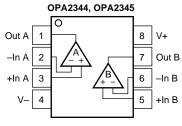


OPA344 OPA2344 OPA4344

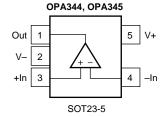
OPA345 **OPA2345 OPA4345**

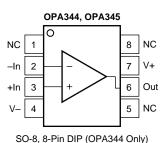
www.ti.com

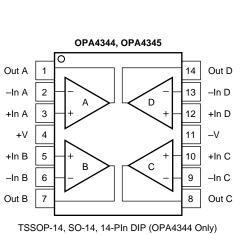
SBOS107A - APRIL 2000 - REVISED AUGUST 2008


LOW POWER, SINGLE-SUPPLY, RAIL-TO-RAIL **OPERATIONAL AMPLIFIERS** MicroAmplifier™ Series

FEATURES


- RAIL-TO-RAIL INPUT
- RAIL-TO-RAIL OUTPUT (within 1mV)
- LOW QUIESCENT CURRENT: 150µA typ
- MicroSIZE PACKAGES SOT23-5 **MSOP-8** TSSOP-14
- GAIN-BANDWIDTH OPA344: 1MHz, G ≥ 1 OPA345: 3MHz, $G \ge 5$
- SLEW RATE **OPA344: 0.8V/us** OPA345: 2V/µs
- THD + NOISE: 0.006%


APPLICATIONS


- PCMCIA CARDS
- DATA ACQUISITION
- PROCESS CONTROL
- AUDIO PROCESSING
- COMMUNICATIONS
- ACTIVE FILTERS
- TEST EQUIPMENT

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Texas INSTRUMENTS www.ti.com

Copyright © 2000-2008, Texas Instruments Incorporated

DESCRIPTION

The OPA344 and OPA345 series rail-to-rail CMOS operational amplifiers are designed for precision, low-power, miniature applications. The OPA344 is unity gain stable, while the OPA345 is optimized for gains greater than or equal to five, and has a gain-bandwidth product of 3MHz.

The OPA344 and OPA345 are optimized to operate on a single supply from 2.5V and up to 5.5V with an input common-mode voltage range that extends 300mV beyond the supplies. Quiescent current is only 250µA (max).

Rail-to-rail input and output make them ideal for driving sampling analog-to-digital converters. They are also well suited for general purpose and audio applications and providing I/V conversion at the output of D/A converters. Single, dual and quad versions have identical specs for design flexibility.

A variety of packages are available. All are specified for operation from -40°C to 85°C. A SPICE macromodel for design analysis is available for download from www.ti.com.

SPECIFICATIONS: $V_S = 2.7V$ to 5.5V

At T_A = +25°C, R_L = 10k Ω connected to V_S/2 and V_{OUT} = V_S/2, unless otherwise noted. **Boldface** limits apply over the temperature range, T_A = -40°C to +85°C.

			0	PA344NA, UA, PA2344EA, UA PA4344EA, UA	, PA	
PARAMETER		CONDITION	MIN	ТҮР	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Over Temperature vs Temperature vs Power Supply Over Temperature Channel Separation, dc f = 1kHz	V _{os} dV _{os} /dT PSRR	$V_{\rm S}$ = +5.5V, $V_{\rm CM}$ = $V_{\rm S}/2$ $V_{\rm S}$ = 2.7V to 5.5V, $V_{\rm CM}$ < (V+) -1.8V $V_{\rm S}$ = 2.7V to 5.5V, $V_{\rm CM}$ < (V+) -1.8V		±0.2 ±0.8 ±3 30 0.2 130	±1 ± 1.2 200 250	mV mV μV/°C μV/V μV/V dB
INPUT BIAS CURRENT Input Bias Current Over Temperature Input Offset Current	I _B I _{OS}			±0.2 See Typi ±0.2	±10 cal Curve ±10	pA pA pA
NOISE Input Voltage Noise Input Voltage Noise Density Current Noise Density	e _n i _n	$\begin{array}{l} f=0.1 \ \text{to} \ 50 \text{kHz} \\ f=10 \text{kHz} \\ f=10 \text{kHz} \end{array}$		8 30 0.5		μVrms nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio Over Temperature Common-Mode Rejection Over Temperature Common-Mode Rejection Over Temperature	V _{CM} CMRR CMRR CMRR	$ \begin{array}{l} V_{S} = +5.5V, \ -0.3V < V_{CM} < (V+)\text{-}1.8 \\ V_{S} = +5.5V, \ -0.3V < V_{CM} < (V+)\text{-}1.8 \\ V_{S} = +5.5V, \ -0.3V < V_{CM} < 5.8V \\ V_{S} = +5.5V, \ -0.3V < V_{CM} < 5.8V \\ V_{S} = +2.7V, \ -0.3V < V_{CM} < 3V \\ V_{S} = +2.7V, \ -0.3V < V_{CM} < 3V \\ V_{S} = +2.7V, \ -0.3V < V_{CM} < 3V \end{array} $	-0.3 76 74 70 68 66 64	92 84 80	(V+) + 0.3	> dB dB dB dB dB dB dB
INPUT IMPEDANCE Differential Common-Mode				10 ¹³ 3 10 ¹³ 6		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature Over Temperature	A _{OL}	$\begin{array}{l} R_L = 100 k\Omega, \ 10mV < V_O < (V+) \ -10mV \\ \textbf{R}_L = \textbf{100} k\Omega, \ \textbf{10mV} < \textbf{V}_O < (V+) \ -10mV \\ R_L = 5 k\Omega, \ 400mV < V_O < (V+) \ -400mV \\ \textbf{R}_L = \textbf{5} k\Omega, \ \textbf{400mV} < \textbf{V}_O < (\textbf{V+}) \ -400mV \end{array}$	104 100 96 90	122 120		dB dB dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise	GBW SR THD+N	$C_{L} = 100 \text{pF}$ $V_{S} = 5.5 \text{V}, 2 \text{V} \text{ Step}$ $V_{S} = 5.5 \text{V}, 2 \text{V} \text{ Step}$ $V_{IN} \bullet \text{G} = V_{S}$ $V_{S} = 5.5 \text{V}, V_{O} = 3 \text{Vp-p}, \text{G} = 1, \text{f} = 1 \text{kHz}$		1 0.8 5 8 2.5 0.006		MHz V/μs μs μs μs %
OUTPUT Voltage Output Swing from Rail ⁽¹⁾ Over Temperature Over Temperature Short-Circuit Current Capacitive Load Drive	I _{SC} C _{LOAD}	$\begin{array}{l} R_L = 100k\Omega, \ A_{OL} \geq 96dB \\ R_L = 100k\Omega, \ A_{OL} \geq 104dB \\ \textbf{R}_L = \textbf{100k}\Omega, \ \textbf{A}_{OL} \geq \textbf{100dB} \\ \textbf{R}_L = \textbf{5}k\Omega, \ \textbf{A}_{OL} \geq 96dB \\ \textbf{R}_L = \textbf{5}k\Omega, \ \textbf{A}_{OL} \geq \textbf{90dB} \end{array}$	S	1 3 40 ±15 See Typical Curv	10 10 400 400 ve	mV mV mV mV mV mA
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) Over Temperature	V _S I _Q	V _S = 5.5V, I _O = 0	2.7	2.5 to 5.5 150	5.5 250 300	ν ν μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface Mount MSOP-8 Surface Mount 8-Pin DIP SO-8 Surface Mount TSSOP-14 Surface Mount 14-Pin DIP SO-14 Surface Mount	$ heta_{JA}$		40 55 65	200 150 100 150 100 80 100	85 125 150	ې ې ې ې ې ې ې ې ې چ چ چ چ چ ې ې ې ې ې ې

