host the driver/receiver cards.

The clock drivers are U1, U2, and U3. U1 and U2 each distribute the clock to eight loads, while U3 is configured to supply the data at one-half the clock rate. The crystal oscillator (X1) supplies the clock and the data to the backplane board. The crystal oscillator can be changed to configure the clock rates at any frequency. The frequencies that have been used to test the demonstration board are 50 MHz, 66 MHz, 80 MHz, and 100 MHz. One of the plug-in cards is a driver, while the remaining cards are receivers. The GTL16622A is used as both driver and receiver. The position of the driver card on the backplane can be varied to study the loading effects and signal integrity on the backplane.

The 1.5-V termination voltage (V_{TT}) for GTL+ is from a 5-V regulated power supply. The 3.3-V power supply provides power to the GTL device on board. The voltage reference, V_{REF} , is generated from V_{TT} , using a simple voltage-divider circuit with an appropriate bypass capacitor (0.1 μ F) placed as close as possible to the V_{REF} pin.² TI recommends placing the voltage-divider circuitry on each daughter card, because this eliminates the noise introduced by the backplane trace.

The intrinsic, unloaded, backplane trace impedance is 50 Ω and has a loaded impedance of 25 Ω with 16 loaded slots. The backplane is dc terminated using a 25- Ω resistor to V_{TT} to match the loaded impedance of the backplane. The 36-bit backplane is used to transmit data from the driver to each receiver card at the frequency of the crystal oscillator.

Figure 6. Backplane Demonstration Board Physical Layout

Interconnect and Impedance Calculations

Figure 7 is a graphical summary of the network that provides the physical dimensions of the backplane. Each element introduces additional capacitance on the board, which increases the loading on the backplane, eventually affecting signal integrity. The physical representation of the demonstration backplane shows the slots separated by 0.875 in. of backplane trace (B). There is a 0.0625-in. stub between the backplane trace and the connector (C), followed by approximately 1 in. of microstripline card stubs (D), and a total stub length of 1.0625 in. (as shown in the impedance calculator in Figure 8).

Figure 7. Backplane Physical Representation

The impedance calculator is a spreadsheet that is created using the previous equations to show the effects of distributed capacitance. The spreadsheet shows that the initial impedance of the 50- Ω backplane trace introduces a delay of 205 ps/in. (see equation 3) and has a C_o of 4.1 pF/in. The introduction of backplane loads increases the distributed capacitance (C_d) to 12.53 pF/in., which increases the propagation delay (t_{pd}) to 412.85 ps/in. and reduces the backplane impedance to 24.83 Ω (see equation 4). The backplane loading is a factor of the input/output capacitance of the driver or receiver (C_{io}), stub capacitance, via capacitance, and connector capacitance. Both ends of the backplane trace are terminated by a stub (A), using a 25- Ω pullup resistor to the termination voltage (V_{TT} = 1.5 V).⁵

Results

Laboratory data were taken using the demonstration backplane and compared to HSPICE simulation results to validate the performance of the GTL16622A on the backplane. Figure 7 is the reference to give the position of driver and receiver cards in the backplane. Results for TI's newest addition, the GTL16612A, demonstrate the throughput capability in a very high-performance backplane.

Laboratory

Figure 9 shows the laboratory results for the GTL16622A, with all 36 bits switching on the fully loaded backplane board with the driver card in slot 1. The worst-case signal was observed in the receiver card closest to the driver card (slot 2), while the best-case signal was seen in the receiver card farthest from the driver (slot 16). The throughput obtained at 50 MHz is 1.8 Gbit/s.

Figure 9. GTL16622A Signal Integrity (Laboratory Results)

Simulation

Figure 10 shows the HSPICE simulation results for the GTL16622A, which correlate closely with results observed in the laboratory with the demonstration hardware. The simulation results are observed after modeling the backplane using HSPICE for single-bit switching.

Figure 10. GTL16622A Signal Integrity (HSPICE Simulation Results)

The slot closest to the driver (slot 2) shows the worst-case ringing because it sees the fastest rise time of the IC driver compared to the slots that are farther away from the driver. The worst-case signal at slot 2 also is due to the effect of reflected energy that is maximum in the receiver closest to the driver.³

Correlation

Figure 11 shows laboratory versus simulation results for the GTL16622A on the demonstration board. The results shown are for the receiver at slot 2 (closest to the driver card). Here, as the frequency is increased, the time available for the data to be sampled decreases, making good signal integrity necessary at these high frequencies.

Figure 11. GTL16622A Signal Integrity (Hardware vs Simulation at 66 MHz)

Moving Forward With the GTL16612A

TI has continued to improve the characteristics and features of the GTL family to provide higher throughput rates at backplane frequencies up to 80 MHz. These higher frequencies allow designers to transmit increased amounts of data on their board, achieving high bit rates in their systems. The newest device in the GTL family, the GTL16612A, an improved version of the GTL16612, is capable of operating at frequencies as high as 80 MHz. The features of this device include output edge control (OEC^{TM}) on the rising and the falling edge, and optimization for high-performance distributed-load applications. Simulation results that provide a comparison between the GTL16622A and the GTL16612A are shown in Figures 12 and 13 at 50 MHz and 66 MHz, respectively.

Figure 12. GTL16622A vs GTL16612A (50 MHz)

Figure 13. GTL16622A vs GTL16612A (66 MHz)

OEC is a trademark of Texas Instruments Incorporated.

Figure 14 shows simulation results for the GTL16612A operating at high clock rates of 80 MHz and 100 MHz. The innovative design of the 18-bit device provides for extremely high throughput on a backplane if the timing requirements of the board can be met.

Figure 14. GTL16612A Simulation Results at 80 MHz and 100 MHz

Summary

The demonstration board has clarified backplane design issues and has provided unique insight into the capability of the GTL+ technology. With the escalation of requirements for high-speed data transfer, and a transition from low and medium performance to high performance, the backplane will be a critical component in the performance equation. The TI GTL16622A has served as a backplane driver for medium- and high-performance applications, while the new GTL16612A overcomes the problems in a very high-performance backplane to provide good signal integrity. Clearly, GTL+ is the next-generation technology, capable of accurately moving large amounts of data on the backplane with high speeds, while achieving the bit rates that will be required by new designs.

Acknowledgment

The authors of this application report are Shankar Balasubramaniam, Ramzi Ammar, and Ernest Cox.

The authors recognize the contributions and assistance provided by Adam Ley, Gene Hintershcer, and Mac McCaughey.

References

1 Dr. Ed Sayre, Mr. Michael A. Baxter, NESA Inc., "An Innovative Distributed Termination Scheme for GTL Backplane Bus Designs", DesignCon 1998.

2 Texas Instruments, *GTL/BTL: A Low Swing Solution for High Speed Digital Logic* application report, literature number SCEA003, September 1996.

3 Vantis, High Speed Board Design Techniques, August 1997.

4 Texas Instruments, SN74GTL16622A data sheet, literature number SCBS673.

5 California Micro Devices, "Termination Techniques for High Speed Buses", Electronic Design News, February 1998.

Glossary

Incident-wave switching	Voltage transition that is strong enough to switch the input of the receiver on the first edge of the wave. This implies that subsequent reflections do not change the state of the receiver to its previous state.
Noise margin	Difference between the driver or receiver threshold voltage and the voltage on the bus. A noise margin comparison for the GTL/GTL+ technologies is shown in Table 1. The increased noise margin for GTL+ is preferred because it can result in better signal integrity.
Stub	Path on the board between the driver/receiver card and the backplane. This includes the trace on the board, the connectors, and the lumped capacitance of the driver or the receiver. The length from the driver/receiver to the backplane is the stub length.
Throughput	Data rate that is achieved on the bus or the backplane. It can be calculated on a parallel-bus architecture as the product of the number of bits and the frequency of transmission.

Increase the speed of parallel backplanes 3x with GTLP

For high-speed parallel backplanes, GTLP is the answer.

Users of the Internet, wireless communications or the traditional wireline infrastructure are clamoring for more bandwidth. As a result, the parallel backplanes used in switches, routers, hubs and other communications equipment is quickly evolving to faster speeds. GTLP logic is an easy first step toward higher data throughput.

Migrate to next-generation speed

In today's interconnected, bandwidthhungry world, designers can easily increase by two to three times the data throughput speed of their networking, communications and telecommunications systems by migrating to TI's new GTL-Plus (GTLP) logic family for parallel backplanes. And since GTLP is backwardly compatible with traditional logic such as ABT, ALVT, LVT, LVC and FutureBus+, the migration to higher throughput is simple and direct.

Building upon its pioneering work with Gunning Transceiver Logic (GTL), TI has optimized the Output Edge Control[™] circuitry and added live insertion and removal capabilities to produce devices specifically designed for medium and heavily loaded parallel backplanes.

GTLP brings the benefits of GTL – higher frequencies and lower EMI and transmission noise - to parallel backplanes in excess of 20 slots. Combining Output Edge Control circuitry with GTLP's narrow signal voltage swing gives GTLP clock speeds in excess of 80 MHz and data throughput rates of at least 3.2 gigabytes per second (Gbps) across a 32-bit backplane.

Improving on a good thing

In recent years, GTL logic has become increasingly popular in point-to-point applications and backplane systems with a limited number of slots. Now, GTLP brings the high-speed advantages of GTL to medium- and heavily loaded parallel backplanes.

GTLP transceivers are differential input, open-drain n-channel devices. TI has optimized the Output Edge Control circuitry in GTLP transceivers to ensure good signal integrity (See chart below), reduce line reflections and limit the electromagnetic emissions at frequencies greater than 80 MHz.

GTLP devices have been optimized for a narrow signaling range between 0.55 and 1.5V with a threshold at 1.0V. Additionally, GTLP transceivers will operate at the GTL signal levels of 0.4 to 1.2V with a threshold at 0.8V.

GTLP transceivers are 3.3V CMOS devices, but they have 5V-tolerant

LVTTL inputs and outputs which allows them to act as 5V-to-GTLP translators or 3.3V LVTTL-to-GTLP translators. As CMOS devices, GTLP transceivers consume less than a third of the power that is typical for BiCMOS GTL devices.

Designing GTLP transceivers into next-generation systems with significantly higher data throughput speeds is relatively easy because GTLP is backwards compatible with the logic currently used in parallel backplanes.

Output Edge Control (OECTM) Circuitry Comparison ($V_{TT} = 1.5V$)

Original OEC

The many packaging options as well as pin-outs that are similar to previousgeneration devices simplify the designer's task.

Matching your backplane needs

For maximum flexibility in matching the needs of your backplane, the GTLP family comes in medium- and high-drive devices. High-drive devices sink 100 milli-Amperes (mA) of current, while medium-drive devices sink 50mA. Low impedance, heavily loaded backplanes achieve better data throughput performance with high-drive GTLP devices.

High-drive GTLP devices also feature

TI's innovative variable edge rate control circuitry which allows you to adjust the signal's edge rate to better match the conditions of your backplane.

An Easy Migration

To help the designer make an easy migration to GTLP, this new logic family is fully supported with tools like application notes, application support, free samples, demonstration backplane models, and IBIS and SPICE simulation models.
Live board insertion

Many backplane systems are used in communication and networking applications where availability 24 hours a day, seven days a week (24/7) is a must. As a result, boards must be inserted or removed from the system while it is still running. TI has included three kinds of internal circuitry to accomplish faultproof live insertion.

First, by including a blocking diode and removing a clamping diode, unexpected device behavior is eliminated when power is fully or partially removed. Second, new circuitry avoids driver conflict by ensuring that outputs are disabled during power up or down. And third, an internal pre-charging circuit prevents data corruption which can result from voltage spikes caused by inserting a board into a live backplane.

For more information on the GTLP family of high-speed parallel backplane logic or to find out how TI can help you make the switch to GTLP logic, visit our web site at www.ti.com/sc/gtlp or to reserve a copy of our GTLP Product Information book visit www.ti.com/sc/gtlpbook.

GTLP Chip Configurations

GTLP Device	LVTTL-to-GTLP Function	Pin Count	SOIC	SSOP	TSSOP	TVSOP	LFBGA
	Medium Drive (50 mA)					
SN74GTLP817	GTLP to LVTTL 1 to 6 Fanout Driver	24	~		~	~	
SN74GTLPH306	8-Bit Bus Transceiver	24	~		~	~	
SN74GTLPH16945	16-Bit Bus Transceiver	48		~	~	~	
SN74GTLPH16912	18-Bit Universal Bus Transceiver	56		~	~	~	
SN74GTLPH32945	32-Bit Bus Transceiver	96					~
SN74GTLPH32912	36-Bit Universal Bus Transceiver	114					~
	High Drive (100) mA)					
SN74GTLP1394	2-Bit 3-Wire Transceiver	16	~		~	~	
SN74GTLPH1645	16-Bit Bus Transceiver	56		~	~	~	
SN74GTLPH1655	16-Bit Universal Bus Transceiver	64			~		
SN74GTLPH1612	18-Bit Universal Bus Transceiver	64			~		
SN74GTLPH3245	32- Bit Bus Transceiver	114					~

The Pluses of GTLP

- Two to three times faster data throughput on heavily loaded parallel backplanes
- 3.2 gigabits per second (Gbps) with a 32-bit backplane
- Easy migration path from traditional backplane logic like ABT, FCT, LVT, ALVT, LVC or FutureBus+
- Live insertion of cards into GTLP backplanes for high-availability systems
- Wide selection of high drive devices
- Wide selection of packaging options
- Consumes one-third the power of BiCMOS GTL devices

A wide range of GTLP packaging options is available to satisfy all design needs. TI's MicroStar BGA™ package reduces by 45 to 65 percent the board space needed for traditional surface mount packages. With an easy migration to Texas Instruments' new Gunning Transceiver Logic-Plus (GTLP) family, designers can increase the data throughput of parallel backplane systems by 100 to 200 percent. GTLP extends the success of GTL logic in point-to-point applications to parallel backplane systems without requiring a radical redesign of the system.

And for high-availability systems in communications, telecommunications and networking, GTLP supports live insertion and removal of boards into a backplane.

Three times the speed -That's what a simple migration to GTLP logic can do for your parallel backplane system.

Packaging Options

TI Worldwide Technical Support

Internet TI Semiconductor Home Pa www.ti.com/sc TI Distributors www.ti.com/sc/docs/ger	ge eral/distrib.htm	Japan Phone International Domestic Fax International Domestic	+81-3-3344-531 0120-81-0026 +81-3-3344-531 0120-81-0036	1
Product Informatio	<u>n Centers</u>	Internet International Domestic	www.ti.com/sc/ www.tij.co.jp/pi	/jpic ic
Phone Fax Internet	+1(972) 644-5580 +1(214) 480-7800 www.ti.com/sc/ampic	Asia Phone International	+886-2-23786800	
Europe, Middle East, and A Phone Belgium (English) France Germany Israel (English) Italy Netherlands (English) Spain Sweden (English) United Kingdom Fax Email Internet	frica +32 (0) 27 45 55 32 +33 (0) 1 30 70 11 64 +49 (0) 8161 80 33 11 1800 949 0107 800 79 11 37 +31 (0) 546 87 95 45 +34 902 35 40 28 +46 (0) 8587 555 22 +44 (0) 1604 66 33 34 epic@ti.com www.ti.com/sc/epic	Domestic Australia China Hong Kong India Indonesia Korea Malaysia New Zealand Philippines Singapore Taiwan Thailand Fax Email Internet	Local Access Code 1-800-881-011 10810 800-96-1111 000-117 001-801-10 080-551-2804 1-800-800-011 000-911 105-11 800-0111-111 800-006800 0019-991-1111 886-2-2378-6808 tiasia@ti.com www.ti.com/sc/apic	<u>TI Number</u> -800-800-1450 -800-800-1450 -800-800-1450 -800-800-1450 -800-800-1450 -800-800-1450 -800-800-1450 -800-800-1450 - -800-800-1450

Important Notice: The products and services of Texas Instruments and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

B010300

Microstar BGA and Output Edge Control (OEC) are registered trademarks of Texas Instruments.

© 2000 Texas Instruments Printed on recycled paper.

Printed in the U.S.A. at Millet the Printer, Inc., Dallas, Texas

Texas Instruments GTLP Frequently Asked Questions

Steve Blozis

Standard Linear & Logic

ABSTRACT

Using a question-and-answer format, advantages of TI's GTLP devices, particularly for backplane applications, are presented, as well as differences between GTLP and GTL/LVDS devices. Applicable topics include data throughput rates, synchronous clocks, price and alternative sources, bus transceivers, live insertion, power consumption, backplane termination, voltage translation, IBIS and HSPICE models, and sample availability.

Table of Contents

	Introduction	7–78
1.	What is a backplane?	7–78
2.	What is a backplane protocol?	7–78
3.	Should I use a parallel or serial architecture?	7–78
4.	If I use a parallel single-ended backplane, why do I need to use backplane-optimized	
	transceivers and not just typical LVT or FCT devices?	7–79
5.	What is VME?	7–79
6.	What is GTL?	7–80
7.	What is the difference between GTLP and GTL?	7–83
8.	What is distributed capacitance?	7–86
9.	What are you going to do with GTL now that you have GTLP?	7–89
10.	. How should I terminate GTL devices in short-distance applications?	7–90
11.	. What is the advantage of using GTLP in my backplane?	7–90
12.	. What is the difference between GTLP and LVDS?	7–92
13.	. How does GTLP compare to other single-ended and differential bus solutions?	7–93
14.	. What is the maximum data throughput using GTLP?	7–95
15.	. What is the difference between synchronous clock and source-synchronous clock?	7–97
16.	. What GTLP devices are available and how much will they cost?	7–98
17.	. These function numbers are different. How do they compare to normal logic functions?	7–99
18.	. I know what a bus transceiver is, but what is a UBT™?	7–100
19.	. I need an alternate source. Are there any?	7–102
20.	. Are the alternate-source devices identical?	7–103
21.	. What is important about live insertion?	7–104
22.	. What is the total power consumption of an 18-bit GTLP driver?	7–105
23.	. How should I generate the termination voltage?	7–108
24.	. Why not use Thevenin voltage dividers for termination?	7–109
25.	. Tell me more about bus hold	7–110
26.	. Tell me more about power-up 3-State (PU3S).	7–110
27.	. Should I tie GTLPH16612 control inputs to 3.3 V or to 5 V?	7–110
28.	. What do I do with unused or undriven GTLP A- or B-port I/Os?	7–111
29.	. Can I connect the SN74GTLPH16612GR unused I/O pins of the	
	A ports and B ports directly to GND?	7–112
30.	. How does an extender card affect signal integrity?	7–112
31.	. What is the transistor count for GTLP devices?	7–113
32.	. Can I use GTLP as a low-voltage translator?	7–114
33.	. What is the voltage input range I can apply to the B port if V is set at 0.8 V?	7–116
34.	. Can I use GTLP as a replacement for FB+ devices?	7–116
35.	. I'm trying to determine which 3.3-V logic family will best fit my needs, and	
	I'm still not quite clear on what choice I should make.	7–117
36.	. How do I get a GTLP data sheet?	7–119
37.	. When will GTLP models and devices be available?	7–119

38. How do I get IBIS Models?	
39. How do I get HSPICE Models?	7–120
40. Why does the unencrypted Level-37 HSPICE model require a confidentiality agreement?	7–120
41. How should I request a confidentiality agreement?	7–120
42. What does the encrypted HSPICE model zipped file contain?	7–120
43. If the file is encrypted, why do we need the one-time patch from Avant!?	7–121
44. How do I request preproduction samples?	7–121
45. How do I request production samples?	7–121
46. I requested the SN74GTLP1394, but the topside marking is GP394	7–121
47. How can I request additional technical support?	7–123

Introduction

This information on GTLP and backplane design is presented in the frequently asked-question (FAQ) format. The GTLP FAQs allow the novice backplane user to learn more about parallel backplanes and allows the experienced backplane user to better design-in and use the higher performance of GTLP devices. Any questions not adequately addressed or applications you want highlighted can be sent to GTLP@list.ti.com for action and possible future insertion into the FAQs.

1 What is a backplane?

A backplane is a physical and electrical system bus that interconnects several printed circuit boards though a series of connectors. These buses can vary by the number of layers and traces and by electrical architecture. Generally, backplanes are passive, particularly in the telecom market, in which reliability concerns force designers to minimize the number of backplane components. Backplane transceivers/buffers drive data onto and receive data directed to PC boards located along the backplane.

2 What is a backplane protocol?

The protocol decides the electrical, logical, and mechanical characteristics of a backplane. In addition to the standard protocols, many backplane designers prefer to employ proprietary protocols and architectures. Some of the more popular standard protocols are BLT, MBLT, 2eVME, and 2eSST on VME64x backplanes, PCI, cPCI, PMC, ISA, Multibus, PC/104, and PC/104+. Of these, VME, PCI and cPCI, collectively, dominate the market. cPCI combines the robust, rugged VME backplane physical configurations with the electrical performance of the PCI backplanes.

3 Should I use a parallel or serial architecture?

Part of choosing a protocol is deciding which type of backplane architecture is suited best to your application. You must choose between parallel and serial architectures, or a combination of both, and select point-to-point, multidrop, or multipoint data-distribution methods. Parallel systems require less protocol overhead, which is useful when sending status or control bits over short distances. Serial implementations offer board saving through the reduction in the number of board traces (if SERDES devices are used) and supply higher data throughput over greater distances.

4 If I use a parallel single-ended backplane, why do I need to use backplane-optimized transceivers and not just typical LVT or FCT devices?

The physics involved with a distributed-capacitance load limits the maximum frequency, unless the device is optimized with slower edge rates that ring less in these environments. FCT or LVT can offer only up to about 25 MHz, and, even then, signal integrity might be poor. The new VME and GTLP families are optimized with slower edge rates and provide much better signal integrity in a backplane environment. VME devices can operate up to about 40 MHz and are compatible with existing TTL/LVTTL backplane logic. GTLP is a derivative of GTL, and can operate at up to 175 MHz.

5 What is VME?

VME is short for VERSA bus architecture and owes its heritage to the Motorola 6800 microprocessor. It is a standardized 21-slot, 64-bit backplane architecture, coordinated and controlled by the VMEbus International Trade Association (VITA). TI is working with VITA on the SN74VMEH22501, a new backplane-optimized device that supports the 2eVME and 2eSST protocols. More information on VITA can be obtained at http://www.vita.com. More information on the new VME device can be obtained at http://www.ti.com/sc/etl.

6 What is GTL?

GTL is a reduced-voltage-swing (<1 V), open-drain/collector, differential-input JEDEC standard that allows higher frequency operation than TTL devices in point-to-point and lightly loaded memory-interface-bus applications. The reduced voltage swing reduces EMI and allows higher frequencies. For best signal integrity, the open-drain/collector arrangement facilitates matching the termination resistor (R_{TT}) to the trace impedance (Z_O). As shown in Figure 1, the open-drain/collector pulls the signal low when the device is turned on, but when the device is turned off, the pullup termination resistor is required to pull the signal high to the termination voltage (V_{TT}). The GTL standard is V_{TT}/V_{OH} = 1.2 V, V_{OL} = 0.4 V, and V_{IH} and V_{II} set ±50 mV around the GTL differential-input reference voltage (V_{ref}) of 0.8 V.

Figure 1. GTL Open-Drain/Collector Differential-Input Device

Open-drain and open-collector devices operate in exactly the same way to sink energy to ground. Open drain refers to CMOS transistors, while open collector refers to bipolar transistors. GTL devices can be manufactured using either process.

GTL+ is a variation on GTL that moves V_{ref} from 0.8 V to 1.0 V so that it is farther from the ground-bounce region. GTL+ voltage swing improves the upper and lower noise margins. Voltage swing is from V_{OL} = 0.55 V to the termination voltage of V_{TT}/V_{OH} = 1.5 V.

Any device that operates at GTL signal levels also can operate at GTL+ signal levels, and vice versa, with GTL+ being the preferred signal level due to its higher noise margins. In unusually noisy situations, V_{ref} can be adjusted to other than 0.8 V or 1.0 V in either standard to equalize, and, therefore, maximize both the upper and lower noise margins.

GTL devices are bidirectional translators (see Figure 2). A-Port (daughter-card side) input can be 5-V CMOS, TTL, or LVTTL logic levels; output is LVTTL, which is compatible with TTL logic levels. B-Port (backplane side) input and output is GTL or GTL+ signal levels.

Figure 2. GTL Bidirectional Translator

As shown in Figure 3, V_{ref} is set by an R/2R resistor network between V_{TT} and GND. The resistor network maintains balanced upper and lower noise margins for any termination-voltage fluctuations. A 0.1- to 0.01- μ F bypass capacitor buffers voltage fluctuations and should be as close to the V_{ref} pin as possible.

Figure 3. GTL R/2R Resistor Network

 V_{ref} is generated locally on each card, using size 805 1-k Ω and 2-k Ω ±1% resistors. Each device V_{ref} input takes, at most, 10 μA , so one resistor network per card is acceptable. The card resistor network takes V_{TT} from the backplane through a connector power pin. Do not distribute the V_{ref} power across all cards from one resistor network.

7 What is the difference between GTLP and GTL?

TI introduced the GTL family of devices in 1993. GTL devices were designed with faster edge rates to drive a lumped load. Originally, these devices were designed for small buses on a board, e.g., memory applications, and did not support hot insertion. The devices rang excessively when used in larger multipoint distributed-capacitance backplane applications because of the faster edge rate. Maximum backplane frequency was limited to about 30 MHz.

GTLP devices were introduced in 1997 to serve distributed-capacitance backplane applications. GTLP is a subset of GTL devices, with one major difference. GTLP incorporates improved output edge-control (OEC) circuitry that slows the edge rate and reduces ringing, which allows maximum possible frequencies above 80 MHz in backplane applications. GTLP devices can operate at GTL signal levels, but are optimized for, and normally only specified at, GTL+ signal levels ($V_{OL} = 0.55$ V to $V_{OH} = 1.5$ V, with $V_{ref} = 1.0$ V). GTLP backplane-optimized devices normally refer to GTLP instead of GTL+ as the 1.5-V $V_{OH}/1.0$ -V V_{ref} standard, while GTL lumped-load optimized devices refer to GTL+ at this voltage level.

The waveforms in Figure 4 demonstrate the difference between the TI SN74GTL16612 and the newer SN74GTLPH16612, and how the backplane-optimized edge rates improve signal integrity in a distributed load.

Test results for the competitor's GTLP16612, a pin-for-pin functional equivalent of the SN74GTLPH16612, is shown in Figure 4 for comparison. These receiver waveforms were obtained using a fully loaded 16-slot demonstration backplane, with $Z_0 = 50 \Omega$, $R_{TT} = 24 \Omega$, slot spacing = 0.9 inch, and data frequency of 37.5 MHz. The driver card was in slot number 8 and the receiver card was in slot number 1.

Figure 4. Demonstration of Output Edge Control

All three devices shown in Figure 4 have bus hold on the LVTTL A port. But, only the newer TI GTLP family uses H in the part number to denote bus hold, because there are several devices in the GTLP family without bus hold. All TI GTL devices have bus hold, while the competitor's GTL or GTLP family has some of both; the only way to determine the configuration is by referring to the data sheet.

A typical single-bit distributed-capacitance open-drain/open-collector backplane physical representation is shown in Figure 5. Normally, backplanes are 4, 16, 32, 64, 128, or more bits wide, with each bit identical to the representation in Figure 5. Both GTL and GTLP devices need a pullup resistor to pull the bus high. In this representation, the device in slot 1 is on, pulling the trace below 0.55 V, and providing a valid low. Receivers in slots 2 through 20 detect that the signal is low and, if not in the high-impedance state, transmit a low logic level to the A-port daughter-card side. Although not shown, each driver/receiver on the daughter card is a transceiver that can be configured to transmit or receive signals from the backplane. When the device in slot 1 is turned off, the bit is pulled high to 1.5-V by the 22- Ω termination resistors. The receivers in slots 2 through 20 detect that the signal is now high and transmit a high logic level to the daughter card. This process is repeated multiple times, with any card being able to transmit low signals onto the backplane. This can be done, even with multiple devices at the same time (wired-OR), without bus contention. This example assumes true logic.

Figure 5. GTLP Open-Drain Backplane Physical Representation

GTLP devices are offered in two drive levels to match the termination-resistance value. For best signal integrity and incident-wave switching, the termination resistor should match or be smaller than the effective trace impedance. The effective trace impedance and, hence, the optimum termination-resistance value, varies, based on stub length, device C_{io} , slot pitch, and type of connector. Medium-drive (50 mA) devices are good replacements for existing TTL/LVTTL devices where higher frequencies are needed, but lower power consumption is a concern. These devices should be used with termination-resistor values \geq 38- Ω . High-drive (100 mA) devices are best for replacing ABTE/FB+ devices where lower termination resistor values (22 Ω to 38 Ω) are required. Either medium- or high-drive devices can be used with higher resistance (e.g., 60 Ω) termination resistors, with the only outcome being the device pulls V_{OL} to a lower level, closer to GND, and probably poorer signal integrity, unless the effective trace impedance also is 60 Ω .

Incident-wave switching ensures that the first received signal during a transition (low to high or high to low) is valid, and reduces wait time. Reflected-wave switching requires additional wait time as shown in Figure 6.

	SWITCHING WITH THE INCIDENT WAVE	SWITCHING WITH THE REFLECTED WAVE
A⇒B	t _{pd Driver} + t _{pd Receiver} = 5 ns + 5 ns = 10 ns	t _{pd Driver} + t _{pd Line} + t _{pd Line} + t _{pd Receiver} = 5 ns + 10 ns + 10 ns + 5 ns = 30 ns
A⇒C	$t_{pd Driver} + t_{pd Line} + t_{pd Receiver}$ = 5 ns + 10 ns + 5 ns = 20 ns	t _{pd Driver} + t _{pd Line} + t _{pd Receiver} = 5 ns + 10 ns + 5 ns = 20 ns
Worst case	20 ns	30 ns

Additional information on incident-wave switching is in the *Fast GTLP Backplanes With the GTLPH1655* application report, literature number SCBA015A.

In summary, GTLP is a bidirectional translator (5-V CMOS, TTL or LVTTL to GTLP, and GTLP to LVTTL or TTL) that facilitates significantly higher frequencies (>80 MHz) and higher data throughput in multipoint, heavily loaded, distributed-capacitance backplane applications because the B-port GTLP output transistors produce these features:

- Reduced voltage swing (<1 V), which reduces EMI over TTL solutions.
- Optimized OEC with low slew rates (0.35 to 0.5 V/ns), which minimizes overshoot in distributed loads.
- Open-drain configuration with matched termination resistors (\geq 22 Ω high drive or \geq 38 Ω medium drive), which ensures incident-wave switching and optimum signal integrity.
- I_{OFF}, PU3S, and BIAS V_{CC} precharge circuitry prevent data disturbance during card insertion or removal, permitting full live-insertion capability.

8 What is distributed capacitance?

Figure 7 is a simplified backplane physical representation, where an equivalent capacitive load of 12 pF replaces the receivers. The transmitter also has an equivalent capacitive load of 12 pF.

The total capacitance (C_t) of each card is calculated by summing all the capacitive components associated with the transceiver and the connection to the backplane. Figure 8 shows a typical connection scheme between the backplane stripline and the transceiver device on the daughter card. Point C is the connection to the backplane stripline, and point D is the connection to a transceiver integrated circuit. The total capacitance at point C is the sum of each of the elements in the connection chain.

The capacitance in the chain illustrated in Figure 8 is summed as follows:

C_{via} = capacitance of via = 0.5 pF

 C_{stub1} = capacitance of Stub1 = 0.0625 inch × 2.6 pF/inch = 0.16 pF

 C_{cpad1} = capacitance of C_{pad1} = 0.5 pF

C_{con} = capacitance of connector = 0.74 pF

 C_{cpad2} = capacitance of C_{pad2} = 0.5 pF

 C_{stub2} = capacitance of Stub2 = 1 inch × 2.6 pF/inch = 2.6 pF

C_{io} = typical input/output capacitance of device = 7 pF

$$C_t = C_{via} + C_{stub1} + C_{cpad1} + C_{con} + C_{cpad2} + C_{stub2} + C_{io}$$

$$C_t = 0.5 + 0.16 + 0.5 + 0.74 + 0.5 + 2.6 + 7$$

$$C_t = 12 \, pF$$

This total capacitance (C_t) of 12 pF is placed at point C on the backplane for every transceiver. With all the slots filled, the 10-inch transmission line has ten 12-pF capacitors and one transmitter (12 pF) distributed at 1-inch intervals.

Total capacitance then can be distributed uniformly across the transmission line at an equivalent rate of capacitance per inch (C_d) . The total capacitance per distance is the distributed capacitance. The higher the total card capacitance and the closer the card spacing (slot pitch) the heavier the backplane loading.

The distributed capacitance equals the total capacitance divided by the separation, or $C_d = C_t/d$. In our example, $C_d = 12 \text{ pF}$ per 1 inch or 472 pF per meter. The new effective trace impedance $Z_{O(eff)}$ and effective propagation delay ($t_{pd(eff)}$) can be calculated using the following equations. C_o is the characteristic capacitance, which is dependent on Z_O and is fixed.

 $Z_{O}(eff) = Z_{O} / \sqrt{1 + (C_{d}/C_{O})}$ $t_{pd}(eff) = t_{pd} \times \sqrt{1 + (C_{d}/C_{O})}$

The distributed capacitance (C_d) affects both the propagation delay and the characteristic impedance of the transmission line. A larger C_d (higher C_t and/or smaller d) results in lower effective trace impedance ($Z_{O(eff)}$) and a higher effective propagation delay ($t_{pd(eff)}$).

This illustrates why the termination-resistor values should be lower than the typical 50- Ω natural transmission-line impedance in multipoint applications. Matching the termination resistor with the effective trace impedance ensures incident-wave switching and better signal integrity. Higher-drive (100 mA) devices are offered because termination values lower than 38 Ω often are required.

For example, in a 20-slot, slot pitch = 0.94 inch backplane, the characteristics in Table 1 are observed.

Unloaded (Natural) Embedded			Trace and	20 Empty	Fully Loaded	Card C, [†]		
Microstrip Trace			Connectors	at 0.94 Inch	Cards at 0.			
Ζ _Ο	^t pd	C _O	Z _{O(eff)}	^t pd	Z _{O(eff)}	^t pd	(pF)	
(Ω)	(ns/in)	(pF/in)	(Ω)	(ns/in)	(Ω)	(ns/in)		
48	142	2.99	37	183	18	382	15	
90	165	1.84	62	239	26	570	16.2	

Table 1.	Backplane Characteristics,	, 20 Slots at 0.94-Inch	Slot Pitch
----------	----------------------------	-------------------------	-------------------

[†] Different stub lengths provide a unique C_t for each bit on the same daughter card.

Table 1 clearly shows that, in a heavily loaded backplane with the 48- Ω natural Z_O, the termination resistance should go as low as 18 Ω , but is limited to 22 Ω by the GTLP high-drive maximum recommended I_{OL}. Increasing the natural Z_O to 90 Ω can change the termination resistor to 26 Ω , a value that is within the capacity of the high-drive devices and better approximates what the medium-drive devices can handle. The disadvantage is that the backplane time of flight is about 50% higher. Typical card capacitance will be between 12 pF and 18 pF, depending on device C_{io} and stub length, with stub length being most critical. Stub length always should be less than one inch for best backplane performance. Lower C_t always is better.

For best signal integrity, termination resistor R_{TT} should equal the loaded-trace impedance $(Z_{O(eff)})$. A lower value for R_{TT} could be used to compensate for possible variations of the device typical C_{io} , up to the maximum C_{io} value.

The waveforms in Figure 9 show the effect on signal integrity in over-matched and undermatched termination conditions. R_{TT} should be less than or equal to $Z_{O(eff)}$ for optimum signal integrity and upper noise margin.

Figure 9. GTLP Waveform Under Different R_{TT} Conditions

The result of using an under-matched termination is that V_{OL} will be closer to ground and the upper noise margin will be less, as is clearly shown in Figure 9.

The result of a matched termination is optimal upper and lower noise margins.

The result of using an over-matched termination is that V_{OL} on the card farthest from the driver is higher and the lower noise margin is reduced.

More information on calculating distributed capacitance is in the *Basic Design_Considerations* for *Backplanes* application report, literature number SZZA016A, at www.ti.com/sc/docs/apps/logic/appnotes.html under backplane logic.

9 What are you going to do with GTL now that you have GTLP?

TI will continue to support and expand the GTL family because these devices are well suited for voltage-level translations, point-to-point applications, and lightly loaded bus onboard-memory applications, e.g., Intel[™] Pentium[™] microprocessors operate at GTL+ signal levels. Customers can switch between GTL and GTLP families, but must be aware of the differences in the edge rates. GTLP devices can be used in memory applications, but, due to the slower edge rates, the device propagation delay is longer. GTL devices should not be used in high-frequency heavily loaded backplanes.

Intel and Pentium are trademarks of Intel Corporation.

10 How should I terminate GTL devices in short-distance applications?

GTL products are open drain, so they must be connected to V_{TT} via proper R_{TT} termination resistors. One question is that if GTL or GTLP is used to transmit signals on a daughter card, the distance is very short, about 4 cm to 6 cm. Do we need to position a R_{TT} termination resistor at both the driver and receiver? If so, can you provide the R_{TT} based on your experience? In such a condition, how can better results be obtained?

You need only to put the R_{TT} termination resistor at the receiver end of the transmission line. On the backplanes we recommend putting the termination resistors on both ends of the backplane because you do not know when slot 1 or 20 will be the transmitter or receiver, so you have to cover both cases. The R_{TT} value should equal the loaded-trace impedance whether or not you use one or two R_{TT} termination resistors. If two are used, the effective resistance is reduced by a factor of two (i.e., 50Ω at either end, the driver will see $25 \cdot \Omega$ effective resistance) which means simply that the driver has to be able to sink more current. For this short trace and lower loading you could probably use a single termination resistor at the receiver that is about 10Ω less than the natural trace impedance (i.e., If Z_O is 50Ω , use 40Ω .). Using the GTLP EVM, we have removed the driver termination and the signal integrity was satisfactory, however, when the receiver termination was removed and only the driver side was terminated, signal integrity was poor. As you would expect, it did not work when both terminations were removed.

11 What is the advantage of using GTLP in my backplane?

Increasing bandwidth and data throughput speeds are major issues today for many systems, as our world becomes increasingly interconnected. TI has taken what it has learned about the use of GTL over the last four years and applied this expertise and knowledge to future backplane-based applications using GTLP devices.

TI's GTLP family has been designed specifically for optimum signal integrity in multipoint, heavily loaded, distributed-capacitance backplanes like those shown in Figure 10. These improvements allow higher data throughput in the same bit-width backplanes that are currently being used and provide an easy migration from current TTL/LVTTL and BTL/FB+ backplane drivers to GTLP devices.

Figure 10. Heavily Loaded, Distributed-Capacitance Backplane Installation

GTLP devices allow higher frequencies on the backplane because of the improved signal-integrity/incident-wave switching the results from the reduced swing (<1 V), lower slew rate (0.35 V/ns to 0.5 V/ns), and matched termination resistors.

Additionally, GTLP fully supports live insertion, a capability that is imperative in high-availability communications and networking applications. I_{off} and PU3S provide hot-insertion capability, while the BIAS V_{CC} precharge circuitry precharges the B-port input/outputs to the threshold voltage. This protects active data on the backplane from voltage spikes or glitching, and provides true live-insertion capability.

GTLP devices are designed and manufactured in an advanced CMOS process that reduces static-power consumption.

GTLP devices are 5-V tolerant because, although most applications are migrating to 3.3 V, or lower, some existing circuits/devices on the board remain at 5 V.

GTLP is offered in a wide variety of packaging options and pinouts that are similar to previous-generation devices. This helps simplify the designer's task of migrating to a GTLP-based backplane. High-drive devices are identical to the comparable medium-drive devices, except for the addition of five ground, two V_{CC}, and one edge-rate control (ERC) pins. The additional ground and V_{CC} pins reduce ground and V_{CC} supply noise, thus providing additional noise margin. The ERC pin allows the selection of either a slow or fast edge rate by holding the control pin at V_{CC} or ground. The faster edge rate reduces the propagation delay and allows higher frequency operation in an optimally terminated backplane.

Lumped loads normally are associated with point-to-point applications. However, GTLP devices have been designed into actual backplane netlists and a resistance/inductance/ capacitance (RLC) network that closely matches the results in a backplane. TI's GTLP devices are tested into a lumped load, as are all other devices offered by TI and other semiconductor manufacturers. Engineers are using GTLP devices in high-performance distributed-capacitance loads and the actual switching characteristics are radically different from the lumped loads that are specified in the data sheet. TI SPICE-modeled values using the RLC network are included in the data sheet to better help engineers understand backplane effects. In summary, the data-sheet switching-characteristics into the lumped-load parameter values are going to look ugly but the actual performance of the device in a distributed load is going to be beautiful.

12 What is the difference between GTLP and LVDS?

GTLP is a single-ended low-voltage-swing (<1 V) standard, whereas LVDS is a differential low-voltage-swing (350 mV, typical) standard. Single-ended devices require only one trace per bit of data, while differential devices require two traces for each bit of data. Differential devices, e.g., LVDS, LVDM (backplane optimized LVDS), SERDES, Wizard, etc., work well for high-speed data transmission over long cables, such as between cabinets, cards, or racks, as shown in Figure 11, but they do not fit all applications where simplicity and lower cost of implementation indicate that single-ended devices are better for use in multislot backplane applications.

Figure 11. Various Equipment Connections

13 How does GTLP compare to other single-ended and differential bus solutions?

Reduced voltage swing, lower slew rate, and open-drain construction allow GTLP devices to operate at higher frequencies than TTL devices in parallel-backplane architecture. GTLP offers an alternative to high-data-throughput differential devices where parallel backplanes are the best solution and higher data throughput is now required (see Table 2).

Device (typically 16245 function)	Bidirectional (B) or Unidirectional (U)	V cc (V)	Tolerant to	Hot Insertion	Live Insertion	Number of Pins in the Package	Number of Bits	Cost (\$ in DGG qty 999 Internet Price)	Card Interface Drive (mA)	BP Interface Drive (mA)	lcc (mA - Output Low)	C _{io} (pF - max)	Freq. Max BP (MHz)	Data Throughput Per Package (Mbps - Transparent Mode)	Data Throughput per Bit- \$ (Mbps/bit\$)	Data Throughput per Bit (Mbps/bit)
Single-Ended Bus Interface Solution																
ABT	В	5	5	Y	N	48	16	\$1.92	-32/+64	-32/+64	32	6-typ	33	1,056	34	66
LVT	В	3.3	5	Y	Ν	48	16	\$2.17	-32/+64	-32/+64	5	10 - typ	33	1,056	30	66
ALVT	В	3.3	5	Y	Ν	48	16	\$3.09	-32/+64	-32/+64	5	6-typ	40	1,280	26	80
GTLP Medium Drive	В	3.3	5	Y	Y	48	16	\$5.00	-24/+24	50	35*	9	80	2,560	32	160
ABTE	В	5	5	Y	Y	48	16	\$5.01	-12/+12	-60/+90	48	8	45	1,440	18	90
BTL/FB+	В	5	5	Y	Y	52	8	\$10.47	-3/+24	100	70	5	50	800	10	100
GTLP High Drive	В	3.3	5	Y	Y	56	16	\$5.85	-24/+24	100	35*	10	100	3,200	34	200
	Differential Bus Interface Solution															
ECL/PECL	U	5	5	N	N	24	8	\$10.20	-3/+24	-25	69		80	640	8	80
TLK2500	В	2.5	3.3	Y	N	64	16	\$36.70	-1/+1	1 Serial	135	Serial		2,500	4	156
LVDS386/387	U	3.3	5	Y	Y	64	16	\$9.58	-8/+8	16 - Serial	70	Serial		10,080	66	630
LVDS93/94 SERDES	U	3.3	5	Y	Y	64	28	\$3.50	-4/+4	5 - Serial	84	Serial		1,820	19	65

Comparison of Single-Ended vs Differential Bus-Interface Solutions Table 2.

The maximum backplane frequency is based on good backplane construction and termination techniques. The TLK, LVDS, and SERDES data throughputs are theoretical maximum values; actual data throughput rates are less.

Comparison of cost of GTLP versus other single-ended technologies shows that GTLP data throughput per bit-dollar is about the same as the most popular parallel technologies, such as ABT. Although GTLP costs about three times more than ABT, the GTLP data throughput is more than three times greater than ABT in heavily loaded backplanes. GTLP also is an excellent replacement for ABT or LVT in low-frequency applications where signal integrity is an important consideration.

Strong interest in point-to-point differential-backplane connections in high-end networking and 3G wireless base-station applications has been seen, although that requires dozens to hundreds of connections along a 19-inch backplane. Typically, telecom engineers dislike single-ended solutions because of past EMI, maximum system frequency, and powerconsumption difficulties with older TTL solutions. The tradeoff is the ease of design of the single-end solution versus the low EMI, higher frequency, and lower power consumption of differential designs. GTLP provides massive throughput at lower EMI and power-consumption levels than TTL, which is what they're thinking of when they think single-ended. Throughput on the backplane using GTLP devices at lower cost and without serious EMI or crosstalk effects compares very favorably with point-to-point serial schemes.

Figure 12 allows you to pick the bus solution technology offered by TI that would be most appropriate, based on throughput and transmission distance.

Figure 12. Data Transfer Rate (Mbps)

More information on TI's vast array of parallel and serial technologies can be found in the *Comparing Bus Solutions* application report, literature number SLLA067.

More information on LVDS, LVDM, SERDES, Gigabit CMOS, and 1394 can be found on TI's semiconductor internet home page at www.ti.com/sc.

More information on GTLP can be found on TI's GTLP internet home page at www.ti.com/sc/gtlp.

14 What is the maximum data throughput using GTLP?

Data throughput is a function of clock frequency times the bit width of the backplane. Increasing the maximum frequency or backplane bit width increases data throughput. GTLP devices can operate at speeds up to 175 MHz into a distributed load with good signal integrity.

A 32-bit backplane operating at 110-MHz clock frequency has a data transfer rate of 1.76 Gbit/s in single-edge latched-mode (data is transferred at one-half the clock frequency) applications to 7 Gbit/s in dual-edge transparent-mode applications.

Data throughput in GTLP backplanes is now limited by timing requirements, not signal integrity, as in past backplane devices. Maximum frequency is a function of device maximum propagation delay (t_{pd}), pin-to-pin skew, backplane construction or length, and how the clock is distributed (see Figure 13).

