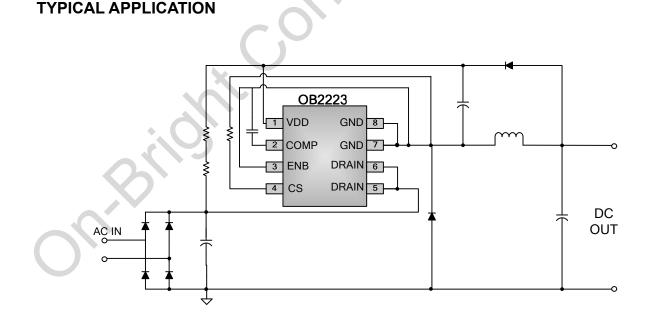


GENERAL DESCRIPTION

OB2223 is a high performance, high precision and low cost PWM Power switch for Non-isolated buck/ buck-boost and flyback application. It combines a dedicated current mode PWM controller (with a high voltage power MOSFET with SOP8/DIP8 package) and built-in error amplifier optimized for good overshoot and dynamic response for low cost and component count. With precise inner resistor divider, precise reference of EA, accurate constant voltage regulation 12V at universal AC input can be guaranteed. For high efficiency, oscillator with frequency-reduction and burst mode control is implemented. And EMI performance is achieved with On-Bright proprietary frequency shuffling technique and soft gate driver design.

OB2223 offers power on soft start control and protection coverage with auto-recovery features including Cycle-by-Cycle current limiting, Over Loading Protection, Output Short-Circuit Protection, On-Chip OTP,VDD OVP, and UVLO.

OB2223 is offered in SOP8/DIP8 package

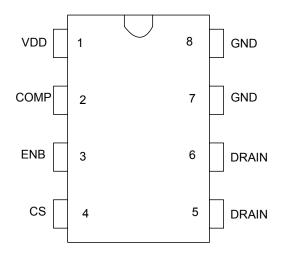

FEATURES

- Low cost and component count buck application
- Current Mode Control
- Multiple mode control with good dynamic response
- Oscillator of fixed maximum switching frequency with frequency-reduction and burst mode control for high efficiency
- Frequency shuffling for EMI improvement.
- Power on Soft-start
- Built-in Leading Edge Blanking (LEB)
- Cycle-by-Cycle Current Limiting
- Over Loading Protection
- Output Short-Circuit Protection
- VDD Under Voltage Lockout with Hysteresis (UVLO)
- VDD OVP
- On-Chip OTP

APPLICATIONS

Low Power AC/DC offline SMPS for

- Electrical Appliance
- Linear Regulator/RCC Replacement



GENERAL INFORMATION

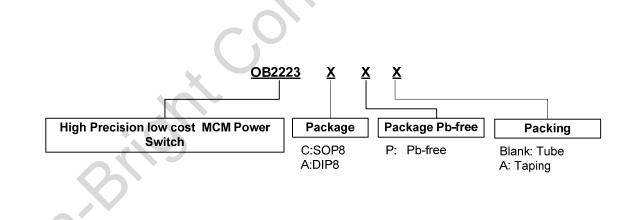
Pin Configuration

The pin map is shown as below for DIP8

Ordering Information

Part Number	Description
OB2223CP	SOP8, Pb-free, Tube
OB2223CPA	SOP8, Pb-free, T&R
OB2223AP	DIP8, Pb-free, Tube

Package Dissipation Rating


Package	RθJA (°C/W)
SOP8	90
DIP8	75

Note: Drain Pin Connected 100mm² PCB copper clad.