NOTE: (1) Output voltage swings are measured between the output and power-supply rails.

SPECIFICATIONS: $V_S = 2.7V$ to 5.5V

At $T_A = +25^{\circ}C$, $R_L = 10k\Omega$ connected to $V_S/2$ and $V_{OUT} = V_S/2$, unless otherwise noted. **Boldface** limits apply over the temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

				A JA JA		
PARAMETER		CONDITION	MIN	ТҮР	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Over Temperature vs Temperature vs Power Supply Over Temperature Channel Separation, dc f = 1kHz	V _{os} dV _{os} /dT PSRR	$V_{\rm S}$ = +5.5V, $V_{\rm CM}$ = $V_{\rm S}/2$ $V_{\rm S}$ = 2.7V to 5.5V, $V_{\rm CM}$ < (V+) -1.8V $V_{\rm S}$ = 2.7V to 5.5V, $V_{\rm CM}$ < (V+) -1.8V		±0.2 ±0.8 ±3 30 0.2 130	±1 ±1.2 200 250	mV mV μV/°C μV/V μV/V dB
INPUT BIAS CURRENT Input Bias Current Over Temperature Input Offset Current	I _B I _{OS}			±0.2 See Typi ±0.2	±10 cal Curve ±10	pA pA pA
NOISE Input Voltage Noise Input Voltage Noise Density Current Noise Density	e _n i _n	f = 0.1 to 50kHz f = 10kHz f = 10kHz		8 30 0.5		μVrms nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio Over Temperature Common-Mode Rejection Ratio Over Temperature Common-Mode Rejection Ratio Over Temperature	V _{CM} CMRR CMRR CMRR	$ \begin{array}{l} V_{\mathrm{S}} = +5.5V, \ -0.3V < V_{\mathrm{CM}} < (V+)\text{-}1.8 \\ \mathbf{V}_{\mathrm{S}} = +5.5V, \ -0.3V < V_{\mathrm{CM}} < (V+)\text{-}1.8 \\ V_{\mathrm{S}} = +5.5V, \ -0.3V < V_{\mathrm{CM}} < 5.8V \\ \mathbf{V}_{\mathrm{S}} = +5.5V, \ -0.3V < V_{\mathrm{CM}} < 5.8V \\ V_{\mathrm{S}} = +2.7V, \ -0.3V < V_{\mathrm{CM}} < 3V \\ V_{\mathrm{S}} = +2.7V, \ -0.3V < V_{\mathrm{CM}} < 3V \\ \mathbf{V}_{\mathrm{S}} = +2.7V, \ -0.3V < V_{\mathrm{CM}} < 3V \end{array} $	-0.3 76 74 70 68 66 64	92 84 80	(V+) + 0.3	V dB dB dB dB dB dB
INPUT IMPEDANCE Differential Common-Mode				10 ¹³ 3 10 ¹³ 6		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature Over Temperature	A _{OL}	$\begin{array}{l} R_L = 100 k \Omega, \ 10mV < V_O < (V+) \ -10mV \\ R_L = 100 k \Omega, \ 10mV < V_O < (V+) \ -10mV \\ R_L = 5 k \Omega, \ 400mV < V_O < (V+) \ -400mV \\ R_L = 5 k \Omega, \ 400mV < V_O < (V+) \ -400mV \end{array}$	104 100 96 90	122 120		dB dB dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise	GBW SR THD+N	$\label{eq:CL} \begin{array}{l} C_L = 100 p F \\ \\ G = 5, 2 V \mbox{ Output Step} \\ G = 5, 2 V \mbox{ Output Step} \\ \\ V_{ N} \bullet G = V_S \\ \\ V_S = 5.5 V, \ V_O = 2.5 V p \mbox{-} p, \ G = 5, \ f = 1 k Hz \end{array}$		3 2 1.5 1.6 2.5 0.006		MHz V/μs μs μs %
OUTPUT Voltage Output Swing from Rail ⁽¹⁾ Over Temperature Over Temperature Short-Circuit Current Capacitive Load Drive	I _{SC} C _{LOAD}	$\begin{split} R_L &= 100k\Omega, \ A_{OL} \geq 96dB \\ R_L &= 100k\Omega, \ A_{OL} \geq 104dB \\ \textbf{R}_L &= \textbf{100k}\Omega, \ \textbf{A}_{OL} \geq \textbf{100dB} \\ \textbf{R}_L &= \textbf{100k}\Omega, \ \textbf{A}_{OL} \geq \textbf{96dB} \\ \textbf{R}_L &= \textbf{5k}\Omega, \ \textbf{A}_{OL} \geq \textbf{96dB} \\ \textbf{R}_L &= \textbf{5k}\Omega, \ \textbf{A}_{OL} \geq \textbf{90dB} \end{split}$		1 3 40 ±15 See Typical Cur	10 10 400 400 ve	mV mV mV mV mA
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) Over Temperature	V _S I _Q	V _S = 5.5V, I _O = 0	2.7	2.5 to 5.5 150	5.5 250 300	V V μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface Mount MSOP-8 Surface Mount	$ heta_{JA}$		-40 -55 -65	200 150	85 125 150	°C °C °C °C/W °C/W
SO-8 Surface Mount TSSOP-14 Surface Mount SO-14 Surface Mount				150 100 100		°C/W °C/W °C/W

NOTE: (1) Output voltage swings are measured between the output and power-supply rails.