Figure 13. Maximum Backplane Frequency

Propagation delay is a function of the edge rate. Only high-drive GTLP devices are able to operate at both slow and fast edge rates, with a maximum t_{pd} of about 7 ns and 5.5 ns, respectively. Medium-drive devices operate only at the slow edge rate, with a maximum t_{pd} of about 7 ns. These are design goals, and actual values may be different.

Setup and hold times and skew are inherent in the device.

Backplane flight time depends on backplane length and construction (microstrip or stripline). Microstrip places the trace on top of the printed circuit board and does not reduce the flight time as much as stripline, but it is more susceptible to EMI. Stripline places the trace between printed circuit board dielectric layers and is less susceptible to EMI, but the signals are slower and, consequently, flight time is longer. Most high-quality backplanes use stripline construction to minimize EMI. Proper backplane layout and stub lengths of less than 1 inch help minimize backplane capacitance.

Most backplanes use a system clock that provides an absolute clock signal to all cards at the same time. Maximum system frequency is reduced based on backplane length, as shown in Figure 13, to accommodate the difference between the time-of-arrival of the driver card and receiver card clock signal (flight time), respectively. Source-synchronous operation is a technique in which the clock is sent with the system data as a relative clock signal. This means that there is no delay due to backplane flight time because the clock is sent along with the data. Flight time always is zero; therefore, maximum frequency is independent of backplane length.

Studies performed using the 19-inch 20-slot GTLP EVM with the SN74GTLPH1655 DGGR device show that the maximum frequency is 46 MHz in system-clock mode and 120 MHz in source-synchronous clock mode, and, for short time periods, 160 MHz in asynchronous mode.

In summary, maximum frequency (MHz) is the inverse of the maximum delay time (ns), i.e., 10 ns = 100 MHz. Maximum delay time depends on the sum of these factors:

- Maximum propagation delay
 - Fast edge (5.5 ns)
 - Slow edge (7 ns)
- Setup time (2.5 ns)
- Skew time (1 ns)
- Backplane flight time
 - Source synchronous flight time is zero and is independent of backplane length because the clock is sent with the data
 - Microstrip (1 ns/6 inches)
 - Stripline (~2 ns/6 inches)

To improve backplane performance, review the *High-Performance Backplane Design With GTL*+ application report, literature number SCEA011A, and *Basic Design Considerations for Backplanes* application report, literature number SZZA016A.

Additional information on calculating backplane impedance can be found at www.ultracad.com. There is detailed information on microstrip and stripline calculations and an impedance calculator that can be downloaded.

15 What is the difference between synchronous clock and source-synchronous clock?

Synchronous clock is an **absolute** clock in which each card receives the same clock signal at exactly the same time. A clock generator with clock lines running to each card provides this absolute clock. For the clock signal to arrive at each card at exactly the same time, the line length must be exactly the same. For cards closer to the clock board, the lines are mitered (run up and down, parallel to each other) to add distance to the line.

Source-synchronous clock is a **relative** clock. The driver card uses the incoming absolute clock signal for timing, but all receiver cards use the clock sent from the driver card. Since the driver card data and slightly delayed clock signal are sent at the same time, backplane length or flight time is not a factor in timing calculations, unlike the absolute clock, which has to account for the backplane length or flight time between the driver and receiver.

Additional information on source-synchronous operation was presented by Lee Sledjeski at DesignCon 2000, in which he discussed private source-synchronous clocks for every 16 bits of data to minimize delays due to device skew. The paper can be viewed at http://www.fairchildsemi.com/products/backplane/designcon/lsdcon2k.pdf. These private clocks can be implemented easily with the GTLPH16916 or the high-drive GTLPH1616; each has one delayed buffered clock bit for every 17 bits of data. This paper also discusses reducing the clock signal transmitted across the backplane by a factor of one-half as a way to transfer data at the full system clock rate, i.e., data rate equals clock rate, which is 110 MHz.

16 What GTLP devices are available and how much will they cost?

The first wave of TI's GTLP devices comprises seven medium-drive and six high-drive devices. They are offered in ultra compact (LFBGA/VFBGA), small (TVSOP), medium (TSSOP), or large (SOIC or SSOP) packages. Pricing is two to three times higher than standard LVTTL/TTL backplane drivers, but GTLP devices allow two to four times higher maximum backplane frequencies, providing higher data throughput without migrating to more complex serial devices. Because signal integrity is superior in distributed loads, it also makes sense to use GTLP in low-frequency applications where the noise margin using HC, ABT, or LVT is not acceptable because of the weaker drive and poorer signal integrity. GTLP pricing is the same or less than TI's current GTL pricing (see Table 3).

Obtain the data sheet at www.ti.com/sc/gtlp. Go to www.ti.com/sc/package for package drawings, symbolization, layout, and thermal-performance information.

SN74GTLP	Function	Bits	Pin Count	SOIC	SSOP	TSSOP	TVSOP	BGA	Suggested Resale Price (1000 Quantity)
	Med	lium Driv	/e (50 m	ıA)					
H306	Bus Transceiver	8	24	DW		PW	DGV		\$4.65
817	1:6 Fanout Driver	NA	24	DW		PW	DGV		\$5.40
H16612	Universal Bus Transceiver	18	56		DL	DGG			\$7.35
H16912	Universal Bus Transceiver	18	56			DGG	DGV		\$7.90
H16916	UBT with Buffered Clock	17	56			DGG	DGV		\$7.90
H16945	Bus Transceiver	2 x 8	48			DGG	DGV	GQL	\$5.00
H32945	Bus Transceiver	4 x 8	96					GKE	\$10.50
	Hig	gh Drive	(100 m/	A)					
1394	Transceiver	2	16	D		PW	DGV		\$3.75
H1612	Universal Bus Transceiver	18	64			DGG			\$9.15
H1616	UBT with Buffered Clock	17	64			DGG			\$9.15
H1645	Bus Transceiver	2 x 8	56			DGG	DGV	GQL	\$5.85
H1655	Universal Bus Transceiver	2 x 8	64			DGG			\$9.15
H3245	Bus Transceiver	4 x 8	114					GKF	\$12.25

Table 3. GTLP Family Offerings

Relevant package application information is contained in the following reports:

Thin Very Small-Outline Package (TVSOP) application report, literature number SCBA009C.

32-Bit Logic Families in LFBGA Packages 96 and 114 Ball Low-Profile Fine-Pitch BGA Packages application report, literature number SCEA014.

Comparison of Electrical and Thermal Parameters of Widebus SMD and LFBGA Packages application report, literature number SCYA007.

17 These function numbers are different. How do they compare to normal logic functions?

When the GTL family was introduced, it was decided to differentiate GTL function numbers from other similar logic functions because of the V_{ref} pin and the reduced B-port GTL signal levels. The first GTL device (SN74GTL16612) has exactly the same pinout as the 3.3-V V_{CC} '16601 universal bus transceiver, except that the two V_{CC} pins on the B-port side serve different purposes. Pin 34 is used for the GTL differential V_{ref} input and pin 50 is used for the 5-V V_{CC} that powers the GTL circuitry. The first GTLP device is the SN74GTLPH16612, which is identical to the SN74GTL16612, except for the improved B-port circuitry that allows better performance in distributed loads. Based on the SN74GTLPH16612, other existing GTL devices, and TI's device-naming convention, the names of the additional GTLP devices were selected as shown in the migration summary below.

Figure 14. GTLP Migration Summary

GTLP device naming considerations are:

- The 16XXX and 32XXX function numbers signify Widebus[™] (16 to 18 bits) and Widebus+[™] (32 to 36 bits) bit widths. Typically, octals are XXX only.
- Function numbers of XX9XX signify single-V_{CC} operation and the incorporation of BIAS V_{CC}.
- Medium-drive devices are either three or five digits. High-drive devices have the "9" removed and are four digits long to conform to the prior BTL/FB+ high-drive device-naming convention.
- The 2-bit high-drive 1394 is designed uniquely to support the 1394 backplane physicallayer controller and, therefore, was named GTLP1394. Application information is included in the data sheet. The GTLP1394 is also very useful in providing 2-bit GTLP clock signals in backplane applications.
- "H" is added after the GTLP family name if bus hold is featured on the A-port I/O pins. Typical 1394 and 817 applications do not require bus hold, so bus hold was not included in these devices. Bus hold is not required on B port I/O pins because the termination resistors keep the bit high if it is not actively pulled low by the device.

18 I know what a bus transceiver is, but what is a UBT[™]?

A UBT[™] device performs numerous functions that are done by other logic functions by proper selection of their OE, LE, and CLK control pins ('16500 or '16501 functions) or their OE, LE, CLK, and CE control pins ('16600 or '16601 functions). The '16601 logic function is shown in Table 4.

			1 01		TADLET			
		INPUTS			OUTPUT	NODE		
CEAB	OEAB	LEAB	CLKAB	A	В	MODE		
Х	Н	Х	х	Х	Z	Isolation		
L	L	L	н	Х	в ₀ ‡			
L	L	L	L	Х	в ₀ §	Latched storage of A data		
Х	L	Н	Х	L	L	Treases		
Х	L	Н	х	Н	н	Transparent		
L	L	L	Ŷ	L	L	Clashed storage of A data		
L	L	L	Ŷ	н	н	Clocked storage of A data		
н	L	Ĺ	х	х	B₀\$	Clock inhibit		

Table 4. '16601 Logic Functions

 † A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{\text{OEBA}},$ LEBA, CLKBA, and $\overline{\text{CEBA}}.$

[‡] Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

§ Output level before the indicated steady-state input conditions were established

UBT, Widebus, and Widebus+ are trademarks of Texas Instruments.

UBT devices can be used for many different logic functions, reducing the number of different devices you have to buy. This reduces the number of other types of devices that must be maintained in inventory. Ordering larger quantities of UBT devices can reduce the price. However, simpler functions normally are less expensive. Backplane applications usually require only bus-transceiver functionality. Other applications might need more complex functions. The functions available from a UBT device or UBT device with clock enable are listed in Table 5.

The GTLPH306 is a functional equivalent of the '245, the GTLPH16945 is a pin-for-pin functional equivalent of the '16245, and the GTLPH16912 is a pin-for-pin functional equivalent of the '16601.

Function	8 Bit	9 Bit	10 Bit	16 Bit	18 Bit
Transceiver	' 245 , '623, '645	'863	'861	' 16245 , '16623	'16863
Buffer/driver	'214, '244, '541		'827	'16241, '16244, '16541	'16825
Latched transceiver	'543			'16543	'16472
Latch	'373, '573	'843	'841	'16373	'16843
Registered transceiver	ʻ646, ʻ652			'16646, '16652	'16474
Flip-flop	'374, '574		'821	'16374	
Universal bus driver					'16835
Standard UBT					'16500, '16501
GTLPH1655 replaces above functi CLKAB, CLKBA), but is at GTLP le	ons and is similar t evels on the B port	to the '16 and is sp	501 stand olit into tw	lard UBT (OEAB, OEBA, L vo 8-bit sections.	EAB, LEBA,
Registered transceiver with clock enable	'2952			ʻ16470, ʻ16952	
Flip-flop with clock enable	'377	'823			'16823
Standard UBT with clock enable					'16600, '16601
GTLPH16612, '169121/6, and '1612 clock enable, but are at GTLP leve	2/6 replace all above als on the B port.	e functio	ns and ar	e identical to the '16601 St	andard UBT with

Table 5.	UBT Equivalent-Functions T	able
----------	----------------------------	------

19 I need an alternate source. Are there any?

Several companies manufacture GTL and GTLP devices. Fairchild (FSC) entered the market in 1997. Pericom and Philips also recently entered the market.

Pericom's two released offerings closely match the FSC GTLP data-sheet specifications, and it is assumed that their other planned offerings will also.

Philips markets their GTL devices toward the bus on the card/microprocessor interface market much like TI's existing GTL family. The GTL family has faster edge rates and is not optimized for backplane applications.

TI offers a wide range of medium-drive GTLP devices, a wider range of high-drive GTLP devices, and the widest range of packaging offerings. These devices support the needs of the emerging high-data-throughput parallel-backplane market. Additionally, TI has included a BIAS V_{CC} feature in the medium- and high-drive GTLP devices in place of one of the V_{CC} pins, to support true live insertion. The BIAS V_{CC} circuitry is disabled when V_{CC} is applied; therefore, except for the precharge feature, the TI device is fully functional in competitors' sockets.

All devices occupying the comparable bit width/drive box in Table 6 are pin-for-pin functional equivalents.

All 816/817 devices have the same pinout. They are one GTLP input to six TTL/LVTTL outputs and one TTL/LVTTL input to two GTLP outputs, but are various drives and V_{CC} . Refer to the data sheet, then test each device to pick the best one for your application.

Bit Width	TI - SN74GTLP		Fairchild - GTLP		Pericom - GTLP	
	Medium Drive	High Drive	Medium Drive	High Drive	Medium Drive	High Drive
32	H32945	H3245				
18	H16912	H1612	2 18T612		18T612	
	H16612		16612 <u>16612</u>		<u>16612A</u>	
17	H16916	H1616	5 17T616			
			x <u>16616</u>		<u>16616</u>	
			16617 <u>16617</u>		<u>16617</u>	
16		H1655		× 16T1655		16T1655
	H16945	H1645				
8	H306		₹ 8T306		8T306	
6	817		5 <u>6C817</u>			
			5 6C816A			
			5 <u>6C816</u>		5 <u>6C816</u>	
2		1394				
Legend	•		•	•	-	
H16612 (underline) = 3.3- and 5-V or 5-V V _{CC} operation						
= Released to Market						
H16912 (black) = 3.3-V V _{CC} while <i>18T612</i> (blue italics) is 3.3-V V _{CC} but not 5-V tolerant						
Medium Drive = 50 mA, High Drive = 100 mA						

Table 6. GTLP Device Cross-Reference

20 Are the alternate-source devices identical?

While all GTLP devices operate in the same manner and have the same pinout and functionality, they are not all designed equally. The most important characteristic in GTLP devices is the B-port OEC circuitry and the corresponding edge rate. Faster edges perform poorly in backplane. In our demonstration backplane under the same conditions, the SN74GTLPH16612 had better signal integrity than the FSC GTLP16612, and the SN74GTLPH1655 had better signal integrity than the FSC GTLP16T1655. We believe that TI's GTLP devices exhibit excellent signal integrity due to the improved OEC and TI-OPCTM circuitry. If the design is optimized for the worst-case performance of all devices that are used, FSC or Pericom GTLP can be used as an alternate source.

Additional differences in other manufacturers' devices are shown in Table 7.

- /	Number of Devices						
Features	TI	Fairchild	Pericom				
Total number of GTLP devices	13	10	7				
3.3-V V _{CC} operation	12	5	3				
Inputs/outputs 5-V tolerant	All	6	5				
I _{off} – Partial power down <i>(protect device)</i>	All	All	All				
PU3S - Hot insertion (protect equipment)	12	4	1				
LFBGA package option	3	None	None				
Backplane (GTLP/B-Port) Options							
BIAS V _{CC} - Live insertion (protect data)	10	1	1				
Output edge control	All	All	All				
TI-OPC circuitry	11	None	None				
Edge-rate control	7	1	1				
Medium drive (34/50 mA)	7	9	6				
High drive (100 mA)	6	1	1				
Functionality							
Transparent mode	12	7	6				
Clocked mode	5	6	5				
Latched mode	5	6	5				
Clock enabled mode	4	5	4				
Buffered clock option	2	3	2				
1-to-6 TTL/LVTTL fanout driver	1	3	1				

Table 7. Comparison of GTLP Features

TI-OPC is a trademark of Texas Instruments.

21 What is important about live insertion?

Many backplane systems in communications applications must remain operational 24 hours a day, 7 days a week. These systems cannot be shut down when a board is inserted or removed from the system, as frequently happens during regular maintenance or system upgrades, nor can active backplane data be disturbed.

GTLP devices fully support live insertion with I_{off}, PU3S, and BIAS V_{CC} circuitry.

BIAS V_{CC} circuitry allows easy internal precharging of the daughter-card backplane connections to mid-threshold levels to prevent glitching active data during card insertion or removal.

In the typical connection sequence shown in Figure 15, the GND and BIAS V_{CC} connections are made first to establish the GND plane and precharge the GTLP I/Os through the BIAS V_{CC} circuitry to the 1.0-V ±50-mV threshold voltage. Next, the GTLP I/O pins are connected. Because the outputs are precharged to 1.0-V before connecting with the backplane, they do not glitch any active backplane data as they are mated. Finally, V_{CC} is connected. As V_{CC} ramps up, the BIAS V_{CC} precharge circuitry is disabled and the device starts operating, presenting valid signals on the backplane.

Figure 15. Typical BIAS V_{CC} Connection Sequence

22 What is the total power consumption of an 18-bit GTLP driver?

When you look at backplane performance, you must take into consideration static drive and dynamic drive. The static output drive is the current needed to maintain a steady-state dc voltage level on an output. Dynamic output drive is the current available when an output switches output states. This drive is necessary to overcome reactive loading effects and can determine the switching speeds in your applications.

Total power consumption is defined as the sum of the static (measured by the device I_{CC}), dynamic (measured by the device internal transistor switching), and output (measured by the external capacitive load) power of the device.

Static Power

 $P_{\text{STAT}} = \sum \{V_{\text{CC}} [\text{share}_{L}(k) \times I_{\text{CCL}} + \text{share}_{H}(k) \times I_{\text{CCH}} + \text{share}_{Z}(k) \times I_{\text{CCZ}}]\} / n$

Where:

 Σ = Sum of k = 1 to n

 V_{CC} = Supply voltage

share (k) = Average percentage share of the k^{th} output in a low state

share_H(k) = Average percentage share of the k^{th} output in a high state

share₇(K) = Average percentage share of the k^{th} output in a high-impedance state

I_{CCL} = Device current consumption for static low at output

 I_{CCH} = Device current consumption for static high at output

 I_{CCH} = Device current consumption for high-impedance state at output

n = Total number of outputs in the device

Example 1:

A 50% duty cycle output waveform on all outputs force share_L(k) and share_H(k) to be 0.5 each. Share_Z(k) is zero. Therefore, for an 18-bit device, sum k = 1 to 18, static power is:

 $\mathsf{P}_{\mathsf{STAT}} = \sum \left[\mathsf{V}_{\mathsf{CC}} \left(0.5 \times \mathsf{I}_{\mathsf{CCL}} + 0.5 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCZ}} \right) \right] / 18 = 0.5 \ \mathsf{V}_{\mathsf{CC}} \left(\mathsf{I}_{\mathsf{CCL}} + \mathsf{I}_{\mathsf{CCH}} \right)$

Example 2:

A 50% duty cycle output waveform on nine outputs and nine outputs at a fixed static low. share_Z(k) is zero. Therefore, for an 18-bit device, sum k = 1 to 9, the static power is:

 $\mathsf{P}_{\mathsf{STAT}} = \sum \left[\mathsf{V}_{\mathsf{CC}} \left(0.5 \times \mathsf{I}_{\mathsf{CCL}} + 0.5 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCZ}} \right) \right] / 18 + \sum \left[\mathsf{V}_{\mathsf{CC}} \left(1 \times \mathsf{I}_{\mathsf{CCL}} + 0 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCH}} \right) \right] / 18 + \sum \left[\mathsf{V}_{\mathsf{CC}} \left(1 \times \mathsf{I}_{\mathsf{CCL}} + 0 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCH}} \right) \right] / 18 + \sum \left[\mathsf{V}_{\mathsf{CC}} \left(1 \times \mathsf{I}_{\mathsf{CCL}} + 0 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCH}} + 0 \times \mathsf{I}_{\mathsf{CCH}} \right) \right] / 18 + \sum \left[\mathsf{V}_{\mathsf{CC}} \left(1 \times \mathsf{I}_{\mathsf{CCL}} + 0 \times \mathsf{I}_{\mathsf{CCH}} \right] \right]$

$$\label{eq:stat} \begin{split} \mathsf{P}_{\mathsf{STAT}} = 0.5 \times 0.5 \times \mathsf{V}_{\mathsf{CC}} \; (\mathsf{I}_{\mathsf{CCL}} + \mathsf{I}_{\mathsf{CCH}}) + 0.5 \times \mathsf{V}_{\mathsf{CC}} \; (\mathsf{I}_{\mathsf{CCL}}) = \mathsf{V}_{\mathsf{CC}} \; (0.75 \times \mathsf{I}_{\mathsf{CCL}} + 0.25 \times \mathsf{I}_{\mathsf{CCH}}) \end{split}$$

 I_{CCL} , I_{CCH} , and I_{CCZ} are identical for CMOS devices, but different for BiCMOS/bipolar devices. Normally, these are combined in CMOS-device data sheets, but, because both the GTL and GTLP families include both CMOS and BiCMOS devices, all values are included to preclude questions about whether all values are the same or only the maximum value was included.

Dynamic Power

While switching the outputs, most of the dynamic power is generated in the output structure of devices that have totem-pole configurations. Because GTL and GTLP devices have open-drain/collector outputs and no active pullup transistors, dynamic power caused by current spikes due to internal charging and discharging processes within the GTLP circuit can be approximated as a very small value that, in comparison to the static and output power, is negligible.

The Thin Very Small-Outline Package (TVSOP) application report, literature number SCBA009C, March 1997, at www.ti.com/sc/docs/psheets/abstracts/app/scba009.htm, provides more information on how to calculate dynamic power consumption for devices with totem-pole outputs.

Output Power

Output power per bit is:

 $P_{OUT} = I_{OL} \times V_{OL} \times (1 - output duty cycle)$

Where

 $I_{OL} = (V_{TT} - V_{OL}) / (R_{TT} / 2)$

Example:

For an output duty cycle of 60% (output stays high 60% of the cycle),

assuming V_{TT} = 1.5 V, V_{OL} = 0.55 V, and R_{TT} = 38 Ω , then:

$$I_{OL} = (V_{TT} - V_{OL}) / (R_{TT} / 2) = (1.5 \text{ V} - 0.55 \text{ V}) / (38 \Omega / 2) = 50 \text{ mA}$$

 $P_{OUT} = I_{OL} \times V_{OL} \times (1 - output duty cycle) = 50 \text{ mA} \times 0.55 \text{ V} \times (1 - 0.6) = 11 \text{ mW per bit}$

For an 18-bit device running all 18 bits at 60% output duty cycle,

 $P_{OUT} = 18 \times 11 \text{ mW} = 198 \text{ mW}$

Total Power Consumption

Total power consumption for an 18-bit device operating at 3.3-V V_{CC} is calculated using the following equations. Nine outputs are switching at a 50% duty cycle with the other nine outputs at a fixed static low:

 I_{CC} = 50 mA, V_{TT} = 1.5 V, V_{OL} = 0.55 V, and R_{TT} = 38 Ω

 $P_{STAT} = V_{CC} (0.75 \times I_{CCL} + 0.25 \times I_{CCH}) = 3.3 V (0.75 \times 50 \text{ mA} + 0.25 \times 50 \text{ mA}) = 165 \text{ mW}$

 $I_{OL} = (V_{TT} - V_{OL}) / (R_{TT} / 2) = (1.5 \text{ V} - 0.55 \text{ V}) / (38 \Omega / 2) = 50 \text{ mA}$

 P_{OUT} switching = $I_{OL} \times V_{OL} \times (1 - output duty cycle)$ = 50 mA \times 0.55 V \times (1 - 0.5) = 13.75 mW/bit

 P_{OUT} static low = $I_{OL} \times V_{OL} \times (1 - \text{output duty cycle}) = 50 \text{ mA} \times 0.55 \text{ V} \times (1 - 0) = 27.5 \text{ mW/bit}$

There are nine switching outputs and nine static low outputs, therefore:

 $P_{OUT} = 13.75 \text{ mW} \times 9 \text{ bits} + 27.5 \text{ mw} \times 9 \text{ bits} = 123.75 \text{ mW} + 247.5 \text{ mW} = 371.25 \text{ mW}$

The total power consumption is:

 $P_{TOT} = P_{STAT} + P_{DYN} + P_{OUT} = 165 \text{ mW} + 0 \text{ mW} + 371.25 \text{ mW} = 536.25 \text{ mW}$

The junction temperature of the device never must exceed 150°C. To determine if the total power consumption exceeds the maximum junction temperature for a certain package, calculate junction temperature using the following equation:

 $T_{J} = R_{\Theta JA} \times P_{TOT} + T_{A}$

In the previous example, assuming a 56-pin TSSOP (DGG) package with high-K board and no airflow, the junction temperature is:

 $T_{J} = R_{\Theta,IA} \times P_{TOT} + T_{A} = 64^{\circ}C/W \times 0.53625 W + 25^{\circ}C = 34.32^{\circ}C + 25^{\circ}C = 59.32^{\circ}C$

The $R_{\Theta,IA}$ for all packages can be found at www.ti.com/sc/package

23 How should I generate the termination voltage?

GTLP backplanes require a high-current 1.5-V termination voltage that typically is driven from the 3.3-V V_{CC}. Typically, a 1.5-V, 7.5-A switcher provides the 1.5-V reference voltage. Currently, TI uses the LT1083CP (Linear Tech) for bus termination on our 48-bit high-drive SN74GTLPH1655 demonstration backplane. The high current is needed because there could be many open-drain GTLP outputs simultaneously sinking current on the bus, but, overall, it is less than Thevenin-terminated backplanes, such as are used with LVT devices. Unitrode also provides two devices that can be used. They offer low dropout at given current (500-mV dropout, maximum, at 5 A), ability to handle transients with tight regulation, high current capability, fast transient response, separate bias and V_{IN} pins, and 5-pin TO-220 and TO-263 packages with Kelvin sensing. The UC382 provides 3-A capacity; the UC385 provides 5-A capacity with fixed (1.5 V, 2.1 V, or 2.5 V) or adjustable output-voltage capability (see Figure 16).

Figure 16. Kelvin-Sensing Circuit

24 Why not use Thevenin voltage dividers for termination?

Thevenin voltage dividers can be used as a termination scheme; resistors are easy to obtain and can be connected to the readily available 3.3-V power supply. However, this is not the optimal termination scheme. There are several reasons why voltage regulation is essential on GTLP backplanes:

 Static dc current through the termination - A Thevenin equivalent of two 50-ohm resistors to 3.3 V, with the backplane tied to the center connection, yields about 33 mA of constant dc current while the output driver is off (high state). Typically, terminations are the two extremes of the backplane, so the total is 66 mA for the backplane. When the device's output is on (low output state), current increases to about 112 mA because the lower termination resistor is bypassed through the 4-ohm GTLP device.

Now, consider a 1.5-V regulated termination scheme. In the off output state, zero current flows because there is no path to ground from V_{TT} (termination voltage). While in the on state, this produces 80 mA of current. Therefore, as the output is switching states from low to high and vice versa, the average current flowing through the voltage-regulated termination is considerably lower than the Thevenin voltage-divider termination.

- Noise considerations If the Thevenin voltage divider is tapped off the supply voltage of 3.3 V and the backplane termination voltage, V_{TT}, is taken from the center connection, any noise that is riding on the supply has now been coupled to V_{TT}. This could prove to be a problem because, if the noise is large enough, potentially it could interfere with the switching thresholds of the GTLP inputs. Voltage regulation eliminates this problem with a reliable voltage source. Ideally, a voltage regulator should be mounted at each end.
- Impedance matching This probably is the most important reason for voltage regulation, because matching the loaded impedance of the backplane is essential to reduce or totally eliminate reflections that occur with improper termination. Using a Thevenin voltage divider is more difficult because one also has to adjust V_{TT} to be 1.5 V. The numbers used above are for V_{TT} of 1.65 V (half of 3.3 V), so the resistors have to be chosen to produce a 1.5 V V_{TT} and terminate the backplane properly. Although it sounds easy, in practice, it is not.

25 Tell me more about bus hold.

All GTLPH devices have bus hold on the A port and are described in the data sheet as "Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended." However, a note in the data sheet states "All unused inputs of the devices must be held at V_{CC} or GND to ensure proper operation." Don't these statements conflict?

No, A-port data inputs with bus-hold cells should not use a pullup or pulldown resistor, but, if required, a properly sized resistor that overrides the bus-hold cell can be used. The note refers to the control inputs, not the data inputs. The control inputs always must be tied low or high if unused or undriven and never allowed to float because the device would not operate properly. There is no bus-hold cell on any control input on any TI device.

26 Tell me more about power-up 3-State (PU3S).

Your GTLP data sheet states, "When /OEAB is low, the outputs are active." However, in the next paragraph about PU3S, the data sheet states: "To ensure the high-impedance state during power up or down, /OE should be tied to V_{CC} through pullup resistor," which means that /OE is high. This contradicts the previous statement. Should /OEAB be high or low?

The /OE should be pulled high to keep the device in the high-impedance state, even though it is featured with PU3S, which keeps the device in the high-impedance state, when V_{CC} is zero to 1.5 V, to prevent bus contention. The first statement assumes you are going to overdrive the pullup resistor when you want the outputs to be active and pull /OE to GND.

27 Should I tie GTLPH16612 control inputs to 3.3 V or to 5 V?

I need to tie the SN74GTLPH16612GR LEAB (pin 2) high for transparent operation and am not sure what voltage it should be tied to.

See the "V_I except B Port" specification in the data sheet, which is 5.5 V maximum. Confusion might arise because the GTLPH16612 has both a 3.3-V and 5-V V_{CC}. Other GTLP devices are 3.3-V V_{CC} only, and they list the nominal V_I as V_{CC} and maximum V_I as 5.5 V to show that the V_I normally is connected to 3.3 V, but you can go up to 5.5 V. In either case, you can use 3.3 V or 5 V, depending on which voltage is most convenient, but you would normally use 3.3 V for any GTLP device.

28 What do I do with unused or undriven GTLP A- or B-port I/Os?

As with any other logic device, it is important that unused or undriven inputs or inputs/outputs (I/Os) not be left floating. This prevents high current flow through the device if the input should reach the threshold level. There is no need to prevent the transistor outputs from floating as long as its input is tied to V_{CC} or GND. The following is recommended and summarized in Table 8:

- A port (LVTTL side of the device)
 - I/Os on all devices with bus hold
 Unused or undriven No action required, bus hold will maintain last known logic state
 - Inputs on all devices without bus hold with inverted signals (currently, SN74GTLP817 only)

Unused or undriven - Tie pin to V_{CC} with a 220- Ω up to 1-k Ω pullup resistor to maintain a logic high.

 Inputs on all devices without bus hold with selectable true/complementary feature (currently, SN74GTLP1394 only)

Unused or undriven - Tie pin to V_{CC} or GND with a 220- Ω up to 1-k Ω pullup resistor to maintain a logic high or low, depending on whether the device is in true or inverted mode of operation, and if signals are unidirectional or bidirectional, to keep the B port in its tied condition.

- B port (GTLP side of device)
 - I/Os on all devices

Unused - Tie pin to ground with a 220- Ω up to 1-k Ω pulldown resistor to maintain a logic low.

Undriven - No action required because the pin is pulled high to $V_{\mbox{TT}}$ by the termination resistors.

Table 8.	Control of Undriven or Unused Pins	

.

			A I/O		РІ	0
	Bus Hold		No Bus Hold		вио	
	True	Inverted	True	Inverted	True	Inverted
Undriven	No action required		Pull up to V	Bull down to CND	No action	required
Unused			Full up to V _{CC}	Pull down to GND.	Pull down to GND.	

Precharge - Each B-port I/O pin has its own precharge circuitry if the device is equipped with a BIAS V_{CC} pin. Because the precharge current is very low (<10 uA), if the pin is connected to GND, it does not reach 1-V precharge. However, other B-port I/O pins that are not connected to GND are properly precharged to 1 V.

29 Can I connect the SN74GTLPH16612GR unused I/O pins of the A ports and B ports directly to GND?

I have seen FSC's reference design and the unused pins were connected directly to ground. Per the GTLP FAQ, we cannot do that because there should be a resistor for safety purposes.

The A ports and B ports can be connected directly to GND on unused pins. Historically, there has always been a resistor used when tying the pin to V_{CC} or GND because it is required for bipolar inputs. It is not required for CMOS inputs (like those used on all GTLP devices) and the inputs can be tied directly to GND or V_{CC} . FSC's proposal to tie unused pins on both the A ports and B ports of the GTLPH16612 to GND is acceptable. Our GTLPH16612, is identical to the FSC GTLP16612, but with better B-port edge-rate slew control.

30 How does an extender card affect signal integrity?

I am designing a new card basket using GTLP and need to provide for an extender card. Should I leave it unterminated and hope it works OK, or terminate it lightly? How about terminating with a resistor in series with a capacitor? The dc pullup to 1.5 V will be taken care of on the backplane.

Leave it unterminated. There will be signal integrity problems if the extender card is used on the driver card, but the signal integrity will be OK if used on a receiver card. There will be about 20 pF extra loading and some additional line delay caused by the longer stub trace, but the receiver signal integrity should be close to what it was without the extender card, and other receiver cards should be mostly unaffected.

31 What is the transistor count for GTLP devices?

SN74GTLP	Function	Transistor Count
	Medium Drive (50 mA)	
H306	Bus Transceiver	1246
817	1:6 Fanout Driver	266
H16612	Universal Bus Transceiver	3922
H16912	Universal Bus Transceiver	3325
H16916	UBT with Buffered Clock	3302
H16945	Bus Transceiver	2242
H32945	Bus Transceiver	4484
High Drive (100 mA)		
1394	Transceiver	367
H1612	Universal Bus Transceiver	3371
H1616	UBT with Buffered Clock	3371
H1645	Bus Transceiver	2062
H1655	Universal Bus Transceiver	3389
H3245	Bus Transceiver	4124

Table 9. GTLP Transistor Count

32 Can I use GTLP as a low-voltage translator?

Bidirectional voltage translations between 3.3-V LVTTL and low-voltage CMOS (LV-CMOS) are possible with GTLP devices. GTLP has a larger noise margin than general LV-CMOS interface devices and can support shift-up level conversion through the use of active transistors.

Two things must be considered:

- In the A-to-B (LVTTL to LV-CMOS) direction, V_{ref} must be within 0.6 V of the termination voltage because of the TI-OPC circuitry.
 - TI-OPC circuitry is featured on most GTLP devices (except '817, '16612, and GTL devices) and actively ports backplane energy to GND when the signal level is greater than 0.7 V above V_{ref}. This prevents large overshoots on improperly terminated or unevenly loaded backplanes during low-to-high signal transitions, which limits the subsequent undershoot that would reduce the upper noise margin. The TI-OPC circuitry is integrated into the design and cannot be deactivated, but is inactive when the B port is disabled. Except for the absolute maximum values, which must be met in all cases, there are no V_{TT} to V_{ref} voltage-difference restrictions in the LV-CMOS to LVTTL direction. Only in the LVTTL to LV-CMOS direction must V_{ref} be set within 0.6 V of the termination voltage.
- The data-sheet recommended termination voltage is limited to 1.14 V minimum and 1.65 V maximum to correspond to GTL and GTLP standards. So, these recommended data-sheet limits must be exceeded to translate at higher or lower voltages.
 - The GTLP design team reviewed the TI SPICE simulations at voltages outside the normal GTL/GTLP operating range and saw very little speed change when the termination voltage is out of the normal range. There should be no degradation in device reliability as long as the termination voltage does not exceed 2.75 V and the recommended current limit is observed. However, TI's policy is not to recommend applications outside of data-sheet recommended limits. For some TI devices, we are looking at expanding the GTLP data sheet dc limits to cover these level-translation applications.

Table 10 shows the LV-CMOS device levels and possible voltage-translation combinations using GTLP devices. The recommended GTLP device V_{ref} settings for bidirectional and unidirectional A-to-B cases are shown. Normally, V_{ref} should be equal to the LV-CMOS threshold voltage (V_t), but it is adjusted to be within 0.6 V of the termination voltage V_{CC} to prevent activating TI-OPC circuitry in a steady-state condition.

LV-CMOS Device		GTLP Device
Supply Voltage (V _{CC})	Threshold Set Point (V _t)	Set V _{ref} To
2.5 V	1.25 V	1.9 V
1.8 V	0.9 V	1.2 V
1.5 V	0.75 V	0.9 V
1.2 V	0.6 V	0.6 V
1.0 V	0.5 V	0.5 V
0.8 V	0.4 V	0.4 V

Table 10. Bidirectional or Unidirectional B-to-A Voltage Translations

Table 11 shows possible voltage-translation combinations and recommended GTLP device V_{ref} settings for the unidirectional B-to-A case where TI-OPC circuitry is inactive. Additionally, since TI-OPC circuitry is not featured in the GTLP817, GTLPH16612, or any GTL devices, this table also can be used in all cases.

LV-CMOS Device		GTLP Device
Supply Voltage (V _{CC})	Threshold Set Point (V _t)	Set V _{ref} To
2.5 V	1.25 V	1.25 V
1.8 V	0.9 V	0.9 V
1.5 V	0.75 V	0.75 V
1.2 V	0.6 V	0.6 V
1.0 V	0.5 V	0.5 V
0.8 V	0.4 V	0.4 V

Table 11. Unidirectional B-to-A Voltage Translations

A pullup termination resistor is required only if operating in the A-to-B direction and can be between 50 Ω to 1 k Ω , depending on the transition times needed for the circuit.

Normally, V_{IH} and V_{IL} are ±50 mV around V_{ref} but expands to ±200 mV at 0.4 V as V_{ref} is reduced below 0.7 V.

33 What is the voltage input range I can apply to the B port if V_{ref} is set at 0.8 V?

I'm using the SN74GTLP1394 to convert a 1.2-V GTL and 1.5-V CMOS signal to LVTTL. Signal direction always is B to A. V_{ref} is set at 0.8 V. I'm concerned that the 1.5-V CMOS signal will be too high and that it will forward-bias ESD diodes on the B-port input.

GTLP devices can be used over a range of V_{TT} and V_{ref} voltages and this application is perfectly acceptable, with no danger to the ESD diodes. In the B-to-A direction, TI-OPC is disabled and there is no restriction on V_{TT} vs V_{ref} if they are within data-sheet limits. In the A-to-B direction, V_{TT} vs V_{ref} should be maintained at less than 0.6 V.

34 Can I use GTLP as a replacement for FB+ devices?

BTL-signal-level applications are extensions of the voltage-translation application. Normally, GTLP devices are not compatible with FB+ devices, as shown in Figure 17. However, closer inspection reveals that the upper and lower noise margin is about the same, and only threshold and termination voltages are different.

Figure 17. Comparison of BTL to GTLP Signal Levels

FB+ devices have a fixed differential input set at 1.55 V, whereas GTLP devices have a variable differential input that is set via the external V_{ref} control pin. GTLP V_{ref} is normally two-thirds of the termination voltage so that when V_{TT} is 1.5 V, V_{ref} is 1.0 V.

When GTLP devices are used in FB+ device applications, the resistor network is changed to R/3R so that V_{ref} is set at 1.575 V when V_{TT} is 2.1 V. The process is reversed easily from BTL to GTLP signal levels by changing the 3R resistor to 2R. Only high-drive GTLP devices should be used because FB+ devices also sink 100 mA of current. In actual applications, the high-drive GTLP device pulls the B-port V_{OL} lower than 1.1 V, with a corresponding increase in I_{OL}, so a higher-value termination resistor might be needed. SN74GTLPH1655 has been operated in the GTLP EVM at BTL levels with excellent signal integrity and a duty cycle of 50%.

TI's policy is not to recommend applications outside of data-sheet recommended limits, so, for some TI GTLP devices, we are expanding the GTLP data sheet dc limits to cover this application.

These expanded limits also will help in the cases where there may already be a 1.8-V or 2.0-V power supply on the board and the designer is hesitant to use GTLP because that means a 1.5-V power supply will have to be added. In this case, just use the 1.8-V power supply for V_{TT} .

35 I'm trying to determine which 3.3-V logic family will best fit my needs, and I'm still not quite clear on what choice I should make.

I'm looking for bus interface chips (e.g., 244s, 245s) to drive a backplane (tri-stateable bus). There will be five cards on the bus [one power-supply card, one microcontroller card (uC), one PCM card, and two fibre-channel interface cards (FCi)]. The bulk of the signals are between the two FCi cards and the PCM card. The FC data bus is the critical bus at 40 MHz, or maybe 80 MHz (undecided at this time). The data is sourced by one of the two FCi cards and passed to the PCM card. The data is synchronous with the system clock (40 MHz or 80 MHz) generated at the PCM card and goes to both FCi cards. It's important to maintain the phase relationship between this clock and the FC data-bus data. We will have a 72-bit unidirectional and 8-bit bidirectional bus, plus control signals. We have used FCT devices before and could get only up to about 25 MHz or so, and because this is a new design, there is a lot of flexibility on what we can choose. Other considerations include: 3.3-V power supply with some 5-V devices on the board, need industrial temperature range (prefer military) and desire high-density packages.

What device family would you recommend and why?

GTLP would work at both 40 and 80 MHz and is optimized for backplane applications. It uses a 3.3-V V_{CC} power supply and is 5-V tolerant. It is offered in industrial temperature ranges in several surface-mount and BGA packages. Military-temperature-range devices are being considered and can be requested at gtlp@list.ti.com.

What are the advantages and disadvantages?

There is excellent signal integrity at higher frequencies, pullup-resistor termination draws less power than totem-pole devices, there is no danger of bus contention on open-drain devices, and the BIAS V_{CC} pin provides for live insertion. The cost is two to three times higher than FCT or LVT, but, because these TIER-3 solutions didn't work, you need to move to a TIER-2 solution. Because you have so few cards, you could also consider a point-to-point solution with LVDS or SERDES devices. They will provide higher data throughput with lower skew, but at a higher cost. If you are comfortable with parallel single-ended devices, such as FCT, you will be very comfortable designing with GTLP, which provides a cost-effective solution at this performance node.

What devices would you recommend?

Use five SN74GTLPH16945GR (TSSOP) devices or two SN74GTLPH32945KR (LFBGA) and one SN74GTLPH16945KR (VFBGA) medium-drive devices. The SN74GTLPH16945GR is identical to the standard '16245 (48-pin 2 x 8 bit bus transceiver), except for the BIAS V_{CC} and V_{ref} pins in place of two of the V_{CC} pins. Out of the 80 possible bits, use 72 bits for the buffer (DIR is fixed) and 8 bits for the 8-bit transceiver. The minimum R_{TT} is 38 Ω for medium-drive devices and that should be acceptable for this backplane loading. If an even lower termination resistance is required to improve signal integrity or you need a slightly faster t_{pd}, the high-drive SN74GTLPH1645DGGR and/or the SN74GTLPH3245GKFR could be used. These are 100-mA versions of the medium-drive (50 mA) GTLPH16945/32945, with an edge-rate-control selection pin that allows for a slightly faster edge rate and reduced t_{pd}.

36 How do I get a GTLP data sheet?

GTLP product-preview data sheets, GTL production data sheets, and GTL1655/backplane design application reports are in the *GTL/GTLP Logic High-Performance Backplane Drivers* product information book, literature number SCED009, which can be ordered at http://www.ti.com/sc/gtlpbook or by calling the literature fulfillment center at 1-800-477-8924.

GTLP product-preview data sheets were revised in January 2001, with the latest copies available on the internet at http://www.ti.com/sc/gtlp. It is recommended that the most current data sheet be obtained after device selection.

GTLP product-preview data sheets do not contain ac specifications because the device is in development and the parameter values have not been finalized. Please contact your TI Technical Sales Representative, or the GTLP Team directly at gtlp@list.ti.com, if you need more specific information before the GTLP production data sheets are available on the internet.

GTL data sheets are available on the internet at http://www.ti.com/sc/gtl.

To conserve file space and save paper, package diagrams are included at the back of every data book and product information book, but are not included in the downloadable data sheets. Applicable package drawings can viewed, printed, or downloaded from the internet on the Logic Packaging Options page at http://www.ti.com/sc/package, under Package Drawings.

Also included on the Logic Packaging Options page are hyperlinks for Standard Packing Quantities, JEDEC Outlines, Package Thermal Data, Symbolization Guidelines, and PCB Design Guidelines.

37 When will GTLP models and devices be available?

GTLP devices are in various stages of development, with staggered HSPICE/IBIS model, preproduciton sample, and production sample availability. Please review the device summary table on the GTLP home page for model availability and the individual GTLP device data-sheet page on the Internet for device status (preview or active) or contact your TI sales representatives or the GTLP Team directly at gtlp@list.ti.com for the most up-to-date information and assistance.

38 How do I get IBIS Models?

IBIS models for all TI logic devices can be downloaded from the Internet at http://www.ti.com/sc/docs/tools/logic/models/ibis.htm.

Please ensure that the correct package and signal level (GTL or GTL+) is selected for GTL models.

IBIS models of the GTLP devices are available only at the GTLP signal levels, but all packages are included in the file, and they can be downloaded on the IBIS page.

39 How do I get HSPICE Models?

TI has pioneered new modeling technology and will offer encrypted Level-37 HSPICE models that can be downloaded directly from the internet without a confidentiality agreement. Encrypted HSPICE models for all GTLP devices will be available directly from the IBIS home page.

HSPICE models provide better device modeling capability than IBIS models. Generally, HSPICE is used for device simulation and IBIS is used for integrated board-level simulation. Unencrypted Level-37 HSPICE models require confidentiality agreements to protect TI device technology. Multiple files (device, package, process, other, readme, up to 12 total for each device) are sent for HSPICE models.

40 Why does the unencrypted Level-37 HSPICE model require a confidentiality agreement?

Confidentiality agreements are required because proprietary information that TI does not want disclosed to competitors is contained in the HSPICE model. The confidentiality agreement must be approved by both parties prior to sending a nonencrypted HSPICE model. Most GTL HSPICE models require a confidentiality agreement, whereas no GTLP HSPICE models do.

41 How should I request a confidentiality agreement?

Contact your TI Sales Representative or the GTLP technical team at gtlp@list.ti.com for assistance.

42 What does the encrypted HSPICE model zipped file contain?

The encrypted HSPICE model zipped file (for example, GTLPH16612) contains the following files:

GTLPH16612INC.INC ASL2BSN37INC.INC ASL2BSS37INC.INC ASL2BSW37INC.INC TSSOP56MOD README.TXT RUN.SP

Both encrypted and unencrypted Level-37 process models require a one-time patch from Avant!. for the HSPICE simulation software. Provide the following information to Jeff Brunson (jeffb@ti.com) (972-480-2481) and the patch will be provided at no charge:

Company Name: Full Address: Contact Name: Contact E-mail: Node ID:

43 If the file is encrypted, why do we need the one-time patch from Avant!?

Level 37 is a model TI created to work under HSPICE. Avant! licenses Level 37 to TI and requires TI to provide authorization to distribute the Level-37 model. This method gives TI and Avant! legal protection. The Level-37 patch is required, regardless of whether or not the model is encrypted.