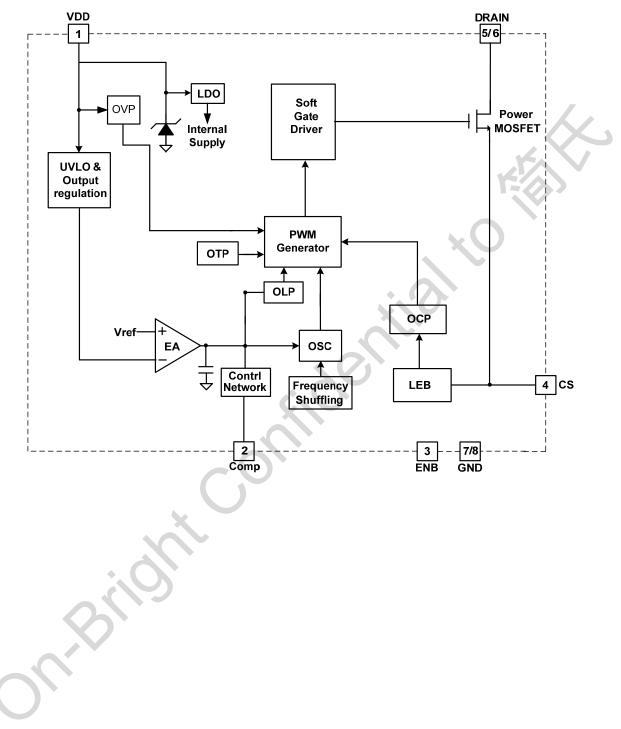
Absolute Maximum Ratings

Parameter	Value
Drain Voltage (off state)	-0.3V to Bvdss
VDD Voltage	-0.3 to 40V
VDD Zener Clamp	10 mA
Continuous Current	TOTIA
COMP Voltage	-0.3 to 7V
CS Input Voltage	-0.3 to 7V
ENB Voltage	-0.3 to 7V
Min/Max Operating	-40 to 150 ℃
Junction Temperature T	
Min/Max Storage	-55 to 150 ℃
Temperature T _{stg}	
Lead Temperature	260 ℃
(Soldering, 10secs)	200 0

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Marking Information

Y:Year Code WW:Week Code(01-52) ZZZ:Lot Code C:SOP8 Package P:Pb-free Package S:Internal Code(Optional)



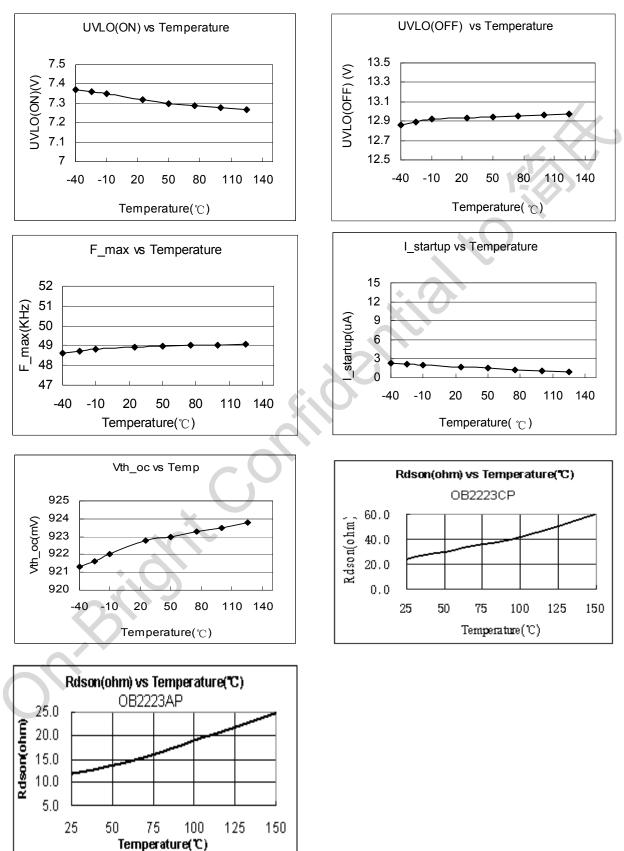
TERMINAL ASSIGNMENTS

Pin Num	Pin Name	I/O	Description	
1	VDD	Р	Power Supply and Output Voltage Feedback	
2	COMP	Ι	Compensation Pin. Connect a Cap to GND	
3	ENB	Ι	Connected to GND for 12V output	
4	CS	Ι	Current sense input	
5/6	DRAIN	0	HV MOSFET Drain Pin. The Drain pin is connected to the primary lead of the transformer / inductance.	
7/8	GND	Р	Ground	