ABSOLUTE MAXIMUM RATINGS(1)

	3 5) (
Supply Voltage, V+ to V	
Signal Input Terminals, Voltage ⁽²⁾	(V–) –0.5V to (V+) +0.5V
Current ⁽²⁾	10mA
Output Short-Circuit ⁽³⁾	Continuous
Operating Temperature	–55°C to +125°C
Storage Temperature	–65°C to +150°C
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	
ESD Tolerance (Human Body Model)	

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only. Functional operation of the device at these conditions, or beyond the specified operating conditions, is not implied. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less. (3) Short-circuit to ground, one amplifier per package.

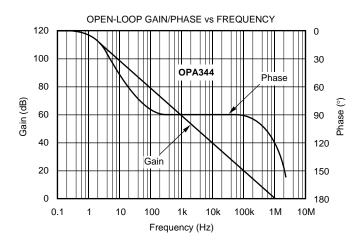
ELECTROSTATIC DISCHARGE SENSITIVITY

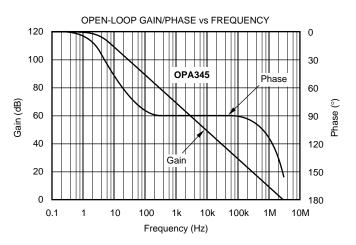
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

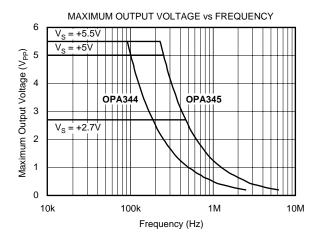
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

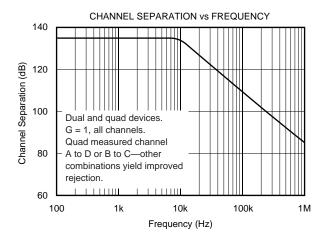
PRODUCT	PACKAGE	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽²⁾	TRANSPORT MEDIA
OPA344NA	SOT23-5	DBV "	–40°C to +85°C	B44	OPA344NA/250	Tape and Reel
OPA344UA "	SO-8 "	D "	–40°C to +85°C "	OPA344UA "	OPA344NA/3K OPA344UA OPA344UA/2K5	Tape and Reel Rails Tape and Reel
OPA344PA	8-Pin Dip	Р	-40° C to +85°C	OPA344PA	OPA344PA	Rails
OPA2344EA	MSOP-8	DGK	–40°C to +85°C	C44	OPA2344EA/250	Tape and Reel
"		"	"	"	OPA2344EA/2K5	Tape and Reel
OPA2344UA	SO-8	D	–40°C to +85°C	OPA2344UA	OPA2344UA	Rails
"	"	"	"	"	OPA2344UA/2K5	Tape and Reel
OPA2344PA	8-Pin DIP	Р	-40°C to +85°C	OPA2344PA	OPA2344PA	Rails
OPA4344EA	TSSOP-14	PW	–40°C to +85°C	OPA4344EA	OPA4344EA/250	Rails
"	"	"	"	"	OPA4344EA/2K5	Tape and Reel
OPA4344UA	SO-14	D	–40°C to +85°C	OPA4344UA	OPA4344UA	Rails
"	"	"	"	"	OPA4344UA/2K5	Tape and Reel
OPA4344PA	14-Pin DIP	N	–40°C to +85°C	OPA4344PA	OPA4344PA	Rails
OPA345NA	SOT23-5	DBV	–40°C to +85°C	A45	OPA345NA/250	Tape and Reel
"	"	"	"	"	OPA345NA/3K	Tape and Reel
OPA345UA	SO-8	D	–40°C to +85°C	OPA345UA	OPA345UA	Rails
"	"	"	"	"	OPA345UA/2K5	Tape and Reel
OPA2345EA	MSOP-8	DGK	–40°C to +85°C	B45	OPA2345EA/250	Tape and Reel
"		"	"	"	OPA2345EA/2K5	Tape and Reel
OPA2345UA	SO-8	D	–40°C to +85°C	OPA2345UA	OPA2345UA	Rails
"	"	"	"	"	OPA2345UA/2K5	Tape and Reel
OPA4345EA	TSSOP-14	PW	–40°C to +85°C	OPA4345EA	OPA4345EA/250	Tape and Reel
"		"	"	"	OPA4345EA/2K5	Tape and Reel
OPA4345UA	SO-14	D	–40°C to +85°C	OPA4345UA	OPA4345UA	Rails
"	"	"	"	"	OPA4345UA/2K5	Tape and Reel

PACKAGE/ORDERING INFORMATION⁽¹⁾

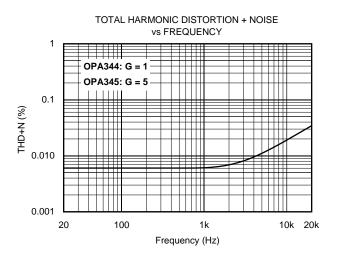

NOTES: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

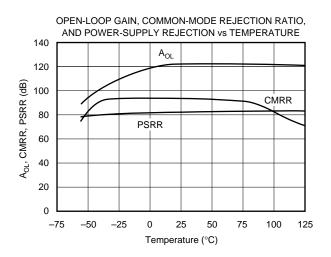

(2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "OPA344UA/2K5" will get a single 2500-piece Tape and Reel.

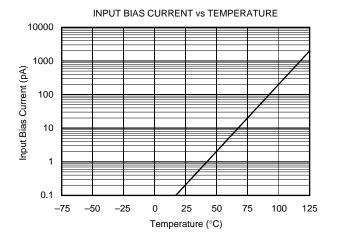

TYPICAL PERFORMANCE CURVES

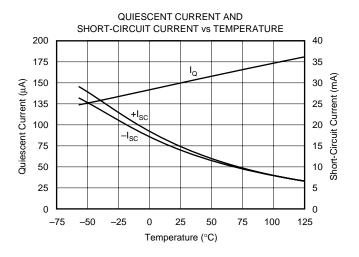

At $T_A = +25^{\circ}C$, $V_S = +5V$, and $R_L = 10k\Omega$ connected to $V_S/2$, unless otherwise noted.