The license process requires that:

- TI customer must have their own copy of Avant! HSPICE.
- TI requests that the Level-37 license be sent to the TI customer.
- The license is good for 1 year and is renewable.

44 How do I request preproduction samples?

There is no charge for preproduction samples. We generally try to limit the number to five or fewer, but you can request more if required for your application. Please contact your Texas Instruments Technical Sales Representative, the GTLP Team directly at gtlp@list.ti.com, or use the GTLP sample request form on the GTLP home page.

45 How do I request production samples?

Request production samples through the Extranet and your TI&Me account.

To sign up for TI&Me visit: https://www-a.ti.com/apps/ti_me/signin.asp?referer=corp

46 I requested the SN74GTLP1394, but the topside marking is GP394.

The 16-pin packages are too small to accommodate the full device name, so SN74GTLP1394 is shortened as shown in Figure 18 (not to scale or with correct pin count). Lot codes also are marked on the D and PW packages (Y = year, M = month, LLLL = lot code, S = assembly site). Only the year and month are marked on the DGV packages due to space constraints.

Device symbolization is explained on the Texas Instruments SLL Logic Package Options page at http://www.ti.com/sc/package under Symbolization Guidelines.

Package case assignment is found on the Package Name Rule Assignments page at http://www.ti.com/sc/docs/products/logic/package/pkrule.htm

Case A, B, and C symbolization names can be found on the Device Name Rules page at http://www.ti.com/sc/docs/products/logic/package/namerule.htm

As a convenience, GTLP device symbolization is listed in Table 12.

(1		
SN74GTLP	SOIC	SSOP	TSSOP	TVSOP	LFBGA
		Medium	Drive (50 mA)		
H306	GTLPH306		GH306	GH306	
817	GTLP817		GT817	GT817	
H16612		GTLPH16612	GTLPH16612		
H16912			GTLPH16912	GL912	
H16916			GTLPH16916	GL916	
H16945			GTLPH16945	GL945	GL945
H32945					GM945
		High Dr	ive (100 mA)	•	•
1394	GTLP1394		GP394	GP394	
H1612			GTLPH1612		
H1616			GTLPH1616		
H1645			GTLPH1645	GL45	GL45
H1655			GTLPH1655		
H3245					GM45

 Table 12.
 GTLP Device Symbolization

Updated GTLP data sheets include a new table that provides an orderable part number and top-side marking for every package combination.

47 How can I request additional technical support?

These and other helpful application reports to be released in the future are at http://www.ti.com/sc/docs/apps/logic/appnotes.html under Backplane Logic:

- Thin Very Small-Outline Package (TVSOP) application report, literature number SCBA009C
- 32-Bit Logic Families in LFBGA Packages 92- and 114-Ball Low Profile Fine-Pitch BEA Package application report, literature number SCEA014
- Fast GTLP Backplanes With the GTLPH1655, literature number SCBA015A
- High-Performance Backplane Design With GTL+, literature number SCEA011A
- Basic Design Considerations for Backplanes, literature number SZZA016A

Specific technical questions not covered by the application reports, or any general question, can be sent directly to the GTLP team at gtlp@list.ti.com.

Understanding Advanced Bus-Interface Products

SCAA029 May 1996

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

Contents

Title

Title	Page
Introduction	7–131
Device Family Overview ABT Family ABTE Family ABTE Family ALVC Family CBT Family FB Family GTL Family LVC Family LVC Family LVT Family LVT Family	7–131 7–131 7–131 7–131 7–132 7–132 7–132 7–132 7–132 7–132 7–132
Detailed Comparison	7–133
Input and Output Characteristics	7–134 7–134 7–136 7–138
Incident-Wave Switching	7–139
GTL and BTL Input/Output Structure	7–140
Power Consumption	7–143 7–147
Package Power Dissipation	7–148
Advanced Packaging	7–150
Output Capacitance	7–152
ac Performance	7–153 7–153 7–154
Slew Rate	7–157
Effects of Simultaneous Switching and Capacitive Loading on Propagation Delay	7–161
Skew	7–165
Bus-Hold Circuit	7–166
Partial Power Down	7–167
Power-Up or Power-Down High Impedance	7–168
Additional Design Considerations for GTL and BTL/FB	7–169 7– 169 7– 169

OEC, UBT, Widebus, and Widebus+ are trademarks of Texas Instruments Incorporated.

Contents (continued)

Title

	Title P	age
Conclusion		170
Acknowledgment		171
References		171

List of Illustrations

Figure	Title	Page
1	Switching Standards With Guaranteed Thresholds	7–134
2	Typical Input Cell for 5-V Families	7–135
3	Typical Input Cell for 3.3-V Families	7–135
4	Supply Current vs Input Voltage (ABT – One Input)	7–135
5	Input Characteristic Impedance of 3.3-V and 5-V Families	7–136
6	Typical Output Cell for 5-V Families	7–137
7	Typical Output Cell for 3.3-V Families	7–137
8	Output-Low Characteristic Impedance of 3.3-V and 5-V Families	7–138
9	Output-High Characteristic Impedance of 3.3-V and 5-V Families	7–139
10	Reflected-Wave Switching	7–140
11	Typical GTL and BTL/FB Input and Output Cells	7–141
12	GTL and BTL/FB Input and Output Characteristic Impedance	7–142
13	Power Consumption With Single-Output Switching	7–144
14	Power Consumption With All-Outputs Switching	7–145
15	FB1650 and GTL16612 Power Consumption With Single- and All-Outputs Switching	7–146
16	Functional Frequency Using Standard Load Specified in Data Sheets	7–146
17	Advanced Packages	7–149
18	Distributed Pinout of 'ABT16244A	7–151
19	Cross-Section of Thermally Enhanced EIAJ 100-Pin TQFP	7–151
20	Capacitance Variation Between Families	7–152
21	Simultaneous-Switching Output Model	7–153
22	Simultaneous-Switching-Noise Waveform	7–153
23	dc Noise Margin	7–154
24	Typical Output Low-Voltage Peak (V _{OLP}) on 3.3-V and 5-V Families	7–155
25	Typical Output High-Voltage Valley (V _{OHV}) on 3.3-V and 5-V Families	7–155
26	Typical Output Peak (V _{OLP}) and Valley (V _{OHV}) on GTL and BTL \ldots	7–156
27	Typical Output Rise and Fall Time Measured Between Specified Levels or Voltages	7–157
28	Typical Output Rise and Fall Time Measured Between Specified Levels or Voltages	7–158
29	Typical Output Rise Time as the Number of Outputs Switching Increases	7–159
30	Typical Output Fall Time as the Number of Outputs Switching Increases	7–160
31	Typical Propagation Delay vs Number of Outputs Switching (Standard Load)	7–162
32	Typical t _{PHL} vs Capacitive Load	7–163
33	Typical t _{PLH} vs Capacitive Load	7–164

List of Illustrations (continued)

Figure	Title	Page
34	$Skew = t_{PLH3} - t_{PLH4} \dots \dots$	7–165
35	Typical Skew Between Outputs	7–165
36	Typical Bus-Hold Cell	7–166
37	Simplified Input Structures for CMOS and ABT Devices	7–167
38	Example of Partial-System Power Down	7–167
39	Power-Up and Power-Down High Impedance Up to 2.1 V (ABT, FB) and 1.5 V (LVTZ)	7–168
40	Power-Up High Impedance With Active-Low Control Pin	7–168
41	Proposed Circuit to Generate V _{REF}	7–169

Tables

Table	Title	Page
1	Input Transition Rise or Fall Rate as Specified in Data Sheets	7–136
2	Θ_{JA} for Different Packages	7–150
3	List of Devices With Bus Hold	7–166
4	Data-Sheet Specification for Bus Hold	7–166
5	Summary of the Various Features and Characteristics of the Device Families	7–170

Introduction

The purpose of this application report is to assist the designers of high- or low-performance digital logic systems in using the Advanced System Logic (ASL) families: LV, LVC, LVT, ALVC, ABT, ABTE, ALB, GTL, FB, and CBT. A family introduction, followed by a detailed comparison of the electrical characteristics, is provided to help designers understand the differences between these products. In addition, typical data is provided to give the hardware designer a better understanding of how these families operate under various conditions.

Device Family Overview

ABT Family

The ABT family is Texas Instruments (TI) second-generation family of BiCMOS bus-interface products. It is manufactured using the latest 0.8- μ BiCMOS process, and provides high drive up to 64 mA and propagation delays below the 5-ns range, while maintaining very low power consumption. ABT products are well suited for live-insertion applications with an I_{off} specification of 0.1 mA. To reduce transmission-line effects, the ABT family has series-damping resistor options. Furthermore, there are special ABT parts that provide extremely high-current drive (180 mA) to transmit down to 25- Ω transmission lines. Advanced bus functions, such as universal bus transceivers (UBTTM), perform a wide variety of bus-interface functions. Multiplexing options for memory interleaving and bus upsizing or downsizing also are provided. ABT devices are available in octal, WidebusTM, or WidebusTM and WidebusTM devices have bus-hold circuitry on the inputs to eliminate the need for external pullup resistors for floating inputs.

ABTE Family

ABTE provides wider noise margins and is backward-compatible with existing TTL logic. ABTE devices support the VME64-ETL specification, with tight tolerances on skew and transition times. ABTE is manufactured using the latest 0.8-µ BiCMOS process and provides high drive up to 90 mA. Other features include a bias pin and internal pullup resistors on control pins for maximum live-insertion protection. Bus-hold circuitry eliminates external pullup resistors on the inputs and series-damping resistors on the outputs damp reflections.

ALVC Family

The highest performance 3.3-V bus-interface family is the ALVC family. These specially designed 3-V products are processed in 0.6-µ CMOS technology, giving typical propagation delays of less than 3 ns, along with current drive of 24 mA and static power consumption of 40 µA for bus-interface functions. ALVC devices have bus-hold cells on inputs to eliminate the need for external pullup resistors for floating inputs. The family also includes innovative functions for memory interleaving, multiplexing, and interfacing to synchronous DRAMs. The ALVC family is available in the Widebus[™] footprint with advanced packaging, such as shrink small-outline package (SSOP) and thin shrink small-outline package (TSSOP).

CBT Family

In today's computing market, power and speed are two of the main concerns. CBT addresses both of these issues in bus-interface applications. CBT enables a bus-interface device to function as a very fast bus switch, effectively isolating buses when the switch is open, and causing very little propagation delay when the switch is closed. These devices function as high-speed bus interfaces between computer-system components such as the central processing unit (CPU) and memory. CBT devices also can be used as 5-V to 3.3-V translators, allowing designers to mix 5-V or 3.3-V components in the same system. CBT devices are available in advanced packaging, such as SSOP and TSSOP for reduced board area.

FB Family

The Futurebus (FB)-series devices are used for high-speed bus applications and are fully compatible with the IEEE 1194.1-1991 (BTL) standard. These transceivers are available in 7-, 8-, 9-, and 18-bit versions with TTL and BTL translation in less than 5-ns performance. Other features include drive up to 100 mA and bias pins for live-insertion applications.

GTL Family

GTL technology is a new reduced-voltage switching standard that provides high-speed, point-to-point communications, with low power dissipation. TI offers GTL/TTL translators to interface with the TTL-based subsystems. Designers use the GTL-switching standards for speed-sensitive subsystems, and use the translators to interface with the rest of the system. GTL devices feature innovative circuitry, such as bus hold on the TTL inputs, to eliminate the need for external pullup resistors for floating inputs, which reduces power, cost, and board-layout time. Output edge-rate control (OEC^{TM}) is offered on the outputs to reduce electromagnetic interference (EMI) caused by the high frequencies of GTL. Industry-leading packaging, such as SSOP and TSSOP, is available for higher performance and reduced board space.

LV Family

TI's LV CMOS technology products are specially-designed parts for 3-V power supply use with the same 5-V performance characteristics of HCMOS logic. The LV family is a 2- μ CMOS process that provides up to 8 mA of drive, and propagation delays of 18 ns maximum, while having a static power consumption of only 20 μ A for both bus-interface and gate functions. The LV family is available in the octal footprint with advanced packaging, such as small-outline integrated circuit (SOIC), SSOP, and TSSOP.

LVC Family

TI's LVC logic products are specially designed parts for 3-V power supply use, with about the same performance as the 5-V 74F family. The LVC family is a high-performance version with 0.8-µ CMOS process technology, 24-mA current drive, and 6.5-ns maximum propagation delays for driver operations. The LVC family includes both bus-interface and gate functions, with 50 different functions planned. The LVC family is available in the octal and Widebus™ footprints with advanced packaging, such as SOIC, SSOP, and TSSOP. Many LVC devices are available with 5-V tolerant inputs and outputs.

LVT Family

The specially designed 3-V LVT family uses the latest 0.8- μ BiCMOS process technology for bus-interface functions. Like its 5-V ABT counterpart, LVT provides up to 64 mA of drive, 4-ns propagation delays, and in addition, consumes less than 100 μ A of standby power. The bus-hold feature eliminates external pullup resistors and I/Os that can handle up to 7 V, which allows them to act as 5-V/3-V translators. The LVT family is available in octal and WidebusTM footprints with advanced packaging, such as SOIC, SSOP, and TSSOP.

LVTZ Family

The LVTZ family offers all of the features found in TI's standard LVT family. In addition, LVTZ incorporates circuitry to protect the devices in live-insertion applications. The device goes to the high-impedance state during power up and power down, which is called power-up 3-state (PU3S). The LVTZ family is available in the octal footprint with advanced packaging, such as SOIC, SSOP, and TSSOP.

Detailed Comparison

The major subject areas covered in this application report are:

- Input characteristics
- Maximum input slew rate
- Output characteristics (drive capability)
- 5-V tolerant inputs/outputs
- Power consideration
- Package power dissipation
- Output capacitance
- ac characteristics
- Advanced packaging
- Bus hold
- Partial power down and live-insertion capability
- Power-up and power-down high impedance
- Additional design considerations for GTL and BTL/FB

The characterization information provided is typical data and is not intended to be used as minimum or maximum specifications, unless noted as such. All devices used in this application report are of the Widebus[™] families, except for LV, which uses octal devices instead (Widebus[™] packages are not available).

For more information on TI logic products, please contact your local TI field sales office or an authorized distributor, or call Texas Instruments at 1-800-336-5236.

This application report provides engineers with the information necessary for a better understanding of TI advanced logic products. These products vary from low speed; low drive to high speed; and high drive with multiple power grades, depending on the technology, as well as the power supply. This report discusses in more detail the characteristics of these families, including:

- I/O structure and impedance
- Maximum input slew rate that is tolerated before the device begins to oscillate
- Ability of I/Os to retain data when powered down (selected families only)
- Ability of output to remain in high-impedance state when V_{CC} is ramping up or down
- Ability of 3.3-V inputs and outputs to withstand and drive 5-V signals
- Live-insertion capability (selected families)
- ac characteristics, such as power consumption, noise immunity, capacitive loading, speed, ground bounce, rise and fall time, skew, and packaging

Each family performs uniquely, depending on the design application. Understanding these characteristics will help designers choose the right family for the best design. This comparison reveals that TI provides a compelling solution in both point-to-point and backplane environments.

Several devices from each family were used to study the various performance levels. Characterization boards with standard loads (as specified in data sheets) were used in most cases to perform the laboratory work supporting this application report. A 10-MHz input frequency was used, unless otherwise noted. A resistive termination to both V_{CC} and GND was used, except for FB and GTL, which require a resistive load to V_{CC} only. Figure 1 illustrates all switching standards that are used in this application report.

Figure 1. Switching Standards With Guaranteed Thresholds

Input and Output Characteristics

In recent years, CMOS and BiCMOS logic families have further strengthened their position in the semiconductor market. New designs have adopted both technologies in almost every system that exists, whether it is a PC, a workstation, or a digital switch. However, when designing with such technologies, one must understand the characteristics of these families and the way inputs and outputs behave in systems. It is very important for the designer to follow all rules and restrictions that the manufacturer stipulates, as well as designing within the data sheet specifications. Since data sheets do not cover the input and output behavior in detail, this section explains the input and output characteristics of CMOS, BiCMOS, GTL, and BTL/FB families. Understanding the behavior of these inputs and outputs results in more robust designs and fewer reliability concerns.

CMOS and BiCMOS Input Characteristics

Both advanced CMOS (ALVC, LVC, and LV) and BiCMOS (ABT, LVT, GTL A port and FB A port) families have a CMOS input structure. The input is an inverter consisting of a p-channel to V_{CC} and an n-channel to GND, as shown in Figures 2 and 3. When a low level is applied to the input, the p-channel transistor is ON and the n-channel is OFF, resulting in the current flowing from V_{CC} and pulling the node to a high state. When a high level is applied, the n-channel transistor is ON and the p-channel is OFF and the current flows to GND, pulling the node low. In both cases, no current flows from V_{CC} to GND. However, when switching from one state to another, the input crosses the threshold region, causing the n-channel and the p-channel to be turned on simultaneously, generating a current path between V_{CC} and GND. This current surge can be damaging, depending on the length of time that the input is in the threshold region (0.8 V to 2 V). The supply current (I_{CC}) can rise up to several milliamperes (mA) per input, peaking at approximately 1.5-V V_{IN} (see Figure 4). However, this is not a problem when switching states at the data-sheet-specified input transition time (see Table 1).

Figure 2. Typical Input Cell for 5-V Families

Figure 4. Supply Current vs Input Voltage (ABT – One Input)

Table 1. Input Transition Rise or Fall Rate as Specified in Data Sheets

recommended operating conditions

			MIN	MAX	UNIT
Δt/Δv	Input transition rise or fall rate [†]	ABT octals, FB (A port)		5	ns/V
		ABT Widebus™, Widebus+™		10	
		LVT, LVC, ALVC, GTL (A port)		10	
		LV		100	

[†] Unless otherwise noted in data sheets

Figure 5 shows the input characteristic impedance of both 3.3-V and 5-V families. One can see the effect of the clamping diodes when the input is below ground (all families) and above V_{CC} for LV only.

[‡]Octal, Widebus, and Widebus+ devices with series damping resistor on the output (25 Ω typical)

Figure 5. Input Characteristics Impedance of 3.3-V and 5-V Families

BiCMOS Output Characteristics (ABT and LVT)

Figure 6 is a simplified schematic of an ABT output stage. Data is transmitted to the gate of M1, which acts as a simple current switch. When M1 is turned on, current flows through R1 and M1 to the base of Q4, turning it on and driving the output low. At the same time, the base of Q2 is pulled low, turning off the upper output. For a low-to-high transition, the gate of M1 must be driven low, turning M1 off. Current through R1 will charge the base of Q2, pulling it high and turning on the Darlington pair, consisting of Q2 and Q3. Meanwhile, with its supply of base drive cut off, Q4 turns off, and the output switches from low to high. R2 is used to limit output current in the high state, and D1 is a blocking diode used to prevent reverse current flow in specific power-down applications. LVT I/Os have characteristics similar to ABT, with added CMOS pullup and pulldown for rail-to-rail switching.

ABT OUTPUT STAGE

Figure 6. Typical Output Cell for 5-V Families

Figure 7 shows a simplified LVT output and illustrates the mixed-mode capability designed into the output stage. This combination of a high-drive TTL stage, along with the rail-to-rail CMOS switching, gives the LVT series exceptional application flexibility. These parts have the same drive characteristics as 5-V ABT devices and provide the dc drive needed for existing 5-V backplanes. Thus, using LVT is a simple way to reduce system power via the migration to 3.3-V operation. Not only can LVT devices operate as 3-V- to 5-V-level translators by supporting 5-V input or I/O voltages ($V_{CC} = 2.7$ V to 3.6 V), but also the inputs can withstand 5.5 V, even when $V_{CC} = 0$ V. This allows for the devices to be used under partial system power-down and live-insertion applications.

Figure 7. Typical Output Cell for 3.3-V Families

CMOS Output Characteristics (ALVC, LVC, and LV)

Figure 7 also shows a simplified LV, LVC, and ALVC output stage. LV and ALVC are pure 3.3-V families. They cannot be used to translate between 5-V and 3.3-V environments. ALVC is currently the fastest CMOS logic available. It is used primarily for high-speed memory and point-to-point applications with medium drive capability (± 24 mA). LV is designed for low-speed, low-drive ($\pm 8-6$ mA) applications. It is similar to HC and HCT. LVC, on the other hand, is used for on-board and memory applications that require medium performance and medium drive logic, as well as translation between 5-V and 3.3-V signals. These parts have the same drive characteristics as ALVC devices. Not only can LVC devices operate as 3-V- to 5-V-level translators by supporting 5.5-V input or I/O voltages ($V_{CC} = 3$ V to 3.6 V), but the inputs can withstand 5.5 V, even when $V_{CC} = 0$ V. This permits the devices to be used under partial system power-down and live-insertion applications.

The I_{OH}/V_{OH} and I_{OL}/V_{OL} curves for the above familes are shown in Figures 8 and 9. With their specified I_{OL} and I_{OH} , some of these families will accommodate many standard bus specifications. However, these devices are capable of driving well beyond these limits. This is important when considering switching a low-impedance backplane on the incident wave. CBT, on the other hand, has no drive capability; its output impedance is purely resistive (V = I*R) as shown in Figures 2, 8, and 9.

Figure 8. Output-Low Characteristic Impedance of 3.3-V and 5-V Families

Figure 9. Output-High Characteristic Impedance of 3.3-V and 5-V Families

Incident-Wave Switching

Incident-wave switching ensures that, for a given transition (either high-to-low or low-to-high), the output reaches a valid V_{IH} or V_{IL} level on the initial wave front (i.e., does not require reflections). Figure 10 shows potential problems a designer might encounter when a device does not switch on the incident wave. A shelf below $V_{IL}(max)$, signal A, causes the propagation delay to slow by the amount of time it takes for the signal to reach the receiver and reflect back. Signal B shows the case where there is a shelf in the threshold region. When this happens, the input to the receiver is uncertain and could cause several problems associated with slow input edges, depending on the length of time the shelf remains in this region. Signal C will not cause a problem because the shelf does not occur until the necessary V_{IH} level has been attained.

Figure 10. Reflected-Wave Switching

Using typical V_{OH} and V_{OL} values, along with data points from the curves, one can calculate the typical impedance the device can drive. For example, an ABT device can typically drive a line (from either end) in the 25- Ω range on the incident wave. However, if the same line is driven from the middle, the effective impedance seen by the driver is half its original value (12.5 Ω), which requires more current to switch it on the incident wave.

For a low-to-high transition, $(I_{OH} = 85 \text{ mA} @ V_{OH} = 2.4 \text{ V})$:

$$Z_{LH} = \frac{V_{OH}(min) - V_{OL}(typ)}{I_{OH}} = \frac{2.4 \text{ V} - 0.3 \text{ V}}{85 \text{ mA}} = 25 \Omega$$
(1)

For a high-to-low transition, (I_{OL} = 135 mA @ V_{OL} = 0.5 V):

$$Z_{\rm HL} = \frac{V_{\rm OH}(\rm typ) - V_{\rm OL}(\rm max)}{I_{\rm OL}} = \frac{3.5 \text{ V} - 0.5 \text{ V}}{135 \text{ mA}} = 22 \Omega$$
⁽²⁾

GTL and BTL Input/Output Structure

BTL and GTL buffers are designed with minimal output capacitance (5-pF max), compared to a TTL output buffer (8-pF to 15-pF typ). A TTL or a CMOS output capacitance, coupled with the capacitance of the connectors, the traces, and the vias, reduces the characteristic impedance of the backplane. For a high-frequency environment, this phenomenon makes it difficult for the TTL or CMOS driver to switch the signal on the incident wave. A TTL or CMOS device needs a higher drive current than is presently available to be able to switch the signal under these conditions. However, increasing the output drive clearly increases the output capacitance. This scenario again reduces the characteristic impedance even more. That is why a lower-signal-swing family with reduced output capacitance, like BTL or GTL, is recommended when designing high-speed backplanes.

The GTL input receiver is a differential comparator with one side connected to the reference voltage (V_{REF}), which is provided externally (0.8-V typ). The threshold is designed with a precise window for maximum noise immunity ($V_{IH} = V_{REF} + 50 \text{ mV}$ and $V_{IL} = V_{REF} - 50 \text{ mV}$). The output driver is an open-drain n-channel device that, when turned off, is pulled up to the output supply voltage ($V_{TT} = 1.2$ -V typ), and when turned on, the device can sink up to 40 mA of current (I_{OL}) at a maximum output voltage (V_{OL}) of 0.4 V. The output is designed for a doubly-terminated 50- Ω transmission line (25- Ω total load). The I/Os are designed to work independently of the device's V_{CC} . They can communicate with devices designed for 5-V, 3.3-V, or even 2.5-V V_{CC} . The TTL input is a 5-V-tolerant, 3.3-V CMOS inverter (can interface with 5-V TTL signals). Bus hold is also provided on the TTL port to eliminate the need for external resistors when the I/Os are unused or floating. The TTL output structure. The family requires two power supplies to function: a 5-V supply [$V_{CC(5)}$] for the GTL I/Os and 3.3-V supply [$V_{CC(3.3)}$] for the LVTTL I/Os. The 5-V supply is used only on the GTL16612 and GTL16616. The maximum frequency at which the current family operates is 95 MHz (GTL16612 and GTL16616). Future functions such as GTL16622 and GTL16922, will be available as samples in early 1996 and will be released at the end of the year. They run as high as 200 MHz in both directions (GTL-to-TTL or TTL-to-GTL) and have a single 3.3-V power supply. GTL16922 has 5-V-tolerant TTL I/Os. Figure 11 shows a typical GTL input and output circuit and Figure 12 shows their characteristic impedance. Since GTL has an open-drain output, only the I_{OL}/V_{OL} curve is displayed.

Figure 12. GTL and BTL/FB Input and Output Characteristic Impedance

The BTL input receiver is a differential amplifier, with one side connected to an internal reference voltage. The threshold is designed with a narrow window ($V_{IH} = 1.62$ V and $V_{IL} = 1.47$ V). Unlike GTL, BTL requires a separate supply voltage for the threshold circuit. It eliminates any noise generated by the switching outputs. The output driver is an open-collector output with a termination resistor selected to match the bus impedance. When the device is turned off, the output is pulled up to output supply voltage ($V_{TT} = 2.1$ -V typ). The I/Os work independently of the device's V_{CC} ; they communicate with devices designed for 5-V or 3.3-V V_{CC} . The TTL input is a 5-V CMOS inverter and the output is a bipolar output similar to the ABT output structure. BTL requires three power supplies: the main power supply (V_{CC}), the bias generator supply (BG V_{CC}), and the bias supply voltage (BIAS V_{CC}) that establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected. The recommended frequency at which the family runs is in the 30-MHz to 75-MHz range, depending on the application as well as the board layout. Figure 11 shows a typical BTL input and output circuit and Figure 12 shows their characteristic impedance. Since BTL has an open-collector output, only the I_{OL}/V_{OL} curve is displayed.

Power Consumption

Several factors influence the power consumption of a device: frequency of operation, number of outputs switching, load capacitance, number of TTL-level inputs, junction temperature, ambient temperature, and thermal resistance of the device. The maximum operating frequency is limited by the thermal characteristics of the package. TI provides package power-dissipation information in data sheets under "absolute maximum ratings". These numbers are calculated using a junction temperature of 150°C and a board trace length of 750 mils (no airflow). Refer to the *Package Thermal Considerations* application report in the ABT data book for the relationship between junction temperature and reliability. Traces, power planes, connectors, and cooling fans play an important role in improving the heat dissipation. Figures 13 through 15 show the typical power consumption with single- or all-outputs switching. Figure 16 also shows the maximum number is acceptable. Note that all registered devices were tested based on the clock frequency, and the nonregistered devices were tested based on the input frequency.

Single-Output Switching Power Consumption 3.3-V Families

Figure 13. Power Consumption With Single-Output Switching

All-Outputs Switching Power Consumption

Figure 14. Power Consumption With All-Outputs Switching

Figure 15. FB1650 and GTL16612 Power Consumption With Single- and All-Outputs Switching

5-V and 3.3-V Families

[†] Data is based on the input signal characteristics: V_{IL} = 0 V, V_{IH} = 3 V, t_{f}/t_{f} = 2 ns.

Power Calculation

When calculating the total power consumption of a circuit, both the static and the dynamic currents must be taken into account. Both bipolar and BiCMOS devices have varying static-current levels, depending on the state of the output (I_{CCL}, I_{CCH}, or I_{CCZ}), while a CMOS device has a single value for I_{CC}. These values are given in the individual data sheets. All inputs or I/Os (except GTL or BTL I/Os), when driven at TTL levels, consume additional current because they may not be driven all the way to V_{CC} or GND; therefore, the input transistors are not completely turned off. This value is known as ΔI_{CC} and is provided in the data sheet.

Dynamic power consumption results from charging and discharging both internal parasitic capacitances and external load capacitance. The parameter for CMOS devices that accounts for the parasitic capacitances is known as C_{pd}. It is obtained using equation 2 and is found in the data sheet.

$$C_{pd} = \frac{I_{CC}(dynamic)}{V_{CC} \times f_i} - C_L$$
(3)

Where:

 $f_i = Input frequency (Hz)$ $V_{CC} = Supply voltage (V)$ $C_L = Load capacitance (F)$ $I_{CC} = Measured value of current into the device (A)$

Although a C_{pd} value is not provided for ABT and LVT, the I_{CC} -versus-frequency curves display essentially the same information (see Figures 13 through 15). The slope of the curve provides a value in the form of mA/(MHz × bit) that, when multiplied by the number of outputs switching and the desired frequency, provides the dynamic power dissipated by the device without the load current.

Equations 4 through 7 are used to calculate total power for CMOS or BiCMOS devices:

$$P_{\rm T} = P_{\rm S(tatic)} + P_{\rm D(ynamic)} \tag{4}$$

CMOS

CMOS-level inputs

$$P_{\rm s} = V_{\rm CC} \times I_{\rm CC} \tag{5}$$

$$P_{\rm D} = (C_{\rm pd} \times f_{\rm i} + C_{\rm L} \times f_{\rm o}) \times V_{\rm CC}^2 \times N_{\rm sw}$$
(6)

TTL-level inputs

$$P_{\rm S} = [I_{\rm CC} + (N_{\rm TTL} \times \Delta I_{\rm CC} \times DC_{\rm d})]$$
⁽⁷⁾

$$\mathbf{P}_{\mathrm{D}} = \left(\mathbf{C}_{\mathrm{pd}} \times \mathbf{f}_{\mathrm{i}} + \mathbf{C}_{\mathrm{L}} \times \mathbf{f}_{\mathrm{o}}\right) \times \mathbf{V}_{\mathrm{CC}}^{2} \times \mathbf{N}_{\mathrm{sw}}$$
(8)

BiCMOS

Note: $\Delta I_{CC} = 0$ for bipolar devices.

$$P_{\rm S} = V_{\rm CC} \left[DC_{\rm en} \left(N_{\rm H} \times \frac{I_{\rm CCH}}{N_{\rm T}} + N_{\rm L} \times \frac{I_{\rm CCL}}{N_{\rm T}} \right) + (1 - DC_{\rm en})I_{\rm CCZ} + (N_{\rm TTL} \times \Delta I_{\rm CC} \times DC_{\rm d}) \right]$$
(9)

$$P_{D} = [DC_{en} \times N_{sw} \times V_{CC} \times f_{i} \times (V_{OH} - V_{OL}) \times C_{L}] + [DC_{en} \times N_{sw} \times V_{CC} \times f_{2} \times I_{CCD}] \times 10^{-3}$$
(10)

Where:

- V_{CC} = Supply voltage (V)
- I_{CC} = Power supply current (A) (from the data sheet)
- I_{CCL} = Power supply current (A) when outputs are in low state (from the data sheet)
- I_{CCH} = Power supply current (A) when outputs are in high state (from the data sheet)
- I_{CCZ} = Power supply current (A) when outputs are in high-impedance state (from the data sheet)
- ΔI_{CC} = Power supply current (A) when one input is at a TTL level (from the data sheet)
- $DC_{en} = \%$ duty cycle enabled (50% = 0.5)
- $DC_d = \%$ duty cycle of the data (50% = 0.5)
- N_{H} = Number of outputs in high state
- N_{L} = Number of outputs in low state
- N_{sw} = Total number of outputs switching
- N_T = Total number of outputs
- N_{TTL} = Number of inputs driven at TTL levels
- f_i = Input frequency (Hz)
- $f_0 = Ouput frequency (Hz)$
- f_1 = Operating frequency (Hz)
- f_2 = Operating frequency (MHz)
- V_{OH} = Output voltage (V) in high state
- $V_{OL} = Output voltage (V) in low state$
- C_L = External load capacitance (F)
- I_{CCD} = Slope of the I_{CC} -versus-frequency curve (mA/MHz × bit)

For GTL and BTL/FB devices, the power consumption/calculation is similar to a BiCMOS device, with the addition of the output power consumption through the pullup resistor, since GTL is open drain and BTL/FB is open collector.

Package Power Dissipation

Thermal awareness became an industry concern when surface-mount technology (SMT) packages began replacing through-hole (DIP) packages in PCB designs. Circuits operating at the same power enclosed in a smaller package meant higher power density. To add to the issue, systems required increased throughput, which resulted in higher frequencies, increasing the power density even further. Not only do these same issues concern designers today, they are getting progressively more severe.

Figure 17 explains part of the reason for increased attention to thermal issues. As a baseline for comparison, the 24-pin small-outline integrated circuit (SOIC) is shown, along with several fine-pitch packages supplied by TI, including the 24- and 48-pin SSOP, 24- and 48-pin TSSOP, and 100-pin thin quad flat pack (TQFP). The 24-pin TSSOP (8, 9, and 10 bits) allows for the same circuit functionality of the 24-pin SOIC to be packaged in less than a third of the area, while the 48-pin TSSOP (16, 18, and 20 bits) occupies less area and has twice the functionality of the 24-pin SOIC. This same phenomenon is expanded even further with the 100-pin TQFP (32 and 36 bits), which is the functional equivalent of four 24-pin or two 48-pin devices, with additional board savings over that of the SSOP packages. As the trend in packaging technology moves toward smaller packages, attention must be focused on the thermal issues that are created.

Figure 17. Advanced Packages

A better understanding of the factors that contribute to junction temperature (T_J) provides a system designer with more flexibility when attempting to solve thermal issues. Device junction temperature is determined by equation 7:

$$T_{J} = T_{A} + (\Theta_{JA} \times P_{T})$$
⁽¹¹⁾

Where:

 T_J = Junction (die) temperature (°C)

 T_A = Ambient temperature (°C)

 Θ_{JA} = Thermal resistance of the package from the junction to the ambient (°C/W)

 P_T = Total power of the device (W)

Junction temperature is altered by lower chip power consumption, longer trace length, heatsinks, forced air flow, package mold compound, lead-frame size and material, surface area, and die size. Some of these are mechanically inherent in a particular package, while others are controlled by the designer and are application specific. Understanding which variables can be influenced by practicing good thermal-design techniques requires a more detailed investigation of power considerations as well as thermal-resistance measurements. The package power dissipation is calculated using a junction temperature (T_J) of 150°C and an ambient temperature (T_A) of 55°C. Θ_{JA} is calculated using a board trace length of 750 mils and no airflow. Table 2 provides the different Θ_{JA} for different packages. Refer to the *Package Thermal Considerations* application report in the ABT data book for the relationship between junction temperature and reliability.

NO. OF PINS		14	16	20	24	48	52	56	64	80	100
0010	Package	D	D	DW	DW	—	—				—
3010	ΘJA	76	73	59	56	—	—				—
SSOR	Package	DB	DB	DB	DB	DL		DL			
330F	ΘJA	185	175	164	152	80		68			
TOOOD	Package	PW	PW	PW	PW	DGG		DGG			
1330F	ΘJA	195	187	143	140	115		92			
OEP	Package						RC			PH	
QFF	ΘJA						69			84	
TOED	Package								PM	PN	PZ
IQFF	ΘJA								96	89	79
	Package										PCA
	ΘJA										52.4

Table 2. Θ_{JA} for Different Packages

Advanced Packaging

In addition to its strong commitment to provide fast, low-power, high-drive integrated circuits, TI is the clear-cut leader in logic packaging advancements. The development of the SSOP in 1989 provided system designers the opportunity to reduce the amount of board space required for bus-interface devices by 50 percent. Several 24-pin solutions, including the familiar SOIC, SSOP, and TSSOP are widely used, as well.

The 48-/56-pin SSOP/TSSOP packages allow twice the functionality (16-, 18-, and 20-bit functions) in approximately the same or less board area as a standard SOIC. This is accomplished by using a 25-mil (0.635-mm) lead pitch, as opposed to 50 mil (1.27 mm) in SOIC. Figure 18 shows a typical pinout structure for the 48-pin SSOP/TSSOP. The flow-through architecture is standard for all WidebusTM devices, making signal routing easier during board layout. Also, note the distributed GND and V_{CC} pins, which improve simultaneous switching performance, as discussed in the signal integrity section of this report.

ſ	, ſ	1 OE	$_{1}$	48	20E	
		1Y1 [2	47] 1A1	
		1Y2 [3	46] 1A2	
		GND [4	45] GND	
		1Y3 [5	44	1A3	
	0 Dit	1Y4 [6	43] 1A4	L
		V _{CC} [7	42] v _{cc}	ſ
		2Y1 [8	41	2A1	
		2Y2 [9	40] 2A2	
		GND [10	39] GND	
		2Y3 [11	38] 2A3	
	Ĺ	2Y4 [12	37] 2A4	
	ſ	3Y1 [13	36] 3A1	7
		3Y2 [14	35] 3A2	
		GND [15	34] GND	
		3Y3 [16	33] 3A3	
		3Y4 [17	32] 3A4	
		V _{CC} [18	31] V _{CC}	
	8 Bit <	4Y1 [19	30] 4A1	$\left \right\rangle$
		4Y2 🛛	20	29	4A2	
		GND [21	28] GND	
		4Y3 [22	27	4A3	
		4Y4 [23	26	4A4	
Į	Ļ	4 <u>0</u> E	24	25	30E	
	-					

Figure 18. Distributed Pinout of 'ABT16244A

When using the small-pin-count SSOPs (8-, 9-, and 10-bit functions), the same functionality will occupy less than half the board area of an SOIC (70 mm² vs 165 mm²). There is also a height improvement over the SOIC that is beneficial when the spacing between boards is a consideration. For very dense memory arrays, the packaging evolution has gone one step further with the TSSOP. The TSSOP thickness of 1.1 mm gives a 58-percent height improvement over the SOIC. Another packaging evolution is the EIAJ standard 100-pin TQFP package (0.5-mm lead pitch), which was developed for both the Widebus+TM family (32-bit ABT) and the 18-bit FB+/BTL universal bus transceivers (UBTTM). The FB version is a high-power package. A package cross-section, as shown in Figure 19, reveals a metal heatsink that facilitates the excellent thermal performance of the package.

Figure 19. Cross-Section of Thermally Enhanced EIAJ 100-Pin TQFP

For more information about the various packages used with the Advanced Bus-Interface families, refer to the Mechanical Data section in the ABT or LVT data book.

Output Capacitance

TI designed both the CMOS and BiCMOS logic families for the lowest capacitance possible. GTL and BTL/FB, however, were designed to meet a 5-pF I/O capacitance on the B port. Figure 20 shows the typical input, I/O, and output capacitance of these families.

Input Capacitance

Figure 20. Capacitance Variation Between Families

ac Performance

Simultaneous-Switching Phenomenon

System designers are frequently concerned with the performance degradation of ICs when outputs are switched. TI's priority, when designing the bus-interface families, is to minimize signal-integrity concerns and reduce the need for excess settling time of an output waveform. This section addresses the simultaneous switching performance of these families for both octals and Widebus[™] devices.

Figure 21 shows a simple model of an output pin, including the associated capacitance of the output load and the inherent inductance of the ground lead. The voltage drop across the GND inductor (V_L) is determined by the value of the inductance and the rate of change in current across the inductor. When multiple outputs are switched from high to low, the transient current (di/dt) through the GND inductor generates a difference in potential on the chip ground with respect to the system ground. This induced GND variation can be observed indirectly, as shown in Figure 22. The voltage output low, peak or valley (V_{OLP}, V_{OLV}), is measured on one quiet output when all others are switched from high to low.

Figure 21. Simultaneous-Switching Output Model

Figure 22. Simultaneous-Switching-Noise Waveform

A similar phenomenon occurs with respect to the V_{CC} plane on a low-to-high transition, known as voltage output high, peak or valley (V_{OHP}, V_{OHV}). Most problems are associated with a large V_{OLP} because, in most cases, the range for a logic 0 is much less than the range for a logic 1 (see Figure 23). For a comprehensive discussion of simultaneous switching, see the *Simultaneous Switching Evaluation and Testing* application report or the *Advanced CMOS Logic Designer's Handbook* from TI.

The impact of these voltage noise spikes on a system can be extreme. The noise can cause loss of stored data, severe speed degradation, false clocking, and/or reduction in system noise immunity. For an overview of how propagation delay is affected by the switching of multiple outputs, please refer to the ac performance section of this report.

Figure 23. dc Noise Margin

Simultaneous-Switching Solutions

IC manufacturers can reduce the effects of simultaneous switching by decreasing the inductance of the power pins, adding multiple power pins, and controlling the turn on of the output. These techniques are described in detail in the 1988 Texas Instruments *Advanced CMOS Logic (ACL) Designer's Handbook*.

Octal devices employ the standard end-pin GND and V_{CC} configuration while maintaining acceptable simultaneous switching performance. WidebusTM series (16-, 18-, and 20-bit functions), on the other hand, are offered in an SSOP package (see the packaging section of this report) that was developed by TI to save valuable board space and reduce simultaneous switching effects. One might expect an increase in noise with 16 outputs switching in a single package; however, the simultaneous switching performance is actually improved. There is normally a GND pin for every two outputs and a V_{CC} pin for every four outputs. This allows the transient current to be distributed across multiple power pins and decreases the overall current range of change (di/dt) effect.

(12)

From basic circuit analysis, the induced voltage across an inductor is defined as:

v = L(di/dt)

Where:

L = Inductance di/dt = Rate of change of the current The current through an output is dependent on the voltage level and the load seen at the output. This can be expressed mathematically as:

$$i = C(dv_{out}/dt)$$
(13)

Analysis of equations 12 and 13 clearly shows that the more V_{CC} and ground pins there are, the lower the lead inductance, resulting in less noise.

As the speed of today's circuits increases, di/dt increases and so does the generation of simultaneous-switching noise. The standard methodology devised by the industry to measure voltage bounce is to keep one output at either logic high (V_{OH}) or logic low (V_{OL}) and to switch all other outputs at a predefined frequency. Figures 24 through 26 show a comparison of the noise generation as (N – 1) outputs are switched simultaneously while the Nth output is held high or low. Refer to Figure 1 for the guaranteed V_{IL} (max) and V_{IH} (min) specification for various families.

[†] LV is tested using octal packages only.

[‡] Data is based on the input signal characteristics: $V_{IL} = 0 V$, $V_{IH} = 3 V$, $t_r/t_f = 2 ns$.

Figure 24. Typical Output Low-Voltage Peak (VOLP) on 3.3-V and 5-V Families

[‡]Data is based on the input signal characteristics: $V_{IL} = 0 V$, $V_{IH} = 3 V$, $t_r/t_f = 2 ns$.

Figure 25. Typical Output High-Voltage Valley (VOHV) on 3.3-V and 5-V Families

[†] LV is tested using octal packages only.

Figure 26. Typical Output Voltage Peak (VOLP) and Valley (VOHV) on GTL and BTL

Slew Rate

Slew rate plays an important role in backplane or point-to-point application designs. The slower the output slew rate of a device, the less susceptible the signal is to reflections and noise. Based on this data, a designer knows how to terminate a bus or backplane. Using the characterization laboratory boards, the output slew rate (t_{rise} and t_{fall}) was taken with and without the standard output load. Figures 27 and 28 show the output rise and fall times of each output taken between 10% and 90% for TTL, 0.5 V and 1 V for GTL, and 1.3 V and 1.8 V for BTL. Figures 29 and 30 show the rise and fall time as the number of outputs switching increases. The curves in both plots look almost flat between one output switching and all outputs switching.

[†] Data is based on the input signal characteristics: $V_{IL} = 0 V$, $V_{IH} = 3 V$, $t_f/t_f = 2 ns$.

Figure 27. Typical Output Rise and Fall Time Measured Between Specified Levels or Voltages

Rise Time 3.3-V and 5-V Families

[†] Data is based on the input signal characteristics: $V_{IL} = 0 V$, $V_{IH} = 3 V$, $t_f/t_f = 2 ns$.

Figure 29. Typical Output Rise Time as the Number of Outputs Switching Increases

Fall Time vs No. of Outputs Switching 3.3-V Families

[†] Data is based on the input signal characteristics: $V_{IL} = 0 V$, $V_{IH} = 3 V$, $t_r/t_f = 2 ns$.

Figure 30. Typical Output Fall Time as the Number of Outputs Switching Increases

Effects of Simultaneous Switching and Capacitive Loading on Propagation Delay

Another factor that may be of concern to a designer is the change in propagation delay when more outputs are switching or when the output capacitive load is varying. This data is very useful, since a typical application would use all outputs simultaneously. In addition, it usually requires different loading conditions than the data sheet specifies. Data sheets do not show the performance of the device with different loads; they only use the standard load specified in data sheets. Figure 31 shows the propagation delay of a device as the number of outputs switching increases. Figures 32 and 33 show the increase in propagation delays (t_{PHL} and t_{PLH}) as the output capacitive load increases from 0 pF to 200 pF.

[†] Data is based on the input signal characteristics: $V_{IL} = 0 V$, $V_{IH} = 3 V$, $t_r/t_f = 2 ns$.

Figure 31. Typical Propagation Delay vs Number of Outputs Switching (Standard Load)

 \dagger Data is based on the input signal characteristics: V_{IL} = 0 V, V_{IH} = 3 V, t_{r}/t_{f} = 2 ns.

Figure 32. Typical t_{PHL} vs Capacitive Load

 \dagger Data is based on the input signal characteristics: V_{IL} = 0 V, V_{IH} = 3 V, t_{f}/t_{f} = 2 ns.