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

(T_A = 25°C, VDD=16V, if not otherwise noted)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	(VDD) Section					
I DD ST Standby Current		VDD=UVLO(off) -1V		3	10	uA
		Operation supply current CS=0V, VDD=12V	-	0.9	1.5	mA
I _{DD op}	Operation Current	Operation supply current CS=0V, VDD=12V, CL=0.5nF		1.2	1.7	mA
UVLO(ON)	VDD Under Voltage Lockout Enter	VDD falling	6.0	7.0	8.0	V
UVLO(OFF)	VDD Under Voltage Lockout Exit	VDD rising	11.5	12.5	13.5	V
OVP	Over voltage protection Threshold	Ramp VDD until gate shut down	23	25	27	V
Vpmos	Pull-up PMOS Active	CS=0V,Comp=3V		10		V
VDD Regulation Voltage	In normal regulation, VDD will be regulated to 12.5V	Ramp VDD until Comp voltage lower than 2.5V	12.0	12.5	13	V
Current Sense I	nput Section	<u>~</u> 0			1	
TLEB	LEB time			200		ns
Vth_oc	Over current threshold		890	925	960	mV
Td_oc	OCP Propagation delay			100		ns
Z _{SENSE} IN	Input Impedance		50			Kohm
Frequency Sect	ion				1	
Freq_Max ^{Note 1}	IC Maximum frequency		45	50	55	KHz
rianglef/Freq	Frequency shuffling range			+/-6		%
F_shuffling	Shuffling frequency			200		Hz
F_Burst	Burst Mode Switch Frequency			22		KHZ
PWM Section						
Dmax	Maximum Duty Cycle			50		%
Vref_green	Threshold enter green mode			1.75		V
Vref_burst_H	Threshold exit burst mode			1.35		V
Vref_burst_L	Threshold enter burst mode			1.25		V
Error Amplifier	section					
Gain	DC gain of EA			70		dB
Gm	Trans-conductance of EA			110		uS
Protection Sec	ction					

Vth_OLP	Over loading protection			3.6	_	V
Debounce Time		Frequency=50Khz	66	71	76	mS
ΟΤΡ	Exit Over temperature protection			105		°C
	Enter Over temperature protection			135		°C
Power MOSFET	Section	•				
BVdss	MOSFET Drain-Source Breakdown Voltage		600			v
Rdson	On Resistance (DIP8)	Static, Id=0.45A			15	Ω
Ruson	On Resistance (SOP8)	Static, Id=0.45A			25	Ω
onia						
ons						
onk						

CHARACTERIZATION PLOTS

OPERATION DESCRIPTION

OB2223 is a cost effective PWM power switch optimized for off-line Non-isolated buck/ buckboost and flyback applications including electrical appliance and linear regulator replacement. It operates in current mode and regulates output voltage with dedicated features. High integration can afford low cost and component count solution.

• Startup Current and Start up Control

Startup current of OB2223 is designed to be very low so that VDD could be charged up above UVLO threshold and starts up quickly. A large value startup resistor can therefore be used to minimize the power loss in application.

• Operating Current

The Operating current of OB2223 is as low as 1.2mA. Good efficiency is achieved with the low operating current together with 'Multi-mode' control features.

• Oscillator operation

The maximum switching frequency of OB2223 is internally fixed at 50KHZ. No external frequency setting components are required for PCB design simplification.

At light load or zero load condition, most of the power dissipation in a switching mode power supply is from switching loss on the MOSFET. The magnitude of power loss is in proportion to the switching frequency. Lower switching frequency leads to the reduction on the power loss and thus conserves the energy. The frequency reduction and burst mode is implemented depends on loading condition. The minimum switching frequency is 22KHz.

• Frequency shuffling for EMI improvement

The frequency shuffling (switching frequency modulation) is implemented in OB2223. The oscillation frequency is modulated so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore eases the system design.

Multiple mode control with good dynamic response

In OB2223, the On-Bright proprietary on-chip EA (error amplifier) is implemented to regulate output voltage in either ON/OFF control mode or integration control mode. Through precise inner resistor divider and proprietary control network, the VDD voltage is detected at EA to regulate output voltage and achieve great stability and dynamic response.