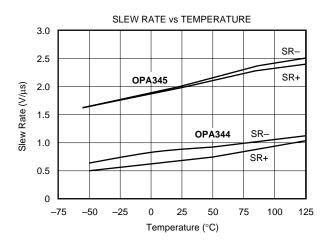
POWER SUPPLY AND COMMON-MODE **REJECTION RATIO vs FREQUENCY** 100 +PSRR 80 CMRR Rejection Ratio (dB) PSRR 60 40 20 10 10 100 10k 100k 1k Frequency (Hz)

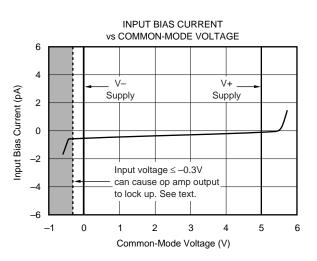


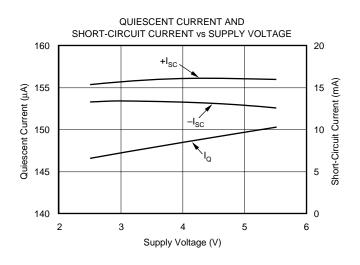


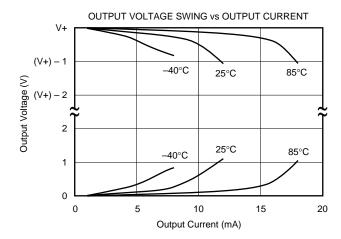


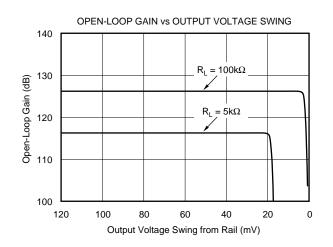

TYPICAL PERFORMANCE CURVES (Cont.)

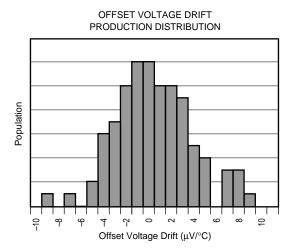

At $T_A = +25^{\circ}C$, $V_S = +5V$, and $R_L = 10k\Omega$ connected to $V_S/2$, unless otherwise noted.



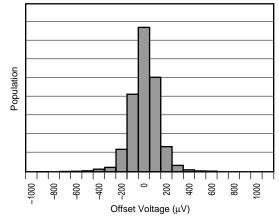


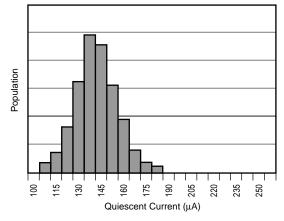




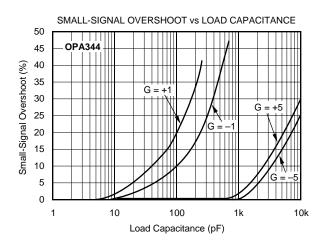

TYPICAL PERFORMANCE CURVES (Cont.)

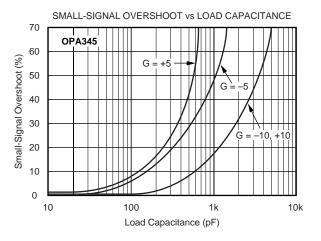
At T_A = +25°C, V_S = +5V, and R_L = 10k Ω connected to V_S/2, unless otherwise noted.

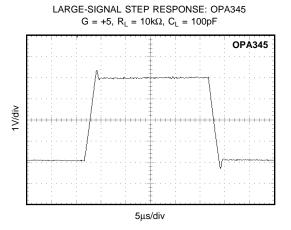


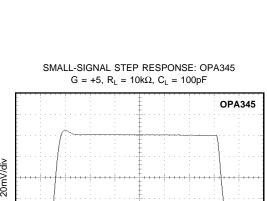


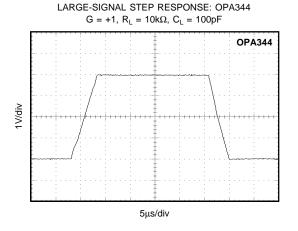
OFFSET VOLTAGE PRODUCTION DISTRIBUTION

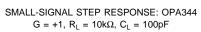

QUIESCENT CURRENT PRODUCTION DISTRIBUTION

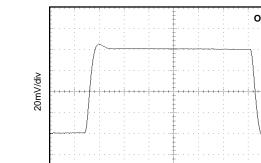





TYPICAL PERFORMANCE CURVES (Cont.)

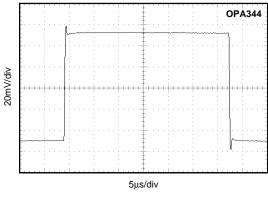

At $T_A = +25^{\circ}C$, $V_S = +5V$, and $R_L = 10k\Omega$ connected to $V_S/2$, unless otherwise noted.





Texas

www.ti.com


INSTRUMENTS

OPA344, 2344, 4344 OPA345, 2345, 4345

SBOS107A

5µs/div

8

APPLICATIONS INFORMATION

OPA344 series op amps are unity gain stable and can operate on a single supply, making them highly versatile and easy to use. OPA345 series op amps are optimized for applications requiring higher speeds with gains of 5 or greater.

Rail-to-rail input and output swing significantly increases dynamic range, especially in low supply applications. Figure 1 shows the input and output waveforms for the OPA344 in unity-gain configuration. Operation is from $V_S = +5V$ with a 10k Ω load connected to $V_S/2$. The input is a 5Vp-p sinusoid. Output voltage is approximately 4.997Vp-p.

Power supply pins should be by passed with $0.01 \mu F$ ceramic capacitors.

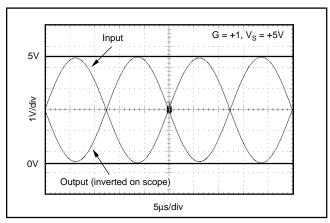


FIGURE 1. Rail-to-Rail Input and Output.

OPERATING VOLTAGE

OPA344 and OPA345 series op amps are fully specified and ensured from +2.7V to +5.5V. In addition, many specifications apply from -40°C to +85°C. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Performance Curves.

RAIL-TO-RAIL INPUT

The input common-mode voltage range of the OPA344 and OPA345 series extends 300mV beyond the supply rails. This is achieved with a complementary input stage-an Nchannel input differential pair in parallel with a P-channel differential pair (see Figure 2). The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.3V to 300mV above the positive supply, while the Pchannel pair is on for inputs from 300mV below the negative supply to approximately (V+) -1.3V. There is a small transition region, typically (V+) - 1.5V to (V+) - 1.1V, in which both pairs are on. This 400mV transition region can vary 300mV with process variation. Thus, the transition region (both stages on) can range from (V+) - 1.8V to (V+)-1.4V on the low end, up to (V+) -1.2V to (V+) -0.8V on the high end. Within the 400mV transition region PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to operation outside this region. For more information on designing with rail-to-rail input op amps, see Figure 3 "Design Optimization with Rail-to-Rail Input Op Amps."