Figure 33. Typical t_{PLH} vs Capacitive Load

Skew

Skew is a term that is used to define the difference in time between two different signal edges. There are several different types of skew currently being used; however, the skew discussed here is the skew of propagation delays across the outputs of a device. More specifically, it is the difference between the largest value obtained for a propagation delay and the smallest value across all of the outputs. For example, if output 3 has the largest propagation delay (t_{PLH}) and output 14 has the smallest, the output skew for this device would be the difference between the propagation delays for output 3 and output 14 (see Figure 34).

Figure 34. Skew = $|t_{PLH3} - t_{PLH4}|$

The data presented in this report is taken from devices that have one output switching at a time ($V_{CC} = MIN$ and $T_A = 85^{\circ}C$). This data represents the average worst-case condition skew. Figure 35 shows the skew of the different families using the standard load specified in data sheets.

Figure 35. Typical Skew Between Outputs

Bus-Hold Circuit

The most effective method to provide defined levels for a floating bus is to use TI's *bus hold* as a built-in feature on selected families (see Table 3).

FAMILY	BUS HOLD
ABT WIdebus+™ (32- and 36-bit)	All devices
ABT Octals and Widebus™	Selected devices
Low Voltage (LVT and ALVC)	All devices
LVC Octals and Widebus™	Selected devices
GTL	A port only

 Table 3. List of Devices With Bus Hold

Bus hold is a circuit used in TI's selected families to help solve the floating-input problem and eliminate the need for pullup and pulldown resistors. It consists of two back-to-back inverters, with the output fed back to the input via a resistor (see Figure 36). To understand how the bus-hold cell operates, let's assume that an active driver has switched the line to a high level. This results in no current flowing through the feedback circuit. Now, the driver goes in the high-impedance state and the bus-hold circuit holds the high level via the feedback resistor. The current requirement of the bus hold is determined only by the leakage current of the circuit. The same condition applies when the bus is in the low state and then goes inactive.

Table 4 shows the data-sheet dc specifications for bus hold. The first specification is the minimum available current to hold the bus at 0.8 V or 2 V. These voltages are the guaranteed low and high levels for TTL inputs. The second specification is the maximum current that the bus hold sources or sinks at any input voltage between 0 V and 3.6 V (for low-voltage families) or between 0 V and 5.5 V (for ABT). The bus-hold current becomes minimal as the input approaches the rails. The output leakage currents, I_{OZH} and I_{OZL} , are insignificant for transceivers with bus hold since a true leakage test cannot be achieved due to the existence of the bus-hold circuit. Since bus hold behaves as a small driver, it tends to source or sink a current that is opposite in direction to the leakage current. This situation is true for transceivers with bus hold only and does not apply to buffers. Note that all LVT, ABT WidebusTM, selected ABT and LVC octals, and WidebusTM devices have the bus-hold feature. Refer to Table 4 or the manufacturer for more information.

Table 4. Data-Sheet Specification for Bus Hold electrical characteristics over recommended operating free-air temperature range (for families with bus-hold features)

PARAMETER		TEST	CONDITIONS		MIN	MAX	UNIT	
			Vec = 3.V	VI = 0.8 V	75			
II(hold)	LVT, LVC, ALVC	Data inputs or I/Os	vCC = 2 v	V _I = 2 V	-75		μA	
			V _{CC} = 3.6 V,	V _I = 0 to 3.6 V		±500		
	ABT Widebus+™			VI = 0.8 V	100		μΑ	
l _{l(hold)}	and selected	Data inputs or I/Os	VCC = 4.3 V	V _I = 2 V	-100			
	ABT Widebus™		V _{CC} = 5.5 V,	V _I = 0 to 5.5 V		±500		
	ABT	Transceivers	This test is not a tr always active on a		±1	^		
'OZH/'OZL	LVT, LVC, ALVC	with bus hold	current that is opported to the second secon		±1	μ		
	ABT	Buffers	This test is a true I		±10	A		
'OZH/IOZL	LVT, LVC, ALVC	with bus hold	not exist on an out		±5	μΑ		

Partial Power Down

Partial power down and live insertion are becoming a major issue in today's system designs. Many new standards have included this as part of their specification. The plug-and-play feature is beginning to dominate the PC market and the telecom industry has been using it for a long time. When a system is partially down, the unpowered device is expected to go into a high-impedance state so the device does not disturb or disrupt the data on the bus. When using standard CMOS devices, there is a path from either the input or the output (or both) to V_{CC} . This prevents partial power down for such applications as hot-card insertion without adding current-limiting components. This is not the case with ABT, LVT, LVC, GTL, and BTL, as these paths have been eliminated with the use of either blocking diodes or current-blocking circuitries. Figure 37 shows functionally-equivalent schematics of the input and output structures for these families. Refer to Figures 5 and 10 for more detail on the input and output behavior under these conditions.

Consider the situation shown in Figure 38. The driving device is powered with $V_{CC} = 5$ V while the receiving device is powered down ($V_{CC} = 0$). If these devices are either LV, ALVC, or ALB, the receiver can be powered up through the diode, D2 and D3, when the driver is in a high state. ABT, LVT, LVC, GTL, and BTL devices do not have a comparable path and are thus immune to this problem, making them more desirable for this application. The electrical characteristics table in the data sheet has a specification called I_{off} . This specification shows the test condition and the maximum leakage a device can source or sink when V_{CC} is off. Refer to the individual data sheets for more details.

a) ALVC, LV, AND ALB EQUIVALENT I/O STRUCTURE

b) ABT, LVT, LVC, GTL, AND BTL EQUIVALENT I/O STRUCTURE

Figure 37. Simplified Input Structures for CMOS and ABT Devices

Figure 38. Example of Partial-System Power Down

Power-Up or Power-Down High Impedance

Power-up 3-state circuitry is another feature that TI offers on selected LVT, ABT, and FB. This feature keeps the output in a high-impedance state during power up or power down, regardless of the output-enable control pin's state ($V_{CC} = 0$ V to 2.1 V for ABT and FB, and $V_{CC} = 0$ V to 1.5 V for LVT). After V_{CC} reaches the specified value, the output-enable control takes over and puts the device in the required state (see Figure 39). The electrical characteristics table in the data sheet has both the power-up and power-down specifications (I_{OZPU} and I_{OZPD}). These specifications show the test condition and the maximum leakage an output can source or sink when V_{CC} is between 0 V and 2.1 V for ABT and FB or between 0 V and 1.5 V for LVT (the nomenclature for the selected LVT devices that offer this feature is LVTZ). Refer to the LVT data book for more details. Power-up or power-down high impedance can also be achieved with other families by adding an external pullup or pulldown resistor (typically 1 k Ω) from the output-enable pin to V_{CC} (active-low devices) or to GND (active-high devices) (see Figure 40). This ensures the high-impedance state during the full V_{CC} ramp. As long as the output-enable pin is not driven to an active state by the controlling device, an ASIC, FPGA, or PAL, the output remains disabled.

Figure 39. Power-Up and Power-Down High Impedance Up to 2.1 V (ABT, FB) and 1.5 V (LVTZ)

 $† I_{OL} > I_R$, so the control signal can override the pullup resistor.

Figure 40. Power-Up High Impedance With Active-Low Control Pin

ABTE, FB, and CBT (CBT6800 only) have an added feature called BIAS V_{CC} . This feature is used to precharge the output, trace, and connector capacitance during power up. This circuit prevents the device from spiking the backplane and disrupting the data during hot-card insertion. For this feature to work, both ground and BIAS V_{CC} pins must make contact before V_{CC} does (both pins should be the longest on the card).

Additional Design Considerations for GTL and BTL/FB

GTL

To successfully design with the GTL family, several rules and techniques with regard to voltage generation and proper termination must be followed. First, both 3.3-V and 5 V-V_{CC} are needed in the current generation of GTL devices (only the 3.3-V V_{CC} will be needed in the next-generation GTL). Second, the termination voltage (V_{TT} = 1.2 V) should be regulated from the 5-V-V_{CC}, keeping in mind the current requirements of the outputs (40 mA per output). There are several linear regulators that are capable of performing this function. Depending on the design, the regulator could be either on the backplane itself or on the individual cards. Third, the reference voltage (V_{REF} = 0.8 V) must be generated from V_{TT}. The V_{REF} voltage can be generated using a simple voltage-divider circuit with an appropriate bypass capacitor (0.01 µF or 0.1 µF) placed as close as possible to the V_{REF} pin. The V_{REF} input circuitry consumes very little power (1-µA max). This enables several devices to have their V_{REF} pin connected to the same voltage-divider circuit, thus eliminating the need for multiple voltage-divider circuits (see Figure 41).

Figure 41. Proposed Circuit to Generate VREF

BTL/FB

For the BTL family, there are four power supplies and two grounds to be connected. For live-insertion applications, the power-up scheme should be as follows: the GND lead should make contact first, followed by BIAS V_{CC} . This sequence precharges the board and the device capacitance and establishes a voltage between 1.62 V and 2.1 V on the BTL outputs. Next, V_{CC} makes contact and, as it ramps up, the BIAS- V_{CC} circuitry starts to turn off. When V_{CC} reaches its final value, the BIAS V_{CC} circuitry is completely isolated and does not interfere with the device functionality. BG- V_{CC} and BG-GND pins are used to supply power to the bias-generator input circuitry. Both signals must be isolated from the rest of the power supplies. This ensures the signal integrity at the BTL input. The 2.1-V V_{TT} should be regulated from a higher voltage and should supply enough current to switch all 18 outputs (100 mA per output). V_{TT} variation should not exceed ±2% and it is recommended that proper bypass capacitors (0.01 μ F or 0.1 μ F) be used. The termination resistor should not exceed ±1% of its resistance value.

Conclusion

Today's high-speed bus and point-to-point applications require devices that can provide high performance, excellent signal integrity, and cost effectiveness. TI's Advanced System Logic (ASL) group offers the widest selection of logic families that meet these requirements, from low drive (6 mA) to high drive (180 mA) and from low performance (16 ns) to high performance (sub 2 ns) propagation delay. These families are leading the industry and are used extensively in almost every application (PCs, workstations, telecom, networking, etc.). ASL also offers a wide variety of packaging options, including advanced packaging such as the plastic TQFP, SSOP, and TSSOP. The product offerings, coupled with the information provided in this application report, enable the designer to have a complete understanding of these products and their behavior. Table 5 summarizes the various circuit features and characteristics that were discussed in this application report. It can be used as a reference guide to help select the appropriate device for any application.

	$\Delta t / \Delta^{\dagger}$ (ns/V)	Drive I _{OL} / I _{OH} (mA)	I _{CCD} (mA/ MHz Bit)	typ V _{OLP} / V _{OHV} (V)	TYP Output Rise/ Fall (ns)	TYP ^t PD vs Cap. (ns/ pF)	TYP t _{PD} vs SS (ns/ Nsw)	MAX tpD (ns)	TYP Skew (ns)	MAX I _{CC} CMOS (mA)	MAX ICCH/ ICCL/ ICCZ BICMOS (mA)	5-V Tol.	PU3S	Bus Hold	25-Ω Output Series Resistor	TYP Control/ I/O Cap. (pF)
LV	100	8/-8†	0.22	0.70/ 2.4	1.81/ 2.44	0.028	0.11	16	0.74	0.02						2.5/ 2.5/7
LVC	10	24/–24	0.23	0.57/ 2.4	0.54/ 0.6	0.014	0.04	5.2	0.27	0.02		$\sqrt{1}$		√‡	$\sqrt{1}$	3.3/ 5.5/9
LVT	10	64/-32	0.12	0.38/ 2.47	0.47/ 0.49	0.01	0.04	4.1	0.48		0.12/ 5/ 0.12†	\checkmark		\checkmark		3.5/ 4/10
LVTZ	10	64/-32	0.12	0.38/ 2.47	0.47/ 0.49	0.01	0.04	4.1	0.48		0.12/ 5/ 0.12†	\checkmark	\checkmark	\checkmark		3.5/ 4/8
LVT2	10	12/–12	0.12	0.34/ 2.6	0.5/ 0.5	0.018	0.05	4.9	0.35		0.12/ 5/ 0.12†			\checkmark		3.5/ 4/10
ALVC	10	24/–24	0.27	0.70/ 2.38	0.33/ 0.29	0.014	0.05	3.4	0.45	0.04					$\sqrt{1}$	3.5/ 6/7.5
ABT	10	64/-32	0.49	0.54/ 3.3	0.52/ 0.42	0.013	0.04	4.2	0.25		2/ 30/ 2†		√‡	√‡		3/ 3/6
ABT2	10	12/–12 [†]	0.49	0.40/ 3.3	0.62/ 0.55	0.019	0.04	4.2	0.18		2/ 30/ 2†		√‡	√‡		3/ 3/6
ABTE	10	90/–60	0.42	0.70/ 3.1	0.75/ 0.47	0.024	0.04	5.2	0.11		36/ 48/ 32			\checkmark		2.5/ 2.5/4.5
GTL	10	40§	0.30	0.40/ 1.1	0.64/ 0.56	0.0054	0.04	4	0.17		120					3.5/ 3.5/4
FB	5	100§	0.20	1.3/ 1.9	0.43/ 0.37	0.014	0.04	5.6	0.30		60†		\checkmark			5/ 5/4
CBT	-	0/0	0	0.14/ 2.89	0.64/ 0.56	0.013	0.02	0.25	0.23	0.003†						3/ 6/6

Table 5. Summary of the Various Features and Characteristics of the Device Families

[†] Unless otherwise noted in data sheets

[‡]Selected devices only

§ Open-drain/open-collector devices

Acknowledgment

The author of this document is Ramzi Ammar.

References

- 1 Texas Instruments Advanced BiCMOS Data Book 1994, SCBD002B.
- 2 Gunning, Bill; Yuan, Leo; Nguyen, Trung; Wong, Tony, GTL: "A Low-Voltage Swing Transmission-Line Transceiver", March 15, 1991.
- 3 Texas Instruments, "Package Thermal Considerations", Advanced BiCMOS Data Book 1994, SCBD002B, page 13-97.

Implications of Slow or Floating CMOS Inputs

SCBA004C February 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

Contents

Title

Introduction	7_177
	/-1//
Characteristics of Slow or Floating CMOS Inputs	7–177
Slow Input Edge Rate	7–179
Floating Inputs	7–179
Recommendations for Designing More-Reliable Systems	7–181
Bus Control	7-181
Pullup or Pulldown Resistors	7-181
Bus-Hold Circuits	7–182
Summary	7–188

List of Illustrations

Figure	Title	Page
1	Input Structures of ABT and LVT/LVC Devices	7–177
2	Supply Current Versus Input Voltage (One Input)	7–178
3	Input Transition Rise or Fall Rate as Specified in Data Sheets	7–178
4	Input/Output Model	7–179
5	Examples of Supply-Current Change of the Input at TTL Level as Specified in Data Sheets	7–180
6	Supply Current Versus Input Voltage (36 Inputs)	7–180
7	Typical Bidirectional Bus	7–180
8	Inactive-Bus Model With a Defined Level	7–181
9	Typical Bus-Hold Circuit	7–182
10	Stand-Alone Bus-Hold Circuit (SN74ACT107x)	7–183
11	Diode Characteristics (SN74ACT107x)	7–183
12	Input Structure of ABT/LVT and ALVC/LVC Families With Bus-Hold Circuit	7–184
13	Bus-Hold Input Characteristics	7–185
14	Driver and Receiver System	7–186
15	Output Waveforms of Driver With and Without Receiver Bus-Hold Circuit	7–186
16	Bus-Hold Circuit Supply Current Versus Input Voltage	7–186
17	Input Power With and Without Bus Hold at Different Frequencies	7–187
18	Example of Data-Sheet Minimum Specification for Bus Hold	7–188

Page

Introduction

In recent years, CMOS (AC/ACT, AHC/AHCT, ALVC, CBT, CBTLV, HC/HCT, LVC, LV/LV-A) and BiCMOS (ABT, ALVT, BCT, FB, GTL, and LVT) logic families have further strengthened their position in the semiconductor market. New designs have adopted both technologies in almost every system that exists, whether it is a PC, a workstation, or a digital switch. The reason is obvious: power consumption is becoming a major issue in today's market. However, when designing systems using CMOS and BiCMOS devices, one must understand the characteristics of these families and the way inputs and outputs behave in systems. It is very important for the designer to follow all rules and restrictions that the manufacturer requires, as well as to design within the data-sheet specifications. Because data sheets do not cover the input behavior of a device in detail, this application report explains the input characteristics of CMOS and BiCMOS families in general. It also explains ways to deal with issues when designing with families in which floating inputs are a concern. Understanding the behavior of these inputs results in more robust designs and better reliability.

Characteristics of Slow or Floating CMOS Inputs

Both CMOS and BiCMOS families have a CMOS input structure. This structure is an inverter consisting of a p-channel to V_{CC} and an n-channel to GND as shown in Figure 1. With low-level input, the p-channel transistor is on and the n-channel is off, causing current to flow from V_{CC} and pulling the node to a high state. With high-level input, the n-channel transistor is on, the p-channel is off, and the current flows to GND, pulling the node low. In both cases, no current flows from V_{CC} to GND. However, when switching from one state to another, the input crosses the threshold region, causing the n-channel and the p-channel to turn on simultaneously, generating a current path between V_{CC} and GND. This current surge can be damaging, depending on the length of time that the input is in the threshold region (0.8 to 2 V). The supply current (I_{CC}) can rise to several milliamperes per input, peaking at approximately 1.5-V V_{I} (see Figure 2). This is not a problem when switching states within the data-sheet-specified input transition time limit specified in the recommended operating conditions table for the specific devices. Examples are shown in Figure 3.

Figure 1. Input Structures of ABT and LVT/LVC Devices

Figure 2. Supply Current Versus Input Voltage (One Input)

recommended operating conditions[†]

				MIN	MAX	UNIT	
Δt/Δv		ABT octals			5		
		ABT Widebus [™] and Widebus+	тм		10		
		AHC, AHCT			20		
		FB	FB			10	
	Input transition rise or fall rate	LVT, LVC, ALVC, ALVT			10	ns/V	
		LV			100		
			V_{CC} = 2.3 V to 2.7 V		200		
		LV-A	V_{CC} = 3 V to 3.6 V		100		
			$V_{CC} = 4.5 V \text{ to } 5.5 V$		20		
			$V_{CC} = 2 V$		1000		
tt	Input transition (rise and fall) time	HC, HCT	V _{CC} = 4.5 V		500	ns	
			$V_{CC} = 6 V$		400		

[†]Refer to the latest TI data sheets for device specifications.

Figure 3. Input Transition Rise or Fall Rate as Specified in Data Sheets

Slow Input Edge Rate

With increased speed, logic devices have become more sensitive to slow input edge rates. A slow input edge rate, coupled with the noise generated on the power rails when the output switches, can cause excessive output errors or oscillations. Similar situations can occur if an unused input is left floating or is not actively held at a valid logic level.

These functional problems are due to voltage transients induced on the device's power system as the output load current (I_O) flows through the parasitic lead inductances during switching (see Figure 4). Because the device's internal power-supply nodes are used as voltage references throughout the integrated circuit, inductive voltage spikes, V_{GND} , affect the way signals appear to the internal gate structures. For example, as the voltage at the device's ground node rises, the input signal, V_I' , appears to decrease in magnitude. This undesirable phenomenon can then erroneously change the output if a threshold violation occurs.

In the case of a slowly rising input edge, if the change in voltage at GND is large enough, the apparent signal, V_I' , at the device appears to be driven back through the threshold and the output starts to switch in the opposite direction. If worst-case conditions prevail (simultaneously switching all of the outputs with large transient load currents), the slow input edge is repeatedly driven back through the threshold, causing the output to oscillate. Therefore, the maximum input transition time of the device should not be violated, so no damage to the circuit or the package occurs.

Figure 4. Input/Output Model

Floating Inputs

If a voltage between 0.8 V and 2 V is applied to the input for a prolonged period of time, this situation becomes critical and should not be ignored, especially with higher bit count and more dense packages (SSOP, TSSOP). For example, if an 18-bit transceiver has 36 I/O pins floating at the threshold, the current from V_{CC} can be as high as 150 mA to 200 mA. This is approximately 1 W of power consumed by the device, which leads to a serious overheating problem. This continuous overheating of the device affects its reliability. Also, because the inputs are in the threshold region, the outputs tend to oscillate, resulting in damage to the internal circuit over a long period of time. The data sheet shows the increase in supply current (ΔI_{CC}) when the input is at a TTL level [for ABT V_I = 3.4 V, ΔI_{CC} = 1.5 mA (see Figure 5)]. This becomes more critical when the input is in the threshold region as shown in Figure 6.

These characteristics are typical for all CMOS input circuits, including microprocessors and memories.

For CBT or CBTLV devices, this applies to the control inputs. For FB and GTL devices, this applies to the control inputs and the TTL ports only.

P/	ARAMETER		MIN	MAX	UNIT		
	ABT, AHCT	V _{CC} = 5.5 V,	One input at 3.4 V,	Other inputs at V_{CC} or GND		1.5	
^{∆I} CC [‡]	CBT Control inputs	V _{CC} = 5.5 V,	One input at 3.4 V,	Other inputs at V_{CC} or GND		2.5	mA
ΔI_{CC}^{\ddagger}	CBTLV Control inputs	V _{CC} = 3.6 V,	One input at 3 V,	Other inputs at V_{CC} or GND		750	μΑ
Maat	LVT	$V_{00} = 2V_{0} = 2V_{0}$		Other inputs at Vee or CND		0.2	m۸
	LVC, ALVC, LV	$v_{\rm CC} = 3 \ v \ 10 \ 3.6 \ v,$	One input at $VCC = 0.0 V$,			0.5	IIIA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)[†]

[†]Refer to the latest TI data sheets for device specifications.

[‡] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

Figure 5. Examples of Supply-Current Change of the Input at TTL Level as Specified in Data Sheets

Figure 6. Supply Current Versus Input Voltage (36 Inputs)

As long as the driver is active in a transmission path or bus, the receiver's input is always in a valid state. No input specification is violated as long as the rise and fall times are within the data-sheet limits. However, when the driver is in a high-impedance state, the receiver input is no longer at a defined level and tends to float. This situation can worsen when several transceivers share the same bus. Figure 7 is an example of a typical bus system. When all transceivers are inactive, the bus-line levels are undefined. When a voltage that is determined by the leakage currents of each component on the bus is reached, the condition is known as a *floating state*. The result is a considerable increase in power consumption and a risk of damaging all components on the bus. Holding the inputs or I/O pins at a valid logic level when they are not being used or when the part driving them is in the high-impedance state is recommended.

Figure 7. Typical Bidirectional Bus

Recommendations for Designing More-Reliable Systems

Bus Control

The simplest way to avoid floating inputs in a bus system is to ensure that the bus always is either active or inactive for a limited time when the voltage buildup does not exceed the maximum V_{IL} specification (0.8 V for TTL-compatible input). At this voltage, the corresponding I_{CC} value is too low and the device operates without any problem or concern (see Figures 2 and 4).

To avoid damaging components, the designer must know the maximum time the bus can float. First, assuming that the maximum leakage current is $I_{OZ} = 50 \,\mu\text{A}$ and the total capacitance (I/O and line capacitance) is $C = 20 \,\text{pF}$, the change in voltage with respect to time on an inactive line that exceeds the 0.8-V level can be calculated as shown in equation 1.

$$\Delta V / \Delta t = \frac{I_{OZ}}{C} = \frac{50 \ \mu A}{20 \ pF} = 2.5 \ V / \mu s$$
 (1)

The permissible floating time for the bus in this example should be reduced to 320 ns maximum, which ensures that the bus does not exceed the 0.8-V level specified. The time constant does not change when multiple components are involved because their leakage currents and capacitances are summed.

The advantage of this method is that it requires no additional cost for adding special components. Unfortunately, this method does not always apply because buses are not always active.

Pullup or Pulldown Resistors

When buses are disabled for more than the maximum allowable time, other ways should be used to prevent components from being damaged or overheated. A pullup or a pulldown resistor to V_{CC} or GND, respectively, should be used to keep the bus in a defined state. The size of the resistor plays an important role and, if its resistance is not chosen properly, a problem may occur. Usually, a 1-k Ω to 10-k Ω resistor is recommended. The maximum input transition time must not be violated when selecting pullup or pulldown resistors (see Figure 3). Otherwise, components may oscillate, or device reliability may be affected.

Figure 8. Inactive-Bus Model With a Defined Level

Assume that an active-low bus goes to the high-impedance state as modeled in Figure 8. C_T represents the device plus the bus-line capacitance and R is a pullup resistor to V_{CC} . The value of the required resistor can be calculated as shown in equation 2.

$$V(t) = V_{CC} - [e^{-t/RC_{T}} (V_{CC} - V_{i})]$$
(2)

Where:

V(t) = 2 V, minimum voltage at time t $V_i = 0.5 V, \text{ initial voltage}$ $V_{CC} = 5 V$ $C_T = \text{total capacitance}$ R = pullup resistor

t = maximum input rise time as specified in the data sheets (see Figure 3).

Solving for R, the equation becomes:

$$R = \frac{t}{0.4 \times C_{\rm T}} \tag{3}$$

For multiple transceivers on a bus:

$$R = \frac{t}{0.4 \times C \times N}$$
(4)

Where:

C = individual component and trace capacitance

N = number of components connected to the bus

Assuming that there are two components connected to the bus, each with a capacitance C = 15 pF, requiring a maximum rise time of 10 ns/V and t = 15-ns total rise time for the input (2 V), the maximum resistor size can be calculated:

$$R = \frac{15 \text{ ns}}{0.4 \times 15 \text{ pF} \times 2} = 1.25 \text{ k}\Omega$$
(5)

This pullup resistor method is recommended for ac-powered systems; however, it is not recommended for battery-operated equipment because power consumption is critical. Instead, use the bus-hold feature that is discussed in the next section. The overall advantage of using pullup resistors is that they ensure defined levels when the bus is floating and help eliminate some of the line reflections, because resistors also can act as bus terminations.

Bus-Hold Circuits

The most effective method to provide defined levels for a floating bus is to use Texas Instruments (TI[™]) built-in bus-hold feature on selected families or as an external component like the SN74ACT1071 and SN74ACT1073 (refer to Table 1).

DEVICE I TPE	BUS HOLD INCORPORATED
SN74ACT1071	10-bit bus hold with clamping diodes
SN74ACT1073	16-bit bus hold with clamping diodes
ABT Widebus+ (32 and 36 bit)	All devices
ABT Octals and Widebus	Selected devices only
AHC/AHCT Widebus	TBA (Selected devices only)
Low Voltage (LVT and ALVC)	All devices
LVC Widebus	All devices

Table 1. Devices With Bus Hold

Bus-hold circuits are used in selected TI families to help solve the floating-input problem and eliminate the need for pullup and pulldown resistors. Bus-hold circuits consist of two back-to-back inverters with the output fed back to the input through a resistor (see Figure 9). To understand how the bus-hold circuit operates, assume that an active driver has switched the line to a high level. This results in no current flowing through the feedback circuit. Now, the driver goes to the high-impedance state and the bus-hold circuit holds the high level through the feedback resistor. The current requirement of the bus-hold circuit is determined only by the leakage current of the circuit. The same condition applies when the bus is in the low state and then goes inactive.

Figure 9. Typical Bus-Hold Circuit

As mentioned previously in this section, TI offers the bus-hold capability as stand-alone 10-bit and 16-bit devices (SN74ACT1071 and SN74ACT1073) with clamping diodes to V_{CC} and GND for added protection against line reflections caused by impedance mismatch on the bus. Because purely ohmic resistors cannot be implemented easily in CMOS circuits, a configuration known as a transmission gate is used as the feedback element (see Figure 10). An n-channel and a p-channel are arranged in parallel between the input and the output of the buffer stage. The gate of the n-channel transistor is connected to V_{CC} and the gate of the p-channel is connected to GND. When the output of the buffer is high, the p-channel is on, and when the output is low, the n-channel is on. Both channels have a relatively small surface area — the on-state resistance from drain to source, R_{dson} , is about 5 k Ω .

Figure 10. Stand-Alone Bus-Hold Circuit (SN74ACT107x)

Assume that in a practical application the leakage current of a driver on a bus is $I_{OZ} = 10 \,\mu\text{A}$ and the voltage drop across the 5-k Ω resistance is $V_D = 0.8 \,\text{V}$ (this value is assumed to ensure a defined logic level). Then, the maximum number of components that a bus-hold circuit can handle is calculated as follows:

$$N = \frac{V_D}{I_{OZ} \times R} = \frac{0.8 V}{10 \ \mu A \times 5 \ k\Omega} = 16 \text{ components}$$
(6)

The 74ACT1071 and 74ACT1073 also provide clamping diodes as an added feature to the bus-hold circuit. These diodes are useful for clamping any overshoot or undershoot generated by line reflections. Figure 11 shows the characteristics of the diodes when the input voltage is above V_{CC} or below GND. At $V_I = -1V$, the diode can source about 50 mA, which can help eliminate undershoots. This can be very useful when noisy buses are a concern.

Figure 11. Diode Characteristics (SN74ACT107x)
TI also offers the bus-hold circuit as a feature added to some of the advanced-family drivers and receivers. This circuit is similar to the stand-alone circuit, with a diode added to the drain of the second inverter (ABT and LVT only, see Figure 12). The diode blocks the overshoot current when the input voltage is higher than V_{CC} ($V_I > V_{CC}$), so only the leakage current is present. This circuit uses the device's input stage as its first inverter; a second inverter creates the feedback feature. The calculation of the maximum number of components that the bus-hold circuit can handle is similar to the previous example. However, the advantage of this circuit over the stand-alone bus-hold circuit is that it eliminates the need for external components or resistors that occupy more area on the board. This becomes critical for some designs, especially when wide buses are used. Also, because cost and board-dimension restrictions are a major concern, designers prefer the easy fix: drop-in replaceable parts. TI offers this feature in most of the commonly used functions in several families (refer to Table 1 for more details).

Figure 12. Input Structure of ABT/LVT and ALVC/LVC Families With Bus-Hold Circuit

Figure 13 shows the input characteristics of the bus-hold circuit at 3.3-V and 5-V operations, as the input voltage is swept from 0 to 5 V. These characteristics are similar in behavior to a weak driver. This driver sinks current into the part when the input is low and sources current out of the part when the input is high. When the voltage is near the threshold, the circuit tries to switch to the other state, always keeping the input at a valid level. This is the result of the internal feedback circuit. The plot also shows that the current is at its maximum when the input is near the threshold. I_{I(hold)} maximum is approximately 25 μ A for 3.3-V input and 400 μ A for 5-V input.

When multiple devices with bus-hold circuits are driven by a single driver, there may be some concern about the ac switching capability of the driver becoming weaker. As small drivers, bus-hold circuits require an ac current to switch them. This current is not significant when using TI CMOS and BiCMOS families. Figure 14 shows a 4-mA buffer driving six LVTH16244 devices. The trace is a 75- Ω transmission line. The receivers are separated by 1cm, with the driver located in the center of the trace. Figure 15 shows the bus-hold loading effect on the driver when connected to six receivers switching low or high. It also shows the same system with the bus-hold circuit disconnected from the receivers. Both plots show the effect of bus hold on the driver's rise and fall times. Initially, the bus-hold circuit tries to counteract the driver, causing the rise or fall time to increase. Then, the bus-hold circuit changes states (note the crossover point), which helps the driver switch faster, decreasing the rise or fall time.

Figure 14. Driver and Receiver System

Figure 15. Output Waveforms of Driver With and Without Receiver Bus-Hold Circuit

Figure 16 shows the supply current (I_{CC}) of the bus-hold circuit as the input is swept from 0 to 5 V. The spike at about 1.5-V V_I is due to both the n-channel and the p-channel conducting simultaneously. This is one of the CMOS transistor characteristics.

Figure 16. Bus-Hold Circuit Supply Current Versus Input Voltage

The power consumption of the bus-hold circuit is minimal when switching the input at higher frequencies. Figure 17 shows the power consumed by the input at different frequencies, with or without bus hold. The increase in power consumption of the bus-hold circuit at higher frequencies is not significant enough to be considered in power calculations.

Power Plot of the Input With Bus Hold

Figure 17. Input Power With and Without Bus Hold at Different Frequencies

Figure 18 shows the data-sheet dc specifications for bus hold. The first test condition is the minimum current required to hold the bus at 0.8 V or 2 V. These voltages meet the specified low and high levels for TTL inputs. The second test condition is the maximum current that the bus-hold circuit sources or sinks at any input voltage between 0 V and 3.6 V (for low-voltage families) or between 0 V and 5.5 V (for ABT). The bus-hold current becomes minimal as the input voltage approaches the rail voltage. The output leakage currents, I_{OZH} and I_{OZL} , are insignificant for transceivers with bus hold because a true leakage test cannot be performed due to the existence of the bus-hold circuit. Because the bus-hold circuit behaves as a small driver, it tends to source or sink a current that is opposite in direction to the leakage current. This situation is true for transceivers with the bus-hold feature only and does not apply to buffers. All LVT, ABT Widebus+, and selected ABT octal and Widebus devices have the bus-hold feature (refer to Table 1 or contact the local TI sales office for more information).

electrical characteristics over recommended operating free-air temperature range (for families with bus-hold feature) $\!\!\!\!^\dagger$

	PARAM	IETER	TEST CON	IDITIONS	MIN	MAX	UNIT
			V/22 - 2 V/	V _I = 0.8 V	75		
			vCC = 3 v	V _I = 2 V	-75		
II(hold)	Data inputs	LVC, ALVC	V _{CC} = 3.6 V,	V _I = 0 to 3.6 V		±500	μΑ
		ABT Widebus+ and		V _I = 0.8 V	100		
		selected ABT	VCC = 4.5 V	V _I = 2 V	-100		
	Transceivers	ABT	This test is not a true I _{OZ} test because bus hold always is active on an I/O pin. Bus hold tends to supply a current that is opposite in direction to the output leakage current.			<u>+1</u>	
IOZH/IOZL	with bus hold	LVT, LVC, ALVC			±1	μΑ	
	Buffers	ABT	This test is a true I_{07} test since bus hold does			±10	
	with bus hold LVT, LVC, ALVC		not exist on an output pin.			±5	

[†]Refer to the latest TI data sheets for device specifications.

Figure 18. Example of Data-Sheet Minimum Specification for Bus Hold

Summary

Floating inputs and slow rise and fall times are important issues to consider when designing with CMOS and advanced BiCMOS families. It is important to understand the complications associated with floating inputs. Terminating the bus properly plays a major role in achieving reliable systems. The three methods recommended in this application report should be considered. If it is not possible to control the bus directly, and adding pullup or pulldown resistors is impractical due to power-consumption and board-space limitations, bus hold is the best choice. TI designed bus hold to reduce the need for resistors used in bus designs, thus reducing the number of components on the board and improving the overall reliability of the system.

GTL/BTL: A Low-Swing Solution for High-Speed Digital Logic

SCEA003A March 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

Contents

Title

Introduction	7–193
Test Setup	7–193
Advantages of GTL or BTL Over CMOS/TTL	7–194
GTL Family Input and Output Structure	7–194
BTL Family Input and Output Structure	7–195
Power Consumption	7–196
Simultaneous Switching	7–197
Output Capacitance	7–199
Slew Rate	7–199
Signal Integrity	7–201
Design Considerations	7–201
Summary	7–203
References	7–203

Figure

List of Illustrations Title

igure	Title	Page
1	Backplane Model With All Four Boards Connected	7–193
2	Point-to-Point Model With Only One Driver and One Receiver Connected	7–193
3	Typical GTL Input and Output Cells	7–195
4	Typical BTL Input and Output Cells	7–195
5	FB1650 and GTL16612 Power Consumption With All Outputs Switching	7–196
6	FB1650 High Output Voltage Peak and Valley Noise on an Unswitched Output	7–197
7	GTL16612 High Output Voltage Peak and Valley Noise on an Unswitched Output	7–198
8	FB1650 Low Output Voltage Peak and Valley Noise on an Unswitched Output	7–198
9	GTL16612 Low Output Voltage Peak and Valley Noise on an Unswitched Output	7–198
10	Capacitance Variation Across Process	7–199
11	FB1650 Fall Time Measured Between 1.3 V and 1.8 V	7–200
12	GTL16612 Fall Time Measured Between 0.5 V and 1 V	7–200
13	FB1650 Rise Time Measured Between 1.3 V and 1.8 V	7–200
14	GTL16612 Rise Time Measured Between 0.5 V and 1 V	7–200
15	FB1650 Signal Integrity at the Receiver Input Using Different-Length Cables	7–201
16	GTL16612 Signal Integrity at the Receiver Input Using Different-Length Cables	7–201
17	Proposed Circuit to Generate V _{REF}	7–202

Page

Introduction

This application report examines the requirements for a low-swing interface in high-speed digital systems and how well this need is addressed by two interface standards: backplane Transceiver Logic (BTL) and Gunning Transceiver Logic (GTL). Both interface standards attempt to improve the performance of high-speed digital systems by reducing the difference between the logic high-voltage level and the logic low-voltage level.

A comparison of various performance criteria, such as power consumption, noise immunity, capacitive loading, speed, and packaging, shows that GTL and BTL provide a compelling solution in both point-to-point and backplane environments. Guidelines for system designs using Texas Instruments (TI) GTL and BTL products are addressed, including associated voltage supplies and proper termination techniques.

Test Setup

The TI GTL16612 and FB1650 were used to study the various performance levels. A backplane-like design has been established to perform the laboratory work supporting this application report. Four boards with 2-in. stubs and 50- Ω interconnecting transmission lines were used to simulate the backplane environment. A 50-MHz frequency was used unless otherwise noted. The output supply voltage (V_{TT}) was supplied through a resistor at each end of the backplane (50- Ω to 1.2 V for GTL and 33- Ω to 2.1 V for BTL) for both families as specified in both IEEE (BTL) and JEDEC (GTL) standards. Figure 1 shows the backplane model with all four boards connected.

Figure 1. Backplane Model With All Four Boards Connected

Another design has been used to simulate the transmission-environment effect when transferring data across a longer point-to-point transmission line. Figure 2 shows the same backplane model with only one driver and one receiver used to transfer the data across 12-in., 28-in., and 48-in. transmission lines.

Figure 2. Point-to-Point Model With Only One Driver and One Receiver Connected

Advantages of GTL or BTL Over CMOS/TTL

BTL and GTL were developed to solve the bus-driving problem associated with TTL and to enhance the performance of point-to-point and backplane applications. BTL and GTL also eliminate the need for the extra time required for the TTL signal to settle due to reflection and noise generated when switching. The 1-V swing of both signals versus the 3-V to 5-V swing of TTL and CMOS signals helps reduce the noise generated on the bus when the outputs are switching simultaneously. Table 1 shows the minimum high-level output voltage (V_{OH}) and the maximum low-level output voltage (V_{OL}) of CMOS, TTL, BTL, and GTL signals.

LOGIC LEVEL	V _{OH} min (V)	V _{OL} max (V)
CMOS	3.8	0.44
TTL	2.4	0.55
BTL	2.1	1
GTL	1.2	0.4
GTL+	1.5	0.4

Table 1. V_{OH} and V_{OL} Levels for Various Families

BTL and GTL buffers are designed with minimal output capacitance (5 pF maximum) compared to a TTL output buffer (8 pF to 15 pF typical). A TTL or CMOS output capacitance, coupled with the capacitance of the connectors, traces, and vias reduces the characteristic impedance of the backplane. For high-frequency operation, this phenomenon makes it difficult for the TTL or CMOS driver to switch the signal on the incident wave. A TTL or CMOS device needs a higher drive current than presently available to be able to switch the signal under these conditions. However, increasing the output drive clearly increases the output capacitance. This scenario again reduces the characteristic impedance even more. That is why a lower signal-swing family with reduced output capacitance, such as BTL or GTL, is recommended when designing high-speed backplanes.

GTL Family Input and Output Structure

The GTL input receiver is a differential comparator with one side connected to the externally provided reference voltage, V_{REF} . The threshold is designed with a precise window for maximum noise immunity ($V_{IH} = V_{REF} + 50 \text{ mV}$ and $V_{IL} = V_{REF} - 50 \text{ mV}$). The output driver is an open-drain n-channel device which, when turned off, is pulled up to the output supply voltage (V_{TT}). When turned on, the device can sink up to 40 mA of current (I_{OL}) at a maximum output voltage (V_{OL}) of 0.4 V. The output is designed for a 50- Ω transmission line terminated at both ends (25- Ω total load). The inputs and outputs are designed to work independently of the device's V_{CC} . They can communicate with devices designed for 5-V, 3.3-V, or even 2.5-V V_{CC} . The TTL input is a 5-V tolerant 3.3-V CMOS inverter that can interface with 5-V TTL signals. Bus hold is also provided on the TTL port to eliminate the need for external resistors when the inputs and outputs are unused or floating. The TTL output is a bipolar output. It is similar to the LVT output structure.¹ At this time, the GTL16612 and GTL16616 devices require two power supplies to function: a 5-V supply ($V_{CC(5)}$) for the GTL and a 3.3-V supply ($V_{CC(3.3)}$) for the LVTTL. The maximum operating frequency of the family is 95 MHz (GTL16612 and GTL16616). The GTL16622 and GTL16923 will operate up to 200 MHz in both directions (GTL to TTL or TTL to GTL) and will have a single 3.3-V power supply.¹ Figure 3 shows a typical GTL input and output circuit.

Figure 3. Typical GTL Input and Output Cells

BTL Family Input and Output Structure

The BTL input receiver is a differential amplifier with one side connected to an internal reference voltage. The threshold is designed with a narrow window ($V_{IH} = 1.62$ V and $V_{IL} = 1.47$ V). Unlike GTL, BTL requires a separate supply voltage for the threshold circuit to eliminate any noise generated by the switching outputs. The output driver is an open-collector output with a termination resistor selected to match the bus impedance. When the device is turned off, the output is pulled up to the output supply voltage ($V_{TT} = 2.1$ V typical). The inputs and outputs work independently of the device's V_{CC} . They can communicate with devices designed for 5-V or 3.3-V V_{CC}. The TTL input is a 5-V CMOS inverter, and the output is a bipolar output similar to the ABT output structure.¹ BTL requires three power supplies: the main power supply (V_{CC}), the bias generator supply (BG V_{CC}), and the bias supply voltage (BIAS V_{CC}) that establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected. The maximum operating frequency of the BTL family is 75 MHz, depending on the application as well as the board layout. Figure 4 shows a typical BTL input and output circuit.

Figure 4. Typical BTL Input and Output Cells

Power Consumption

Several factors influence the power consumption of a device: frequency of operation, number of outputs switching, load capacitance, number of TTL-level inputs, junction temperature, ambient temperature, and thermal resistance of the device. For BTL and GTL devices, the output power is supplied externally by the output voltage supply (V_{TT}). The maximum operating frequency is limited by the thermal characteristics of the package. TI provides package power-dissipation information in data sheets under "absolute maximum ratings". These values are calculated using a junction temperature of 150°C and a board trace length of 750 mils (no airflow).² Traces, power planes, connectors, and cooling fans play an important role in improving heat dissipation. Figure 5 shows the power consumption of BTL and GTL devices driving the backplane described above. As the frequency increases, GTL16612 power consumption does not increase as fast as the FB1650. This characteristic is due to the predominant use of CMOS technology, the lower drive current, and the lower voltage swing of GTL (0.8-V swing for GTL versus 1-V swing for BTL). Lower drive current and lower voltage swing are two of the benefits that GTL provides over BTL drivers. A power-consumption comparison (see Table 2) illustrates the advantage of GTL over BTL when 160 active inputs and outputs are switching.³ Another benefit GTL offers is that the family uses the common 56-pin SSOP and TSSOP packages rather than the 100-pin thin quad flat package (TQFP) with a heat slug mounted above the die in BTL parts. The pin count on the TQFP package is almost twice the pin count of the SSOP or TSSOP packages.

Figure 5. FB1650 and GTL16612 Power Consumption With All Outputs Switching

TECHNOLOGY	POWER (W)	TERMINATION (BOTH ENDS)
BTL	11	33 Ω to 2.1 V
GTL	2	50 Ω to 1.2 V

Table 2. Power Comparison (160 Active Inputs and Outputs)

Simultaneous Switching

In a given digital circuit, there is a large change in current over a very short time when multiple outputs switch simultaneously. As this increased current flows through the bond wires and the leadframe, it develops a voltage across the wire's inductance. This feedback mechanism is known as simultaneous switching noise (SSN). This noise manifests itself as V_{OL} or V_{OH} voltage bounce at the package pin(s).

From basic circuit analysis, the induced voltage across an inductor is defined as:

$$u = L \frac{\mathrm{di}}{\mathrm{dt}} \tag{1}$$

Where:

L = Inductance di/dt = Rate of change of the current

The current through an output is dependent on the voltage level and the load at the output, which can be expressed mathematically as:

$$\dot{\mathbf{t}} = \mathbf{C} \frac{\mathrm{d}\mathbf{v}_{\text{out}}}{\mathrm{d}\mathbf{t}}$$
(2)

Analysis of equations (1) and (2) clearly shows that because of the lower voltage swing, GTL and BTL offer better noise immunity compared to TTL or CMOS outputs.

As the speed of today's circuits increases, the current rate of change (di/dt) increases and so does the susceptibility to SSN, i.e., voltage bounce (GND and V_{CC}). The standard methodology devised by the industry to measure voltage bounce is to keep one output at either logic high (V_{OH}) or logic low (V_{OL}) and to switch all other outputs at a predefined frequency. Figures 6 through 9 compare both GTL and BTL for noise immunity as 17 outputs are switching simultaneously.