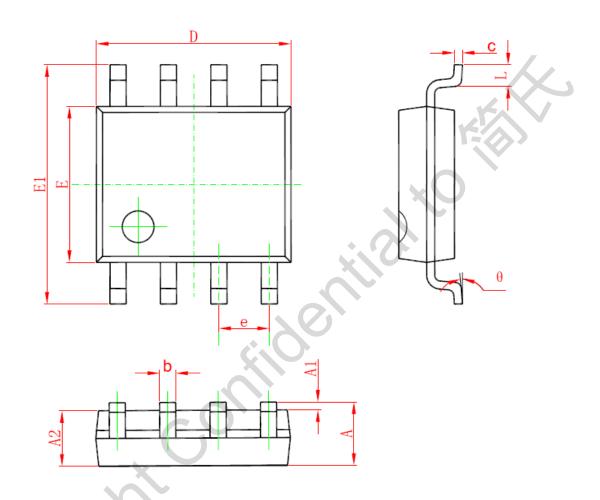
• Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in OB2223 current mode PWM control. The switch current is detected by a sense resistor into the CS pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial internal power MOSFET on state so that the external RC filtering on sense input is no longer needed. The PWM duty cycle is determined by the current sense input voltage and the EA output voltage.

Gate Drive

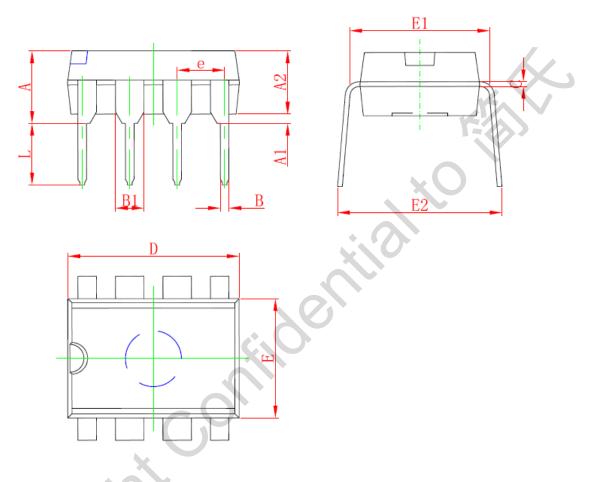
The internal power MOSFET in OB2223 is driven by a dedicated gate driver for power switch control. Too weak the gate drive strength results in higher conduction and switch loss of MOSFET while too strong gate drive compromises EMI.

A good tradeoff is achieved through the built-in totem pole gate design with right output strength control.


• Protection Control

Good power supply system reliability is achieved with its rich protection features including Cycle-by-Cycle current limiting (OCP), Over Loading Protection, Over Voltage Protection, Over Temperature Protection, Output Short-Circuit Protection and Under Voltage Lockout on VDD (UVLO).

PACKAGE MECHANICAL DATA


SOP8 PACKAGE OUTLINE DIMENSIONS

Cumhal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Min	
А	1.350	1.750	0.053	0.069	
A1	0.050	0.250	0.002	0.010	
A2	1.250	1.650	0.049	0.065	
b	0.310	0.510	0.012	0.020	
с	0.170	0.250	0.006	0.010	
D	4.700	5.150	0.185	0.203	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.270	(BSC)	0.05 (BSC)	
Ĺ	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

DIP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions	s In Inches
Symbol	Min	Max	Min	Max
А	3.710	5.334	0.146	0.210
A1	0.381		0.015	
A2	2.921	4.953	0.115	0.195
В	0.350	0.650	0.014	0.026
B1	1.524	(BSC)	0.06 (E	BSC)
С	0.200	0.360	0.008	0.014
D	9.000	10.160	0.354	0.400
Ē	6.096	7.112	0.240	0.280
E1	7.320	8.255	0.288	0.325
е	2.540	(BSC)	0.1 (B	SC)
L	2.921	3.810	0.115	0.150
E2	7.620	10.920	0.300	0.430

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet

and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.