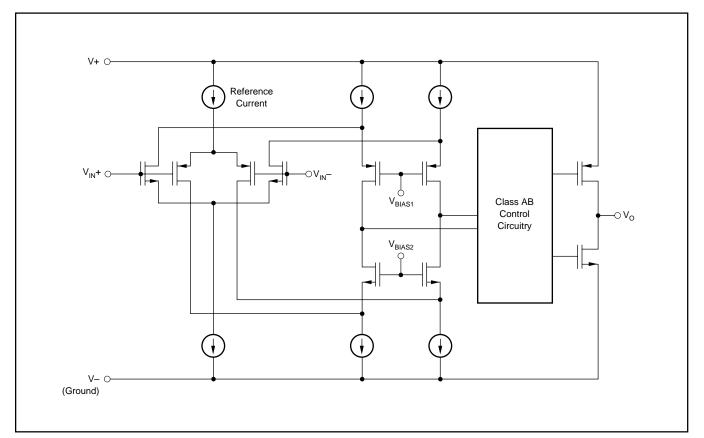


FIGURE 2. Simplified Schematic.

DESIGN OPTIMIZATION WITH RAIL-TO-RAIL INPUT OP AMPS

Rail-to-rail op amps can be used in virtually any op amp configuration. To achieve optimum performance, however, applications using these special double-input-stage op amps may benefit from consideration of their special behavior.

In many applications, operation remains within the common-mode range of only one differential input pair. However some applications exercise the amplifier through the transition region of both differential input stages. Although the two input stages are laser trimmed for excellent matching, a small discontinuity may occur in this transition. Careful selection of the circuit configuration, signal levels and biasing can often avoid this transition region. With a unity-gain buffer, for example, signals will traverse this transition at approximately 1.3V below V+ supply and may exhibit a small discontinuity at this point.

The common-mode voltage of the non-inverting amplifier is equal to the input voltage. If the input signal always remains less than the transition voltage, no discontinuity will be created. The closed-loop gain of this configuration can still produce a rail-to-rail output.

Inverting amplifiers have a constant common-mode voltage equal to V_B . If this bias voltage is constant, no discontinuity will be created. The bias voltage can generally be chosen to avoid the transition region.

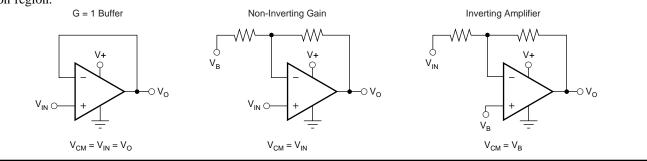


FIGURE 3. Design Optimization with Rail-to-Rail Input Op Amps.

COMMON-MODE REJECTION

The CMRR for the OPA344 and OPA345 is specified in several ways so the best match for a given application may be used. First, the CMRR of the device in the common-mode range below the transition region ($V_{CM} < (V+) - 1.8V$) is given. This specification is the best indicator of the capability of the device when the application requires use of one of the differential input pairs. Second, the CMRR at $V_S = 5.5V$ over the entire common-mode range is specified. Third, the CMRR at $V_S = 2.7V$ over the entire common-mode range is provided. These last two values include the variations seen through the transition region.

INPUT VOLTAGE BEYOND THE RAILS

If the input voltage can go more than 0.3V below the negative power supply rail (single-supply ground), special precautions are required. If the input voltage goes sufficiently negative, the op amp output may lock up in an inoperative state. A Schottky diode clamp circuit will prevent this—see Figure 4. The series resistor prevents excessive current (greater than 10mA) in the Schottky diode and in the internal ESD protection diode, if the input voltage can exceed the positive supply voltage. If the signal source is limited to less than 10mA, the input resistor is not required.

RAIL-TO-RAIL OUTPUT

A class AB output stage with common-source transistors is used to achieve rail-to-rail output. This output stage is capable of driving 600Ω loads connected to any potential between V+ and ground. For light resistive loads (> $50k\Omega$), the output voltage can typically swing to within 1mV from supply rail. With moderate resistive loads ($2k\Omega$ to $50k\Omega$), the output can swing to within a few tens of millivolts from the supply rails while maintaining high open-loop gain. See the typical performance curve "Output Voltage Swing vs Output Current."

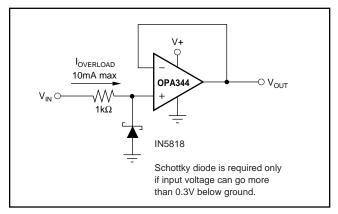


FIGURE 4. Input Current Protection for Voltages Exceeding the Supply Voltage.

CAPACITIVE LOAD AND STABILITY

The OPA344 in a unity-gain configuration and the OPA345 in gains greater than 5 can directly drive up to 250pF pure capacitive load. Increasing the gain enhances the amplifier's ability to drive greater capacitive loads. See the typical

performance curve "Small-Signal Overshoot vs Capacitive Load." In unity-gain configurations, capacitive load drive can be improved by inserting a small (10Ω to 20Ω) resistor, R_S , in series with the output, as shown in Figure 5. This significantly reduces ringing while maintaining dc performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created, introducing a dc error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio R_S/R_L , and is generally negligible.

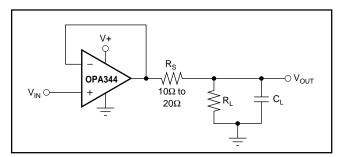


FIGURE 5. Series Resistor in Unity-Gain Configuration Improves Capacitive Load Drive.

DRIVING A/D CONVERTERS

The OPA344 and OPA345 series op amps are optimized for driving medium-speed sampling A/D converters. The OPA344 and OPA345 op amps buffer the A/D's input capacitance and resulting charge injection while providing signal gain.

Figures 6 shows the OPA344 in a basic noninverting configuration driving the ADS7822. The ADS7822 is a 12-bit, micro-power sampling converter in the MSOP-8 package. When used with the low-power, miniature packages of the OPA344, the combination is ideal for space-limited, lowpower applications. In this configuration, an RC network at the A/D's input can be used to filter charge injection.

Figure 7 shows the OPA2344 driving an ADS7822 in a speech bandpass filtered data acquisition system. This small, low-cost solution provides the necessary amplification and signal conditioning to interface directly with an electret microphone. This circuit will operate with $V_S = +2.7V$ to +5V with less than 500µA quiescent current.

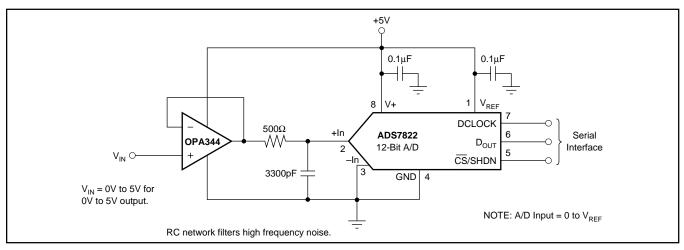


FIGURE 6. OPA344 in Noninverting Configuration Driving ADS7822.