Figure 6. FB1650 High Output Voltage Peak and Valley Noise on an Unswitched Output

 $\mathsf{T}_\mathsf{A} = \mathsf{25^\circ C}, \, \mathsf{V}_\mathsf{CC(5)} = \mathsf{5} \; \mathsf{V}, \, \mathsf{V}_\mathsf{CC(3.3)} = \mathsf{3.3} \; \mathsf{V}, \, \mathsf{V}_\mathsf{IH} = \mathsf{3} \; \mathsf{V}, \, \mathsf{V}_\mathsf{IL} = \mathsf{0} \; \mathsf{V}, \, \mathsf{V}_\mathsf{TT} = \mathsf{1.2} \; \mathsf{V}, \, \mathsf{R}_\mathsf{TT} = \mathsf{50} \; \Omega$

Figure 7. GTL16612 High Output Voltage Peak and Valley Noise on an Unswitched Output

 ${\rm T_A} = 25^{\circ}{\rm C}, \, {\rm V_{CC}} = 5 \, {\rm V}, \, {\rm V_{IH}} = 3 \, {\rm V}, \, {\rm V_{IL}} = 0 \, {\rm V}, \, {\rm BIAS} \, {\rm V_{CC}} = 5 \, {\rm V}, \, {\rm BG} \, {\rm V_{CC}} = 5 \, {\rm V}, \, {\rm V_{TT}} = 2.1 \, {\rm V}, \, {\rm R_{TT}} = 33 \, \Omega$

Figure 8. FB1650 Low Output Voltage Peak and Valley Noise on an Unswitched Output

 ${\sf T}_{\sf A} = {\sf 25^{\circ}C},\,{\sf V}_{\sf CC(5)} = {\sf 5}\,\,{\sf V},\,{\sf V}_{\sf CC(3.3)} = {\sf 3.3}\,\,{\sf V},\,{\sf V}_{\sf IH} = {\sf 3}\,\,{\sf V},\,{\sf V}_{\sf IL} = {\sf 0}\,\,{\sf V},\,{\sf V}_{\sf TT} = {\sf 1.2}\,\,{\sf V},\,{\sf R}_{\sf TT} = {\sf 50}\,\,\Omega$

Figure 9. GTL16612 Low Output Voltage Peak and Valley Noise on an Unswitched Output

Output Capacitance

Figure 10. Capacitance Variation Across Process

Slew Rate

Slew rate plays an important role in backplane or point-to-point application designs. The slower the output slew rate of a device, the less susceptible the signal is to reflections and noise. Using the backplane model (see Figures 1 and 2), the output slew rate $(t_r \text{ and } t_f)$ of the driving device was taken under the following conditions: a 10-in., 50- Ω transmission line and a single termination to V_{TT} at the receiver end. Figures 11 through 14 show the rise and fall times of both devices taken between the two specified voltages of 0.5 V to 1 V for GTL and 1.3 V to 1.8 V for BTL. Both the BTL and GTL slew rates are acceptable.

 $T_A = 25^{\circ}C$, $V_{CC} = 5$ V, $V_{IH} = 3$ V, $V_{IL} = 0$ V, BIAS $V_{CC} = 5$ V, BG $V_{CC} = 5$ V, $V_{TT} = 2.1$ V, $R_{TT} = 33 \Omega$, Frequency = 10 MHz

 $T_A = 25^{\circ}C$, $V_{CC(5)} = 5$ V, $V_{CC(3,3)} = 3.3$ V, $V_{IH} = 3$ V, $V_{IL} = 0$ V, $V_{TT} = 1.2$ V, $R_{TT} = 50 \Omega$, Frequency = 10 MHz

 $T_A = 25^{\circ}C$, $V_{CC} = 5$ V, $V_{IH} = 3$ V, $V_{IL} = 0$ V, BIAS $V_{CC} = 5$ V, BG $V_{CC} = 5$ V, $V_{TT} = 2.1$ V, $R_{TT} = 33 \Omega$, Frequency = 10 MHz

 ${\sf T}_{\sf A} = 25^{\circ}{\sf C}, \, {\sf V}_{\sf CC(5)} = 5 \; {\sf V}, \, {\sf V}_{\sf CC(3.3)} = 3.3 \; {\sf V}, \, {\sf V}_{\sf IH} = 3 \; {\sf V}, \, {\sf V}_{\sf IL} = 0 \; {\sf V}, \, {\sf V}_{\sf TT} = 1.2 \; {\sf V}, \, {\sf R}_{\sf TT} = 50 \; \Omega, \, {\sf Frequency} = 10 \; {\sf MHz}$

Signal Integrity

Figures 15 and 16 show the signal integrity of data propagating across the $50-\Omega$ transmission line using three cable lengths (A = 12 in., B = 28 in., and C = 46 in.). The clock frequency is 75 MHz. The measurement was taken at the receiver end of the cable. The GTL output waveform has kept its input square-wave shape better than the BTL waveform has. The cable and the termination resistors used in this laboratory are not precisely matched; that is why a small reflection can be seen on the GTL outputs when switching low to high. In real systems, where both the termination resistor and the traces are matched, these reflections will be reduced.

Channel 1 = 500 mV/div, Timebase = 5 ns/div Distance between driver and receiver: A = 12 in., B = 28 in., C = 46 in.

 $T_A = 25^{\circ}C$, $V_{CC} = 5$ V, $V_{IH} = 3$ V, $V_{IL} = 0$ V, BIAS $V_{CC} = 5$ V, BG $V_{CC} = 5$ V, $V_{TT} = 2.1$ V, $R_{TT} = 33 \Omega$, Frequency = 75 MHz

Figure 15. FB1650 Signal Integrity at the Receiver Input Using Different-Length Cables

Figure 16. GTL16612 Signal Integrity at the Receiver Input Using Different-Length Cables

Design Considerations

To successfully design with the GTL family, several rules and techniques with regard to voltage generation and proper termination must be followed. First, both 3.3-V and 5-V V_{CC} are needed in the present generation of GTL devices (only the 3.3-V V_{CC} will be needed in the next-generation GTL). Second, the termination voltage (V_{TT}) should be regulated from the 5-V V_{CC}, keeping in mind the current requirements of the outputs (40 mA per output). There are several linear regulators that are capable of performing this function. Depending on the design, the regulator could be either on the backplane itself or on the individual cards. Third, the reference voltage (V_{REF}) must be generated from V_{TT}. The V_{REF} voltage can be generated using a simple voltage-divider circuit with an appropriate bypass capacitor (0.01 µF or 0.1 µF) placed as close as possible to the V_{REF} pin. The V_{REF} input circuitry consumes very little power (1 µA maximum). This enables several devices to have their V_{REF} pin connected to the same voltage-divider circuit, thus eliminating the need for multiple voltage-divider circuits (see Figure 17).

For the BTL family, four power supplies and two grounds are connected. For live-insertion applications, the power-up sequence should be: the GND pin should make contact first, followed by BIAS V_{CC} . This sequence will precharge the board and the device capacitance and will establish a voltage between 1.62 V and 2.1 V on the BTL outputs. Next, the V_{CC} pin makes contact and, as V_{CC} ramps up, the BIAS V_{CC} circuitry starts to turn off. When V_{CC} reaches its final value, the BIAS V_{CC} circuitry is completely isolated and does not interfere with the device functionality. BG V_{CC} and BG GND pins supply power to the bias generator input circuitry. BG V_{CC} and BG GND must be isolated from the other power supplies to ensure signal integrity at the BTL input. The 2.1-V V_{TT} should be regulated from a higher voltage and should supply enough current to switch all 18 outputs (100 mA per output). V_{TT} variation should not exceed $\pm 2\%$ and it is recommended that proper bypass capacitors (0.01 μ F or 0.1 μ F) be used. The termination resistor should not exceed $\pm 1\%$ of its resistance value.

Table 3 gives the designer an estimate of the maximum number of loads allowed when designing with GTL and BTL families.⁴ Note that crosstalk and poor board layout can degrade the overall quality of the backplane, thereby affecting the number of loads.

Using the formula:

$$t_{\rm r}, t_{\rm f} = 2.2 \times Z_{\rm S} \times \left[(L \times C_{\rm O}) + (N \times C_{\rm N}) \right]$$
(3)

and assuming t_r , $t_f = t_p = \frac{1}{2f}$ (for worst-case condition), the maximum number of loads on the backplane (N) can be calculated as follows:

$$N = \frac{1}{4.4 \times f \times Z_S \times C_N \times 10^{-6}} - \frac{L \times C_0}{C_N}$$
(4)

Where:

- t_r = Rise time of the device (ns)
- t_f = Fall time of the device (ns)
- Z_S = Output impedance of the source (Ω), 25 Ω for GTL, 16.5 Ω for BTL
- C_{O} = Characteristic capacitance per unit length of the transmission line (pF/in.) (see Table 3)
- L = Length of the backplane (in.)
- N = Maximum number of loads on the backplane
- C_N = Capacitance for each load (pF), 5 pF for the device, 5 pF for the connector
- t_p = Pulse width of the signal (ns)
- f = Frequency of the signal on the backplane (MHz)

DIMENSIONS		LINE			LINE MAXIMUM NUMBER OF				F LOADS
	(mils)		IMPEDANCE	CAPACITANCE	^t pd (ns/in)	G	ΓL	BTL	
Т	н	W	Ζ_Ο (Ω)	00 (pi /iii.)	(113/111.)	L = 12 in.	L = 16 in.	L = 24 in.	
1.5	6	20	27	6.67	0.18	10	8	12	
1.5	6	15	32	5.83	0.186	11	9	14	
1.5	10	20	34	5.58	0.189	11	9	14	
1.5	12	20	37	4.75	0.176	12	11	16	
1.5	10	15	40	4.67	0.187	13	11	16	
1.5	12	15	43	4	0.172	13	12	18	
1.5	20	20	44	4	0.176	13	12	18	
1.5	20	15	51	3.5	0.179	14	13	19	
1.5	30	20	55	3.25	0.179	14	13	20	
1.5	30	15	61	2.92	0.178	15	14	21	

Table 3.	Typical	Strip-Line	Characteristics [†]
----------	---------	------------	------------------------------

[†] The characteristic impedance of the strip line is based on the following:

er = 5, relative dielectric constant of the board material (G10 glass epoxy)

H = thickness of the insulation dielectric

 $\mathsf{T}=\mathsf{cross}\mathsf{-}\mathsf{sectional}$ length of the strip line

 $W=\mbox{cross-sectional}$ width of the strip line

Frequency of the signal on the backplane is 50 MHz.

Summary

Today's high-speed backplane and point-to-point applications require devices that can provide high performance, excellent signal integrity, and cost effectiveness. GTL and BTL transceivers are designed to meet these characteristics. Both transceiver families show similar skew, slew rate, and SSN performance. BTL is generally used for heavily loaded backplanes (100-mA I_{OL}) and for frequencies less than 75 MHz. However, the laboratory data presented in this report show that GTL is more suitable for designs that require high performance (up to 100 MHz for the GTL16612 and GTL16616 and 200 MHz for the GTL16622 and GTL16923) and low power consumption at low cost and minimum board space.

References

- 1. Texas Instruments Incorporated, ABT Advanced BiCMOS Technology Data Book, 1994, literature number SCBD002B.
- 2. Texas Instruments Incorporated, "Package Thermal Considerations", *ABT Advanced BiCMOS Technology Data Book*, 1994, literature number SCBD002B, pg. 13–97.
- 3. Gunning, Bill; Yuan, Leo; Nguyen, Trung; Wong, Tony, GTL: A Low-Voltage Swing Transmission Line Transceiver, March 15, 1991.
- 4. Texas Instruments Incorporated, Advanced Schottky Load Management, 1987, literature number SDAA006.

Next-Generation BTL/Futurebus Transceivers Allow Single-Sided SMT Manufacturing

SCBA003C March 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

Contents

Title

Introduction	7–209
Current Generation of BTL/Futurebus Transceivers	7–209
A New Generation of BTL/Futurebus Transceivers	7–213
Summary	7–216

List of Illustrations

Figure	Title	Page
1	Comparison of TTL and BTL Switching Standards	7–209
2	Slew-Rate Control (OEC [™]) Diagram	7–210
3	Uncached 64-Bit Futurebus Layout With Texas Instruments Controller Chipset and Today's Most Integrated Transceivers	7–211
4	Functional Differences Between FB2040 Control Transceiver and FB2031 Address/Data Transceiver	7–212
5	Cross Section of Thermally Enhanced EIAJ 100-Pin TQFP	7–213
6	Functional Circuit Diagram of FB1650	7–214
7	Uncached 64-Bit Futurebus Layout With Texas Instruments Chipset and FB16xx Transceivers	7–215

Page

Introduction

BTL (IEEE 1194.1-1991) and Futurebus designs offer significant performance advantages over conventional TTL backplane implementations, but these advantages come with trade-offs. Switching noise in the form of ground bounce and EMI must be controlled, and proper termination schemes must be employed to ensure signal integrity in this high-speed switching environment. Trade-offs for price in the form of total system solution versus overall system performance are also of concern. This paper begins with the historical perspective on signal-integrity issues addressed by the IEEE and follows with new pioneering bus-interface solutions to help reduce overall BTL or Futurebus system costs and design complexities.

Current Generation of BTL/Futurebus Transceivers

A number of suppliers have developed BTL and Futurebus transceiver solutions that comply with IEEE 1194.1. These devices share the same reduced output swing and tight switching thresholds shown in Figure 1 and a slew-rate control (see Figure 2). The various devices differ considerably in wafer-fab process technology, propagation-delay performance, and other performance metrics (see Table 1).

Figure 1. Comparison of TTL and BTL Switching Standards

Figure 2. Slew-Rate Control (OEC™) Diagram

Table 1 shows an evolutionary progression in bipolar wafer-fab technology and improved propagation-delay performance. Bipolar fab technologies are chosen for this class of device for their high drive capability, low switching noise, and relative ease of designing (relative to pure CMOS) the analog circuitry required to meet the slew-rate control requirement (see Figure 2). Bipolar circuits have the disadvantage of relatively high power dissipation. The heat generated by this high power dissipation, coupled with the large switching currents coming from the bus termination, place a thermal limitation on the numbers of bits that can be integrated into a single, standard integrated-circuit package (typically, only four bits).

TRANSCEIVER	SUPPLIER	TECHNOLOGY	BITS/PACKAGE	t _{pd} (ns)
ALS056/057	TI, NSC	3-µm Bipolar	4/8	20
DS3890	NSC	2-µm Bipolar	8†	15
DS3896/7	NSC	1.5-μm Bipolar	4/8	12
DS3893A	NSC	1.2-μm Bipolar	4	7
FB1650	TI	0.8-µm BiCMOS	18	7.2
FB1651	TI	0.8-µm BiCMOS	17	7.2
FB1653	TI	0.8-µm BiCMOS	17	6.6
FB2032	TI	0.8-µm BiCMOS	9	8.3
FB2033A	TI	0.8-µm BiCMOS	8	5.6
FB2031	TI, Philips	0.8-µm BiCMOS	9	6.6
FB2040	TI, Philips	0.8-µm BiCMOS	8	6.5
FB2041A	TI, Philips	0.8-µm BiCMOS	7	5.6
+ I I a faller a finan a final		units in talking a Cara all the		-

Table 1. BTL/Futurebus Transceiver Offering Available Today

[†] Unidirectional driver only; not a true bidirectional transceiver

The newer class of BiCMOS transceivers employs a bipolar output structure to achieve the desired drive, noise, and slew-rate control of previous-generation products. They also offer higher performance, much lower power dissipation, and take the next step toward higher integration.

Futurebus adds an additional constraint to board layout by mandating that all compliant cards have a maximum stub length of 25 mm to reduce loading and minimize reflections. This is also a wise rule of thumb for non-BTL/Futurebus designs. As data paths have increased in width from 32 to 64 bits (128 bits in the future), this stub-length requirement has forced system designers to wrestle with the manufacturing problems of double-sided surface mounting of the transceivers on boards as large as 12 Standard Units (12SU). Even with the relatively dense packaging of today's fastest and most integrated transceivers, this can be a formidable design problem that adds significantly to the overall manufacturing cost of a board (see Figure 3).

NOTE: The second-part type descriptor (*) indicates that a second transceiver is mounted on the opposite side of the board.

Figure 3. Uncached 64-Bit Futurebus Layout With Texas Instruments Controller Chipset and Today's Most Integrated Transceivers

Another problem with the present generation of transceivers is the purchasing requirement for multiple transceiver types. Continuing with the above example, the common 64-bit uncached solution requires three different transceiver types for a complete distributed arbitration Futurebus implementation (see Table 2).

Table 2. Transceiver Descriptions for 64-Bit Uncached Futurebus BoardsUsing FB20xx Series Transceivers

DEVICE	DESCRIPTION	QUANTITY PER BOARD
FB2031	9-Bit Data/Address Transceiver With Clock and Latch	9
FB2032 [†]	Arbitration Contest Transceiver	1
FB2040	8-Bit Status/Sync Transceiver With Split TTL I/O	3
	Total Part Count	13

[†] Optional for distributed arbitration only

These transceivers were designed quite differently from one another due to the specific functions they perform in the system (data/address, sync, arbitration, status, or command). Figure 4 highlights the functional differences between the FB2040 (status and sync transceiver) and the FB2031 (address/data transceiver). The main distinctions are the universal storage modes (transparent, latched, or clocked) of the FB2031 and the separate, or split, TTL I/O pins of the FB2040. As previously noted, until recently, efforts to develop any sort of true universal BTL/Futurebus transceiver have not been practical due to the absence of a viable, high-power, fine-pitch package with more than 56 pins.

Pin numbers shown are for the RC package.

Figure 4. Functional Differences Between FB2040 Control Transceiver and FB2031 Address/Data Transceiver

A New Generation of BTL/Futurebus Transceivers

In response to the need for single-sided surface mounting and simplified transceiver architectures, Texas Instruments has developed both a high-power package and a series of 18-channel BTL/Futurebus universal bus transceivers (UBTTM). These new devices, designated as the FB16xx series, are packaged in a high-power version of the EIAJ standard 100-pin TQFP package (0.5-mm lead pitch). A package cross section, as shown in Figure 5, reveals a metal heatsink that facilitates the excellent thermal performance of the package. Refer to *Thermal Characteristics of SLL Packages and Devices*, literature number SCZA005, for θ_{JA} and reliability issues.

Figure 5. Cross Section of Thermally Enhanced EIAJ 100-Pin TQFP

The FB16xx series devices are designed with both the universal data-storage capabilities of the FB2031 address/data transceiver and the separate TTL I/O of the FB2040 control transceiver. This series of devices can be configured as two independent 9-channel transceivers (see Figure 6) or one coherent 18-channel transceiver.

Figure 6. Functional Circuit Diagram of FB1650

This flexible design approach eliminates the need for double-sided surface mounting, along with all of the associated manufacturing costs, and still meets the IEEE 896.2-1991 25-mm maximum-stub-length requirement (see Figure 7).

NOTE: There is no double-sided SMT requirement.

Figure 7. Uncached 64-Bit Futurebus Layout With Texas Instruments Chipset and FB16xx Transceivers

In addition, the 18-channel architecture lends itself naturally to reduced pin-to-pin signal skew. Advanced BiCMOS circuit design techniques have improved propagation-delay performance over the previous generation of BiCMOS transceivers. Table 3 shows a transceiver description for the same 64-bit uncached Futurebus example considered previously (see Table 2).

Table 3. Transceiver Descriptions for 64-Bit Uncached Futurebus BoardUsing FB16xx Series Transceivers

DEVICE	DEVICE DESCRIPTION	
FB16xx	6	
FB2032†	FB2032 [†] Arbitration Contest Transceiver	
	7	

[†] Optional for distributed arbitration only

This is nearly a 50% reduction in component count and approximately 15% in cost savings on the transceivers alone. Significant savings (tens of dollars per board) in manufacturing costs also are realized by moving to single-sided SMT manufacturing. Other members of the FB16xx family include system clock-distribution features that lend themselves to more specific end-system applications such as ATM hubs and routers (see Table 4).

Table 4. Transceiver Descriptions for Other Members of the FB16xx Series

DEVICE	DESCRIPTION
FB1650	18-Bit TTL/BTL UBT With Split TTL I/O
FB1651	17-Channel UBT With Separate Buffered and Delayed Clock Bit
FB1653	17-Channel UBT With Separate Buffered Clock Bit (variable delay lines)

Summary

The high-speed data-communication requirements of today's fastest board-level computers and telecommunications and network switching equipments can be met with BTL- and Futurebus-compatible transceivers and switching levels. Stub-length constraints and ever-increasing data-path widths have made it difficult to control signal integrity and manufacturing and procurement costs in these high-performance systems. The next generation of 18-channel BTL/Futurebus universal bus transceivers meets this market need by facilitating low-cost single-sided surface-mount manufacturing, and single-device-type procurement, characterization, qualification, and specification.

Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices

SCBA006A December 1996

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

Contents

Title

Introduction	7–221
Skews	7–221
Source of Data	7–221
Sources of Error in Data	7–222
Summary	7–222

List of Illustrations

Figure Title Page 1 2 3 4 5 6 7 8 9

7-219

Page

Introduction

The data in this application report demonstrates the skew between the outputs of a sample of Texas Instruments Advanced BiCMOS (ABT) devices. This report explains which output skew is being examined, where the data comes from, and how the data is analyzed. Some of the errors that may be present in the data are discussed.

Skews

Skew is a term that defines the difference in time between two signal edges. Several different types of skew being used are defined in JEDEC 99 clause 2.3.5.

Output Skew $[t_{sk(0)}]$ – The difference between two concurrent propagation delay times that originate at either a single input or two inputs switching simultaneously and terminating at different outputs.

Input Skew $[t_{sk(i)}]$ – The difference between two propagation delay times that originate at different inputs and terminate at a single output.

Pulse Skew $[t_{sk(p)}]$ – The difference between the propagation delay times t_{PLH} and t_{PHL} when a single switching input causes one or more outputs to switch.

Process Skew $[t_{sk(pr)}]$ – The difference between identically specified propagation delay times on any two samples of an IC at identical operating conditions.

Limit Skew $[t_{sk(l)}]$ – The difference between: 1) The greater of the maximum specified values of t_{PLH} and t_{PHL} and 2) The lesser of the minimum specified values of t_{PLH} and t_{PHL} .

The skew discussed here is the skew of propagation delays across the outputs of a device. More specifically, it is the difference between the largest value obtained for a propagation delay and the smallest value across all of the outputs. For example, if output 3 has the largest propagation delay t_{PLH} and output 14 has the smallest, the output skew for this device would be the difference between the propagation delays for output 3 and output 14 (see Figure 1).

The majority of the curves presented in this paper consist of data taken on devices that have one output switching at a time. This produces a skew that should not be confused with the defined data-sheet skew $t_{sk(0)}$. The data-sheet value for $t_{sk(0)}$ is found by switching all of the outputs simultaneously. Two of the devices examined in this paper ('ABT16240 and 'ABT16500A) include curves that present $t_{sk(0)}$ data.

Source of Data

The data used to produce the curves presented in this paper was extracted from the characterization data bases used to prepare the data sheets for the devices presented. The sample size of the data base is approximately 30 devices for each characterization lot (wafer) used.

The data was sorted so that the maximum skew for each device at a particular V_{CC} and temperature combination could be determined. Next, the maximum skew values were averaged to produce a data point for each transition. Further statistical analysis of this data was performed to calculate a standard deviation of the maximum skew across the devices. This value was then used to produce a three-standard-deviation data point for each V_{CC} and temperature combination. The data is presented as a family of curves across V_{CC} , with each member of the family being an output skew versus temperature curve. The curves for each device are broken out by output transition (i.e., t_{PLH} , t_{PHL}). Each transition is further separated into a set of curves depicting the average skew across the devices and a set representing the average skew, plus three standard deviations.

For those devices ('ABT16952 and 'ABT16500A) that have registers, the data path chosen for each device was the path that put the device in a transparent mode. Also, for the bidirectional devices ('ABT16245, 'ABT16952, and 'ABT16500A), the A-to-B direction was used.

Figure 1. Skew = |t_{PLH14} - t_{PLH3}|

Sources of Error in Data

The data in this report was taken on an IMPACT tester, which is automatic test equipment used to characterize integrated circuits. The tester is offset using a golden unit that has had data taken on a laboratory bench setup. The offsetting process is the main source of error in the data.

Briefly, the tester is offset in the following manner. The golden unit has its propagation delay measurements taken at 25° C and 85° C using a pulse generator as the source and an oscilloscope as the measurement device. The golden unit is then placed on the IMPACT and the data is again taken. The difference between the two values is the offset. The 25° C offsets are used for the data taken at -55° C, -40° C, and 25° C, while the 85° C offsets are used at 85° C and 125° C.

Great care is taken during this process to ensure that the induced error is kept to a minimum. For example, the boards are checked before use to ensure the output loads are correct, the oscilloscope is calibrated each day, and the input signals are closely monitored to ensure that the intended signal is delivered to the golden unit.

This reduction in error is quite important in this application because the average skews for the devices are about 200 ps. A 20-ps error in offsets translates into an approximate error of 10% in the output skew data. However, it can be seen in the curves presented here that the error has been kept to a minimum and that the curves are fairly well behaved.

Summary

The family of curves presented in Figures 2 through 9 demonstrates that the Texas Instruments Advanced BiCMOS family of devices can be expected to produce an average skew between outputs that remain below 400 ps for devices with single switching outputs. Also, when a device's outputs switch simultaneously, the average skew across the outputs can be expected to remain below 700 ps.

Figure 2. 'ABT16240 - Single Switching

Figure 3. 'ABT16240 - Simultaneous Switching

Figure 4. 'ABT16245 - Single Switching

Figure 5. 'ABT16952 – Single Switching

Figure 6. 'ABT16500A - Single Switching

Figure 7. 'ABT16500A – Simultaneous Switching

Figure 8. 'ABT244 – Single Switching

Figure 9. 'ABT244 - Multiple-Output Switching

Basic Design Considerations for Backplanes

Shankar Balasubramaniam, Ramzi Ammar, Ernest Cox, Steve Blozis, and Jose M. Soltero Standard Linear & Logic

ABSTRACT

This application report describes design issues relevant to the parallel backplanes typically used in the wireless, datacom, telecom, and networking markets. Designing a high-performance backplane is extremely complex, because issues such as distributed capacitance, stub lengths, noise margin, rise time (slew rate), flight time, and propagation delay must be defined and optimized to achieve good signal integrity along the transmission line.

This application report uses a GTLP backplane driver to study the effects of these factors in an actual backplane application. Guidelines that enable the design engineer to successfully design a high-performance backplane with GTLP or other single-ended open-drain devices, such as BTL, are provided.

This application report is a revision of the original *Basic Design Considerations for Backplanes*, literature number SZZA016, published June 1999. The theory text was rewritten to make it clearer, and the theory-to-practice section was added, based on work done with the GTLP evaluation module (EVM).

Contents

Introduction	7–233
Backplane Design Topology – Point-to-Point vs Multipoint	7–233
Distributed Capacitance	7–235
Optimum Termination Simulation	7–239
Stripline vs Microstrip Tradeoffs	7–240
Backplane DC Effects	7–241
Effect of Changing Stub Length on Backplane Signal Characteristics	7–242
Distributed Capacitance – Theory to Practice	7–245
Fully Loaded Backplane	7–246
Lightly Loaded Backplane	7–247
Very Lightly Loaded Backplane	7–249
Backplane DC Effects – Theory to Practice	7–252
Conclusion	7–253
Bibliography	7–254
Glossary	7–254

List of Figures

1	Point-to-Point Application	7–233
2	Multipoint Application	7–234
3	Equivalent Multipoint Application	7–235
4	Typical Connection Scheme to Backplane	7–235
5	Typical PCB Transmission Lines	7–236
6	Effective Impedance vs C _d /C _o	7–237
7	Effective t _{pd} vs C _d /C _o	7–237
8	Termination Resistance vs Z _{O(eff)}	7–238
9	Mismatched Line Termination	7–239
10	Matched Line Termination	7–240
11	DC Equivalent of Single Backplane Line	7–241
12	Thevenin Equivalent of Load	7–242
13	Rise Time vs Stub Z _o at Various Points on the Backplane	7–243
14	Effects of Stub Length on Stub Delay and Rise Time	7–243
15	Effect of Stub Length on Termination Resistance at S1	7–244
16	System Flight Time vs Stub Impedance	7–245
17	Fully Loaded Backplane vs R _{TT} (Driver in Slot 1, Receiver in Slot 2)	7–246
18	Lightly Loaded Backplane vs R _{TT} (Driver in Slot 1, Receiver in Slot 3)	7–248
19	Very Lightly Loaded Backplane vs R _{TT} (Driver in Slot 1, Receiver in Slot 5)	7–249
20	Fully Loaded Backplane vs R _{TT} (Driver in Slot 1, Receiver in Slot 20)	7–252

List of Tables

1	Comparison of Backplane Lines (Loaded Backplane, $C_d = 12 \text{ pF/in.}$)	7–240
2	GTLP EVM Group 1 Trace Impedance	7–250
3	GTLP EVM Backplane Stackup	7–251
4	Theoretical vs Actual V _{OL} Measurements	7–253

Introduction

Since the beginning, most equipment makers have used parallel-backplane architectures to deliver large amounts of data across one shared bus. The parallel backplane provides a physical and electrical interconnect between various modules in a system. Each module in the backplane communicates with other modules through the backplane bus. Typically, this bus is driven by a backplane transceiver, primarily as the point-of-contact between backplane cards. The basic backplane is a parallel data-transfer topology used in a multipoint transfer scheme. For example, the TDM bus in a wireless base-station unit operates in a multipoint fashion, with high-speed data communicating between different regions across the backplane.

With the expansion of the internet and wireless/telecom infrastructures, new end-equipment markets have emerged that deliver faster data, integrated voice and data, or a little of both, and need higher performance backplanes. The constant pressure to increase bandwidth requires design engineers to choose between higher performance, more expensive backplane-optimized transceivers to maximize the frequency, increase the bit width using older technology, or a combination of these goals. This application report addresses some of the basic design issues encountered in higher performance backplanes. The effects of distributed capacitance on termination resistance and flight time are examined and the various effects of stubs and connectors are discussed.

Backplane Design Topology – Point-to-Point vs Multipoint

Figure 1 is an example of a simple point-to-point data transfer. A driving device at point A drives a 51- Ω transmission line. A termination resistor (R_{TT}) that matches the line impedance is placed at point B, along with a receiving device. All calculated values for the termination resistance are ideal. The designer must use actual values that best match, or are lower than, calculated values. In this example, the transmitter is an open-drain device that pulls the line low when turned on, but requires the termination resistor to pull the line high when turned off.

Figure 1. Point-to-Point Application

When the output transistor drives the line low, a constant dc current flows from the termination voltage, V_{TT}, to ground. Too small a termination resistance can damage the driver due to excessive currents. Assuming V_{TT} = 1.5 V, V_{OL} = 0.4 V, and R_{TT} = 51 Ω , the constant dc current is about 21.6 mA (I_{OL(max)} = (V_{TT} - V_{OL})/R_{TT}). However, this current increases linearly with V_{TT} and should not exceed the recommended current rating of the output driver.

In this, and the following multipoint example, the transmission line is assumed to be a stripline trace that is 10 in. (25.4 cm) long with a natural impedance (Z_0) of 51 Ω , which corresponds to a characteristic capacitance (C_0) of 3.5 pF/in. (138 pF/m).

The propagation delay (t_{pd}) is the time delay through the transmission line per unit length and is a function of the natural impedance and characteristic capacitance.

Use equation 1 to calculate propagation delay (t_{pd}).

$$t_{pd} = Z_o \times C_o$$

In this example, t_{pd} = 51 Ω × 3.5 pF/in. (138 pF/m) yields 178.5 ps/in. (7038 ps/m or 7.03 ns/m).

The total flight time (t_{flight}) is the time required for the signal to propagate down the transmission line from driver to receiver (time from A to B) and is a function of t_{pd} and length of the line.

Use equation 2 to calculate t_{flight}.

$$\begin{split} t_{\text{flight}} = t_{\text{pd}} \times \text{length of line} &= 178.5 \text{ ps/in.} \times 10 \text{ in.} \\ & \text{or } 7.03 \text{ ns/m} \times 0.254 \text{ m} \\ &= 1.784 \text{ ns} \end{split}$$

In Figure 2, the point-to-point configuration has been changed to a multipoint layout. Eleven transceivers are placed on the 10-in. transmission line, with 1-in. spacing (d) between each transceiver. One transceiver is configured as a transmitter (Tx); the other ten are configured as receivers (Rx). In a multipoint system, any position can assume the role of transmitter, with the remaining positions acting as receivers, as shown by the transceiver symbol. The 51- Ω stripline transmission line must be terminated at both ends because the transceiver at either end could be the driver. The optimum termination resistance (R_{TT}) for the multipoint system is less than the natural transmission-line impedance of 51 Ω , due to the effects of distributed capacitance. Procedures to calculate the optimum R_{TT} and the effects of mismatched R_{TT} on signal integrity are the main focus of this application report.

Figure 2. Multipoint Application

(2)

(1)

Distributed Capacitance

Figure 3 is a simplified version of Figure 2, where an equivalent capacitive load (12-pF capacitor) replaces the receivers. It is assumed that the spacing between card slots is within the rise and fall time of the driver signal, and that all slots are populated with cards.

Figure 3. Equivalent Multipoint Application

Total capacitance (C_t) is calculated by summing all the capacitive components associated with the transceiver and the connection to the backplane. Figure 4 shows a typical connection scheme between the backplane stripline and the driving/receiving device on the daughter card. Point C is the connection to the backplane stripline, while point D is the connection to a transceiver integrated circuit. Total capacitance (C_t) at point C is the sum of each of the elements in the connection chain. Total capacitance then can be distributed uniformly across the transmission line at an equivalent rate of capacitance per inch (C_d).

Figure 4. Typical Connection Scheme to Backplane

The stub lines (stub 1 and stub 2) are $51-\Omega$ microstrip construction with a characteristic capacitance of 2.6 pF/in. (102 pF/m). The connection via connects stub 1 to the backplane trace and has an approximate capacitance of 0.5 pF. Stub 1 is 1/16 in. in length and is connected on the other end to the surface-mount pad for the connector (C_{pad1}), which has a capacitance of approximately 0.5 pF.

The HSPICE model for the connector used in this example has a connector capacitance (C_{con}) of 0.74 pF. C_{pad2} has the same value as C_{pad1} and is the surface-mount pad for the connector on the daughter-card side that connects the connector to the daughter-card stub (stub 2). Stub 2 is 1 in. long and is attached to the other end of the transceiver input/output pin, which has a typical capacitance (C_{io}) of 7 pF.

Two different printed circuit board (PCB) transmission lines are shown in Figure 5. Basically, microstrip resides on the top of the PCB, whereas the stripline is imbedded within the PCB layers. A microstrip is faster due to the less inherent capacitance, but a stripline exhibits better signal integrity because the reference planes shield the conductor from damaging EMI fields. Other performance differences are discussed later in this application report.

Figure 5. Typical PCB Transmission Lines

The capacitance of the via, pads, and stubs can be calculated based on the dimensions and type of traces. www.ultracad.com provides an excellent capacitance calculator with background information. The C_{io} of the transceiver and the connector capacitance can be obtained from the manufacturer's specification sheet.

The capacitance in this chain is summed as:

$$C_{t} = C_{via} + C_{stub1} + C_{cpad1} + C_{con} + C_{cpad2} + C_{stub2} + C_{io}$$

$$C_{t} = 12 \text{ pF}$$
Where:
$$(3)$$

C_{via} = capacitance of via = 0.5 pF C_{stub1} = capacitance of stub 1 = 0.0625 × 2.6 = 0.16 pF C_{cpad1} = capacitance of C_{pad1} = C_{pad2} = 0.5 pF C_{cpad2} = capacitance of C_{pad2} = C_{pad2} = 0.5 pF C_{stub2} = capacitance of stub 2 = 1 × 2.6 = 2.6 pF = capacitance of connector = 0.74 pF C_{con} Cio = input/output capacitance of device = 7 pF

The total capacitance (C_t) of 12 pF is placed at point C on the backplane for every transceiver. More than half of Ct is the transceiver typical input/output pin capacitance. This is why backplane designers require low-capacitive ICs to optimize performance in high-frequency backplanes.

With all the slots filled, the 10-in. transmission line has 11 12-pF capacitors distributed at 1-in. intervals. The distributed capacitance (C_d) affects both the propagation delay and the characteristic impedance of the stripline transmission line, which results in a new effective impedance, Z_{O(eff)}, and a new effective propagation delay, t_{pd(eff)}. The distributed capacitance equals the total capacitance divided by the separation, or $C_d = C_t/d$. In our example, $C_d = 12 \text{ pF/1}$ in. or 12 pF/in. (472 pF/m). The new effective impedance, $Z_{o(eff)}$, and effective propagation delay, t_{pd(eff)}, can be calculated using equations 4 and 5.

$$Z_{o(eff)} = \frac{Z_{o}}{\sqrt{1 + \frac{C_{d}}{C_{o}}}}$$

$$t_{pd(eff)} = t_{pd}\sqrt{1 + \frac{C_{d}}{C_{o}}}$$
(5)

Figures 6 and 7 show the effects of the term $\sqrt{1 + (C_d/C_o)}$ on Z_o and t_{pd} by plotting the normalized effective impedance and t_{pd} in terms of distributed capacitance divided by the characteristic capacitance, C_d/C_o .

Figure 6. Effective Impedance vs C_d/C_o

An easy-to-follow calculation using Figures 6 and 7 is based on a 50- Ω line (Z₀) with a t_{pd} of 180 ps/in. (7.09 ns/m) used in a system where the C_d/C₀ ratio is 3. From Figure 6, the C_d/C₀ of 3 yields an effective impedance of 0.5 times the characteristic impedance, or Z₀(eff) = 0.5 × 50 = 25 Ω . Figure 7 shows that for the same C_d/C₀ ratio of 3, the transmission-line effective propagation delay has doubled and t_{pd(eff)} = 2 × 180 = 360 ps/in. (14.18 ns/m).

In a previous example (capacitors in Figure 3), $C_d = 12 \text{ pF/in}$. (472 pF/m) and $C_o = 3.5 \text{ pF/in}$. (138 pF/m) make the C_d/C_o ratio = 3.43 and the term $\sqrt{1 + (C_d/C_o)} = 2.1$. Figures 6 and 7 reflect the changes in the effective values of the transmission line to be 0.48 times the normal impedance and 2.1 times the normal propagation delay.

Another way to calculate the new effective impedance and propagation delay is to use equations 4 and 5 instead of Figures 6 and 7.

The value of the effective impedance is:

$$Z_{o(eff)} = \frac{Z_{o}}{\sqrt{1 + \frac{C_{d}}{C_{o}}}} = \frac{51}{2.1} = 24.2 \ \Omega$$
(6)

The value of the effective tpd is:

$$t_{pd(eff)} = t_{pd} \sqrt{1 + \frac{C_d}{C_o}} = 178.5(2.1) = 375.6 \text{ ps/in.}$$
 (7)

Using equation 2, the new flight time between points A and B in Figure 3 is:

$$t_{flight} = t_{pd} \times length \text{ of line} = 375.6 \text{ ps/in.} \times 10 \text{ in.} = 3.76 \text{ ns}$$
 (8)

Note that the propagation delay was 1.785 ns in the point-to-point example.

As discussed previously, the optimum termination resistance is equal to the effective impedance, $Z_{o(eff)}$, of the system so, in this case, the optimum termination resistance, R_{TT} , is the same as $Z_{o(eff)}$ which is 24.2 Ω . The optimum termination resistance ensures incident-wave switching without undershoot or overshoot.

Figure 8 shows the effect on signal integrity in different-terminated conditions. R_{TT} should be less than or equal to $Z_{o(eff)}$ for incident-wave switching, optimum signal integrity, and the best upper noise margin.

Figure 8. Termination Resistance vs Z_{O(eff)}

Equation 9 provides all parameters needed to calculate an optimum termination value:

$$R_{TT} = \frac{Z_{o}}{\sqrt{1 + \frac{C_{d}}{C_{o}}}} = \frac{Z_{o}}{\sqrt{1 + \frac{C_{via} + C_{stub1} + C_{cpad1} + C_{con} + C_{cpad2} + C_{stub2} + C_{io}}}{\frac{dC_{o}}{dC_{o}}}$$
(9)

Optimum Termination Simulation

Figure 9 is the result of HSPICE simulation of the circuit in Figure 3, with 51 Ω used for the pullup terminations (R_{TT}) to 1.5 V. Figure 3 did not show the L-C-R values inherent in transmission lines, but they are included in the HSPICE simulations. The transmitter (driver) is a high-drive GTLP device operating at 50-MHz clock frequency. Because the device is operating in the latched mode, the data signal shown is only one-half clock frequency, or 25 MHz.

Figure 9. Mismatched Line Termination

One signal in Figure 9 is the driver output at point A of the fully loaded transmission line, and the other signal is the receiver input at point B of the fully loaded transmission line that is farthest from the driver. The effects of the reflections due to termination mismatch can be seen clearly.

Figure 10 shows the same waveforms when the termination resistors are changed to the calculated value of 24.2 Ω . The improvement in signal integrity is due to matching the termination resistors to the loaded impedance of the stripline transmission line. The delay between the two signals is measured at the 1-V threshold level for the GTLP device.

The HSPICE simulation produces the same flight time from point A to point B, as calculated previously.

Figure 10. Matched Line Termination

Stripline vs Microstrip Tradeoffs

Table 1 demonstrates the effects of distributed capacitance on various microstrip and stripline transmission lines used in backplane designs. Er is the dielectric constant and depends on the material used in the multilayer-backplane printed circuit board. For Table 1 discussion purposes, the distributed capacitance is fixed at 12 pF/in. Results in the table differ if the distributed capacitance value is changed. The highlighted stripline Z_0 50- Ω line is closest to the multipoint distributed-capacitance example discussed previously.

Table 1. Comparison of Backplane Lines (Loaded Backplane, C_d = 12 pF/in.)

TYPE LINE Er = 4.5	C _O (pF/in.)	Ζ_Ο (Ω)	Z _{o(eff)} (Ω)	^t pd (ps/in.)	^t pd(eff) (ps/in.)
Microstrip	1	140	38.8	140	505
Microstrip	2	70	26.5	140	370
Microstrip	2.8	50	21.7	140	322
Microstrip	4.67	30	15.9	140	265
Stripline	1.29	140	43.6	180	578
Stripline	2.58	70	29.5	180	428
Stripline	3.6	50	24	180	375
Stripline	6	30	17.3	180	312

Using the same impedance (Z_0) in a loaded backplane, microstrip lines (on the surface of the backplane board) have a faster effective t_{pd} than striplines (embedded in the backplane board), but the microstrips have a lower effective impedance than the stripline. This lower effective impedance requires a lower termination resistance to properly terminate the backplane. The designer must balance the required signal propagation time with the driver capabilities when deciding which type of line to use and what characteristic impedance to choose. In general, it is recommended that stripline be used for the backplane transmission line and microstrip be used for the daughter-card stub lines, because stripline has better signal integrity and does not require a lower termination resistance. The microstrip adds less to the total capacitive load for each card, is faster, and is easier to implement on the daughter card.

Backplane DC Effects

Figure 11 is the dc-equivalent circuit of Figure 2 when the driver is turned on and is in the low state. The driver is replaced by its on resistance (R_{device}), and the transmission line is replaced by its dc resistance (R_{line}). The current (I3) is the sum of currents I1 and I2. When the output is low at the driver, V_{OL1} is the product of R_{device} and I3. The voltage (V_{OL2}) is the low level seen at the receiver farthest from the driver and is equal to $V_{TT} - (R_{TT} \times I2)$.

Figure 11. DC Equivalent of Single Backplane Line

In our example, $R_{TT} = 24.2 \Omega$, $R_{line} = 2.2 \Omega$, and $V_{TT} = 1.5 V$. The basic equation starts with:

 $I3 = V_{TT} / [R_{TT} / / (R_{TT} + R_{line}) + R_{device}]$

Where:

 $R_{TT}//(R_t + R_{line})$ is the parallel resistance of the upper branch.

From this expression, the following equations can be derived:

$$V_{OL1} = \frac{(V_{TT})(R_{device})(2R_{TT} + R_{line})}{\left[(R_{TT})(R_{TT} + R_{line}) + (R_{device})(2R_{TT} + R_{line})\right]}$$
(10)

$$V_{OL2} = V_{OL1} + \frac{(R_{line})(V_{TT} - V_{OL1})}{R_{TT} + R_{line}}$$
(11)

$$R_{device} = \frac{(R_{TT})(V_{OL1})(R_{TT} + R_{line})}{(V_{TT} - V_{OL1})(2R_{TT} + R_{line})}$$
(12)

For the device model in Figure 10, the R_{device} value was estimated to be 4 Ω . Using equation 10, V_{OL1} = 0.361 V and, using equation 11, V_{OL2} = 0.456 V, which matches well with the results observed in Figure 10.

The dc analysis can help provide the designer with best-case low-level voltage (V_{OL1}) and worst-case (V_{OL2}) signal levels expected at the receivers on a backplane when the termination resistance has been determined.

The V_{OL} levels affect the noise margins at all receivers as shown in Figure 10. The signal at point B is at the last receiver at the end of a 10-in.-long transmission line. The low level of this signal is higher than that of point A (less lower noise margin). Smaller values of R_{TT} or longer backplanes (higher values of R_{line}) will reduce point-B noise margin even more. The drive capability (characterized by R_{device}) of the transmitter also will affect the waveforms V_{OL}.

Effect of Changing Stub Length on Backplane Signal Characteristics

The effects of changing stub length are most noticeable in the stub associated with the transceiver that drives the signal and, to a lesser extent, on the stubs at the transceivers that are receiving the signal. These effects are in two categories:

- Flight time The longer the stub, the longer it takes for a signal to propagate through it, and results in increased flight time from the driver to the backplane line (stub delay).
- Rise time [also known as slew rate (V/ns)] One of the interesting effects of the stub is the faster rise time observed at the driver circuit as stub Z₀, or stub length, increases.

The inductance of the stub and connector form an L-C-R network between the driver and the load (backplane). Figure 12 shows a simplified equivalent circuit.

Figure 12. Thevenin Equivalent of Load

The longer the stub length, or the higher the stub Z_0 , the larger is the inductance seen by the driver [the sum of the stub line inductance (L_0) and the connector inductance ($L_{conn.}$)] and, thus, the faster the rise time of the driving waveform. The faster rise time causes increased ringback (increased reflections) and worsens the signal integrity of the system. Therefore, it is best to use a low stub Z_0 and keep the length as short as possible, preferably less than 1 in.

The following analyses are based on HSPICE simulations of the backplane model (see Figure 2). Figure 13 shows the results of simulation data taken on rise time when only the stub Z_0 was changed. The termination resistance used in the calculation was also changed with each new value of stub impedance, because this changes the effective characteristic impedance on the backplane. S1 is the rise time at the driver measured from 20% to 80% steady-state low and high levels. S2 is the rise time measured at the beginning of the backplane. S3 is the measured rise time when the signal leaves the backplane at the last receiver slot. S4 is the measured rise time at the last receiver.

Figure 13. Rise Time vs Stub Z_o at Various Points on the Backplane

The higher-impedance stubs (higher inductance) produce a faster driver rise time (higher slew rate) and, therefore, faster rise times at all points along the backplane. This shows that system slew rate is dependent on both the device slew rate and the stub impedance. If the system rings, a lower stub Z_0 can alleviate the problem, because it would slow the rise time to a more manageable value. Figure 14 shows the effects of stub length on stub delay and driver rise time. Stub impedance is fixed at 51 Ω , and only stub lengths and R_{TT} were changed.

Figure 14. Effects of Stub Length on Stub Delay and Rise Time

The termination was calculated for each stub length, using equation 9. The capacitance of the different stub lengths changed the distributed capacitance on the backplane. Figure 14 shows that as stub length increases, stub delay increases and driver rise time (slew rate) decreases.

Figure 15 shows the effect of stub length on termination resistance, and demonstrates that longer stub lengths result in a lower optimum R_{TT} when everything else is held constant.

Figure 15. Effect of Stub Length on Termination Resistance at S1

In all three cases, minimum stub lengths are desired because they result in the best stub propagation delay, rise time, and termination resistance. A stub-length design goal is 1 in., or less.

Figure 16 shows the results of simulations of flight time in a backplane. Various stub impedances with fixed stub lengths of 1 in., coupled with a fixed 25- Ω or 50- Ω connector and termination resistors fixed at 24 Ω , or calculated based on stub impedance, were modeled into the system shown in Figure 2. The driver's rise time (20% to 80%) was set to 1.5 ns. The measurements show the delay between the driver and the receiver located at opposite ends of the 10-in. transmission line.

Figure 16. System Flight Time vs Stub Impedance

Figure 16 indicates that a range of stub impedances produces a minimum system flight time. Lowest flight times are observed between 35 Ω and 50 Ω .

Higher-impedance stubs have a larger value of inductance that results in gradually longer stub delays and flight times.

Lower-impedance stubs have larger values of capacitance that result in increased distributed capacitance on the backplane. This increases the effective propagation delay and also increases flight time much more dramatically than the higher-impedance stubs.

A design goal would be to have the stub Z_0 between 35 Ω and 65 Ω for optimum performance.

Distributed Capacitance – Theory to Practice

The effect of distributed capacitance was observed in the GTLP evaluation module (EVM). The EVM is a 17.9-in., 48-bit, 20-slot stripline backplane with slot-to-slot spacing (slot pitch) of 0.94 in. and removable terminations. The backplane is divided into six groups, with each group having eight traces. Group 1 is 20 slots long, while group 6 is only 2 slots long. The other groups are 16, 12, 8, and 4 slots long. Group 1, bit 1 was used for this theory-to-practice evaluation. The natural trace impedance (Z_0) was planned to be 55 Ω for all, but two traces in group 1, including the trace used for this experiment, were higher due to missing reference planes between them. Available termination-resistor values are 25 Ω , 33 Ω , 38 Ω , and 50 Ω . Data was taken at 23-MHz, 50-MHz, and 87-MHz clock frequencies. The SN74GTLPH1655 high-drive transceiver was used for this experiment and was operated in the latched mode where data frequency is one-half of clock frequency. The data waveforms are shown. The driver in all cases is in slot 1; the waveforms shown were obtained directly from the backplane connector pin of the receiver slot under test.

Fully Loaded Backplane

Figure 17 clearly shows the effect of the different termination resistors on signal integrity in the fully loaded EVM. All waveforms show incident-wave switching, with upper noise margin gained with lower termination-resistor values. The 50- Ω termination value is unacceptable. The 43.5-MHz and 11.5-MHz data waveforms are included for comparison.

Figure 17. Fully Loaded Backplane vs R_{TT} (Driver in Slot 1, Receiver in Slot 2)

The V_{OH} voltages at both 25-MHz and 43.5-MHz data rates never converge to the termination voltage of 1.5 V as with 11.5-MHz data. The reason is that the reflections have not had enough time to settle, which typically takes one round trip on the bus.

Additionally, slew rates of the optimum termination line are included for the rising and falling edges. Typical TTL slew rates in lumped loads are from 1 V/ns to 1.4 V/ns, depending on the capacitive load. The significantly slower GTLP edge rates result in a larger device t_{pd}, but allow for higher system frequencies because limited ringing improves signal integrity. The observed slew rate should increase as the load is reduced.

 C_t can be calculated using the information known about the EVM and the observed $Z_{o(eff)}$. Assuming stripline construction with $Z_o = 95 \Omega$ and $C_o = 2.40 \text{ pF/in}$, solve for C_d using equation 9 and assuming that the optimum $R_{TT} = Z_{o(eff)} = 35 \Omega$. An interpolated R_{TT} value of 35 Ω was chosen because it produces the best incident-wave switching performance. Then, solve for C_t by multiplying C_d by the separation between two transceivers which, in this case, is 0.94 in.

$$C_{d} = \left(\frac{Z_{o}^{2}}{R_{TT}^{2}} - 1\right) \times C_{o} = \left(\frac{95^{2}}{35^{2}} - 1\right) \times 2.40 \text{ pF/in.} = 15.28 \text{ pF/in.}$$
(13)

$$C_t = C_d \times d = 15.28 \text{ pF/in.} \times 0.94 \text{ in.} = 14.36 \text{ pF}$$
 (14)

Using C_d and C_o , the effective t_{pd} and flight time can be calculated.

 t_{pd} for our EVM transmission line with a Z₀ of 95 Ω = 230 ps/in.

$$t_{pd(eff)} = t_{pd} \times \sqrt{1 + (C_d/C_o)} = 230 \text{ ps/in.} \times 2.71 = 624.3 \text{ ps/in.}$$

The total distance traveled from slot 2 to the termination load is:

18 slots \times 0.94 in. + termination stub length of 1 in. = 17.92 in.

Therefore, flight time is 17.92 in. \times 624.3 ps/in., or 11.2 ns.

Round-trip flight time from slot 2 to the load, and back, is 22.4 ns.

The observed settling time is 20.8 ns.

Lightly Loaded Backplane

Figure 18 clearly shows the effect of the different termination resistors on signal integrity when every other card is removed from the EVM and the distributed capacitive load is reduced by a factor of two. There is still some capacitive loading (about 0.7 pF) at the empty slot position, but the majority is removed with the female connector, stub, and device C_{io} .

(16)

Figure 18. Lightly Loaded Backplane vs R_{TT} (Driver in Slot 1, Receiver in Slot 3)

All termination resistances again show incident-wave switching, with noise margin gained as the termination-resistor value is reduced, but all resistances are within acceptable noise-margin limits. This shows a very important point; reducing C_t by increasing slot spacing, reducing stub length, using devices with a lower C_{i0} , or a combination of all three reduces the loaded backplane capacitance, allowing a higher termination-resistor value to be used.

 C_t can be calculated again, and should be the same value as obtained for the fully loaded case. Optimum R_{TT}, in this case, is 46 Ω (interpolated from Figure 18).

$$C_{d} = \left(\frac{Z_{o}^{2}}{R_{TT}^{2}} - 1\right) \times C_{o} = \left(\frac{95^{2}}{46^{2}} - 1\right) \times 2.40 \text{ pF/in.} = 7.84 \text{ pF/in.}$$
(15)

 $C_t = C_d \times d = 7.84 \text{ pF/in.} \times 1.88 \text{ in.} = 14.73 \text{ pF}$

The fully loaded and lightly loaded Ct values agree closely, as expected.

$$t_{pd(eff)} = t_{pd} \times \sqrt{1 + (C_d/C_o)} = 230 \text{ ps/in.} \times 2.07 = 475.1 \text{ ps/in.}$$

Therefore, flight time is 16.98 in. (17 slots \times 0.94 in. + 1 in.) \times 475.1 ps/in. or 8.1 ns.

Round-trip flight time from slot 3 to the load, and back, is 16.2 ns.

The observed settling time is 15.5 ns.

(18)

Very Lightly Loaded Backplane

Figure 19 clearly shows the effect of the different termination resistors on signal integrity when every other three cards are removed from the EVM and the distributed capacitive load is reduced by a factor of four.

SN74GTLPH1655DGGR With Edge-Rate Control in Slow

Figure 19. Very Lightly Loaded Backplane vs R_{TT} (Driver in Slot 1, Receiver in Slot 5)

 C_t can be calculated and should be the same values as obtained in the other cases. Optimum R_{TT} , in this case, is 60 Ω (extrapolated from Figure 19).

$$C_{d} = \left(\frac{Z_{o}^{2}}{R_{TT}^{2}} - 1\right) \times C_{o} = \left(\frac{95^{2}}{60^{2}} - 1\right) \times 2.40 \text{ pF/in.} = 3.62 \text{ pF/in.}$$
(17)

 $C_t = C_d \times d = 3.62 \text{ pF/in.} \times 3.76 \text{ in.} = 13.6 \text{ pF}$

In all cases, the C_t values agree closely (within $\pm 5\%$).

 $t_{pd(eff)} = t_{pd} \times \sqrt{1 + (C_d/C_o)} = 230 \text{ ps/in.} \times 1.58 = 364.3 \text{ ps/in.}$

Therefore, flight time is 15.1 in. (15 slots \times 0.94 in. + 1 in.) \times 364.3 ps/in. or 5.5 ns.

Round-trip flight time from slot 5 to the load, and back, is 11.0 ns.

The observed settling time is about 10 ns. Some oscillations are evident to about 25 ns.

In all cases (i.e., fully, lightly, and very lightly loaded) observed vs calculated flight times are within 10%.

The total capacitance in all the above cases was calculated to be about 14 pF, based on the observed optimum R_{TT} . Analyzing each component in the capacitance chain on the daughter card is summed below, with the results close to observed and measured. The daughter-card construction use for the GTLP EVM is different from the original assumptions. The via and stub 1 add no capacitance to the line. Through-hole connectors, instead of surface mount, were used for increased reliability, but at the expense of additional capacitance. C_{cpad3} was added and is required to connect the device to stub 2.

$$C_{t} = C_{via} + C_{stub1} + C_{cpad1} + C_{con} + C_{cpad2} + C_{stub2} + C_{cpad3} + C_{io}$$

$$= 0 + 0 + 0.5 + 2.0 + 0.5 + 3.3 + 0.5 + 7 = 14.5 \text{ pF}$$
(19)

Where:

The procedure to determine the actual backplane natural trace impedance (Z_0) was to measure the daughter-card C_t directly (13.8 pF). Then, flight time, with only slot 1 occupied, was measured and divided by backplane length to determine that t_{pd} unloaded was 230 ps/in. The same procedure was used in a fully loaded condition, and the resulting t_{pd} was 616 ps/in. Using the backplane calculator set to the new C_t, Z_0 was adjusted to match the measured t_{pd}. The new Z_0 was 96 Ω , $C_0 = 2.4$ pF/in., and $Z_0(eff) = 36 \Omega$.

Table 2 provides the results of additional investigation using different equipment (i.e., TDR) on each of the eight traces in the 20-slot group (group 1) on the GTLP EVM. Z_0 is calculated and is our best estimate. The backplane trace impedance with only the connector pins attached (i.e., all cards removed) (Z_0'') and the backplane trace impedance in a fully loaded backplane (i.e., 20 cards inserted) (Z_0'') are measured. Group 1, bit 1, Z_0 is closer to 91 Ω and, in the fully loaded case, the t_{pd} is 564 ps/in. vs our assumption of 624.3 ps/in. This makes round-trip flight time 20.2 ns, which is much closer to the observed time of 20.8 ns.

GROUP 1 TRACE	D1	D2	D3	D4	D5	D6	D7	D8
Natural Trace I	mpedan	се						
Z ₀ (Ω)	91	47.5	47	47	48	47.5	83	47.5
t _{pd} (ps/in.)	165	140	138	139	141	148	147	142
C _O (pf/in.)	1.81	2.95	2.94	2.96	2.94	3.12	1.77	2.99
Trace Impedan	ce With	Only Co	nnector	s				
Ζο' (Ω)	62.7	37.5	37	36.3	37.1	37.9	58.5	36.8
t _{pd} ' (ps/in.)	240	177	175	180	183	185	208	183
Trace Impedance Under Full Load								
Z ₀ " (Ω)	26.6	17.7	17.9	17.5	17.9	18	24.8	17.7
t _{pd} " (ps/in.)	564	377	362	373	377	390	493	382

Table 2. GTLP EVM Group 1 Trace Impedance

Note the difference in the fully loaded trace impedance between trace D1/D7 and the other traces. Using the lower natural trace impedance offers the advantage of a smaller t_{pd} and shorter time of flight, but at the expense of terminating with a lower-value termination resistor and the subsequent increase in power consumption. Texas Instruments offers both medium-drive (50 mA) and high-drive (100 mA) GTLP devices to allow the designer to match the device with backplane loading. The termination resistor (R_{TT}) should match the fully loaded trace impedance (i.e., Z_0'') of the backplane for optimal signal integrity.

Table 3 provides the stackup used on the GTLP EVM backplane. Additional information on the GTLP EVM can be found in the *GTLP EVM User's Guide* (SCEA023).

TRACE NAME	USE	LAYER	COPPER WEIGHT (oz)	PHYSICAL REPRESENTATION	DIELECTRIC HEIGHT (in.)	DIELECTRIC NAME
Тор	Regulator power/ bypass capacitor/termination	1	0.5			
					0.004	B stage
Internal signal 2	Clock distribution/signal	2	1			
					0.004	Core
Ground plane	Ground plane	3	1			
					0.004	B stage
Internal signal 3	Data signal	4	1			
					0.058	Core
Internal signal 4	Data signal	5	1			
					0.004	B stage
V _{CC}	VCC	6	1			
					0.004	Core
Internal signal 5	Data signal	7	1			
					0.004	B stage
Bottom	Termination	8	0.5			

Table 3. GTLP EVM Backplane Stackup

High-drive (100 mA) devices, such as the SN74GTLPH1655, can drive the transmission line down to $R_{TT} \approx 22 \ \Omega$, without exceeding the recommended maximum I_{OL} , while medium-drive (50 mA) GTLP devices can drive the transmission line down to $R_{TT} \approx 38 \ \Omega$. Both drives can be used with higher values of R_{TT} (i.e., 60 Ω), if required. Medium-drive GTLP devices cost less, have a smaller pin count (fewer GND and V_{CC} pins), and have slightly less maximum B-port C_{io} (medium drive is 9.5 pF vs 10.5 pF for high drive), so the designer must balance and optimize backplane construction with device capability to ensure optimum system signal integrity.

The driver card on the GTLP EVM used initial engineering samples of the SN74GTLPH1655. All receiver cards used production SN74GTL1655 devices because they were more readily available and were operated only in the receive mode. The newer GTLP devices were designed specifically to drive transmission lines and have slower backplane-optimized slew rates for better signal integrity. GTL devices have faster edge rates and are better for point-to-point applications.

Backplane DC Effects – Theory to Practice

Figure 20 shows the dc effects previously described in the *Backplane DC Effects* section on a fully loaded backplane with waveforms plotted at different terminations. V_{OL} information is taken with an 8-MHz clock frequency (4-MHz data), which is the slowest crystal oscillator we had on hand, in order to eliminate as much ac switching effects from the V_{OL} measurement as possible. Each set of waveforms represents measurements taken at each end of the GTLP EVM (or points A and B as described in Figure 11). As expected, V_{OL} decreases as the termination voltage increases because the GTLP driver is able to drive the line lower with a higher resistance load.

SN74GTLPH1655 With Edge-Rate Control in Fast and Frequency = 100 MHz

Figure 20. Fully Loaded Backplane vs R_{TT} (Driver in Slot 1, Receiver in Slot 20)

Assuming the line resistance from one end of the GTLP EVM to the other (slot 2 to slot 20) to be about 2.7 Ω , an on resistance of the SN74GTLPH1655 output driver to be 2.75 Ω (measured value), and V_{TT} = 1.5 V, and using equations 10 and 11, theoretical values vs actual test measurements were obtained (see Table 4). V_{TT} voltage source cause V_{OL} (and V_{OH}) to fluctuate; the difference in the two levels was plotted (not shown) and measured. This voltage difference was then compared to the calculated values, and the data shows that a very good correlation exists. Thus, validity of equations 10 and 11 is verified.

P	т	ACTUAL VALUES		
(Ω)	V _{OL} SLOT 2 (V)	V _{OL} SLOT 20 (V)	DIFFERENCE (mV)	DIFFERENCE (mV)
25	0.260	0.380	121	120
33	0.207	0.305	98	96
38	0.184	0.271	87	
50	0.145	0.215	69	72

Table 4. Theoretical vs Actual V_{OL} Measurements

Data from Table 4 also implies that there is a theoretical maximum length of a backplane. As the length increases, the V_{OL} difference increases and reaches a point where the highest V_{OL} value is within the predetermined noise margin allotted to the system by the designer.

Conclusion

Good backplane designs should follow the design rules in this application report and account for the capacitive loading effects on a backplane transmission line to obtain better signal integrity and achieve incident-wave switching. Minimizing the distributed capacitance on the backplane transmission line is desirable and can be accomplished by using transceiver devices with low C_{io} , selecting connectors with low capacitance, using higher natural trace impedance (balanced against backplane time of flight), and by keeping stub lengths short.

The backplane integrated-circuit drive strength must be selected based on the fully loaded characteristic impedance of the backplane and should be able to maintain the minimum required V_{OL} levels along the entire length of the backplane without exceeding the recommended maximum low-level output current limitations.

Bibliography

Higgs, Mike, 1997. *Advanced Schottky Load Management*, Texas Instruments application report, SDYA016.

Ammar, Ramzi, 1997. *GTL/BTL: A Low-Swing Solution for High-Speed Digital Logic*, Texas Instruments application report, SCEA003A.

Johnson, Howard, and Graham, Martin, 1993. *High-Speed Digital Design*, Prentice-Hall, Inc.

Glossary

C _{io}	Input/output capacitance of the transceiver
Co	Characteristic capacitance – capacitance per unit length of a transmission line in free space
GTL	Gunning transceiver logic– operates at signal levels of V _{TT} = 1.2 V, V _{REF} = 0.8 V, and V _{OL} = 0.4 V. GTL+ is a derivative of GTL that operates at higher noise-margin signal levels of V _{TT} = 1.5 V, V _{REF} = 1 V, and V _{OL} = 0.55 V, and moves V _{REF} from the normal ground-bounce area.
GTLP	Gunning transceiver logic plus – normally associated with slower edge-rate devices optimized for distributed loads that allow higher-frequency operation in heavily loaded backplane applications
Lo	Characteristic inductance – inductance per unit length of a transmission line in free space
R _{TT}	Termination resistance – resistance used to match the effective impedance of a transmission line in order to minimize reflections. $R_{TT} = Z_{o(eff)}$
^t (flight)	Flight time – time it takes a signal to propagate between two points on a transmission line. $t_{(flight)}$ = length × t_{pd}
^t pd	Propagation delay – delay per unit length of a signal traveling down a transmission line, expressed by the formula t_{pd} = $Z_0 \times C_0$
Zo	Characteristic impedance – impedance of a transmission line, as defined by $Z_o = \sqrt{L_o/C_o}$
Z _{o(eff)}	Effective impedance – impedance of a transmission line when external capacitance is added at fixed intervals along the line. $Z_{o(eff)} = \sqrt{L_o/(C_o + C_d)}$

Achieving Maximum Speed on Parallel Buses With Gunning Transceiver Logic (GTLP)

Johannes Huchzermeier

Standard Linear & Logic

ABSTRACT

This application report compares two approaches for synchronous bus-system designs. The focus of the report is the comparison of a system using central-synchronous system clock (CSSC) with a system operated with a source-synchronous system clock (SSSC).

The basic characteristics of lines, key factors that influence the bus line delay, and the impedance of bus lines are described.

The theoretical advantages of an SSSC system over a CSSC system are based on a comparison of timing budget calculations. Theoretical results are confirmed by measurements, using the GTLP demonstration backplane.

In the SSSC mode, the system-clock frequency is, with a clock frequency of 120 MHz, about 2.4 times higher than in the CSSC mode.

	Contents	
1	Introduction	7–257
2	Physical Properties and Limitations of Bus Lines	7–258
3	Transfer Modes	7–262
	3.1 Parameters for the Time Budget	7–262
	3.1.1 Skew	7–263
	3.1.2 Propagation Time Due to Simultaneous Switching	7–264
	3.1.3 Setup and Hold Times at Receiver Input	7–265
	3.2 Central-Synchronous Clock Distribution	7–266
	3.3 Source-Synchronous Clock Distribution	7–269
4	Measurements Using Texas Instruments GTLP Evaluation Module	7–272
	4.1 Data Transfer With System-Synchronous Clock	7–274
	4.2 Data Transfer With Source-Synchronous Clock	7–276
5	Summary	7–278
6	Glossary	7–279
7	Bibliography	7–280

List of Figures

1	Ideal Transmission Line With Negligible Conductance and Resistance	7–258
2	Additional Capacitive Load of Line by Modules	7–259
3	Effect of Slot Spacing on Line Impedance	7–260
4	Effect of Slot Spacing on Flight Time	7–261
5	Important Parameters for the Time Budget	7–262
6	Skew Definitions	7–263
7	Effect of Simultaneous Switching on Propagation Time	7–264
8	Setup and Hold Times	7–265
9	Principle of Central Synchronous Clock Distribution	7–266
10	Time Budget for Central Synchronous System Clock Distribution Environment	7–267
11	Two Examples of Central-Clock Distribution	7–268
12	Principle of Source-Synchronous Clock Distribution	7–269
13	Time Budget for Source-Synchronous Clock Distribution	7–270
14	Two Examples of Source-Synchronous Clock Distribution	7–271
15	GTLP Demonstration Backplane	7–272
16	Layout of Driver Card With Monitor Points and Jumpers	7–273
17	Receiver Card With Monitor Points	7–273
18	Empty Backplane Transmitter, CSSC in Slot 1, Receiver in Slot 20	7–274
19	Empty Backplane Transmitter, CSSC in Slot 1, Receiver in Slot 20	7–275
20	Signals on Empty Backplane, SSSC, Transmitter in Slot 1, Receiver in Slot 20	7–276
21	Fully Loaded Backplane, SSSC, Transmitter in Slot 1, Receiver in Slot 20	7–277

List of Tables

1	Comparison of PCB Line and Bus Line (Slot Distance = 1 Inch)	7–259
2	Comparison of Parallel Bus Systems With Different Pulse Supplies	7–278

1 Introduction

Driver modules that are set up for a modern-wiring backplane have many complex requirements. The drivers must switch fast, with the smallest possible propagation time and the greatest possible number of bits in one driver, to provide the necessary data throughput over the bus.

In addition, the driver should have a sufficiently high driver capacity to generate the required logic levels, even in the case of a full backplane with many interconnected receive and transmit modules. Also, the drivers should have a small noise potential and a large noise margin. The optimum driver should use little power and have the live-insertion with precharge property, which allows exchanging modules during operation without impairing the function of the overall system.

In many electronic systems, shutdown to change a defective system part is not possible without severe adverse consequences for the complete application. Examples are electronic telecommunications systems, the control center in an electrical power-supply company, or computers used by air-traffic controllers.

The GTLP bus drivers address all the above points: minimum propagation time, high-drive capability, and the capability of being inserted into, or removed from, the system during operation, and have been developed especially for this type of application.

This application report emphasizes system speed, which is achieved by the appropriate architecture, using GTLP devices.

Section 2 describes physical basics of backplanes. Influences of the number of modules and the distance between modules on the properties of transfer speed and line impedance are explained.

Section 3 discusses two setups, both of which are based on a synchronous system design using GTLP devices:

- Central-synchronous system clock (CSSC) All system cards use the same clock as base for the data.
- Source-synchronous system clock (SSSC) The transmitter also sends the clock signal, via an additional line, along with the data.

The theoretical considerations are confirmed by measurements using the GTLP demonstration board.

In principle, both systems can be set up using technologies other than GTLP. However, the combination of the advantages of high-driver capability, live-insertion capability, and flexible edge steepness that can be modified during operation, is found only with the GTLP bus-driver solution.

2 Physical Properties and Limitations of Bus Lines

The basic composition of a line consisting of capacitive and inductive replacement components is shown in Figure 1. In the case of static conditions, line impedance primarily is determined by the ohmic resistance and/or the parallel conductance of C' of the line. These are not of any consequence at a frequency of just a few kilohertz, because the frequency is in the term $\omega = 2 \times \pi \times f$.

Figure 1. Ideal Transmission Line With Negligible Conductance and Resistance

Comparing the apparent impedance for a specified frequency (e.g., 1 MHz) with the parallel conductance G' and the series resistance R' shows that G' and R' are negligible compared with the line impedance Z_0 .

The simplified formulae for line impedance and the propagation delay time per unit length are dependent only on the inductive and capacitive layer of the line. In practice, calculations are easy to handle. In the case of a homogeneous line, which represents a connection between a transmitter and a receiver, its capacitive and inductive layers determine the line property.

However, if we look at bus lines, such as the one in Figure 2, the line impedance no longer is constant and is dependent on the number of inserted modules.

Figure 2. Additional Capacitive Load of Line by Modules

If the distances between the inserted modules remain electrically short, i.e., twice the propagation delay time between two inserted modules is shorter than the rise/fall time of the signal, it is possible to add the capacitive load to the capacitive layer. The influence on the inductive layer is negligible.

Table 1 shows the comparison between a point-to-point connection on a PCB, an unloaded bus line with the bus connectors only, and a fully loaded bus. The distance between the slots is 1 inch.

	OF	LOADED LINE	
	PCB	BUS	(BUS)
Inductive layer, L ₀	6.5 nH/cm	6.5 nH/cm	6.5 nH/cm
Capacitive layer, C ₀	0.4 pF/cm	0.4 pF/cm	0.4 pF/cm
Connector	Not applicable	2 pF per slide-in module	2 pF per slide-in module
Feed line to backplane side of connector	Not applicable	<<1 pF	<<1 pF
Feed line to module side of connector	Not applicable	Not applicable	~1 pF
Input capacity of receiver	Not applicable	Not applicable	9 pF
Additional capacity load, CL	Not applicable	2 pF/2.54 cm	10 pF/2.54 cm
Capacitive load per cm	0.4 pF	1.2 pF	4.73 pF
Line impedance, Z ₀	127 Ω	74 Ω	37 Ω
Propagation delay time of signal, τ	5.1 ns/m	8.8 ns/m	17.5 ns/m

Table 1. Comparison of PCB Line and Bus Line (Slot Distance = 1 Inch)
While the inductive layer remains almost constant in all three cases, the connectors, stub lines to the connector, and driver input and output, as well as the input capacity of the receiver, represent an additional capacitive load for the line. The increased capacitive load reduces the line impedance and starts the demand for higher driver capability for bus-interface logic. However, the signal propagation delay time via the bus increases significantly (by a factor of more than three in the example above)

Changing the distances between the modules affects the capacitive layer of the line as shown in Figure 3.

[†] Assuming a capacitive load of 2 pF per slot (connector only) [‡] Assuming a capacitive load of 10 pF per slot (complete module)

Figure 3. Effect of Slot Spacing on Line Impedance

One curve represents a bus line in the unloaded state, for which the bus-side connectors are the only loads on the line. The other curve represents a fully loaded bus line. The same correlation also is produced with regard to the propagation time of the line, and is shown in Figure 4.

[‡] Assuming a capacitive load of 10 pF per slot (complete module)

Figure 4. Effect of Slot Spacing on Flight Time

The values from Table 1 for the slot distance of 1 inch in Figures 3 and 4 can be found at intersections with the dashed lines.

The homogeneity of the line impedance cannot be ensured in every case. For a backplane, the modules can be inserted into different positions on the backplane, and some positions can be left empty, so the different bus-line sections have different impedance values.

However, this fact does not significantly affect the quality of the signal.

3 Transfer Modes

For a synchronous system, as the name suggests, it is important for the transferred data to refer to a common system-clock signal. Every participant in the system then gets the active edge of system clock as a reference and a data signal, which refers to the system clock.

In this section, two synchronous transfer modes are described:

- Central-synchronous system clock (CSSC) mode
- Source-synchronous system clock (SSSC) mode

System parameters that have an important role in affecting the maximum clock speed, in conjunction with the calculation of the time budget, are discussed in the following subsections.

3.1 Parameters for the Time Budget

Parameters for the time budget are assigned to different sources (see Figure 5). The transmitter and clock-distribution devices have skew values and additional propagation time as a result of simultaneous switching. Flight time represents the propagation delay time of the signal via the bus. Finally, the setup and hold times of the receiver must be taken into account.

Figure 5. Important Parameters for the Time Budget

3.1.1 Skew

Skew is the small difference that arises from different propagation delays between output stages within a device. These differences, which cannot be prevented, are defined in the EIA/JEDEC standard, *Definition of Skew Specification for Standard Logic Devices* (EIA/JESD 65) (see Figure 6).

Figure 6. Skew Definitions

Output-to-output skew, $t_{sk(o)}$, is the maximum difference between the slowest and the fastest of the drivers within a package. For clock distribution drivers, $t_{sk(o)}$ is approximately 500 ps. For interface devices, this parameter is not always given, but is typically less than 1 ns.

Pulse skew, $t_{sk(p)}$, describes the difference in propagation delay time between the positive and negative edge, and it is an important definition, if there is a specific duty cycle required.

Should more than one device participate in the clock distribution, process skew (which is the maximum difference in propagation time between drivers of the same function) is defined. Process skew is added to the output-to-output skew.

3.1.2 Propagation Time Due to Simultaneous Switching

The simultaneous switching parameter, Δt_{pd} , is the difference in propagation time that arises from the simultaneous switching of several outputs of the same device.

Data sheets show only the maximum propagation time of one output when it is the only one to be switched. An additional propagation time must be taken into account when multiple outputs are switched simultaneously. The reason for the increase in propagation time is the internal package inductance, which works as a current brake. The more outputs that are switched on, the greater the current and, therefore, the braking effect is greater. Figure 7 shows this correlation for different package options.

Figure 7. Effect of Simultaneous Switching on Propagation Time

The low-profile fine-pitch BGA (LFBGA) package shows the best skew behavior, when forced by simultaneous switching, in this comparison. Despite having double the number of outputs switched at the same time, the absolute difference of the propagation delay in Figure 7 is not significantly greater than that of other modern 16-bit dual-inline packages.

3.1.3 Setup and Hold Times at Receiver Input

In a synchronous system, a common clock signal, which is synchronous for all the interface devices (e.g., registers or flip-flops) exists. Figure 8 shows the definitions for setup and hold time based on a D flip-flop. Both times are defined around the active edge of the clock signal.

NOTE: The setup and hold times are given in the data sheets. For GTLPH1655, t_{SU} is 2.6 ns and t_h is 0.5 ns.

Figure 8. Setup and Hold Times

The setup time is the time during which a data signal must be stable before the active edge of the clock input occurs. The hold time is the time during which a data signal must be stable after the active edge of the clock input occurs. Should either of the two times be violated, it is possible that the output can be in a metastable state in the critical time window. The result can be a state in undefined range or even in the threshold region, that represents neither a logical 1 nor a logical 0. The consequence can be that the subsequent stage can interpret the value as either high or low. Therefore, the probability of malfunctions increases dramatically.

3.2 Central Synchronous Clock Distribution

A basic prerequisite for a synchronous system is that the transferred signals refer to a common clock signal that is transmitted from a central clock distribution circuit. In the layout shown in Figure 9, the active clock edge reaches all parts of the system as simultaneously as possible. For skew adjustment, the line lengths have been chosen to be as close as possible.

 $\textbf{Z}_{\textbf{O}}$ can decrease to 25 $\Omega,$ depending on number of modules and layout.

Figure 9. Principle of Central Synchronous Clock Distribution

Figure 10 shows the time budget for the central-clock distribution. All times that must be taken into account are shown. The main contributors of time in the timing budget are the propagation delay time of the device and the propagation delay time over the bus.

Figure 10. Time Budget for Central Synchronous System Clock Distribution Environment

The need for all system parts to receive the clock at the same time is a disadvantage because the propagation delay time of the data signals via the bus must be taken into account when determining the maximum frequency of the system.

The transmitted data must propagate over the distance from the transmitter to the receiver within a single clock cycle, because the transmitter and the receiver work with exactly the same active edge of the clock signal.

Should the data fail to reach the receiver input within a clock period, the synchronicity of the system no longer can be ensured. In this case, the signal reaches one part of the bus system at the right time (within the same clock period), while another part does not receive the signal until one clock period later. This effect is shown as case 2 of Figure 11.

TEXAS

INSTRUMENTS

Figure 11. Two Examples for Data Transmission in a Central Synchronous System Clock Distribution Environment

The maximum frequency is calculated from the skew of the clock-distribution circuit [$t_{sk}(clk)$], the device propagation (t_{pd}), the skew of the driving device, the additional propagation delay time (Δt_{pd}) due to simultaneous switching of several outputs, the transit time via the bus [$t_{flight}(bus)$], as well as the setup time of the connected receiver [$t_{setup}(rec)$]. The formula for calculating the maximum frequency is:

 $f_{max}(clk) =$ (1) $\frac{1}{t_{sk}(clk) + t_{pd}(clk \text{ to } B) + \Delta t_{pd}(sim.sw.transm.) + t_{sk(o)} + t_{flight}(bus) + t_{setup}(rec)}$ With: = 0.5 ns t_{sk(o)}(clk) t_{pd}(GTLPH1655) = 5.8 ns Δt_{pd} = 1 ns = ns t_{sk(o)} = 10 ns Transit time via the bus t_{flight}(bus) Setup time for the receiver $t_{setup}(rec) = 2.6 \text{ ns}$ = 47.8 MHz fmax

Central-synchronous clock distribution propagation delay time via the bus takes a large part of the available clock period. The propagation delay over the bus can be lower if the capacitive load is lower. For example, if only the transmitter and one receiver card are plugged into the bus and no additional modules are inserted, the maximum f_{max}(clk) must be put in the formula for a safe circuit design, i.e., assume that all slots are filled with cards.

3.3 Source-Synchronous Clock Distribution

To eliminate the signal propagation delay time on the bus, the solution illustrated in Figure 12 can be used. An additional line for the source-synchronous clock signal and other lines for the arbitration or transmission of the send/receive status are required. However, propagation delay time over the bus (t_{flight}) is eliminated from the calculation of the maximum clock frequency. Therefore, a significantly higher system speed is possible.

Figure 12. Principle of Source-Synchronous Clock Distribution

The times to be observed refer to two successive clock periods. The first clock period includes times that must be taken into account relative to the transmitter, while the second clock period includes critical times for the receiver. There are two requirements for the maximum clock speed:

$$f_{max}(clk) \leq \frac{1}{t_{sk}(clk) + t_{pd}(clk \text{ to } B) + t_{sk(o)} + \Delta t_{pd}(sim.sw.transm.)}$$
(2)
$$f_{max}(clk) \leq \frac{1}{t_{hold}(rec) + t_{setup}(rec)}$$
(3)

The smaller value for f_{max} from equations 2 and 3 represents the highest possible frequency. Figure 13 shows this correlation graphically.

Sender In

Sender Out

Sender Clocks in D₁

Data (D1)

Reaches Receiver

Receiver Clocks in D₁

Figure 13. Time Budget for Source-Synchronous Clock Distribution

Sender

Clocks

in D₂

Sender Sets D₁

In this case, error-free synchronous data transfer that is independent of the propagation delay time over the line is possible (see Figure 14). The clock signal - with certain propagation to the data signal - is transferred via a separate clock line.

Sender Sets Clock (D1)

Figure 14. Two Examples of Source-Synchronous Clock Distribution

4 Measurements Using Texas Instruments GTLP Evaluation Module

Theoretical considerations concerning the two transmission modes discussed in the previous sections can be confirmed by measurements, using the GTLP demonstration backplane.

The evaluation module (EVM) (see Figure 15) is a good model for a typical parallel-backplane system as found, for example, in telecom applications.

Figure 15. GTLP Demonstration Backplane

Altogether, 48 bits run in parallel over the 19-inch backplane, which has 20 slots, each 1 inch apart. The connectors are fully integrated onto the backplane, while the number of modules can vary. GTLPH1655 devices are used as the interface.

Different bus characteristics can be realized and shown using this EVM.

By using the EVM, it is possible to show the effect of termination resistances on signal quality, as well as different load conditions, due to a different number of modules on the bus. Also, the clock frequency is variable.

Figure 16 shows the layout of the driver card. Using a jumper, the transmitter can be switched from the system-synchronous clock mode to the source-synchronous clock mode.

Figure 16. Layout of Driver Card With Monitor Points and Jumpers

Figure 17 shows a receiver card. The receiver card contains GTLPH1655 transceivers that receive data from the GTLP bus and translate it into LVTTL signals.

Figure 17. Receiver Card With Monitor Points

Using the receiver card, GTLP bus measurements (GTLP level) and module measurements (LVTTL level) are possible.

The EVM is used to illustrate the difference between system-synchronous data transfer and source-synchronous data transfer. The transmitter is at the beginning of the bus line, and the receiver is at the end of the bus. In both cases, 66 MHz is the clock speed, and gives a clock period of 15.15 ns.

4.1 Data Transfer With System-Synchronous Clock

The propagation time of the signal via the bus amounts to about 4 ns, if all other slots are empty. If the characteristics of the interface modules using GTLPH1655 devices are included, the worst-case scenario for the maximum clock speed is:

$$f_{max}(clk) = \frac{1}{0.5 \text{ ns} + 5.8 \text{ ns} + 1.1 \text{ ns} + 1 \text{ ns} + 4 \text{ ns} + 2.6 \text{ ns}} = \frac{1}{15 \text{ ns}} = 66.7 \text{ MHz}$$
(4)

With no load on the bus, timing already is critical at 66-MHz clock frequency because the timing margin is only 150 ps.

However, GTLPH1655 devices typically have less propagation time (about 3.5 ns compared with data-sheet value of 5.8 ns), thus, the critical frequency increases to about 78.7 Hz (see Figure 18).

Figure 18. Empty Backplane Transmitter, CSSC in Slot 1, Receiver in Slot 20

However, if additional modules are inserted into the backplane, the capacitive load and, thus, the propagation delay time via the bus, increases significantly. In this case, the propagation delay time via the bus increases to about 10 ns. As a result, the maximum clock speed is significantly lower:

$$f_{max}(clk) = \frac{1}{0.5 \text{ ns} + 5.8 \text{ ns} + 1.1 \text{ ns} + 1 \text{ ns} + 10 \text{ ns} + 2.6 \text{ ns}} = \frac{1}{21 \text{ ns}} = 47.6 \text{ MHz}$$
(5)

Therefore, the required period in this case is 21 ns, increasing the chosen clock period from 66 MHz by 6 ns. The consequence is that not all modules receive the same data with the same clock edge. Some modules receive the data with the active edge of consecutive clock periods, as shown in Figure 19. With an empty backplane (see Figure 18), the data was transmitted with the next active edge of the clock signal at the receiver output. In this case, it takes one more clock period (see Figure 19).

In other words, the system no longer is working synchronously, and errors due to missing synchronicity can result.

FULLY LOADED BACKPLANE AT 66 MHz, R_{TT} = 38 Ω , ERC = V_{CC}

Figure 19. Empty Backplane Transmitter, CSSC in Slot 1, Receiver in Slot 20

4.2 Data Transfer With Source-Synchronous Clock

The sender is switched to source-synchronous clock mode by moving a jumper on the driver card. Comparing the signals on the empty backplane, there is little difference, as similar results are seen in the oscilloscope pictures (see Figure 16).

In the source-synchronous mode, the signal is within the same clock period (see Figure 20). The clock pulse no longer has any relation to the signal on the bus, because the clock pulse is measured at the receiver and, therefore, has a proper relation only to the TTL output signal.

Figure 20. Signals on Empty Backplane, SSSC, Transmitter in Slot 1, Receiver in Slot 20

Figure 21. Fully Loaded Backplane, SSSC, Transmitter in Slot 1, Receiver in Slot 20

Even if the bus is fully loaded, a correct signal transfer can be observed. The only drawback is the need for an additional line in the bus layout. The clock signal always is transferred, with a small delay, to the present datum. The increase in propagation delay time via the bus, as a result of the additional input capacitance of the inserted modules, no longer is relevant.

The maximum frequency is calculated using data-sheet values, realistic approximations, and equation 2:

$$f_{max}(CLK) = \frac{1}{0.5 \text{ ns} + 5.8 \text{ ns} + 1.0 + 1 \text{ ns}} = \frac{1}{8.3 \text{ ns}} = 120.4 \text{ MHz}$$
 (6)

5 Summary

With the central-clock-distribution system, the highest possible system pulse rate is about 50 MHz (assuming a 19-inch backplane). With the source-synchronous system, the clock frequency can be increased by a factor of 2.4, to 120 MHz.

Table 2 lists three system solutions, along with relevant parameters that must be taken into account during system design.

	SYNCHRONC	OUS SYSTEM	ASYNCHRONOUS SYSTEM	
PARAMETER	CENTRAL-CLOCKSOURCE-SYNCHRONOUSDISTRIBUTIONCLOCK DISTRIBUTION		NO SYSTEM CLOCK PULSE	
Pulse skew	Output-to-output pulse driver (to be taken into account)	Output-to-output pulse driver (to be taken into account)	Not applicable	
t _{pd} CLKAB	Device dependent (to be taken into account)	Device dependent (to be taken into account)	Not applicable	
∆ Data – pulse	_/_	To be fixed	Not applicable	
t _{pd} (sim.switch)	Package dependent (to be taken into account)	Package dependent (to be taken into account)	Package dependent (to be taken into account)	
^t sk(o)	Device dependent (to be taken into account)	Device dependent (to be taken into account)	Device dependent (to be taken into account)	
Bus propagation delay time	Bus dependent (to be taken into account)	0 ns Not applicable	Bus dependent (to be taken into account)	
Setup time	Package dependent (to be taken into account)	0 ns Not applicable	Not applicable	

 Table 2. Comparison of Parallel Bus Systems With Different Pulse Supplies

For the central-system-clock solution, a central clock exists for all bus attendees. The maximum clock speed is about 50 MHz and provides a 32-bit data width and a data throughput rate of up to 1.6 Gbit/s. A significant limiting factor for the time budget is the transit time via the bus.

For a system with a source-synchronous system clock, the clock signal, with a slight shift in time to the data, is sent together with the data signal on the bus. The delay between data and clock is constant for all bus members. The maximum clock speed is about 120 MHz. The 32-bit data width results in 3.8 Gbit/s as the maximum data throughput. A significant limiting factor for the time budget in this setup is the propagation time, compared with the clock period.

A further option is asynchronous data transfer, in which an integrated system clock does not exist. All the bus drivers are in transparent mode, and switch the outputs according to their propagation time. Therefore, there is no common clock speed.

The asynchronous data frequencies can be 160 MHz, or more, depending on the technology. However, the effective maximum frequency is reduced significantly by additional requirements, such as the introduction of a bus protocol, which is indispensable in this system. The maximum frequencies that produce the theoretical data rate, which is based on 32 bits of up to 5.12 Gbit/s (at160 MHz), can be reached only for a short time, not continuously.

TEXAS INSTRUMENTS

6 Glossary

BTL	Backplane transceiver logic
CMOS	Complementary symmetry metal-oxide semiconductor
CSSC	Central-synchronous system clock
DUT	Device under test
FB	FutureBus (device identifier for backplane transceiver logic devices)
GND	Ground
GTLP	Gunning transceiver logic plus
I/O	Input/output
LVTTL	Low-voltage transistor-transistor logic with 3.3-V supply, compatible with TTL
PCB	Printed circuit board
Slew rate	Slew rate, which is derived using the following equation: slew rate = $\Delta V/\Delta t$ = (0.8 V _{OH} - V _{OL})/t _{r,f}
SSSC	Source-synchronous system clock
TTL	Transistor-transistor logic
t _{pd}	Propagation delay time
t _f	Time to transit from logical high to logical low, measured between the 90% and 10% values of the steady logical-high level
t _r	Time to transit from logical low to logical high, measured between the 10% and 90% values of the steady logical-high level
Transceiver	Trans(mitter) (re)ceiver, bidirectional device
V _{CC}	Supply voltage

7 Bibliography

Electronic Industries Alliance

Definition of Skew Specifications for Standard Logic Devices, EIA/JESD65, September 1998.

Interference Control Technologies, Inc.

Donald R. J. White, EMI Control in the Design of Printed Circuit Boards and Backplanes.

Texas Instruments Incorporated

G. Becke, E. Haseloff, *Das TTL-Kochbuch (The TTL Cookbook)*, SDYZG17.

PCB Design Guidelines for Reduced EMI, Application Report, November 1999, SZZA009.

AVC Logic Family Technology and Applications, August 1998, SCEA006A.

Comparison of Electrical and Thermal Parameters of Widebus™ SMD SSOP, TSSOP, TVSOP, and LFBGA Packages, October 1999, SCYA007.

Metastable Response in Digital Circuits, April 1995, SCBD002C.

Logic Selection Guide and Databook, CD-ROM, April 1998, SCBC001B.

Design Considerations for Logic Products, Application Book, [Volume 1], 1997, SDYA002. *Design Considerations for Logic Products*, Application Book, Volume 2, September 1999, SDYA018.

Design Considerations for Logic Products, Application Book, Volume 3, December 2000, SDYA019.

Digital Design Seminar Reference Manual, 1998, SDYDE01B.

What a Designer Should Know, November 1994, SDZAE03.

The Bergeron Method, Application Report, October 1996, SDYA014.

Bus-Interface Devices With Output-Damping Resistors or Reduced-Drive Outputs, Application Report, August 1997, SCBA012A.

Live Insertion, Application Report, October 1996, SDYA012.

Thin Very Small-Outline Package (TVSOP), Application Report, May 2001, SCBA009.

GTLP in BTL Applications

Steve Blozis

Standard Linear & Logic

ABSTRACT

This application report addresses the issues a designer might face when using a GTLP device in a BTL/FB+ application when a legacy BTL/FB+ bus implementation is still in use. Key BTL/FB+ and GTLP device characteristics are compared, and additional GTLP value-added features are discussed.

To demonstrate that GTLP devices can be used in BTL/FB+ applications, the reference voltage (V_{REF}) and termination voltage (V_{TT}) were modified to BTL/FB+ specifications in TI's 20-slot GTLP EVM and waveforms showing system performance are presented. The experiment has shown GTLP technology is suitable for BTL/FB+ applications if maximum output-current ratings are observed.