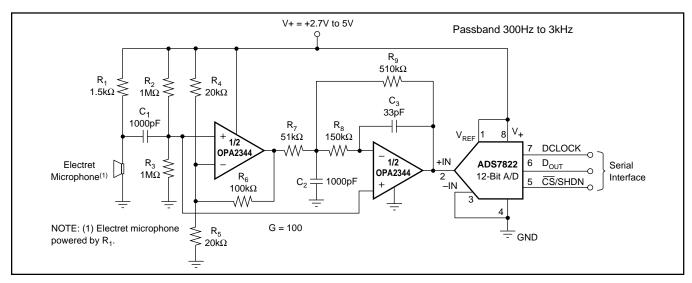


FIGURE 7. Speech Bandpass Filtered Data Acquisition System.

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
OPA2344EA/250	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	C44	Samples
OPA2344EA/250G4	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	C44	Samples
OPA2344EA/2K5	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	C44	Samples
OPA2344EA/2K5G4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	C44	Samples
OPA2344UA	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 2344UA	Samples
OPA2344UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 2344UA	Samples
OPA2344UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 2344UA	Samples
OPA2344UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 2344UA	Samples
OPA2345EA/250	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	B45	Samples
OPA2345UA	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 2345UA	Samples
OPA2345UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 2345UA	Samples
OPA2345UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 2345UA	Samples
OPA344NA/250	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B44	Samples
OPA344NA/250G4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B44	Samples
OPA344NA/3K	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B44	Samples
OPA344NA/3KG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B44	Samples
OPA344PA	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	OPA344PA	Samples

PACKAGE OPTION ADDENDUM

15-Apr-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
OPA344PAG4	ACTIVE	PDIP	P	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	OPA344PA	Sample
OPA344UA	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 344UA	Sample
OPA344UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 344UA	Sample
OPA344UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 344UA	Sample
OPA344UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 344UA	Sample
OPA345NA/250	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A45	Sample
OPA345NA/3K	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A45	Sample
OPA345UA	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 345UA	Sample
OPA345UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 345UA	Sample
OPA4344EA/250	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	OPA 4344EA	Sample
OPA4344EA/250G4	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	OPA 4344EA	Sample
OPA4344EA/2K5	ACTIVE	TSSOP	PW	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	OPA 4344EA	Sample
OPA4344PA	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	-40 to 85	OPA4344PA	
OPA4344PAG4	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	-40 to 85	OPA4344PA	
OPA4344UA	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA4344UA	Sampl
OPA4344UA/2K5	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA4344UA	Sampl
OPA4344UA/2K5G4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA4344UA	Sampl
OPA4344UAG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA4344UA	Sample
OPA4345EA/250	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85	OPA 4345EA	

15-Apr-2017

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
OPA4345UA	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA4345UA	Samples
OPA4345UAG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA4345UA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

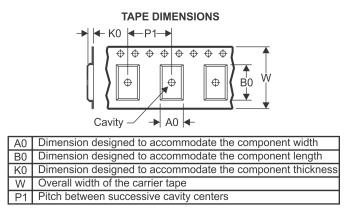
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

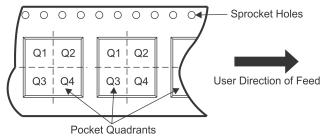
www.ti.com

PACKAGE OPTION ADDENDUM

15-Apr-2017

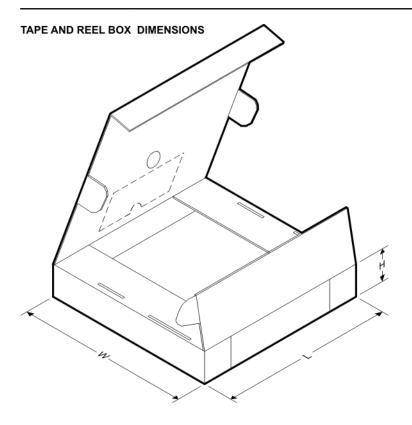

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

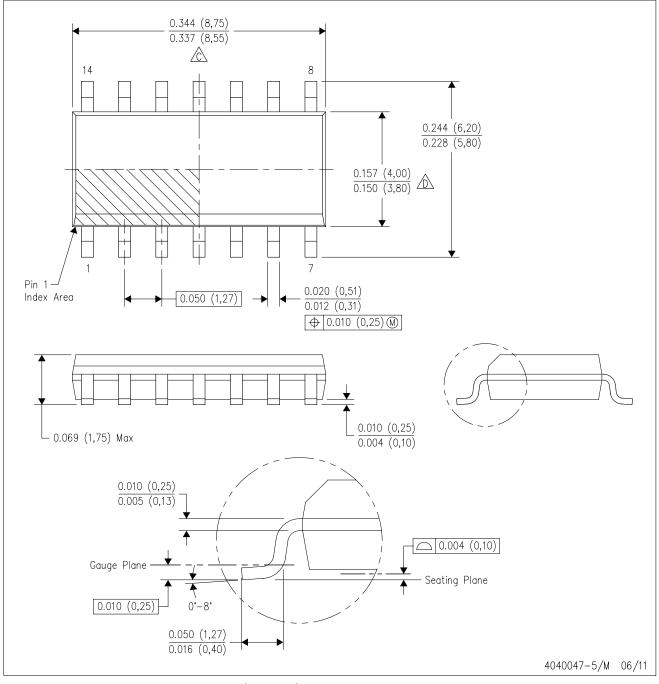
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2344EA/250	VSSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2344EA/2K5	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2345EA/250	VSSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2345UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA344NA/250	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
OPA344NA/3K	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
OPA344UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA345NA/250	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
OPA345NA/3K	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
OPA4344EA/250	TSSOP	PW	14	250	180.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
OPA4344EA/2K5	TSSOP	PW	14	2500	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
OPA4344UA/2K5	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