Contents

Introduction	7–282
Background	7–283
FB+ and GTLP Characteristics Comparison A-Port/Daughter-Card Side of the Device B-Port/Backplane Side of the Device	7–285 7–286 7–286
Device Characteristics	7–288
Advanced Features of GTLP Devices Not Incorporated in FB+ Devices	7–290
GTLP Data-Sheet Changes Required for BTL/FB+ Applications	7–291
GTLP Waveforms in BTL Backplane	7–291
Frequently Asked Questions	7–295
Conclusion	7–295
Glossary	7–296
Acknowledgment	7–296
References	7–297

Intel and Pentium are trademarks of Intel Corp. OEC and TI-OPC are trademarks of Texas Instruments.

List of Figures

1	Open-Collector Bus System Using BTL/FB+ Devices	7–283
2	Open-Drain Bus System Using GTL Devices	7–283
3	Typical Backplane Physical Representation	7–284
4	BTL and GTLP Signal-Level Comparison	7–286
5	GTLP V _{REF} Resistor Network	7–287
6	GTLP EVM Backplane	7–291
7	GTLP EVM Driver and Termination Cards	7–292
8	GTLPH1655 Waveforms at GTLP Signal Levels (Group 1, Bit 1)	7–293
9	GTLPH1655 Waveforms at BTL Signal Levels (Group 1, Bit 1)	7–293

List of Tables

1	FB+ and GTLP 8-Bit Registered Transceiver Characteristics Comparison	7-	-285
2	High-Drive GTLP Functions	7-	-289
3	FB+ Functions	7–	-289
4	B-Port Edge-Rate Control	7–	-290
5	Waveform Slew Rate and Duty Cycle	7–	-294
6	$V_{\mbox{OH}}$ and $V_{\mbox{OL}}$ vs $I_{\mbox{OL}}$	7–	-294

Introduction

In the past, the standard solutions for driving bus lines of backplane systems were transistor-transistor logic (TTL) or 5-V CMOS logic circuits. However, some issues resulted from the large 3.3-V or 5-V voltage swing, such as low system frequency performance and noise generated when the outputs switch simultaneously.

An open-collector backplane transceiver logic (BTL) bus with a reduced output voltage swing (<1V) that mitigates these concerns was introduced in the FutureBus Plus (FB+) family of devices. The falling edge is generated actively by the open-collector driver, and the rising edge is generated by a passive pullup network. A pullup network, with the termination resistance matching the loaded bus line impedance, provides optimum signal integrity and incident-wave switching.

Many BTL/FB+ backplanes are in operation. Engineers looking to the future see open-drain Gunning transceiver logic plus (GTLP) devices as a lower-power, higher-frequency migration path. However, their investment in the existing BTL backplanes and cards must be maintained for at least several more years.

This application report discusses how GTLP devices can be substituted for FB+ devices and operated at BTL signal levels until all the cards have been converted to GTLP, or until the higher system frequencies available from GTLP are needed for increased data throughput. Then, the entire BTL system can be converted easily to GTLP signal levels simply by changing the reference voltage and reducing the backplane termination voltage.

Background

FB+ devices are 5-V V_{CC} BiCMOS translators that operate between TTL logic levels on the card and BTL signal levels on the backplane. The backplane signals are generated by an open collector and a termination network (see Figure 1). The saturation voltage of the pulldown transistor and the forward voltage of the serially connected diode generate the output low-level voltage of 1.1 V. The high level of 2.1 V comes from the termination resistor (R_{TT}) connected to the termination voltage of 2.1 V. R_{TT} should equal the loaded-bus line impedance (Z), but the effective dc resistance, as seen by the driver in a typical double-terminated backplane, is R_{TT} in parallel with R_{TT} or one-half R_{TT}. Matching R_{TT} with Z ensures incident-wave switching and improves signal integrity. FB+ devices can handle a current (I_{OL}) up to 100 mA, which equals a R_{TT} of 20 Ω or an effective line impedance of 10 Ω (R = (V_{OH} – V_{OL})/I_{OL}). For safe detection of logic levels, the inputs are designed with differential amplifiers and a fixed threshold at 1.55 V ± 75 mV, exactly in the middle of the voltage swing. FB+ logical-layer specification is, according to IEEE Std 1194.1-1991 (BTL) and IEEE Std 896-1991 (FB+), describing node management, live insertion, and profiles. However, the physical layer can be used stand-alone, without the logical layer.

Figure 1. Open-Collector Bus System Using BTL/FB+ Devices

The basic concept of the Gunning transceiver logic (GTL) bus (see Figure 2) is identical to the BTL system, but in a CMOS technology and at a lower voltage level. Because of the missing diode in the open-drain outputs, the low level is 0.4 V. With a high level of 1.2 V, the voltage swing is reduced to only 0.8 V. The threshold is set in the middle of the voltage swing at 0.8 V by the variable V_{REF} input. With a drive capability of 40 mA, GTL devices can drive an effective resistance of around 0.8 V/40 mA = 20 Ω , or a termination resistor R_{TT} of 40 Ω in a double-terminated backplane. As a result of the 0.4-V V_{OL} level and the 40-mA I_{OL} current drive, the maximum output dc power dissipation of one output is 16 mW. These low-power drivers are typically integrated into ASICs for point-to-point applications, and normally are not used in heavily loaded multipoint applications.

Figure 2. Open-Drain Bus System Using GTL Devices

The GTLP family combines the high-drive benefits of the BTL family, with the reduced power consumption of the GTL family. GTLP specifically is designed and optimized for heavily loaded multipoint backplane applications with a slow, controlled, backplane edge rate, and includes features needed for live insertion and withdrawal.

GTL and GTLP devices support two different signal-level specifications: GTL (JEDEC Standard JESD 8-3) and GTL+ signal levels first used by Intel[™] in their Pentium[™] processors. GTL voltage swing is from 0.4 V to 1.2 V, with the threshold in the middle of the voltage swing at 0.8 V. GTL+ voltage swing is from 0.55 V to 1.5 V, with the threshold at 1.0 V. GTLP devices, which are optimized for backplane applications and are designated with the SN74GTLP prefix, are optimized for the higher noise-margin GTL+ signal levels to indicate they have a slower slew rate with improved output-edge control, and to differentiate them from point-to-point GTL+-optimized devices.

Both FB+ and GTLP devices are commonly used in multiple-bit, multipoint double-terminated parallel backplanes (see Figure 3). The device turns on to pull the signal low and turns off to allow the termination resistors to pull the signal high, up to the termination voltage. The benefit of this open-collector/open-drain technology is that the output either is sinking current or is in the high-impedance state (3-state), but never sources current. This reduces the power consumption over typical Thevenin or ac terminations. Other benefits include the ability to pick a termination-resistor value that matches the loaded backplane impedance (Z), ensuring incident-wave switching/optimum signal integrity, and no destructive bus-contention issues if multiple devices are on at the same time, which also facilitates a wired-OR arrangement. The loaded backplane impedance, Z, always is lower than the natural bus line impedance (Z_0) and varies from system to system, depending on stub length, slot pitch, device C_{io}, and type of connectors. Surface-mount ceramic-bypass capacitors (0.82 nF) should be connected between V_{TT} and GND on every fourth data bit, to minimize current fluctuations.

Figure 3. Typical Backplane Physical Representation

SCEA017

FB+ and GTLP Characteristics Comparison

Table 1 compares the FB2033A with the high-drive GTLP2033 device, which is soon to be released. Each characteristic is discussed in general and then in detail if the difference is material to the use of GTLP devices in BTL/FB+ applications. Values of C_{io} , I_{CC} , and t_{pd} are design goals and are subject to change.

	CHARACTERISTIC	FB+	GTLP	
	Logic levels	TTL	LVTTL	
A nort/doughton cond	Transistors type – input/output	CMOS/bipolar	CMOS/CMOS	
A-pon/daughter card	Drive levels	–32/55 mA	±24 ma	
	Bus hold	None	None	
	Ioff and PU3S to support hot insertion	Yes	Yes	
	Signal levels	BTL	GTLP	
	Input – differential	±75 mV around fixed threshold of 1.55 V	±50 mV around variable threshold of 1.0 V	
B-port/backplane	Transistor type – output	Bipolar open collector	CMOS open drain	
	Drive levels	100 mA @ 1.1 V	100 mA @ 0.55 V	
	Input/output capacitance (Cio – max)	6 pF	10.5 pF	
	Slew rate – typical rise/fall	0.39/0.33 V/ns	0.5/0.43 V/ns	
	I_{Off} /PU3S and BIAS V _{CC} to support live insertion	Yes, 1.62 V to 2.1 V	Yes, 0.95 V to 1.05 V	
	VCC	5 V	3.3 V	
	Technology	0.8-μ BiCMOS	0.65-μ CMOS	
	Icc	120 mA	40 mA	
	Power consumption	100 mW	50 mW	
	Transparent mode – maximum propagation delay (GTLP ERC slow or fast for higher/lower values)	A to B 4.6 ns B to A 5.6 ns	A to B 7.7 or 6.3 ns B to A 5.5 ns	
Device	Logic functions	Many – both are	exactly the same.	
20100	ESD	HBM – 2000 V MM – 200 V CDM – 1000 V	HBM – 2000 V MM – 200 V CDM – 1000 V	
	Temperature range	0°C to 70°C	-40°C to 85°C	
	Package offerings	52-pin TQFP	48-pin TSSOP, TVSOP, or VFBGA	
	IEEE Std 1149.1 JTAG	No pins assigned	No pins assigned	

 Table 1. FB+ and GTLP 8-Bit Registered Transceiver Characteristics Comparison

A-Port/Daughter-Card Side of the Device

- Logic levels The logic levels are compatible because the threshold, V_{IH} , V_{OH} , and V_{IL} logic levels are the same. GTLP is 5-V tolerant.
- Transistor types and drive levels They are not significantly different. Most applications do
 not require the higher drive and work well with the balanced drive of ±24 mA. Also, GTLP is
 offered with a series-damping-resistor (SDR) option that reduces the drive to ±12 mA, and
 provides better signal integrity into smaller lumped loads.
- Bus hold Neither device has the bus-hold feature. The A port of most GTLP devices that do not feature the split 3-wire A port is featured with bus hold.
- Hot insertion Both families support hot insertion with the I_{off} and power-up 3-state (PU3S) features.

B-Port/Backplane Side of the Device

- Signal levels Signal levels are not compatible (see Figure 4). The level of noise margin is about the same; only the input thresholds of operation are different. As discussed in the following paragraphs, GTLP devices can operate at BTL signal levels by changing V_{REF} to 1.55 V and raising V_{TT} to 2.1 V.
 - V_{OH} = 2.10 V 2.00 V Upper noise Upper noise margin margin – 475 mV 1.75 V ٧тн VIH = 1.625 V 1.55 V V_{REF} = V_{IL} = 1.475 V 1.50 V V_{OH} = 1.5 V Lower noise margin Upper noise margin Lower noise margin 1.25 V – 450 mV - 375 mV V_{IH} = 1.05 V V_{OL} = 1.10 V 1.00 V V_{REF} = = 0.95 V Lower noise margin 0.75 V – 400 mV V_{OL} = 0.55 V 0.50 V 0.25 V -0.00 V 🗆 BTL GTLP

Figure 4. BTL and GTLP Signal-Level Comparison

• Differential input – FB+ devices have a fixed differential input set at 1.55 V, whereas GTLP devices have a variable differential input that is set via the external V_{REF} control pin. Normally, V_{REF} is two-thirds of V_{TT} so that, when V_{TT} is 1.5 V, V_{REF} is 1.0 V. As shown in Figure 5, the GTLP reference level is set by this simple R/2R resistor network, with R typically being a one-fourth-watt resistor in the range of 1 k $\Omega \pm$ 1%. The advantage of this external V_{REF} and R/2R network is that it maintains the upper and lower noise margin if V_{TT} fluctuates. The maximum input V_{REF} current to a GTLP device is 10 μ A. A 0.1- μ F to 0.01- μ F bypass capacitor should be located as close to the V_{REF} pin as possible to stabilize the voltage.

When GTLP is used in BTL applications, the resistor network simply is changed to R/3R so that V_{REF} is set at 1.575 V when V_{TT} is changed to 2.1 V. When the card is converted from BTL to GTLP signal levels, simply change the 3R resistor to 2R, and the proper reference voltage is set when V_{TT} is reduced from 2.1 V to 1.5 V.

Figure 5. GTLP V_{REF} Resistor Network

- Transistor type FB+ and GTLP operate the same using only a pulldown transistor on the output, with FB+ bipolar transistors being called open collector and GTLP CMOS transistors being called open drain.
- Drive levels The drive or current-sinking capability is the same and is 100 mA, to allow termination-resistor R_{TT} values down to 22 Ω (effective termination resistance of 11 Ω) if the voltage swing is limited to 1 V. In actual applications, the GTLP V_{OL} is lower, and higher R_{TT} values are required to avoid exceeding the recommended I_{OL}.
- Input/output capacitance (C_{io} maximum) The FB+ decoupling diode reduces the maximum output capacitance to about 6 pF. Increased output capacitance of 10.5 pF (8.5 pF typical) is seen in GTLP devices, compared to FB+ devices. This is directly attributable to the GTLP CMOS process, which requires larger-area output structures compared to bipolar output structures used on FB+ devices. This increase in capacitance reduces the loaded-bus line impedance that can be compensated for by lowering R_{TT}. The higher loading reduces t_{pd} and increases the time of flight.
- Live insertion Both support live insertion through the use of I_{off}, PU3S, and BIAS V_{CC} circuitry. BIAS V_{CC} circuitry precharges the outputs to mid-swing levels to prevent glitching active data on the backplane when cards are inserted or removed, and is disabled when V_{CC} is connected. FB+ BIAS V_{CC} output is fixed at 1.62 V to 2.1 V, whereas the GTLP device BIAS V_{CC} output is fixed at 0.95 V to 1.05 V. If GTLP devices are used at BTL signal levels, the precharge is below the threshold level and may not be as effective in preventing data glitches. However, in the GTLP EVM (a specially designed backplane for customer use), no glitching was noted when GTLP devices were operated at BTL levels.

Device Characteristics

- V_{CC} FB+ uses 5-V V_{CC}, whereas GTLP uses 3.3-V V_{CC}. The lower V_{CC} is more compatible with newer, higher-performance devices being used in current and future board designs.
- Technology FB+ uses an older $0.8-\mu$ bipolar process, whereas GTLP uses a newer $0.65-\mu$ CMOS process that has the main advantage of lower power consumption.
- I_{CC} I_{CC} is the amount of current used by the device and is a factor in computing power consumption. CMOS construction reduces GTLP device I_{CC} to about one-third of FB+ levels.
- Power consumption Several factors influence power consumption: V_{CC}, I_{CC}, frequency of operation, number of outputs switching, load capacitance, number of TTL-level inputs, junction temperature, ambient temperature, and thermal resistance. GTLP power consumption and overall heat dissipated is about one-half of FB+ levels.
- Propagation delay The A-to-B and B-to-A propagation delays are larger in the GTLP devices due to the slower edge slew rate and the slower CMOS process. High-drive GTLP devices have the option of a smaller t_{pd} by increasing the slew rate through the use of the edge-rate-control (ERC) circuitry. The ERC pin controls slew rate.
- Logic functions GTLP devices are available in several different functions and package options (see Table 2). FB+ is available in several different functions (see Table 3).
 - Most FB+ devices have split input (AI) and output (AO) buses on the A port, something only the GTLP1394, GTLP1395, and GTLP2033/34 in the GTLP family have. Please contact the GTLP team at gtlp@list.ti.com if you would like a GTLP replacement for your existing FB+ application.
 - The FB1650 emulates the FB2031 and the FB2040.
 - The FB2033A is slightly faster than the FB2033K (custom device released to the general market).

DEVICE	AVAILABILITY	FUNCTION	PINS	PACKAGE
SN74GTLP1394	Now	2-bit bus transceiver with split LVTTL port and feedback path	16	SOIC, TSSOP, and TVSOP
SN74GTLPH1612	Soon	18-bit universal bus transceiver	64	TSSOP
SN74GTLPH1616	Soon	17-bit universal bus transceiver with buffered clock	64	TSSOP
SN74GTLPH1645	Soon	16-bit bus transceiver	56	TSSOP, TVSOP, and VFBGA
SN74GTLPH1655	Soon	16-bit bus transceiver	64	TSSOP
SN74GTLP1395	Soon	2-bit bus transceiver with split LVTTL port and feedback path	20	SOIC, TSSOP, TVSOP, and VFBGA
SN74GTLP21395	Soon	2-bit bus transceiver with split LVTTL port and feedback path	20	SOIC, TSSOP, TVSOP, and VFBGA
SN74GTLP2033	Soon	8-bit inverted registered bus transceiver with split LVTTL port and feedback path	48	TSSOP, TVSOP, and VFBGA
SN74GTLP22033	Soon	8-bit inverted registered bus transceiver with split LVTTL port and feedback path	48	TSSOP, TVSOP, and VFBGA
SN74GTLP2034	Soon	8-bit registered bus transceiver with split LVTTL port and feedback path	48	TSSOP, TVSOP, and VFBGA
SN74GTLP22034	Soon	8-bit registered bus transceiver with split LVTTL port and feedback path	48	TSSOP, TVSOP, and VFBGA
SN74GTLPH1627	Soon	18-bit bus transceiver with synchronous clock outputs	64	TSSOP

Table 2. High-Drive GTLP Functions

Table 3. FB+ Functions

DEVICE	FUNCTION	PINS	PACKAGE
SN74FB1650	18-bit universal storage transceiver with split TTL I/O	100	PCA
SN74FB1651	17-bit universal storage transceiver with delayed buffered clock with split TTL I/O	100	PCA
SN74FB1653	17-bit universal storage transceiver with delayed buffered clock with split LVTTL I/O (3.3-V and 5-V $\rm V_{CC})$	100	PCA
SN74FB2031	9-bit address/data transceiver with clock and latch	52	RC
SN74FB2032	9-bit arbitration contest competition transceiver	52	RC
SN74FB2033A	8-bit registered transceiver with split TTL I/O	52	RC
SN74FB2033K	8-bit registered transceiver with split TTL I/O	52	RC
SN74FB2040	8-bit status/sync transceiver with split TTL I/O	52	RC
SN74FB2041A	7-bit transceiver with split TTL I/O	52	RC

- ESD Both FB+ and GTLP meet the minimum electrostatic discharge (ESD) standards in human-body model (HBM), 2000 V; machine model (MM), 200 V; and charged-device model (CDM), 1000 V. During testing, the GTLP devices pass 4000-V HBM and 3000-V CDM.
- Temperature ranges FB+ is offered in commercial (0°C to 70°C) and military (-55°C to 125°C) temperature ranges, with some of the newer devices also ac specified for the industrial (-40°C to 85°C) temperature range. GTLP is offered in industrial (-40°C to 85°C) and select devices will be offered in the military (-55°C to 125°C) temperature ranges. Please contact the GTLP team at gtlp@list.ti.com for additional information on the devices in the military temperature range.
- Package offerings FB+ devices are packaged in older technology, larger, more expensive thin quad flatpack packages that include a thermal heat sink in the 100-pin packages to help dissipate the heat generated by the bipolar outputs. GTLP devices are packaged in modern packages, including the often-requested TSSOP package and, where possible, in the smaller TVSOP packages. Select GTLP devices also are offered in the new very fine-pitch ball grid array (VFBGA) and the dual-die, low-profile, fine-pitch ball grid array (LFBGA) package.
- IEEE Std 1149.1 JTAG Most FB+ devices have JTAG TAP pins assigned, but no devices with JTAG features have been released. The GTLP team is evaluating JTAG functionality in GTLP devices in VFBGA/LFBGA packages, and solicits your input on the desirability of this feature.
- Price Comparing suggested resale pricing, the FB2033 is about 85% higher than the GTLP2033. There are similar price differentials for other devices in both families.

Advanced Features of GTLP Devices Not Incorporated in FB+ Devices

- OEC[™] circuitry The low-to-high transition output edge-control circuitry has been improved significantly. The slew rate has been held to about 0.5 V/ns on the rising edge and helps prevent ringing on heavily loaded backplanes, allowing a much higher maximum frequency.
- TI-OPC[™] circuitry GTLP devices feature overshoot-protection circuitry that actively ports backplane energy to GND when the signal level is greater than 0.7 V to 0.8 V above V_{REF}. This prevents large overshoots on improperly terminated or unevenly loaded backplanes during low-to-high signal transition, which limits the subsequent undershoot that would reduce the upper noise margin.
- Edge-rate control (ERC) This feature allows designers to select either a slow-rising-edge slew rate (about 0.4 V/ns) or a slightly faster slew rate (about 0.45 V/ns). The faster slew rate reduces the maximum propagation delay, allowing a higher system frequency. The maximum frequency with a slow ERC is about 87 MHz, while a fast ERC is about 125 MHz. In BTL applications, the slow ERC should be selected by applying the correct logic level to the external ERC control pin as shown in Table 4. ERC is the inverse of ERC and is implemented on some GTLP devices where the control pin replaced a GND pin in the comparable medium-drive GTLP device.

LOGIC LEVEL		B-PORT
ERC	ERC	OUTPUT EDGE RATE
Н	L	Slow
L	Н	Fast

Table 4.	B-Port	Edge-Rate	Control
----------	---------------	------------------	---------

GTLP Data-Sheet Changes Required for BTL/FB+ Applications

Analysis of high-drive GTLP TI-SPICE model data of GTLP and BTL signal levels shows little change in dc specifications, timing requirements, and switching characteristics. This is because the GTLP device always is operated from 3.3-V V_{CC} , even if the B-port output voltage is pulled to 2.1 V. Overall voltage swing is about 0.6 V larger than normal GTLP voltage swings when operated at BTL signal levels.

GTLP Waveforms in BTL Backplane

The GTLP evaluation module (EVM) backplane (see Figure 6) was designed and manufactured to allow factory-trained GTLP Product Marketing Engineers worldwide to have a tool to showcase the GTLP family of products, and to demonstrate how loading and termination affect signal integrity. Currently, there are units in China, Germany, Japan, Korea, and the United States. Demonstrations can be scheduled by contacting your local Texas Instruments Technical Sales Representative or the GTLP team at gtlp@list.ti.com.

- Used to investigate how length/board spacing/driver position affects signal integrity

- 48 bits broken into 8-bit widths at increments of 2, 4, 8, 12, 16, and 20 slots
- One bit for source-synchronous clock option
- Clock-frequency options of 23, 50, 66, 75, 87, and 100 MHz
- Termination-resistor options of 25, 33, 38, and 50 Ω in 20-slot length (Group 1)

Figure 6. GTLP EVM Backplane

As shown in Figure 7, the high-drive SN74GTLPH1655DGGR is used on the driver and receiver cards. There is a removable termination card at either end of the backplane to allow performance with different values of R_{TT} to be examined. Two cards (driver and receiver) were modified to operate at BTL signal levels by changing the R/2R V_{REF} resistor network to R/3R. V_{TT} for the entire backplane was changed from 1.5 V to 2.1 V by changing the resistor in the 1.5-V V_{TT} regulator that sets the output voltage.

Figure 7. GTLP EVM Driver and Termination Cards

Waveforms using the GTLPH1655 device at both normal GTLP signal levels and BTL signal levels in the fully loaded 17.9-in.-long, 20-slot backplane at various terminations and frequencies are shown in Figures 8 and 9. The GTLP2033 has the same B-port outputs as the GTLPH1655 and other high-drive GTLP devices, so performance is similar. The actual data frequency of the waveform is shown, and is one-half the actual clock frequency. Waveforms were taken at the backplane connector pin. The performance of the GTLP device is excellent at both signal levels. An R_{TT} of 33 Ω most closely matches the loaded-bus line impedance as seen by the well-behaved incident wave. Other high-drive GTLP devices are expected to operate in a similar manner at BTL signal levels.

Figure 8. GTLPH1655 Waveforms at GTLP Signal Levels (Group 1, Bit 1)

Figure 9. GTLPH1655 Waveforms at BTL Signal Levels (Group 1, Bit 1)

Table 5 compares slew rates and duty cycles for Figures 8 and 9. The slew rates and duty cycles were measured at the optimum termination, which is 33 Ω .

LEVEL	MONITOR POINT	TOR TREQUENCY NT (MHz) (V/ns)		H-L SLEW RATE (V/ns)	DUTY CYCLE (%)
GTLP	G1 B1	11.5	0.5	0.33	48–52
GTLP	G1 B1	25	0.45	0.33	46–54
GTLP	G1 B1	43.5	0.48	0.28	45–55
BTL	G1 B1	11.5	0.46	0.40	46–54
BTL	G1 B1	25	0.52	0.47	46–54
BTL	G1 B1	43.5	0.58	0.43	46–54

Table 5. Waveform Slew Rate and Duty Cycle

In Figures 8 and 9, V_{OL} is lower than the specification levels of 0.55 V at GTLP levels and 1.1 V at BTL levels. This larger voltage swing can reduce the maximum possible frequency, increases EMI, and changes the lower end of possible R_{TT} values. Table 6 is a comparison of V_{OH} and V_{OL} at 11.5 MHz with the termination resistance. The I_{OL} was calculated based on I_{OL} = $2 \times \Delta V/R_{TT}$. The GTLP data sheet lists a recommended maximum device I_{OL} at V_{OL} of 0.4 V and 0.55 V. The lowest termination-resistor value that is possible without exceeding these limits also is calculated, based on R_{TT} = $2 \times \Delta V/I_{OL}$.

Table 6. V_{OH} and V_{OL} vs I_{OL}

LEVEL	MONITOR	RTT	VOH	V _{OL}	ΔV	loL	MAXI RECOMME یا	IMUM INDED R _{TT} 2)
	POINT	(22)	(V)	(V)	(V)	(mA)	I _{OL} 66 mA AT 0.4 V	I _{OL} 100 mA AT 0.55 V
GTLP	G1 B1	25	1.46	0.30	1.16	93	35.2	23.2
GTLP	G1 B1	33	1.45	0.25	1.20	73	36.4	24.0
GTLP	G1 B1	38	1.43	0.20	1.23	65	37.3	24.6
GTLP	G1 B1	50	1.42	0.15	1.27	51	38.5	25.4
BTL	G1 B1	25	2.00	0.45	1.55	124	50.0	31.0
BTL	G1 B1	33	1.93	0.35	1.58	96	47.9	31.6
BTL	G1 B1	38	1.90	0.29	1.61	85	48.8	32.2
BTL	G1 B1	50	1.86	0.20	1.66	66	50.3	33.2

As R_{TT} is reduced, V_{OL} increases because the device has a finite capacity for pulling down the bus voltage. V_{OH} on the monitored bit is reduced at higher levels of R_{TT} because a larger share of V_{TT} is consumed in the fixed 255- Ω test-monitor-point bit resistor. Without this leakage path, which is not found on commercial backplanes, V_{OH} goes to V_{TT}, as shown on the unmonitored bit waveforms.

There are different levels of recommended I_{OL} for the GTLP device at 0.4 V and 0.55 V, because these are points on the voltage vs current (VI) curve that approximate best where the device will be operated. The absolute I_{OL} limit is twice the recommended limit. The device may catastrophically fail at the absolute limit, and the design life of 24,000 hours is degraded on an increasing curve as I_{OL} is operated at the recommended limit, except for brief (<2 ns) time periods where it can be operated at higher levels during ac switching. It is clear that, when using GTLP devices at BTL levels, proper termination must be traded off against natural line impedance without exceeding the maximum recommended I_{OL} .

Frequently Asked Questions

Q: Where can I get more information on GTLP devices?

A: Visit the GTLP internet home page at www.ti.com/sc/gtlp, or e-mail the GTLP team at gtlp@list.ti.com for additional information, data sheets, simulation models, and samples.

Conclusion

GTLP can be used on new BTL/FB+ cards with only a simple modification to the V_{REF} resistor network (R/2R to R/3R) and the shift of V_{TT} (1.5 V to 2.1 V) with limited performance degradation. GTLP allows maximum system frequencies at least comparable to FB+ devices (about 40-MHz clock), while providing advantages that include 3.3-V V_{CC} with 5-V tolerance, smaller TSSOP or BGA surface-mount packages, smaller 2-bit through larger 32-bit functions, lower power consumption, lower cost, and an easy migration path to higher system frequencies (up to 125 MHz) in the future, with a simple reversal of the V_{REF} network to R/2R and reduction of V_{TT} to 1.5 V.

The major disadvantages are that GTLP currently is not offered in exactly the same functionality/control or split A-port inputs and outputs as existing FB+ devices, the output capacitance (C_{i0}) is larger, and R_{TT} and the natural bus line impedance must be selected so that the recommend I_{OL} is not exceeded.

The GTLP Team at Texas Instruments should be contacted if there is BTL/FB+ functionality that currently is not offered in the GTLP high-drive family.

Glossary

BiCMOS	Device technology that combines high drive of bipolar outputs with lower power consumption of CMOS inputs
Bipolar	Device technology that has high drive outputs, but has high power consumption
BTL	Backplane transistor logic, which operates at signal levels of V _{TT} = 2.1 V, V _{REF} = 1.55 V, and V _{OL} = 1.1 V
CMOS	Device technology that has balanced drive outputs and low power consumption
FB+	FutureBus Plus devices are designed to operate at BTL signal levels.
GTL	Gunning transceiver logic, which operates at signal levels of V _{TT} = 1.2 V, V _{REF} = 0.8 V, and V _{OL} = 0.4 V
GTL+	A derivative of GTL that operates at higher-noise-margin signal levels of V _{TT} = 1.5 V, V _{REF} = 1 V, and V _{OL} = 0.55 V and moves V _{REF} from the normal ground-bounce area
GTLP	Gunning transceiver logic plus, which normally is associated with optimized edge-rate devices that allow higher-frequency operation in heavily loaded backplane applications at GTL+ signal levels
R _{TT}	Bus line-termination resistance that should be equal to Z for incident-wave switching and optimum signal integrity
Z	Bus line loaded impedance, taking into account the natural impedance and capacitive loads
Z ₀	Bus line natural impedance that is set by type of line construction and dimensions

Acknowledgment

The author of this application report is Steve Blozis, with technical assistance from Susan Curtis and Ernest Cox, and with technical review by Johannes Huchzermeier.

References

- 1. Texas Instruments, *Comparing Bus Solutions,* application report, March 2000, literature number, SLLA067.
- 2. Texas Instruments, *Fast GTL Backplanes With the GTL1655,* application report, February 1999, literature number SCBA015.
- 3. Texas Instruments, *GTL/BTL: A Low-Swing Solution for High-Speed Digital Logic,* application report, March 1997, literature number SCEA003A.
- 4. Texas Instruments, GTLP EVM Overview, presentation, June 2000.
- 5. Texas Instruments, GTLP Device Overview, presentation, June 2000.
- 6. Texas Instruments, *SN74FB1650, 18-Bit TTL/BTL Universal Storage Transceiver*, data sheet, August 1992 revised October 1996, literature number SCBS178H.

GTLP Evaluation Module (EVM) User's Guide

SCEA023 June 2001

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: <u>Standard Terms and Conditions of Sale for Semiconductor Products.</u> www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated

Preface

Read This First

About This Manual

Use this manual to set up and use the GTLP evaluation module (EVM) for the SN74GTLPH1655 and other GTLP devices.

How to Use This Manual

This document contains the following chapters:

- Chapter 1 Introduction
- Chapter 2 GTLP EVM Board Typical Test and Setup Configuration
- □ Chapter 3 Oscilloscope Operation
- □ Chapter 4 Waveform Measurement and Interpretation
- □ Chapter 5 Troubleshooting
- Appendix A Bill of Materials, Schematics, Board Layouts, and Suggested Specifications

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially cause harm to <u>you</u>.

The information in a caution or a warning is provided for your protection. Please read each caution and warning carefully.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case, users, at their own expense, will be required to take whatever measures may be required to correct this interference.

Trademarks

TI-OPC is a trademark of Texas Instruments.

Trademarks are the property of their respective owners.

Contents

1	Introd	duction	-309
	1.1	GTLP EVM Overview	-310
	1.2	GTLP EVM Kit Contents	-311
	1.3	GTLP EVM Kit Availability	-312
2	GTLF	PEVM Board Typical Test and Setup Configuration	-313
-	21	GTI P FVM Case 7–	-314
	22	Top Tray 7–	-315
	2.3	Backplane Board	-316
	2.4	Connectors	-320
	2.5	Power Supply	-323
	2.6	Clock Crystals	-326
	2.7	Termination Cards	-327
	2.8	Bottom Compartment	-329
	2.9	Measurement Equipment	-330
	2.10	Clock Cards	-331
	2.11	Driver Cards	-333
		2.11.1 Single-Bit Selection	-335
		2.11.2 Edge-Rate Control	-336
		2.11.3 Source-Synchronous Clock/System-Clock Selection	-337
	2.12	Receiver Cards	-338
	2.13	Backplane Setup	-341
		2.13.1 Insertion of Clock Cards	-341
		2.13.2 Insertion of Clock Crystals	-343
		2.13.3 Insertion of Termination Cards	-344
		2.13.4 Insertion of Driver and Receiver Cards	-345
3	Oscil	lloscone Operation 7-	340
9	3.1	Oscilloscope Setun 7-	-350
	3.2	Measurements 7_	-351
	0.2		001

Contents

4	Wave	form Measurement and Interpretation	. 7–355
	4.1	Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Driver Card (D1) Latch Clock (Ch2)	. 7–356
	4.2	Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Driver Card (D1) Group 1 GTLP Data Out (Ch2)	. 7–357
	4.3	Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Receiver Card (R2) Group 1 GTLP Data In (Ch2)	. 7–358
	4.4	Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Receiver Card (R2) Group 1 LVTTL Data Out (Ch2)	. 7–359
	4.5	Timing Relationship of Receiver Card (R2) Group 1 GTLP Data In (Ch1) and Receiver Card (R20) Group 1 GTLP Data In (Ch2)	. 7–360
	4.6	Monitored Waveforms	. 7–361
5	Troub	pleshooting	. 7–363
	5.1	Spare Parts	. 7–364
	5.2	Replacing 5-A Fuse F2	. 7–365
	5.3	Replacing 2.5-A Fuse F1	. 7–366
	5.4	Damage to the Daughter Cards	. 7–367
Α	Bill of	f Materials, Schematics, Board Layouts, and Suggested Specifications	. 7–369
	A.1	GTLP EVM Bill of Materials	. 7–370
	A.2	Board Layouts and Schematics	. 7–373

Figures

2–1	GTLP EVM Case	7–314
2–2	GTLP EVM Top Tray	7–315
2–3	GTLP EVM Backplane Board	7–316
2–4	GTLP EVM Backplane Block Diagram	7–317
2–5	AMP Z-PACK [™] 2-mm, 110-Pin, Hard-Metric (HM) Male Connector	7–320
2–6	AMP Pin Lengths	7–321
2–7	AMP Single-Line-Model Data Sheet	7–322
2–8	Power Supply (Left) and Backplane Connection (Right)	7–323
2–9	1.5-V V _{TT} Linear Regulator	7–324
2–10	Power-Supply LED Indicators	7–325
2–11	Clock Crystal on Card (Left) and Stored in Tube (Right)	7–326
2–12	Clock Crystal With Leads in Position for Storage	7–326
2–13	Termination Card Location (Left) and Close-Up View (Right)	7–327
2–14	Termination-Card Storage	7–328
2–15	Oscilloscope and Backplane Daughter-Card Storage Area	7–329
2–16	Tektronix THS730A O-Scope	7–330
2–17	GTLP EVM Clock Card	7–331
2–18	GTLP EVM Driver Daughter Card	7–334
2–19	Bit Selection for Normal Data Pattern (Left), Signal Held Low (Center), or Signal Held High (Right)	7–335
2–20	ERC Bit-Selection Jumper Set for Slow (Left) or Fast (Right) Rate	7–336
2–21	JB2 Set to Source-Synchronous Clock (Left) or System-Clock (Right) Operation .	7–337
2–22	GTLP EVM Monitored Receiver Card	7–340
2–23	AMP Z-PACK™, 2-mm, 55-Pin, HM Male (Left) and	
	Female (Right) Clock-Card Connectors	7–341
2–24	Connector Premate (Left), Mating (Center), and Mated (Right)	7–342
2–25	Clock Card Properly (Left) and Improperly (Right) Inserted	7–342
2–26	Clock Crystal Removal (Left) and Insertion (Right)	7–343
2–27	Termination-Card Keying	7–344
2–28	Slot 1 (Left) and Slot 20 (Right) Termination Cards on the Backplane	7–344
2–29	Driver and Receiver Connector Keying	7–345
2–30	Close-up View of Connector Keying	7–346
2–31	Proper Connector Mating Sequence (Left to Right)	7–346
2–32	Connectors Properly Mated	7–347

Figures

Tektronix O-Scope Front (Left) and Top (Right)	7–350
O-Scope Probe Monitor-Point Adapters	7–350
Simple Test-Measurement	7–351
Turn on O-Scope (Left) and Select Channel (Right)	7–351
O-Scope Display	7–352
Timing Adjustment	7–353
Voltage Adjustment	7–353
Trigger Adjustment	7–354
Case 1: D1 Data Pattern (Ch1) and D1 Latch Clock (Ch2)	7–356
Case 2: D1 Data Pattern (Ch1) and D1 Group 1 GTLP Data Out (Ch2)	7–357
Case 3: D1 Data Pattern (Ch1) and R2 Group 1 GTLP Data In (Ch2)	7–358
Case 4: D1 Data Pattern (Ch1) and R2 Group 1 LVTTL Data Out (Ch2)	7–359
Case 5: R2 Group 1 GTLP Data In (Ch1) and R20 Group 1 GTLP Data In (Ch2)	7–360
GTLP Backplane Waveforms at 23-MHz Clock Frequency	7–361
GTLP Monitor Test-Point Waveforms at 23-MHz Clock Frequency	7–361
Spare Fuses and Jumpers	7–364
Fuse F2 (Left) and Removal Procedure (Right)	7–365
Fuse F1	7–366
Backplane Layout, Front Side	7–373
Backplane Layout, Back Side	7–374
Driver-Card and Receiver-Card Connector Pinout	7–375
Backplane Schematic	7–376
Driver-Card Layout	7–377
Driver-Card Schematic	7–378
Unmonitored-Receiver Card Layout	7–379
Monitored-Receiver Card Layout	7–380
Receiver-Card Schematic	7–381
Clock-Card Layout	7–382
Clock-Card Schematic	7–383
Resistor-Termination-Card Layout	7–384
Standard-Termination-Card Schematic	7–385
	Tektronix O-Scope Front (Left) and Top (Right) O-Scope Probe Monitor-Point Adapters Simple Test-Measurement . Turn on O-Scope (Left) and Select Channel (Right) . O-Scope Display . Timing Adjustment . Voltage Adjustment . Case 1: D1 Data Pattern (Ch1) and D1 Latch Clock (Ch2) Case 2: D1 Data Pattern (Ch1) and D1 Grup 1 GTLP Data Out (Ch2) Case 3: D1 Data Pattern (Ch1) and R2 Group 1 GTLP Data In (Ch2) Case 4: D1 Data Pattern (Ch1) and R2 Group 1 GTLP Data In (Ch2) Case 5: R2 Group 1 GTLP Data In (Ch1) and R2 Group 1 GTLP Data In (Ch2) GTLP Backplane Waveforms at 23-MHz Clock Frequency GTLP Monitor Test-Point Waveforms at 23-MHz Clock Frequency Spare Fuses and Jumpers Fuse F1 . Backplane Layout, Front Side Backplane Layout, Front Side Driver-Card and Receiver-Card Connector Pinout Backplane Schematic Driver-Card Schematic Unmonitored-Receiver Card Layout Clock-Card Layout Clock-Card Layout Clock-Card Layout Clock-Card Layout Clock-Card Layout Standard-Termination-Card Schematic

Tables

2–1	GTLP EVM Group Assignment	317
2–2	GTLP EVM Backplane Eight-Layer Stackup	318
2–3	GTLP EVM Group 1, Bits 1 Through 8 Trace Impedance	319
2–4	Termination-Card Stackup	328
2–5	Clock-Card Stackup	332
2–6	Driver-Card Stackup	333
2–7	Receiver-Card Stackup	338

Chapter 1

Introduction

The Texas Instruments (TI) GTLP evaluation module (EVM) board is used to evaluate the SN74GTLPH1655 in multipoint data-transmission applications in a heavily loaded backplane.

The GTLP EVM is a 17.9-in., 20-slot, 0.94-in.-pitch, 8-layer PC backplane board that provides a total of 48 parallel data lines divided into 6 groups of 8 bits staggered into various lengths. The EVM also includes a 1-bit clock along the length of the backplane showing source-synchronous transfer mode. This board allows the designer to connect $50-\Omega$ unloaded parallel buses to the transmitter and receiver connectors in a backplane configuration.

New-design backplane-driver selection criteria are based on drive capability, live-insertion capability, data throughput, noise margin, backward compatibility, and bus configuration. The purpose of the GTLP EVM is to demonstrate the performance of the TI GTLP product portfolio in a best-in-class high-performance backplane. The backplane enables users to observe the effects of different kinds of terminations, changing load conditions due to different spacing and count of daughter cards, and various frequencies, as well as the benefit of source-synchronous clock over system-synchronous clock operations. The backplane also can be used to observe the advantages of edge-rate control and TI-OPC[™] overshoot-protection circuitry, and show the performance of TI GTLP devices vs alternate-source devices under different loading conditions.

Topic

Page

1.1	GTLP EVM Overview	7–310
1.2	GTLP EVM Kit Contents	7–311
1.3	GTLP EVM Kit Availability	7–312

1.1 GTLP EVM Overview

The EVM can be used to evaluate device parameters, while acting as a guide for high-speed board layout. Because GTLP operates over a wide range of frequencies, designers must optimize their designs for the frequency of interest. Additionally, designers can use buried transmission lines and provide additional noise attenuation and EMI suppression to optimize their end product.

The board layout is designed and optimized to support high-speed operation up to 100 MHz. Thus, understanding impedance control and transmission-line effects are crucial when designing high-speed boards.

Some of the advanced features offered by this board include:

- ☐ The backplane printed circuit board (PCB) is designed for high-speed signal integrity, while the daughter card is designed with integral measurement points for easily measuring signal integrity.
- Subminiature A connectors (SMA) as specified by MIL-C-39012 coaxial connector specification and parallel fixtures easily are connected to test equipment.
- ☐ The first bit of each group of input/output signals is accessible for rapid prototyping.

1.2 GTLP EVM Kit Contents

This EVM kit comprises the following major parts, components of which are listed in Appendix A.1, *GTLP EVM Bill of Materials*:

- GTLP EVM kit documentation (this document, SCEA023)
- Backplane
- Clock driver card
- Termination card
- Monitored receiver card
- Monitored driver card
- Unmonitored receiver card

1.3 GTLP EVM Kit Availability

The GTLP EVM kit is not available for resale, but can be obtained and used for short periods of time by contacting the GTLP team at GTLP@list.ti.com. There are six locations worldwide where GTLP EVMs can be obtained: Europe, China, Korea, Japan, and the Americas (2).

Chapter 2

GTLP EVM Board Typical Test and Setup Configuration

This chapter describes the GTLP EVM setup and the configurations used to evaluate the SN74GTLPH1655 transceiver. These configurations can be used to evaluate different transceivers that will be available in the future.

Topic		Page
2.1	GTLP EVM Case	7–314
2.2	Тор Тгау	7–315
2.3	Backplane Board	7–316
2.4	Connectors	7–320
2.5	Power Supply	7–323
2.6	Clock Crystals	7–326
2.7	Termination Cards	7–327
2.8	Bottom Compartment	7–329
2.9	Measurement Equipment	7–330
2.10	Clock Cards	7–331
2.11	Driver Cards	7–333
2.12	Receiver Cards	7–338
2.13	Backplane Setup	7–341

2.1 GTLP EVM Case

The EVM is stored and transported in a sturdy plastic case with rollers and extensible handle (see Figure 2–1). The handle locks in position and can be extended or retracted by pressing the release on the underside of the handle.

Figure 2–1. GTLP EVM Case

The case is suitable for air transportation and has the combination lock set at 394. To lock the case, rotate one or more of the dials from the opening combination.

2.2 Top Tray

The top tray fits snuggly in the GTLP EVM case (see Figure 2–2) and holds the backplane board, power supply, extra clock crystals, and extra termination cards in place. The tray is electrostatic protective foam that holds the backplane board during demonstrations.

Figure 2–2. GTLP EVM Top Tray

2.3 Backplane Board

The backplane board (see Figure 2–3) is typical of backplanes used in commercial applications, and consists of 20 slots with 0.94-in. pitch and 48 data bits, and 1 clock bit on stripline transmission lines.

Figure 2–3. GTLP EVM Backplane Board

This backplane board is constructed uniquely of six groups of eight data bits each to study the effect of different backplane lengths and driver/receiver placements. Group 1 consists of all 20 slots, but subsequent groups move to the left (see Figure 2–4) and have a reduced number of slots, as listed in Table 2–1.

X = Termination Card on Back of Connector

Table 2–1.	GTLP	EVM	Group	Assignm	ent
------------	------	-----	-------	---------	-----

Group 6	Group 5	Group 4	Group 3	Group 2	Group 1
2 slots	4 slots	8 slots	12 slots	16 slots	20 slots
P1-1 to P1-2	P1-1 to P1-4	P1-1 to P1-8	P1-1 to P1-12	P1-1 to P1-16	P1-1 to P1-20

A single GTLP clock line that runs from P1-1 to P1-20 is used in the source-synchronous transfer mode.

The GTLP clock and the data lines from groups 2 through 6 have fixed, on-board, $25-\Omega$ termination resistors. Group 1 data lines terminate on plug-in cards on the back of the backplane board at P1-1B and P1-20B. This provides a way to vary the termination resistance or demonstrate other termination techniques.

The design also uses a system clock that is generated on the clock-driver board plugged into P3. This system clock is distributed to all 20 slots simultaneously and is used as the system master timing in the system-clock mode. Using a separate card for clock generation and distribution is not an industry standard, but it provides flexibility in using this demonstration board. A logic selection line (MODESEL) connects P1-1 through P1-20. The driver card uses this line to select between source-synchronous and system-clock operation. The demonstration board is an eight-layer board with separate V_{CC} and ground planes. The backplane board stackup is shown in Table 2–2. Embedded microstrip nominal line width is 0.006 in., dielectric material is Nelco N4000-13 with a dielectric constant (50% resin contents) of 3.80 @ 100 MHz.