Texas Instruments

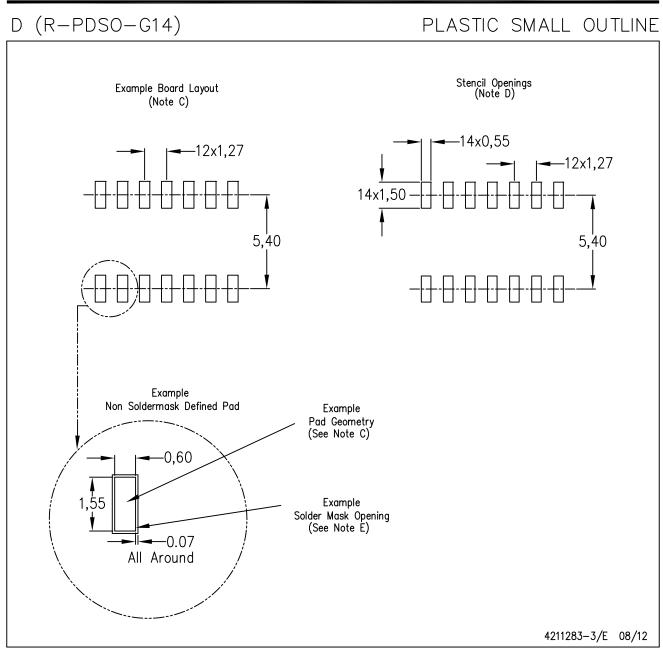
www.ti.com

PACKAGE MATERIALS INFORMATION


13-Jan-2017

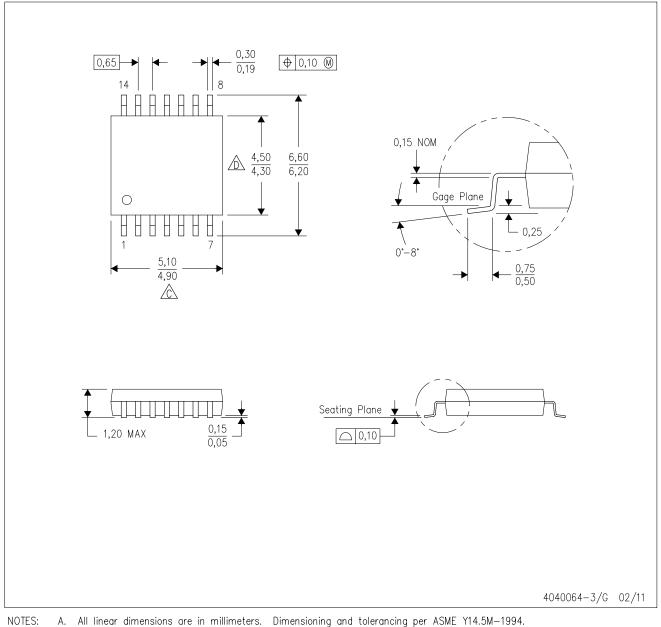
*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2344EA/250	VSSOP	DGK	8	250	210.0	185.0	35.0
OPA2344EA/2K5	VSSOP	DGK	8	2500	367.0	367.0	35.0
OPA2345EA/250	VSSOP	DGK	8	250	210.0	185.0	35.0
OPA2345UA/2K5	SOIC	D	8	2500	367.0	367.0	35.0
OPA344NA/250	SOT-23	DBV	5	250	180.0	180.0	18.0
OPA344NA/3K	SOT-23	DBV	5	3000	180.0	180.0	18.0
OPA344UA/2K5	SOIC	D	8	2500	367.0	367.0	35.0
OPA345NA/250	SOT-23	DBV	5	250	180.0	180.0	18.0
OPA345NA/3K	SOT-23	DBV	5	3000	180.0	180.0	18.0
OPA4344EA/250	TSSOP	PW	14	250	210.0	185.0	35.0
OPA4344EA/2K5	TSSOP	PW	14	2500	367.0	367.0	35.0
OPA4344UA/2K5	SOIC	D	14	2500	367.0	367.0	38.0

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

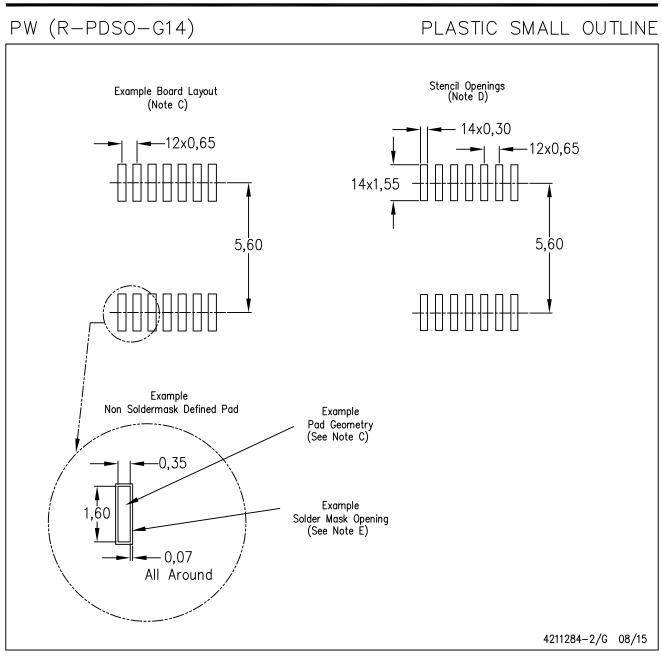
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

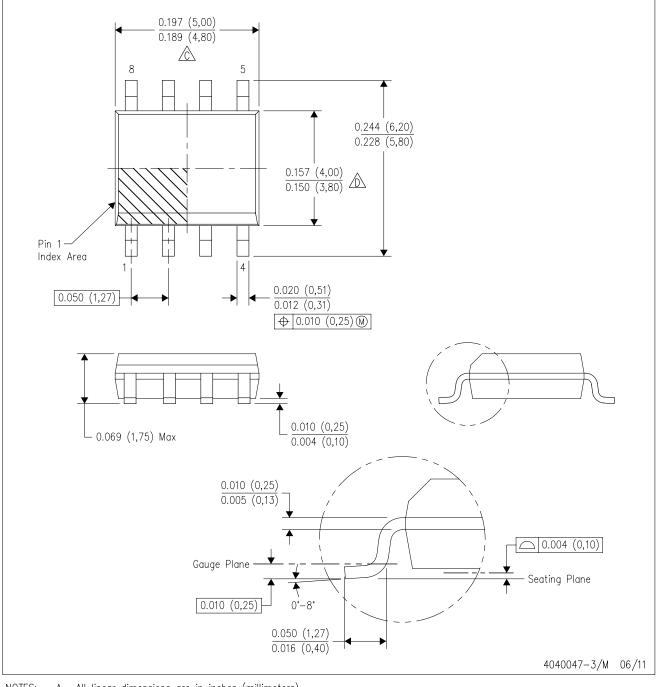
PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