Trace Name	Use	Layer	Copper Weight (oz)	Physical Representation	Dielectric Height (in.)	Dielectric Name
Тор	Regulator power/ bypass capacitor/ termination	1	0.5			
					0.004	B stage
Internal signal 2	Clock distribution/ signal	2	1			
					0.004	Core
Ground plane	Ground plane	3	1			
					0.004	B stage
Internal signal 3	Data signal	4	1			
					0.058	Core
Internal signal 4	Data signal	5	1			
					0.004	B stage
V _{CC}	V _{CC}	6	1			
					0.004	Core
Internal signal 5	Data signal	7	1			
					0.004	B stage
Bottom	Termination	8	0.5			

Table 2–2. GTLP EVM Backplane Eight-Layer Stackup

Targeted, nominal, unloaded line impedance was 50 Ω , but, based on post-manufacturing testing, was not consistent. Results for Group 1, bits 1 through 8 are shown in Table 2–3. The backplane natural trace impedance (Z_0) is calculated and is a best estimate. The backplane trace impedance with only the connector pins attached (i.e., all cards removed) (Z_0') and the backplane trace impedance in a fully loaded backplane (i.e., 20 cards inserted) (Z_0'') are measured.

Group 1 Trace	D1	D2	D3	D4	D5	D6	D7	D8	
Natural Trace Impedance									
Z ₀ (Ω)	91	47.5	47	47	48	47.5	83	47.5	
t _{pd} (ps/in.)	165	140	138	139	141	148	147	142	
C _o (pF/in.)	1.81	2.95	2.94	2.96	2.94	3.12	1.77	2.99	
Trace Impedance With C	Trace Impedance With Only Connectors								
Ζ ₀ ΄ (Ω)	62.7	37.5	37	36.3	37.1	37.9	58.5	36.8	
t _{pd} ' (ps/in.)	240	177	175	180	183	185	208	183	
Trace Impedance Under Full Load									
Z ₀ ″′ (Ω)	26.6	17.7	17.9	17.5	17.9	18	24.8	17.7	
t _{pd} ‴ (ps/in.)	564	377	362	373	377	390	493	382	

Table 2–3. GTLP EVM Group 1, Bits 1 Through 8 Trace Impedance

Note the difference in fully loaded trace impedance between trace bit 1 and bit 7 (D1 and D7) and the other traces. Using the lower natural trace impedance offers the advantage of a smaller t_{pd} and shorter flight time, but at the expense of terminating with a lower-value termination resistor and the subsequent increase in power consumption. TI offers both medium-drive (50 mA) and high-drive (100 mA) GTLP devices that allow designers to match the device with backplane loading. The termination resistor (R_{TT}) should match the fully loaded trace impedance (i.e., Z_0'') of the backplane for optimal signal integrity.

2.4 Connectors

An AMP Z-PACK[™] 2-mm, 110-pin, hard-metric (HM) male connector is used in slots 1 through 20 (see Figure 2–5).

Figure 2–5. AMP Z-PACK[™] 2-mm, 110-Pin, Hard-Metric (HM) Male Connector

Five pins are used on the backplane, with three different lengths on the backplane daughter-card side. Pins A, B, and C are used for data/V_{CC}, BIAS V_{CC}, and GND, respectively. C-length pins are in the center, and A-length pins are in two rows on either side. The daughter-card connectors P1-1 through P1-20 use these three levels of pin height for power sequencing. The ground pins make contact first, followed by a pin for BIAS V_{CC}, then all other connections are made. There is only one B-length pin because BIAS V_{CC} can be distributed to all four GTLP devices on the board. The pin lengths of pins K and T are identical to those of pins A and C on the card side, but they protrude through the backplane board, providing connection to the termination cards that are on the reverse side.

Initial testing revealed that this pin configuration was unacceptable for actual operation because the BIAS V_{CC} circuitry was disabled before all I/O pins were connected. Any tilt on the card caused V_{CC} to be connected first. Some slots in selected EVMs have been modified, so that BIAS V_{CC} and GND are C length, data signal is B length, and V_{CC} is A length, to allow proper operation of the BIAS V_{CC} precharge circuitry.

Various AMP pin lengths, including pins A, B, C, K, and T, are shown in Figure 2–6, and the single-line-model data sheet is shown in Figure 2–7.

Figure 2–6. AMP Pin Lengths

Rear Style	REAR	FRONT	Specify
	Contact Dimension	ons	by
	mm		Code
	•	Reference line = seating plan	ne for conne
	3.7	► 8.2 [.323]	
ACTION PIN posts only		9.7 [382]	A
			В
		• 11.2 [.441]	С
eedthrough [.512]		D	к
		1D	L
osts <		>	М
14.5 [.571]		1D	N
<u></u>			Р
		1D	Q
16.0		 D	R
		Ъ	S
			т
Q		·	1
<₽			Χ^
<			U*
		L	۷*

* X, U, V are used only for cross-connect applications. Not all versions are tooled.

Figure 2–7. AMP Single-Line-Model Data Sheet

SINGLE LINE MODEL DATASHEET

Z-PACK, 2mm CL, HM, 5 Row With Long Shield (Compact PCI), Vertical Plug to Right Angle Receptacle VALIDATED 1:1 S/G pattern

Connector Lumped Constant Model

Row	R (mΩ)	L (nH)	C (pF)
A	12	5.30	1.40
В	12	5.00	1.70
с	13	5.70	2.00
D	15	6.10	2.30
E	16	7.30	2.40
Mean	14	5.88	1.96

Conneet	or Di	etribar	terf (Model

Ζ(Ω)	Tpd (ps)
62	86
54	92
53	107
51	118
55	132
55	107

Note: (1) The following RLC model is appropriate for edge speeds slower than ten times the highest propagation delay (Tr>=10 * Tpd/highest)). To accommodate faster edge speech, the humped model reast be divided into two or more RLC sections. For best results, a section's propagation delay should be 1/10th of the edge speed.

(2) The single line inductance and capacitance values are estimated from a specified pattern. The placement and sumber of ground returns affect the inductance and capacitance of the single line model.

(3) The parameters for the Single Line Model are for the connactor only without any mounting effects such as plated tizongh holes or pads capacitance (Cp1 and Cp3). The impedance and propagation delay for the connector are calculated as follows:

$$Z_{\text{Constant}} = \sqrt{\frac{L}{C}(\Omega)}$$
 and $Tpd_{\text{Constant}} = \sqrt{L^*C}(sec)$

For an interconnection path model, the mounting effects must be added because the additional capacitance of the pad to ground or plated through hole (Cp1 and Cp2) decrease impedance and increase propagation delay of the interconnection path. The impedance and propagation delay for an interconnection path are calculated as follows:

$$Z_{junymassed} = \sqrt{\frac{L}{C + (Cp1 + Cp2)}} (\Omega)$$
 and $Tpd_{junymassed} = \sqrt{L * (C + Cp1 + Cp2)} (rec)$
FOR ADDITIONAL ELECTRICAL MODELING/SIMULATION SUPPORT, CALL 717-886-7814 OR

E-MAIL US AT madelingil amp.com

Datasheet Filesome: ZPACK_2eeeBIM_SRowCPCI_V-P_RA-8_TH Modeled by: (DWG) Couned on 63/05/98 10:41 AM Copyright 1998, AMP Jacorguested

Reviewed By: [CTK] SPICE File: [RMSCFCI]

ACD Internal Form: Farm_SLM-D5_1998_5384

2.5 Power Supply

The power supply (see Figure 2–8) is a universal power supply that accepts 100 V to 240 V, 50/60-Hz ac and uses any wall plug that connects to the IEC 320 two-connector universal socket with the US/Canada Edison plug. An alternate supply cord with a different wall plug must be procured locally, if required.

The power-supply output is 24-Vdc at 2.1 A, which is fed to the backplane board using the 5.5-mm plug to J5 (see Figure 2–8), and connects through a 2.5-A slow-blow fuse (F1). Power should not be applied to the backplane board until the cards have been inserted during the initial setup because the clock card is not hot insertable. The termination, daughter cards, and clock crystals are live insertable and can be inserted and removed to change position/values during testing without disconnecting the power supply.

Figure 2–8. Power Supply (Left) and Backplane Connection (Right)

The 24-Vdc is reduced to 5 V, 1 A by the Lambda PM10-24S05 switching regulator (Figure 2–8 background) and to 3.3 V, 7.5 A by the Lambda PM30-24503 switching regulator (Figure 2–8 foreground) for V_{CC} , BIAS V_{CC} , and the linear regulator. The 3.3 V is supplied to all connectors through a 5-A fuse (F2). The 5 V also is applied to all connectors. Originally, F2 was specified as a 3.5-A fuse, but, at 100-MHz operation, current exceeds this value, so 5-A fuses are necessary.

The 3.3 V is further reduced to 1.5 V, 7.5 A by the LT1083CP linear regulator (see Figure 2–9) for the termination voltage (V_{TT}). V_{TT} is set by the combination of R1 and R2 and can be varied in the factory between 0.8 V to 1.8 V, but is set at 1.0 V for field use at GTLP levels. The 5-V power supply is required for driver cards that use both 5-V and 3.3-V V_{CC}, such as the SN74GTLPH16612. There is an option to change the 5-V power supply to 2.5 V for future devices at that voltage node. This is accomplished by removing JP1 (near the dc converter) and installing an LM317M regulator (U2), R5, and R6. The two resistors set the output voltage of the regulator.

Figure 2–9. 1.5-V V_{TT} Linear Regulator

Unitrode offers two devices (UC382 and UC385) that can be used in place of the LT1083CP. They offer low dropout at a given current (500-mV dropout maximum at 5 A), the ability to handle transients with tight regulation, high-current capability, fast transient response, separate bias and V_{in} pins, and 5-pin TO220 and TO263 packages with Kelvin sensing. UC382 provides 3-A capacity and UC385 provides 5-A capacity with fixed (1.5 V, 2.1 V, or 2.5 V) or adjustable-output-voltage capability.

Power-supply operation indication is provided by three LEDs (see Figure 2–10) on the upper edge of the backplane opposite slot 16:

- \Box LED 1 24-V green LED shows there is power coming to the board.
- □ LED 2 5-V green LED shows the 5-V power supply is operational.
- □ LED 3 3.3-V red LED shows the 3.3-V power supply is supplying power to the devices, BIAS V_{CC}, and linear regulator.

Figure 2–10. Power-Supply LED Indicators

2.6 Clock Crystals

Clock frequency is controlled by the clock-driver card and is limited by clock-control components to 100 MHz. The GTLP receiver device is used in a latched mode of operation, so GTLP data frequency is equal to one-half the clock frequency. Clock crystals and spares, in frequencies of 66 MHz, 75 MHz, 87 MHz, and 100 MHz, are included with the kit. One crystal can be installed on each clock card, with the others stored in the clock-crystal tube (see Figure 2–11).

Figure 2–11. Clock Crystal on Card (Left) and Stored in Tube (Right)

If you plan to store the clock-driver card with the crystal installed, insert the crystal far enough so that the leads barely protrude on the opposite side (see Figure 2–12). This prevents bending the leads if they catch on the foam when the card is placed in the case.

Figure 2–12. Clock Crystal With Leads in Position for Storage

2.7 Termination Cards

Because proper backplane termination has a large effect on signal integrity and is investigated easily, Group 1 has removable termination cards on the back of the backplane (see Figure 2–13). The termination cards are identical, except for the resistor values that are 25 Ω , 33 Ω , 38 Ω , or 50 Ω . One bypass capacitor is mounted with every other termination resistor to limit voltage fluctuations. The termination cards provide a method of varying the termination resistance to only Group 1 data lines. These termination resistors connect to the V_{TT} supply (1.5 V because GTLP levels are used).

Figure 2–13. Termination Card Location (Left) and Close-Up View (Right)

The termination cards have a four-layer stackup. The stackup is signal layer, V_{CC} plane, ground plane, and signal layer (see Table 2–4).

Trace Name	Use	Layer	Copper Weight (oz)	Physical Representation	Dielectric Height (in.)	Dielectric Name
Тор	Data signal	1	0.5			
					0.004	B stage
V _{CC} plane	V _{CC} plane	2	1			
					0.004	Core
Ground plane	Ground plane	3	1			
					0.004	B stage
Bottom	Data signal	4	0.5			

Table 2–4. Termination-Card Stackup

Groups 2 through 6 have $25-\Omega$ fixed termination resistors due to space limitations, and have one bypass capacitor for every four termination resistors. The $25-\Omega$ termination is optimized for estimated $25-\Omega$ loaded-line impedance.

The termination cards can remain installed on the backplane board or be removed during storage and transit. Both termination cards can be stored in the same slot in the tray (see Figure 2–14) or stored separately. If stored together, the resistor/capacitor sides must face each other.

Figure 2–14. Termination-Card Storage

2.8 Bottom Compartment

The portable oscilloscope and backplane daughter cards are stored under the top tray of the GTLP EVM case (see Figure 2–15).

Figure 2–15. Oscilloscope and Backplane Daughter-Card Storage Area

There are 2 clock cards, 19 unmonitored receiver cards, 3 monitored receiver cards, and 2 driver cards in every GTLP EVM kit. Store the cards as shown in Figure 2–15, with the 2 clock cards (top left) followed by 10 unmonitored receiver cards, 3 monitored receiver cards (middle left) followed by 9 unmonitored receiver cards, 2 driver cards (bottom left) followed by 10 empty slots.

2.9 Measurement Equipment

The Tektronix THS730A Oscilloscope/DMM (O-Scope) (see Figure 2–16) can be stored in the bottom of the case (see Figure 2–15). It is easy to operate and is portable. The O-Scope can monitor two channels simultaneously. Store the O-Scope face down to prevent damage to the buttons during transit. The probes can be stored on top of the O-Scope, as shown, or alongside, depending on the amount of space in either location. The O-Scope is not included with the loaned EVM kits. Chapter 3, *Oscilloscope Operation*, discusses O-Scope setup and operation and is included to provide assistance to TI product marketing engineers and technical sales representatives when demonstrating the GTLP EVM to customers in the field.

Figure 2–16. Tektronix THS730A O-Scope

2.10 Clock Cards

Two clock cards (see Figure 2–17) are included with the EVM, one primary and one spare. The clock cards generate the clock signal that is sent to every slot via mitered lines, so that the clock arrives at exactly the same time at each card. The clock card uses a plug-in half-can oscillator for a reference to two CDC2586 phase-locked-loop clock drivers. These two drivers provide the 20 system clocks used on the backplane. The CDC2586 supports a maximum frequency of 100 MHz. The clock card has one subminiature B connector (SMB) as specified by MIL-C-39012 coaxial connector specification test point to monitor the oscillator output.

Figure 2–17. GTLP EVM Clock Card

The clock-card board is a four-layer printed circuit board (PCB). The stackup is signal layer, V_{CC} plane, ground plane, and signal layer (see Table 2–5).

Trace Name	Use	Layer	Copper Weight (oz)	Physical Representation	Dielectric Height (in.)	Dielectric Name
Тор	Data signal	1	0.5			
					0.004	B stage
V _{CC} plane	V_{CC} plane	2	1			
					0.004	Core
Ground plane	Ground plane	3	1			
					0.004	B stage
Bottom	Data signal	4	0.5			

Table 2–5. Clock-Card Stackup

2.11 Driver Cards

Separate driver and receiver daughter cards were manufactured for use on the backplane because, even though the bidirectional SN74GTLPH1655 device is used, each type of card is hardwired to operate in a certain direction. The driver card generates a data pattern from the system clock and drives the GTLP lines on the backplane. The GTLP devices are hardwired for clocked storage in the A-to-B direction. Data is transmitted on the rising edge of the system clock. The driver card is a six-layer PCB with two signal layers, a V_{CC} plane, a ground plane, then two signal layers. Stackup is shown in Table 2–6.

Table 2-6. Driver-Card Stackup

Trace Name	Use	Layer	Copper Weight (oz)	Physical Representation	Dielectric Height (in.)	Dielectric Name
Тор	Data signal	1	0.5			
					0.004	B stage
Internal signal 2	Data signal	2	1			
					0.004	Core
V _{CC} plane	V_{CC} plane	3	1			
					0.004	B stage
Ground plane	Ground plane	4	1			
					0.004	Core
Internal signal 3	Data signal	5	1			
					0.004	B stage
Bottom	Data signal	6	1			
The driver daughter card (see Figure 2–18) has SMB monitor points for selected LVTTL and GTLP signals, in addition to jumpers for Group 1, bit 1 switching (JB1), system or SN74GTLP1394 source-synchronous clock selection (JB2), and selection of the SN74GTLPH1655 slow or fast edge rate (JB3). The monitor points along the top edge are the latch clock and the master data pattern sent to all SN74GTLPH1655 LVTTL A-port inputs. There are no LVTTL group-bit monitor points because the card always is driven. Monitor points along the right edge are GTLP Group 1, 2, 3, 4, 5, and 6. The following signals are monitored:

TP1	GTLP level	Group 1, bit 1
TP2	GTLP level	Group 2, bit 1
TP3	GTLP level	Group 3, bit 1
TP4	GTLP level	Group 4, bit 1
TP5	GTLP level	Group 5, bit 1
TP6	GTLP level	Group 6, bit 1
TP7	LVTTL level	Group 1, bit 1, and master data pattern
TP8	LVTTL level	GTLP latch clock

Figure 2–18. GTLP EVM Driver Daughter Card

2.11.1 Single-Bit Selection

JB1 three-position jumper is used to set Group 1, bit 1 to pass the normal data pattern, set the signal low, or set the signal high (see Figure 2–19). The JB1 jumper is stored on the lowest pin (see Figure 2–19) when set high, to prevent losing it. The following options are available:

JB1 1-2 shorted	Group 1, bit 1 normal data pattern
JB1 2-3 shorted	Group 1, bit 1 held low

□ JB1 open Group 1, bit 1 held high

Figure 2–19. Bit Selection for Normal Data Pattern (Left), Signal Held Low (Center), or Signal Held High (Right)

2.11.2 Edge-Rate Control

The device used as the backplane driver, SN74GTLPH1655, has a feature by which the backplane slew rate is adjustable via an external edge-rate-control (ERC) pin held at 3.3 V (slow) or GND (fast). The ERC is set by the JB3 jumper located below the bit-selection jumper and has two positions: not connected is slow, and shorted is fast (see Figure 2–20). The following ERC options are available:

JB3 open	Slow edge rate
JB3 shorted	Fast edge rate

Figure 2–20. ERC Bit-Selection Jumper Set for Slow (Left) or Fast (Right) Rate

2.11.3 Source-Synchronous Clock/System-Clock Selection

Backplanes usually have a system-wide synchronous clock. A system clock provides an absolute reference time signal from the clock card to every daughter card at exactly the same time. Source-synchronous clock operation is different because it allows the absolute system clock to be sent by the backplane driver along with the data. In the EVM, this is implemented with the SN74GTLP1394 transceiver on all daughter cards. This transceiver acts as the driver on the driver cards and as the receiver on the receiver cards. The SN74GTLP1394 has ERC that is set to the fast edge rate in conjunction with the JB3 selection.

Source-synchronous clock operation provides a relative clock to all receiver cards, which removes the flight-time delay restrictions required when an absolute system clock is used. The flight-time delay depends primarily on bus length and bus loading.

The driver card uses JB2 to select the transfer mode of operation and to drive the MODESEL line. Source-synchronous clock operation is selected when the JB2 jumper shorts the pins, and system-clock operation is selected when the pins are open (see Figure 2–21). When JB2 is shorted, the SN74GTLP1394 drives the GTLP clock line with a phased system clock. When JB2 is open, there is no activity on the GTLP clock line. The following options are available:

□JB2 shortedSource-synchronous clock transfer□JB2 openSystem-clock transfer

Figure 2–21. JB2 Set to Source-Synchronous Clock (Left) or System-Clock (Right) Operation

2.12 Receiver Cards

Receiver cards place a load on the backplane and provide a point to monitor the signals. There are two types of receiver cards: one that has built-in monitor points, and one with no monitor points. Either type can be placed in any slot in the backplane, typically with the monitored receiver card placed in the slots under observation. There is a monitor point for only one bit per group. Only a few receiver cards have monitor points because the capacitance added by the monitor point affects backplane signal integrity. Minimal use of the monitored receiver card is encouraged because of the increased loading this card causes.

Receiver cards have GTLP devices hardwired for clocked storage in the B-to-A direction. Data is latched on the rising edge of the GTLP latch clock. The latch clock comes from the system clock when the MODESEL line is high, and from the GTLP clock when the MODESEL line is low. The receiver card is a six-layer PCB with two signal layers, a V_{CC} plane, a ground plane, then two signal layers. The GTLP data and clock stub lines are approximately 1 in. in length. Stackup is shown in Table 2–7.

Trace Name	Use	Layer	Copper Weight (oz)	Physical Representation	Dielectric Height (in.)	Dielectric Name
Тор	Data signal	1	0.5			
					0.004	B stage
Internal signal 2	Data signal	2	1			
					0.004	Core
V _{CC} plane	V _{CC} plane	3	1			
					0.004	B stage
Ground plane	Ground plane	4	1			
					0.004	Core
Internal signal 3	Data signal	5	1			
					0.004	B stage
Bottom	Data signal	6	1			

Table 2–7. Receiver-Card Stackup

Figure 2–22 shows a monitored receiver card. Monitor points on the right side are for GTLP Groups 1, 2, 3, 4, 5, and 6. Monitor points on the top are for LVTTL latch clock, Groups 6, 5, 4, 3, 2, and 1. The LVTTL latch-clock source is either the system clock or source-synchronous clock. The source-synchronous clock is the system clock sent via the SN74GTLP1394 driver card along the 1-bit clock trace on the backplane to the SN74GTLP1394 receiver card that converts it back to LVTTL logic levels.

The monitored receiver card has SMB jacks to monitor selected signals:

TP1	GTLP level	Group 1, bit 1
TP2	GTLP level	Group 2, bit 1
TP3	GTLP level	Group 3, bit 1
TP4	GTLP level	Group 4, bit 1
TP5	GTLP level	Group 5, bit 1
TP6	GTLP level	Group 6, bit 1
TP7	LVTTL level	Group 1, bit 1
TP8	LVTTL level	Group 2, bit 1
TP9	LVTTL level	Group 3, bit 1
TP10	LVTTL level	Group 4, bit 1
TP11	LVTTL level	Group 5, bit 1
TP12	LVTTL level	Group 6, bit 1
TP13	LVTTL level	GTLP latch clock

Figure 2–22. GTLP EVM Monitored Receiver Card

Note:

SN74GTL1655 devices were used on the receiver cards. The SN74GTLPH1655 was in development and initial preproduction samples were used for the driver cards, but insufficient quantities were available for the receiver cards. The SN74GTL1655 and SN74GTLPH1655 are identical, except for the B-port output edge rate (slew) and B-port C_{io}. Because the GTLP signals only are received by the receiver cards, it is essentially immaterial which devices are used on the receiver cards, because both have the same differential input (except for the difference in B-port C_{io}, which is 6 pF typical and 8 pF maximum for the SN74GTL1655, and 8.5 pF typical and 10.5 pF maximum for the SN74GTLPH1655). GTLP devices have a larger B-port C_{io}, because a larger transistor and ESD cell is required by the newer CMOS process.

2.13 Backplane Setup

2.13.1 Insertion of Clock Cards

The clock-card connectors (see Figure 2–23) use AMP 55-pin, 2-mm, HM connectors and are identical to the backplane termination-card connectors. They can be mated improperly because they are keyed only on one side, whereas the backplane connectors are keyed in the center and do not allow improper insertion.

The clock card should be inserted or removed from the backplane only after power has been disconnected, to prevent damage to the CDC components.

Figure 2–23. AMP Z-PACK[™], 2-mm, 55-Pin, HM Male (Left) and Female (Right) Clock-Card Connectors

Connector Key

Connector Key

Figure 2–24 shows the mating sequence. When mated, the connectors should be firm with no lines showing. Some rocking action might be required to seat or remove the connectors, but should be minimal to prevent bending the pins.

Figure 2–24. Connector Premate (Left), Mating (Center), and Mated (Right)

Figure 2–25 (left) shows the clock card properly inserted, with the CDC components and the clock crystal facing away from the backplane connectors and daughter cards. Yellow dots are located on the connector and the card to help ensure proper orientation. Figure 2–25 (right) shows the card improperly inserted.

Figure 2–25. Clock Card Properly (Left) and Improperly (Right) Inserted

2.13.2 Insertion of Clock Crystals

Clock crystals are live insertable, unlike the clock card, which is not live insertable. Clock crystals are inserted easily on the clock card by pulling off one crystal and inserting the new crystal (see Figure 2–26). The leads can be bent gently to ease insertion. The clock crystal need not be inserted fully flush with the card for proper operation. In fact, this condition is preferred if the clock card is stored with the crystal inserted, otherwise, the foam liner can bend the exposed leads.

Figure 2–26. Clock Crystal Removal (Left) and Insertion (Right)

2.13.3 Insertion of Termination Cards

Termination-card, AMP Z-PACK, 2-mm, 55-pin, HM male and female connectors are identical to the clock-card connectors, and are inserted directly onto the K and T pins used for slots 1 and 20, V_{CC} , and data bits. Although the termination card connectors are keyed on the top (see Figure 2–27), they can be inserted backward because they are keyed on only one side.

Figure 2–27. Termination-Card Keying

Be sure that the red dot on the male connector and the card are facing each other, to prevent improper operation. Both termination-card components face the same direction, toward slot 20, so the key to proper operation is to inspect for the keying and line up the red dots (see Figure 2–28). If the backplane is not working, the proper orientation of the termination cards should be the first thing you check. The cards can be rocked slightly side to side to seat and remove them, but avoid bending the pins.

Figure 2–28. Slot 1 (Left) and Slot 20 (Right) Termination Cards on the Backplane

2.13.4 Insertion of Driver and Receiver Cards

The driver and receiver cards are live insertable and are easy to insert and remove, although some slight side-to-side rocking action might be required. The cards can be inserted into any slot in any order, but only one driver card should be used at any one time. There is no bus contention damage if multiple driver cards are in operation at the same time, this is one key benefit from using the GTLP open-drain technology. Figure 2–29 shows the connector keying that allows the cards to be placed on the connector in only one direction. When inserted properly, the component side of the card faces slot 1.

Figure 2–29. Driver and Receiver Connector Keying

Figure 2–30 shows the keying in more detail. The upper key is wider than the lower key, preventing improper insertion.

Figure 2–30. Close-up View of Connector Keying

Wide Key

Narrow Key

The card should be placed squarely on the connector and pressed down (see Figure 2–31), with very little side-to-side motion. The components are facing left towards slot 1, the power supplies are on the top/right, and the Group 1–6 markings are on the bottom/left. The card in Figure 2–31 is being inserted into slot 20.

Figure 2–31. Proper Connector Mating Sequence (Left to Right)

Figure 2–32 shows the connectors properly mated.

Figure 2–32. Connectors Properly Mated

Chapter 3

Oscilloscope Operation

Торіс

Page

3.1	Oscilloscope Setup	7–350
3.2	Measurements	7–351

3.1 Oscilloscope Setup

The recommended oscilloscope (O-Scope) for the GTLP EVM is the Tektronix THS730A (see Figure 3–1). It allows only two-channel operation, which should be sufficient for most investigations done with the demonstration backplane.

Figure 3–1. Tektronix O-Scope Front (Left) and Top (Right)

SMB adapters (see Figure 3–2) are needed to properly mate Tektronix probes with the test points. These adapters are custom built for the Tektronix O-Scope probes and are not normally included in the GTLP EVM.

Figure 3–2. O-Scope Probe Monitor-Point Adapters

3.2 Measurements

The first step in taking measurements is to plug one probe into channel 1 (CH 1) of the O-Scope and connect the opposite end to the desired monitor point. Plug the other probe into channel 2 (CH 2) of the O-Scope and connect the opposite end to the desired monitor point (see Figures 3–1 and 3–3). Chapter 4, *Waveform Measurement and Interpretation*, discusses which monitor points should be used and why.

Figure 3–3. Simple Test-Measurement Connection

Press the ON/STBY button on the O-Scope (see Figure 3–4), and press the CH 1 or CH 2 button.

Figure 3–4. Turn On O-Scope (Left) and Select Channel (Right)

Waveforms similar to those in Figure 3–5, depending on how the O-Scope presets were set, are displayed. In Figure 3–5, CH 2 is selected.

Figure 3–5. O-Scope Display

To adjust the timing (x or horizontal axis), press the appropriate side of the SEC/DIV button (see Figure 3–6). An example of the results is shown for 50 ns/division and 100 ns/division. Timing is the same for both channels and is independent of channel selection.

Figure 3–6. Timing Adjustment

To adjust the voltage (y or vertical axis), press the top or bottom of the VOLTS/DIV button (see Figure 3–7). An example of the results is shown for Ch2 at 1 V (center) and Ch2 at 2 V (right). Voltage adjustment is independent of channels, which are selected by pressing either the CH 1 or the CH 2 button.

Figure 3–7. Voltage Adjustment

To adjust the trigger, press the MENU button (see Figure 3–8), then press Trigger Source to display a submenu. In the submenu, select Ch1, Ch2, or Ext [DMM] by repeatedly pressing the same Trigger Source button. After the appropriate trigger is selected, press the CLEAR MENU button to restore the O-Scope to operation.

Figure 3–8. Trigger Adjustment

Chapter 4

Waveform Measurement and Interpretation

In this chapter, five different measurement cases are discussed in detail, and several more measurement combinations are outlined. Many other combinations are possible.

Topic

Page

4.1	Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Driver Card (D1) Latch Clock (Ch2)	7–356
4.2	Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Driver Card (D1) Group 1 GTLP Data Out (Ch2)	7–357
4.3	Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Receiver Card (R2) Group 1 GTLP Data In (Ch2)	7–358
4.4	Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Receiver Card (R2) Group 1 LVTTL Data Out (Ch2)	7–359
4.5	Timing Relationship of Receiver Card (R2) Group 1 GTLP Data In (Ch1) and Receiver Card (R20) Group 1 GTLP Data In (Ch2)	า 7–360
4.6	Monitored Waveforms	7–361

4.1 Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Driver Card (D1) Latch Clock (Ch2)

Figure 4–1 shows the probe hookup and related O-Scope output for Case 1. The LVTTL latch clock signal goes to the SN74GTLPH1655 driving device CLK pin, and the LVTTL data signal goes to the A-port input pin, specifically the Group 1, bit 1 data signal.

Figure 4–1. Case 1: D1 Data Pattern (Ch1) and D1 Latch Clock (Ch2)

4.2 Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Driver Card (D1) Group 1 GTLP Data Out (Ch2)

Figure 4–2 shows the probe hookup and O-Scope output for Case 2. The LVTTL data goes into the SN74GTLPH1655 driving device A-port input, and the GTLP data comes out of the B-port output. The driver-card GTLP data output comes out after the rising edge of the clock, in addition to the CLK-to-B propagation delay. This is why the signals look 180 degrees out of phase.

Figure 4–2. Case 2: D1 Data Pattern (Ch1) and D1 Group 1 GTLP Data Out (Ch2)

4.3 Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Receiver Card (R2) Group 1 GTLP Data In (Ch2)

Figure 4–3 shows the probe hookup and O-Scope output for Case 3. The LVTTL data input goes to the SN74GTLPH1655 driving device A-port input, and the GTLP data input goes to the SN74GTL1655 receiving device B-port in slot 2. These waveforms look similar to those in Figure 4–2, but with slightly more delay caused by the flight time between slots 1 and 2.

Figure 4–3. Case 3: D1 Data Pattern (Ch1) and R2 Group 1 GTLP Data In (Ch2)

4.4 Timing Relationship of Driver Card (D1) Data Pattern (Ch1) and Receiver Card (R2) Group 1 LVTTL Data Out (Ch2)

Figure 4–4 shows the probe hookup and O-Scope output for Case 4. The LVTTL data input goes to the SN74GTLPH1655 driving device A-port input, and the LVTTL data output of the SN74GTL1655 receiving device goes to A port in slot 2. Because the GTLP EVM is clocked using the central system clock (i.e., clock arrives at all daughter cards at the same time) the total delay from the LVTTL data input on slot 1 to the LVTTL data output on slot 2 is the sum of one clock cycle (20 ns), the setup time on the driver card (~9 ns), and the propagation delay of the GTLPH1655 CLK to A of about 3 ns. The GTLP EVM driver card is set up to transmit sixteen bits of data and then wait eight cycles before transmitting again. This allows the technician to determine the total delay. In this case, assuming the waveform in Ch1 had just started, the total delay is about 32 ns.

Figure 4–4. Case 4: D1 Data Pattern (Ch1) and R2 Group 1 LVTTL Data Out (Ch2)

4.5 Timing Relationship of Receiver Card (R2) Group 1 GTLP Data In (Ch1) and Receiver Card (R20) Group 1 GTLP Data In (Ch2)

Figure 4–5 shows the probe hookup and O-Scope output for Case 5. You can see the flight-time delay between the output of the SN74GTLPH1655 driving device B port in slot 1 and the SN74GTL1655 receiving device B port in slot 20. Total flight time is about 9 ns.

Figure 4–5. Case 5: R2 Group 1 GTLP Data In (Ch1) and R20 Group 1 GTLP Data In (Ch2)

4.6 Monitored Waveforms

There are differences in waveforms between GTLP monitor test points and measurements taken at the backplane connector pins, due to interference from LVTTL data and clock signals not shielded adequately on the daughter cards. This concern is only for this demonstration backplane because there is no reason to extend the GTLP signals past the GTLP device B-port output pins on operational daughter cards. Figures 4–6 and 4–7 show the difference between waveforms taken directly on the backplane and those taken from the monitor test points under fully loaded conditions at a clock frequency of 23 MHz. Waveforms shown in Figures 4–6 and 4–7 are at one-half clock frequency, or 11.5 MHz, and are taken with various termination cards.

Figure 4–6. GTLP Backplane Waveforms at 23-MHz Clock Frequency

Figure 4–7. GTLP Monitor Test-Point Waveforms at 23-MHz Clock Frequency

Chapter 5

Troubleshooting

Торіс

Page

5.1	Spare Parts	7–364
5.2	Replacing 5-A Fuse F2	7–365
5.3	Replacing 2.5-A Fuse F1	7–366
5.4	Damage to the Daughter Cards	7–367

5.1 Spare Parts

Each EVM is equipped with spare fuses and jumpers (see Figure 5–1).

Figure 5–1. Spare Fuses and Jumpers

5.2 Replacing 5-A Fuse F2

Fuse F2 (see Figure 5–2) provides power from the 3.3-V switching regulator to the 3.3-V power plane and blows if V_{CC} is shorted to GND. Shorting can occur if a connector pin is bent during insertion or if measurements are taken directly from the backplane.

F2 can be replaced easily with one of the spare fuses. Simply disconnect power from the board, and pull out the fuse with pliers (see Figure 5–2). Push in the new fuse, and reconnect the power supply.

Figure 5–2. Fuse F2 (Left) and Removal Procedure (Right)

5.3 Replacing 2.5-A Fuse F1

Fuse F1 (see Figure 5–3) provides power from the power supply to the 3.3-V and 5-V switching regulators and blows if the switching regulators fail. It is replaced as easily as fuse F2. Disconnect the power from the board, pull out the fuse with pliers, push in the new fuse, then reconnect the power supply.

Figure 5–3. Fuse F1

5.4 Damage to the Daughter Cards

The daughter cards are not field repairable and must be returned to the factory for repair.

Appendix A

Bill of Materials, Schematics, Board Layouts, and Suggested Specifications

Ιορι	C	Page
A.1	GTLP EVM Bill of Materials	7–370
A.2	Board Layouts and Schematics	7–373

A.1 GTLP EVM Bill of Materials

Backplane	
Device Туре	Quantity
Z-PAK 110-Pin Male Connector	20
Z-PAK 55-Pin Male Connector	1
2.5 AMP Fuseholder	1
5 AMP Fuseholder	1
Surface Mount 0.01uF Cap	3
Surface Mount 0.1uF Cap	75
Surface Mount Tantalum 10uF/10V Cap	4
Surface Mount Tantalum 1uF/35V Cap	2
Surface Mount Tantalum 47uF/10V Cap	2
Surface Mount 100 ohm Resistor	1
Surface Mount 120 ohm Resistor	1
Surface Mount 1.5K ohm Resistor	1
Surface Mount 20 ohm Resistor	1
Surface Mount 240 ohm Resistor	1
Surface Mount 25 ohm Resistor	1
Green LED	2
Red LED	1
LT1083CP Voltage Regulator	1
Powerjack	1
24V-to-5V DC-to-DC Converter	1
24V-to-3.3V DC-to-DC Converter	1

Clock Driver Card	
Device Type	Quantity
Z-PAK 55-Pin Female Connector	1
CDC2586 TQFP Clock Driver	2
Surface Mount 0.1uF Cap	10
Surface Mount 453 ohm Resistor	1
Oscillator Mount	1
SMB Coax Connector	1
Termination Card	
Device Type	Quantity
Z-PAK 55-Pin Female Connector	1
Surface Mount 0.1uF Cap	4
Surface Mount 25 ohm Resistor	8
Monitored Receiver Card	
Device Type	Quantity
Z-PAK 55-Pin Female Connector	1
10K ohm Resistor Network	6
SN74ALVC126 TVSOP Buffer	1
SN74GTLP1394 TVSOP Transceiver	1
SN74GTL1655 TSSOP UBT	3
Surface Mount 0.1uF Cap	12
Surface Mount 47pF Cap	6
Surface Mount 1K ohm Resistor	1
Surface Mount 2K ohm Resistor	1
Surface Mount 453 ohm Resistor	7
Surface Mount 51.1 ohm Resistor	13
SMB Coax Connector	13

Monitored Driver Card	
Device Type	Quantity
Z-PAK 55-Pin Female Connector	1
SN74ALVC126 TVSOP Buffer	1
SN74GTLP1394 TVSOP Transceiver	1
SN74GTLPH1655 TSSOP UBT	3
SN74ALVCH16344 TSSOP Buffer	2
CDC351 Clock Buffer	1
SN74LVC112A JK Flip-Flop	3
SN74LVC04 Inverter	1
Surface Mount 0.1uF Cap	23
Surface Mount 47pF Cap	1
Surface Mount 1K ohm Resistor	3
Surface Mount 2K ohm Resistor	1
Surface Mount 500 ohm Resistor	2
Surface Mount 243 ohm Resistor	1
Surface Mount 51.1 ohm Resistor	6
SMB Coax Connector	8
Unmonitored Receiver Card	
Device Type	Quantity
Z-PAK 55-Pin Female Connector	1
10K ohm Resistor Network	6
SN74ALVC126 TVSOP Buffer	1
SN74GTLP1394 TVSOP Transceiver	1
SN74GTL1655 TSSOP UBT	3
Surface Mount 0.1uF Cap	12
Surface Mount 47pF Cap	6
Surface Mount 1K ohm Resistor	1
Surface Mount 2K ohm Resistor	1
A.2 Board Layouts and Schematics

Figure A–1. Backplane Layout, Front Side

Figure A-2. Backplane Layout, Back Side

P1-X						
	Α	D	Е			
1	Sys. Clk.	GND	GND	5V	5V	
2	3.3V	3.3V	GND	3.3V	3.3V	
3	G1D3	G1D1	GND	G1D4	G1D2	
4	G1D7	G1D5	GND	G1D8	G1D6	
5	1.5V	1.5V	GND	1.5V	1.5V	
6	G2D3	G2D1	GND	G2D4	G2D2	
7	G2D7	G2D5	GND	G2D8	G2D6	
8	GND	GND	GND	GND	GND	
9	G3D3	G3D1	GND	G3D4	G3D2	
10	G3D7	G3D5	GND	G3D8	G3D6	
11	GND	GND	GND	GND	GND	
15	GND	GND	GND	GND	GND	
16	G4D3	G4D1	GND	G4D4	G4D2	
17	G4D7	G4D5	GND	G4D8	G4D6	
18	GND	GND	GND	GND	GND	
19	G5D3	G5D1	GND	G5D4	G5D2	
20	G5D7	G5D5	GND	G5D8	G5D6	
21	GND	GND	GND	GND	GND	
22	G6D3	G6D1	GND	G6D4	G6D2	
23	G6D7	G6D5	GND	G6D8	G6D6	
24	GND	GND	GND	GND	GND	
25	MODESEL	GND	GND	GND	GTL Clk.	

Figure A–3.	Driver-Card and Receiver-Card Connector Pinou	ut
-------------	---	----

в Е D С Α GND 5V GND 3.3V 3.3V 3.3V GND G1D3 G1D1 GND G1D4 G1D2 G1D7 G1D5 GND G1D8 G1D6 1.5V 1.5V GND 1.5V 1.5V GND GND

P1-1B and P1-20B

1 2

3

4

5

6

7

8

9

10

11

			P3		
	Α	В	С	D	Е
1	Clk.Out 20	GND	GND	GND	MODESEL
2	Clk.Out 18	Clk.Out 19	GND	GND	GND
3	Clk.Out 16	Clk.Out 17	GND	GND	GND
4	Clk.Out 14	Clk.Out 15	GND	GND	GND
5	Clk.Out 12	Clk.Out 13	GND	GND	GND
6	Clk.Out 10	Clk.Out 11	GND	GND	5V
7	Clk.Out 8	Clk.Out 9	GND	GND	GND
8	Clk.Out 6	Clk.Out 7	GND	GND	GND
9	Clk.Out 4	Clk.Out 5	GND	GND	GND
10	Clk.Out 2	Clk.Out 3	GND	GND	3.3V
11	Clk.Out 1	GND	GND	GND	3.3V

Figure A–5. Driver-Card Layout

Figure A–7. Unmonitored-Receiver Card Layout

Figure A–9. Receiver-Card Schematic

Board Layouts and Schematics

Board Layouts and Schematics

Figure A-13. Standard-Termination-Card Schematic

General Information	1
GTL	2
GTLP	3
ETL	4
BTL/FB+	5
VME	6
Application Reports	7
Mechanical Data	8

Contents	
	Page
Ordering Instructions	8–3
Mechanical Data	8–7
D (R-PDSO-G**)	8–7
DGG (R-PDSO-G**)	8–8
DGV (R-PDSO-G**)	8–9
DL (R-PDSO-G**)	8–10
DW (R-PDSO-G**)	8–11
GKE (R-PBGA-N96)	8–12
GKF (R-PBGA-N114)	8–13
PCA (S-PQFP-G100)	8–14
PW (R-PDSO-G**)	8–15
RC (S-PQFP-G52)	8–16
WD (R-GDFP-F**)	8–17

Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.

Factory orders for circuits described in this data book should include a four-part type number as explained in the following example.

		EXAMPLE:	SN	74GTLPH32945	DGG R
Prefix					
SN = Stan SNJ = Com	dard prefix pliant to MIL-PRF-38535 (QML)				
Unique Circuit	Description		/	. / /	
MUST CONTAIN	I EIGHT TO TWELVE CHARACTERS				
Examples:	74FB1650				
	74GTLP2033				
	74GTLPH32945				
Package ——			_/		
MUST CONTAIN	I ONE TO THREE LETTERS				
D, DW DGG, PW DGV DL GKE, GKF PCA RC WD (from pin-c	 = plastic small-outline package = plastic thin shrink small-outline package = plastic thin very small-outline package = plastic shrink small-outline package = plastic ball-grid array = plastic thin quad flatpack = plastic quad flatpack = ceramic dual flatpack connection diagram on individual data sheet) 				
NOTE: For c must	rder entry for some devices, the package designation be abbreviated as indicated on the data sheet.				

Tape and Reel Packaging

Valid for surface-mount packages only. All orders for tape and reel must be for whole reels.

MUST CONTAIN ONE LETTER

R = Standard tape and reel (required for DBB, DGG, and DGV; optional for D, DL, and DW packages)

CARRIER-TAPE WIDTH (mm)	COVER-TAPE WIDTH (mm)	REEL WIDTH (mm)	REEL DIAMETER (mm)
8	5.4	9.0	178
12	9.2	12.4	330
16	13.3	16.4	330
24	21.0	24.4	330
32	25.5	32.4	330
44	37.5	44.4	330
56	49.5	56.4	330

Table 1. Normal Dimensions of Packing Materials

All material meets or exceeds industry guidelines for ESD protection.

Dimensions are selected based on package size and design configurations. All dimensions are established to be within the recommendations of the Electronics Industry Association Standard EIA-481-1,2,3.

Common dimensions of particular interest to the end user are carrier-tape width, pocket pitch, and quantity per reel (see Figure 1 and Table 2).

Figure 1. Typical Carrier-Tape Design

PACKAGE		NO. OF PINS	CARRIER-TAPE WIDTH (mm)	POCKET PITCH (mm)	QTY/REEL
		14	16.00	8.00	2500
5010		16	16.00	8.00	2500
3010		16	16.00	8.00/12.00	1000
	Dvv	20	24.00	12.00	1000
SOT	DBV	5	8.00	4.00	3000
301	DCK	5	8.00	4.00	3000
		14	16.00	12.00	2000
		16	16.00	12.00	2000
SSOP		20	16.00	12.00	2000
		24	16.00	12.00	2000
	DL	48	32.00	16.00	1000
	DGG	48	24.00	12.00	2000
		56	24.00	12.00	2000
		64	24.00	12.00	2000
	P PW	8	12.00	8.00	2000
TSSOP		14	12.00	8.00	2000
		16	12.00	8.00	2000
		20	16.00	8.00	2000
		24	16.00	8.00	2000
		28	16.00	8.00	2000
	DBB	80	24.00	12.00	2000
		14	16.00	8.00	2000
		16	16.00	8.00	2000
TVSOP	DGV	20	16.00	8.00	2000
		24	16.00	8.00	2000
		48	16.00	8.00	2000
		56	24.00	8.00	2000

Table 2. Selected Tape-and-Reel Specifications

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins - MO-153

14/16/20/56 Pins – MO-194

DL (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

PLASTIC SMALL-OUTLINE PACKAGE

DW (R-PDSO-G**)

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013

GKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. MicroStar BGA[™] configuration

MicroStar BGA is a trademark of Texas Instruments.

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. MicroStar BGA[™] configuration

MicroStar BGA is a trademark of Texas Instruments.

PCA (S-PQFP-G100)

PLASTIC QUAD FLATPACK (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Thermally enhanced molded plastic package with a heat slug (HSL)
- D. Falls within JEDEC MS-026

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

RC (S-PQFP-G52)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-022

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB