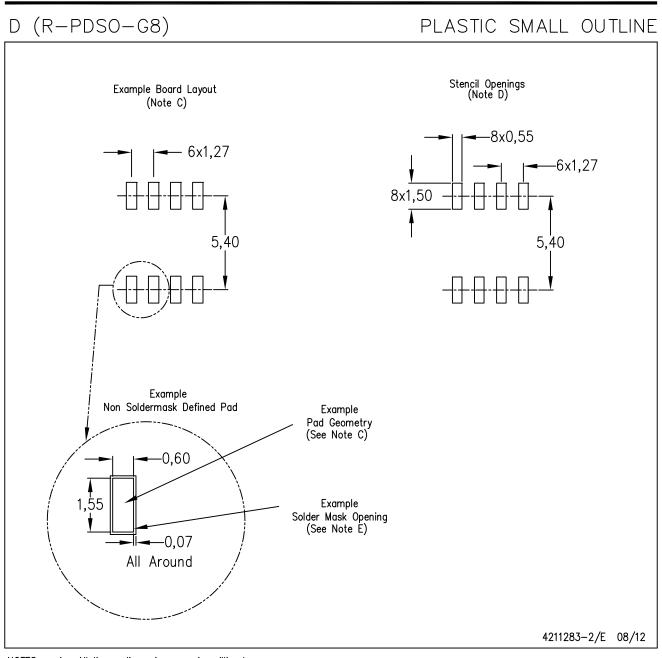
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

P(R-PDIP-T8)

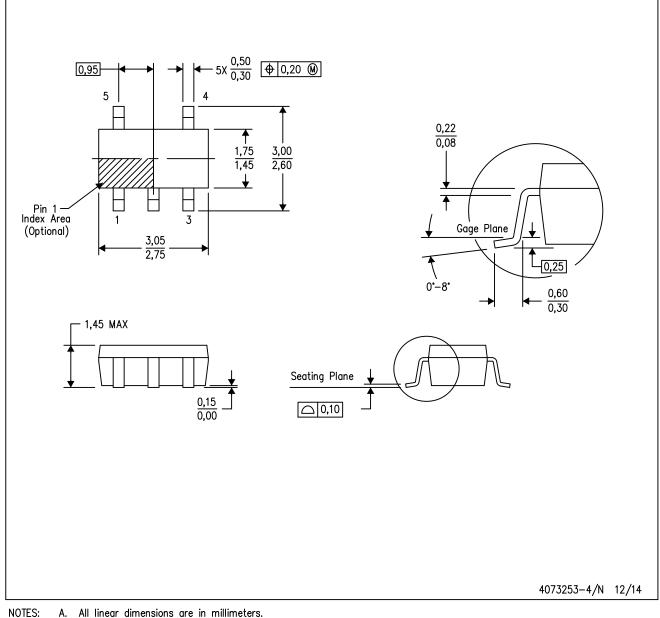
PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

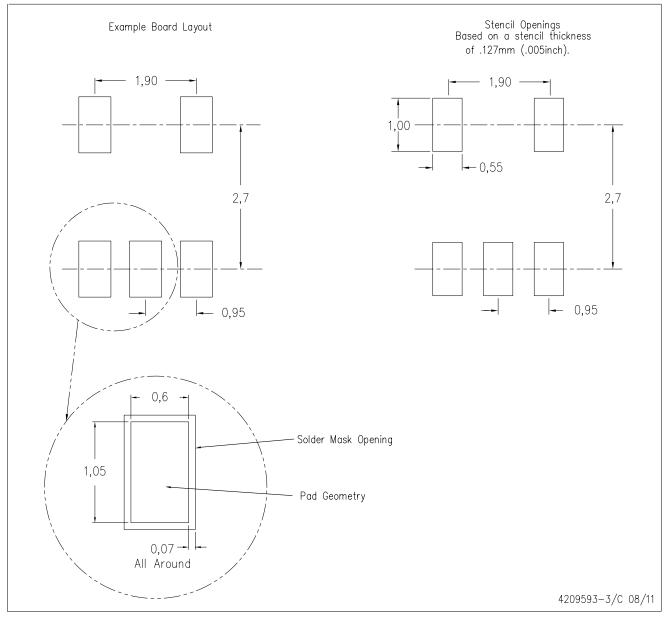
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

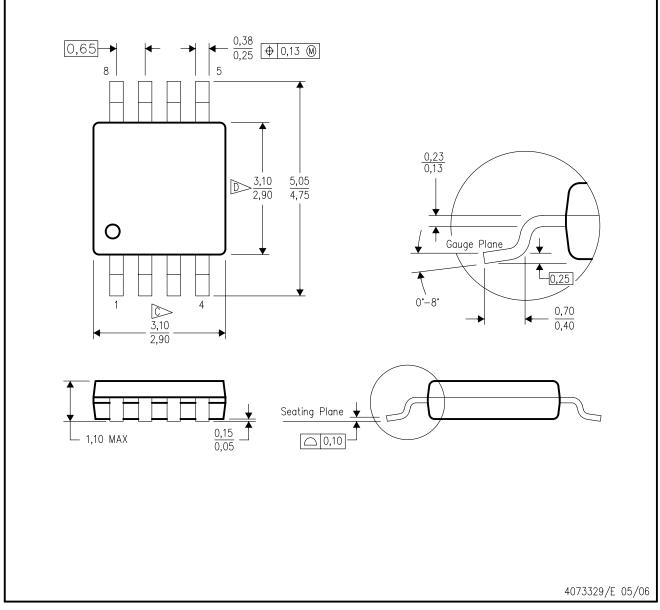


- All linear dimensions are in millimeters. A.
 - This drawing is subject to change without notice. Β.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. C.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:


A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

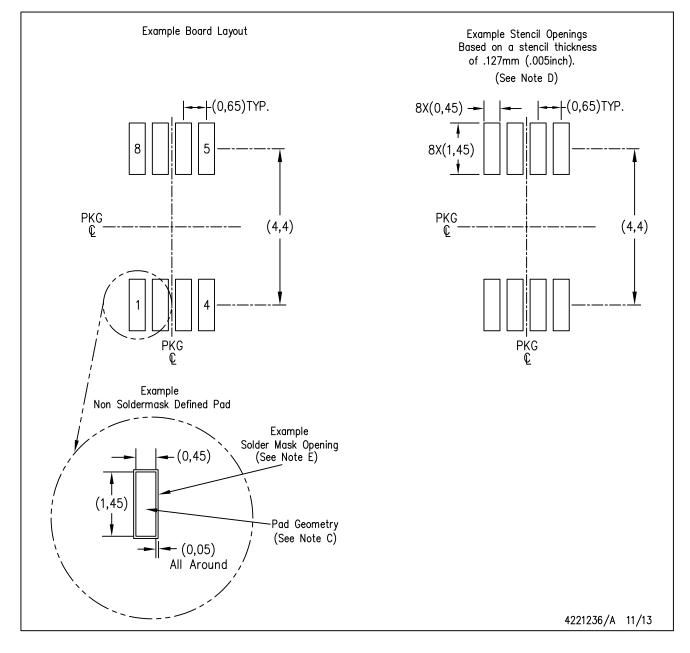
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated