

Sample &

Buy

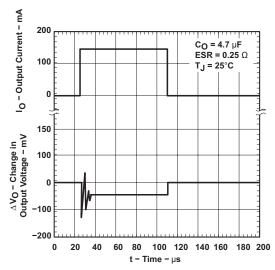
TPS763

SLVS181I-DECEMBER 1998-REVISED DECEMBER 2016

TPS763 Low-Power 150-mA Low-Dropout Linear Regulators

1 Features

Texas


INSTRUMENTS

- 150-mA Low-Dropout Regulator
- Output Voltage: 5 V, 3.8 V, 3.3 V, 3 V, 2.8 V, 2.7 V, 2.5 V, 1.8 V, 1.6 V, and Variable
- Dropout Voltage, Typically 300 mV at 150 mA
- **Thermal Protection**
- **Over Current Limitation**
- Less Than 2-µA Quiescent Current in Shutdown Mode
- -40°C to 125°C Operating Junction Temperature Range
- 5-Pin SOT-23 (DBV) Package

Applications 2

- **Electricity Meters**
- Solar Inverters
- **HVAC Systems**
- Servo Drives and Motion Control
- Sensor Transmitters

TPS76350 Load Transient Response

3 Description

The TPS763xx family of low-dropout (LDO) voltage regulators offers the benefits of low-dropout voltage. low-power operation, and miniaturized packaging. These regulators feature low dropout voltages and quiescent currents compared to conventional LDO regulators. Offered in a 5-pin, small outline integrated-circuit SOT-23 package, the TPS763xx series devices are ideal for cost-sensitive designs and for applications where board space is at a premium.

A combination of new circuit design and process innovation has enabled the usual pnp pass transistor to be replaced by a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the dropout voltage is low-typically 300 mV at 150 mA of load current (TPS76333)-and is directly proportional to the load current. Because the PMOS pass element is a voltage-driven device, the quiescent current is low (140 µA maximum) and is stable over the entire range of output load current (0 mA to 150 mA). Intended for use in portable systems such as laptops and cellular phones, the low-dropout voltage feature and low-power operation result in a significant increase in system battery operating life.

The TPS763xx also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 μ A maximum at T_J = 25°C.The TPS763xx is offered in 1.6-V ,1.8-V, 2.5-V, 2.7-V, 2.8-V, 3-V, 3.3-V, 3.8-V, and 5-V fixed-voltage versions and in a variable version (programmable over the range of 1.5 V to 6.5 V).

Device	Inform	ation ⁽¹⁾
--------	--------	----------------------

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS763xx	SOT-23 (5)	2.90 mm × 1.60 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Page

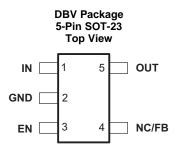
Table of Contents

1	Features 1
2	Applications 1
3	Description 1
4	Revision History 2
5	Pin Configuration and Functions 3
6	Specifications
7	Absolute Maximum Ratings 3
8	ESD Ratings 3
9	Recommended Operating Conditions 3
10	Thermal Information 4
11	Electrical Characteristics 4
	11.1 Typical Characteristics
12	
12	11.1 Typical Characteristics 7
12	11.1 Typical Characteristics 7 Detailed Description 11
12	11.1 Typical Characteristics 7 Detailed Description 11 12.1 Overview 11

	40.4	Device Exectional Medice
		Device Functional Modes 12
13	Appl	ication and Implementation 13
	13.1	Application Information 13
	13.2	Typical Application 13
14	Pow	er Supply Recommendations 16
	14.1	Power Dissipation and Junction Temperature 16
15	Layo	put 16
	15.1	Layout Guidelines 16
	15.2	Layout Example 16
16	Devi	ce and Documentation Support 17
	16.1	Receiving Notification of Documentation Updates 17
	16.2	Community Resources 17
	16.3	Trademarks 17
	16.4	Electrostatic Discharge Caution 17
	16.5	Glossary 17
17	Mech	nanical, Packaging, and Orderable
	Infor	mation 17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision H (January 2004) to Revision I

•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Deleted Legacy Applications and Non-Ceramic Capacitor Stability from Applications	1
•	Added Electricity Meters, Solar Inverters, HVAC Systems, Servo Drives and Motion Control, and Sensor Transmitters to <i>Applications</i>	1
•	Deleted Dissipation Ratings table	3
•	Added Thermal Information table	4

TPS763 SLVS181I – DECEMBER 1998 – REVISED DECEMBER 2016

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION		
NO.	NAME	1/0	DESCRIPTION		
1	IN	I	Input supply voltage		
2	GND	—	Ground		
3	EN	I	Enable input		
4	NC/FB	—/I	No connection (fixed-voltage option only) or feedback voltage (TPS76301 only)		
5	OUT	0	Regulated output voltage		

6 Specifications

7 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Input voltage	-0.3	10	V
Voltage at EN	-0.3	V _I + 0.3	V
Voltage on OUT, FB		7	V
Peak output current	Internally limited		
Operating junction temperature, T _J	-40	150	°C
Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8 ESD Ratings

			VALUE	UNIT
V	Flactroatatia diasharra	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

9 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
VI	Input voltage ⁽¹⁾	2.7	10	V
Io	Continuous output current	0	150	mA
TJ	Operating junction temperature	-40	125	°C

(1) To calculate the minimum input voltage for your maximum output current, use the following equation: V_{I(min)} = V_{O(max)} + V_{DO(max load)}

10 Thermal Information

		TPS763xx	
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	UNIT
		5 PINS	
$R_{ hetaJA}$	Junction-to-ambient thermal resistance	205.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	125.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	34.6	°C/W
ΨJT	Junction-to-top characterization parameter	15.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	33.8	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	—	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

11 Electrical Characteristics

over recommended operating free-air temperature range, $V_I = V_{O(typ)} + 1 V$, $I_O = 1 mA$, EN = IN, and $C_O = 4.7 \mu F$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
			$3.25 V > V_I \ge 2.7 V,$ $2.5 V \ge V_O \ge 1.5 V,$ $I_O = 1 \text{ mA to } 75 \text{ mA}, T_J = 25^{\circ}\text{C}$	0.98 × V _O	Vo	1.02 × V _O	
			$3.25 \text{ V} > \text{V}_{\text{I}} \ge 2.7 \text{ V},$ $2.5 \text{ V} \ge \text{V}_{\text{O}} \ge 1.5 \text{ V},$ $\text{I}_{\text{O}} = 1 \text{ mA to } 75 \text{ mA}$	0.97 × V _O	Vo	1.03 × V _O	
		TPS76301	$\label{eq:VI} \begin{array}{l} V_I \geq 3.25 \ V, \ 5 \ V \geq V_O \geq 1.5 \ V, \\ I_O = 1 \ mA \ to \ 100 \ mA, \ T_J = 25^\circ C \end{array}$	0.98 × V _O	Vo	1.02 × V _O	
			$V_{I} \ge 3.25 \text{ V}, 5 \text{ V} \ge V_{O} \ge 1.5 \text{ V}, I_{O} = 1 \text{ mA to } 100 \text{ mA}$	0.97 × V _O	Vo	1.03 × V _O	
			$V_{I} ≥ 3.25 V, 5 V ≥ V_{O} ≥ 1.5 V,$ $I_{O} = 1 \text{ mA to 150 mA, } T_{J} = 25^{\circ}\text{C}$	0.975 × V _O	Vo	1.025 × V _O	
		$V_{\rm I} \ge 3.25 \text{ V}, 5 \text{ V} \ge V_{\rm O} \ge 1.5 \text{ V},$ $I_{\rm O} = 1 \text{ mA to } 150 \text{ mA}$ 0.9625 × V _O	0.9625 × V _O	Vo	1.0375 × V _O		
	Output voltage		$V_{I} = 2.7 \text{ V}, 1 \text{ mA} < I_{O} < 75 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	1.568	1.6	1.632	V
Vo			V _I = 2.7 V, 1 mA < I _O < 75 mA	1.552	1.6	1.648	
		TPS76316	$V_{I} = 3.25 \text{ V}, 1 \text{ mA} < I_{O} < 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	1.568	1.6	1.632	
			$V_{I} = 3.25 \text{ V}, 1 \text{ mA} < I_{O} < 100 \text{ mA}$	1.552	1.6	1.648	
			$V_{I} = 3.25 \text{ V}, 1 \text{ mA} < I_{O} < 150 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	1.56	1.6	1.64	
			$V_{I} = 3.25 \text{ V}, 1 \text{ mA} < I_{O} < 150 \text{ mA}$	1.536	1.6	1.664	
			$V_{I} = 2.7 \text{ V}, 1 \text{ mA} < I_{O} < 75 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	1.764	1.8	1.836	
			$V_{I} = 2.7 \text{ V}, 1 \text{ mA} < I_{O} < 75 \text{ mA}$	1.746	1.8	1.854	
		TPS76318	V _I = 3.25 V, 1 mA < I _O < 100 mA, T _J = 25°C	1.764	1.8	1.836	
		V _I = 3.25 V, 1 mA < I _O < 100 mA	1.746	1.8	1.854		
		$V_{I} = 3.25 V$, 1 mA < I_{O} < 150 mA, $T_{J} = 25^{\circ}C$	1.755	1.8	1.845		
			V _I = 3.25 V, 1 mA < I _O < 150 mA	1.733	1.8	1.867	

Electrical Characteristics (continued)

over recommended operating free-air temperature range, $V_I = V_{O(typ)} + 1 V$, $I_O = 1 mA$, EN = IN, and $C_O = 4.7 \mu F$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
			I_{O} = 1 mA to 100 mA, T_{J} = 25°C	2.45	2.5	2.55	
		TDOZODOS	$I_{O} = 1 \text{ mA to } 100 \text{ mA}$	2.425	2.5	2.575	
		TPS76325	I_{O} = 1 mA to 150 mA, T_{J} = 25°C	2.438	2.5	2.562	
			I _O = 1 mA to 150 mA	2.407	2.5	2.593	
			$I_{O} = 1 \text{ mA to } 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	2.646	2.7	2.754	
		TD070007	$I_{O} = 1 \text{ mA to } 100 \text{ mA}$	2.619	2.7	2.781	
		TPS76327	$I_{O} = 1 \text{ mA to } 150 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	2.632	2.7	2.767	
			$I_{O} = 1 \text{ mA to } 150 \text{ mA}$	2.599	2.7	2.801	
			$I_{O} = 1 \text{ mA to } 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	2.744	2.8	2.856	
			I _O = 1 mA to 100 mA	2.716	2.8	2.884	
		TPS76328	$I_0 = 1 \text{ mA to } 150 \text{ mA}, T_J = 25^{\circ}\text{C}$	2.73	2.8	2.87	
v Output voltage		$I_0 = 1 \text{ mA to } 150 \text{ mA}$	2.695	2.8	2.905		
			$I_0 = 1 \text{ mA to } 100 \text{ mA}, T_J = 25^{\circ}\text{C}$	2.94	3	3.06	
	Output voltage		I _O = 1 mA to 100 mA	2.91	3	3.09	
/o	(continued)	TPS76330	$I_0 = 1 \text{ mA to } 150 \text{ mA}, T_J = 25^{\circ}\text{C}$	2.925	3	3.075	V
			$I_0 = 1 \text{ mA to } 150 \text{ mA}$	2.888	3	3.112	
			$I_0 = 1 \text{ mA to } 100 \text{ mA}, T_1 = 25^{\circ}\text{C}$	3.234	3.3	3.366	
		TPS76333	$I_0 = 1 \text{ mA to } 100 \text{ mA}$	3.201	3.3	3.399	
			$I_0 = 1 \text{ mA to } 150 \text{ mA}, T_1 = 25^{\circ}\text{C}$	3.218	3.3	3.382	
			$I_0 = 1 \text{ mA to } 150 \text{ mA}$	3.177	3.3	3.423	
		TPS76338	$I_0 = 1 \text{ mA to } 100 \text{ mA}, T_1 = 25^{\circ}\text{C}$	3.724	3.8	3.876	
			$I_0 = 1$ mA to 100 mA	3.705	3.8	3.895	
			$I_0 = 1 \text{ mA to } 150 \text{ mA}, T_1 = 25^{\circ}\text{C}$	3.686	3.8	3.914	
			$I_0 = 1 \text{ mA to 150 mA}$	3.667	3.8	3.933	
			$I_0 = 1 \text{ mA to } 100 \text{ mA}, T_1 = 25^{\circ}\text{C}$	4.875	5	5.125	
			$I_0 = 1$ mA to 100 mA	4.825	5	5.175	
		TPS76350	$I_0 = 1 \text{ mA to 150 mA}, T_J = 25^{\circ}\text{C}$	4.75	5	5.15	
			$I_0 = 1 \text{ mA to 150 mA}$	4.8	5	5.2	
	Quiescent current	$l_0 = 1 \text{ mA to}$	150 mA, $T_J = 25^{\circ}C^{(1)}$		85	100	
(Q)	(GND pin current)	$I_0 = 1 \text{ mA to}$				140	μA
	· · · /	EN < 0.5 V, T			0.5	1	
	Standby current	EN < 0.5 V	J = 20 0		0.0	2	μA
/ _n	Output noise voltage		to 50 kHz, $T_J = 25^{\circ}C$, $C_O = 10 \ \mu F^{(2)}$		140	2	μV
PSRR	Ripple rejection		= 10 μ F, T _J = 25°C ⁽²⁾		60		dB
51.11	Current limit	$T_{\rm J} = 25^{\circ} {\rm C}^{(3)}$	m, , , j = 20 0	0.5	0.8	1.5	A
	Output voltage line		≤ 10 V, V _I ≥ 3.5 V, T _J = 25°C	0.5	0.04%	0.07%	~
	regulation $(\Delta V_O/V_O)^{(3)}$		$\leq 10 \text{ V}, \text{ V}_{I} \geq 3.5 \text{ V}$ $\leq 10 \text{ V}, \text{ V}_{I} \geq 3.5 \text{ V}$		0.0470	0.1%	V
/ _{IH}	EN high level input ⁽²⁾				1.4	2	V
VIL	EN low level input ⁽²⁾			0.5	1.2		V

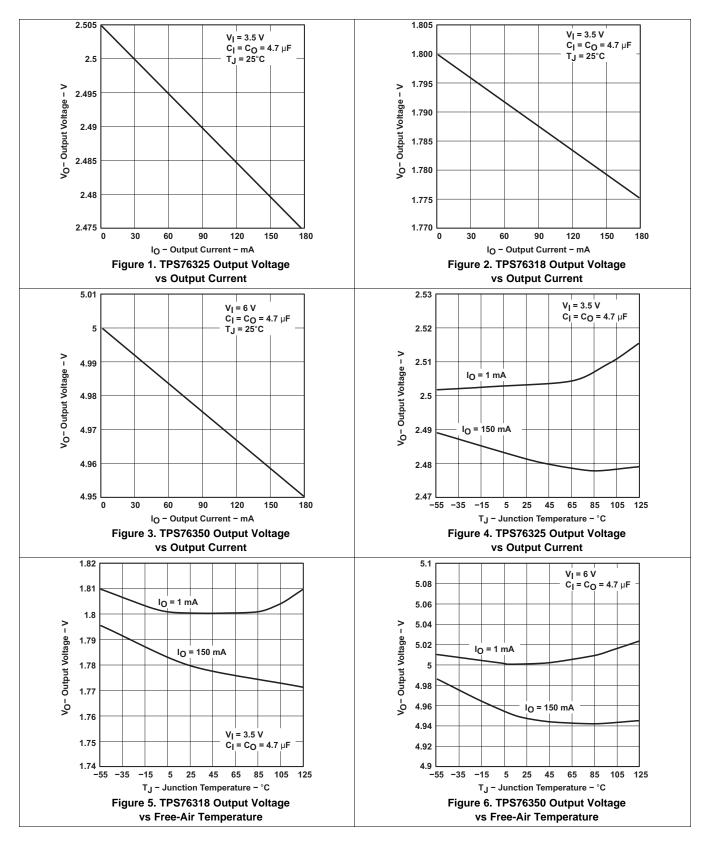
(1) Minimum IN operating voltage is 2.7 V or V_{O(typ)} + 1 V, whichever is greater. (2) Test conditions includes output voltage V_O = 0 V (for variable device FB is shorted to V_O), and pulse duration = 10 mS. Line Reg. (mV) = (% / V) × $\frac{V_O(V_{Imax} - 3.5 V)}{100}$ × 1000

(3) If
$$V_O < 2.5$$
 V and $V_{Imax} = 10$ V, $V_{Imin} = 3.5$ V:

Line Reg. (mV) =
$$(\% / V) \times \frac{\frac{100}{V_O(V_{\text{Imax}} - (V_O + 1))}{100} \times 1000$$

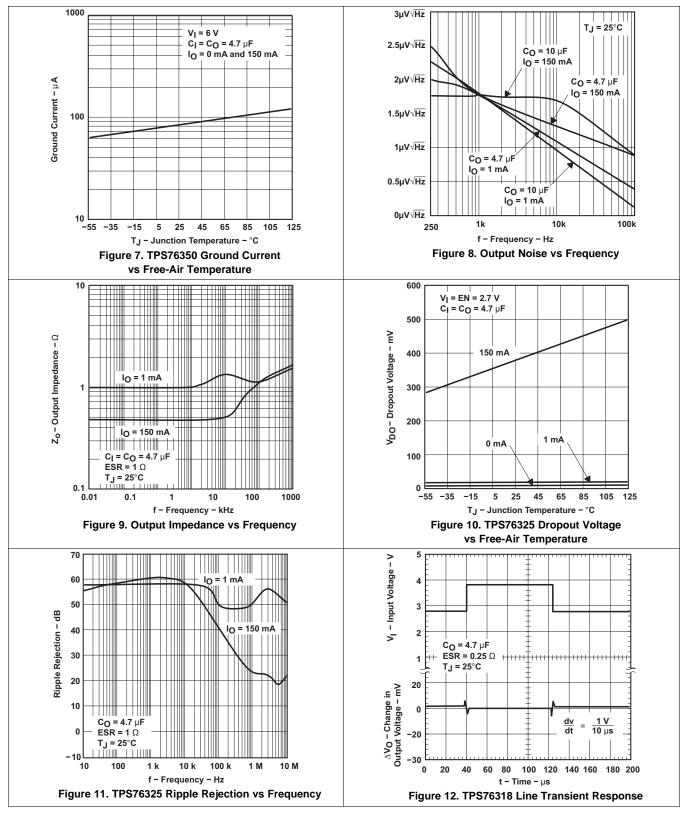
If
$$V_O$$
 > 2.5 V and V_{Imax} = 10 V, V_{Imin} = VO + 1 V

Copyright © 1998–2016, Texas Instruments Incorporated

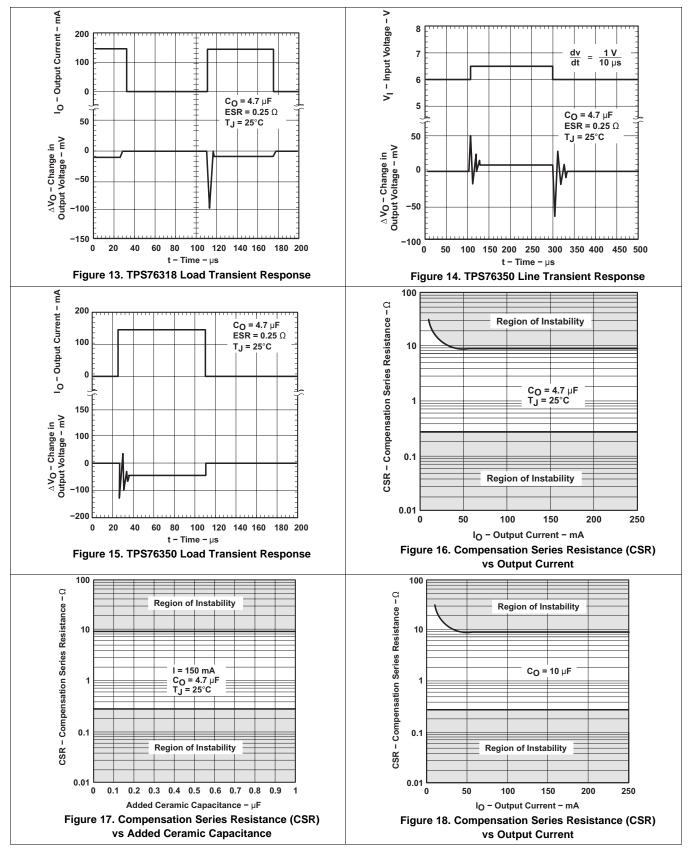

Electrical Characteristics (continued)

over recommended operating free-air temperature range, $V_1 = V_{O(typ)} + 1 V$, $I_0 = 1 mA$, EN = IN, and $C_0 = 4.7 \mu F$ (unless otherwise noted)

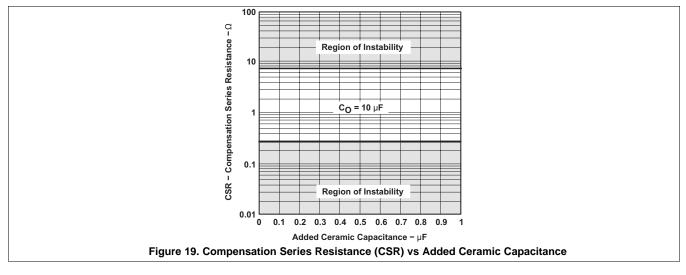
	PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
		EN = 0 V		-0.01	-0.5	^
I	EN input current	EN = IN		-0.01	-0.5	μA
			$I_0 = 0 \text{ mA}, T_J = 25^{\circ}\text{C}$	0.2		
			$I_0 = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$	3		
			$I_{O} = 50 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	120	150	
			I _O = 50 mA		200	
	TPS76325	TDOZCODE	$I_{O} = 75 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	180	225	
		1P576325	I _O = 75 mA		300	
			$I_{O} = 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	240	300	
		I _O = 100 mA		400		
		$I_{O} = 150 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	360	450		
		I _O = 150 mA		600		
			$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}C$	0.2		
		$I_{O} = 1 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	3			
		$I_{O} = 50 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	100	125		
		I _O = 50 mA		166		
	Dropout voltage	TPS76333	$I_{O} = 75 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	150	188	۳۱
DO	Dropour voltage	11 370333	I _O = 75 mA		250	III
			$I_{O} = 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	200	250	
			I _O = 100 mA		333	
			$I_{O} = 150 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	300	375	
			I _O = 150 mA		500	
			$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}C$	0.2		
			$I_{O} = 1 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	2		
			$I_{O} = 50 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	60	75	
			I _O = 50 mA		100	
	TPS	TPS76350	$I_{O} = 75 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	90	113	
		11 37 0330	I _O = 75 mA		150	
			$I_{O} = 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	120	150	
		I _O = 100 mA		200		
			$I_{O} = 150 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	180	225	
			I _O = 150 mA		300	



11.1 Typical Characteristics



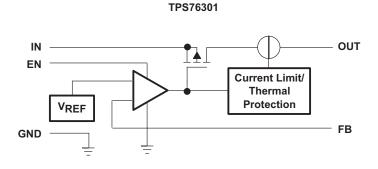
Typical Characteristics (continued)



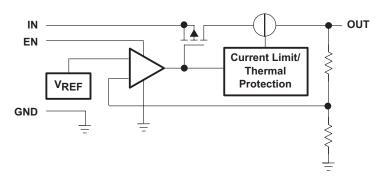
Typical Characteristics (continued)

Typical Characteristics (continued)

12 Detailed Description


12.1 Overview

The TPS763xx devices uses a PMOS pass element to dramatically reduce both dropout voltage and supply current over more conventional PNP pass element LDO designs. The PMOS pass element is a voltage-controlled device that, unlike a PNP transistor, does not require increased drive current as output current increases. Supply current in the TPS763xx is essentially constant from no-load to maximum load.


Current limiting and thermal protection prevent damage by excessive output current and/or power dissipation. The device switches into a constant-current mode at approximately 1 A; further load reduces the output voltage instead of increasing the output current. The thermal protection shuts the regulator off if the junction temperature rises above 165°C. Recovery is automatic when the junction temperature drops approximately 25°C below the high temperature trip point. The PMOS pass element includes a back diode that safely conducts reverse current when the input voltage level drops below the output voltage level.

A logic low on the enable input, EN shuts off the output and reduces the supply current to less than 2 μ A. EN must be tied high in applications where the shutdown feature is not used.

12.2 Functional Block Diagram

TPS76316/ 18/ 25/ 27/ 28/ 30/ 33/ 38/ 50

Copyright © 2016, Texas Instruments Incorporated

12.3 Feature Description

12.3.1 Regulator Protection

The TPS763xx features internal current limiting and thermal protection. During normal operation, the TPS763xx limits output current to approximately 800 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, take care not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to below 140°C, regulator operation resumes.

Copyright © 1998–2016, Texas Instruments Incorporated

Feature Description (continued)

12.3.2 Enable

The enable signal (V_{EN}) is an active-high digital control that enables the LDO when the enable voltage is past the rising threshold (V_{EN} \geq V_{IH(EN)}) and disables the LDO when the enable voltage is below the falling threshold (V_{EN} \leq V_{IL(EN)}). The exact enable threshold is between V_{IH(EN)} and V_{IL(EN)} because EN is a digital control. In applications that do not use the enable control, connect EN to V_{IN}.

12.4 Device Functional Modes

Table 1 provides a quick comparison between the regulation and disabled operation.

Table 1. Device Functional Modes Comparison	Table 1.	Device	Functional	Modes	Comparison
---	----------	--------	------------	-------	------------

OPERATING MODE		PARA	METER	
OPERATING MODE	V _{IN}	EN	Ι _{ουτ}	TJ
Regulation ⁽¹⁾	$V_{IN} > V_{OUT(nom)} + V_{DO}$	$V_{EN} > V_{IH(EN)}$	I _{OUT} < I _{CL}	T _J < T _{sd}
Disabled ⁽²⁾	_	$V_{EN} < V_{IL(EN)}$	—	$T_J > T_{sd}$

(1) All table conditions must be met.

(2) The device is disabled when any condition is met.

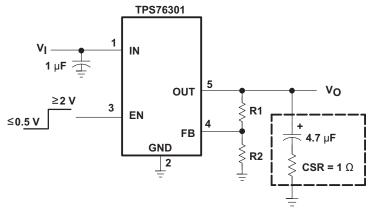
12.4.1 Regulation

The device regulates the output to the targeted output voltage when all the conditions in Table 1 are met.

12.4.2 Disabled

When disabled, the pass device is turned off, the internal circuits are shutdown.

13 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

13.1 Application Information

The TPS763xx low-dropout (LDO) regulators are part of a family of regulators which have been optimized for use in battery-operated equipment and feature extremely low dropout voltages, low quiescent current (140 μ A), and an enable input to reduce supply currents to less than 2 μ A when the regulator is turned off.

13.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 20. Typical Application Circuit

13.2.1 Design Requirements

Although not required, TI recommends a 0.047- μ F or larger ceramic bypass input capacitor, connected between IN and GND and placed close to the TPS763xx, to improve transient response and noise rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is placed several inches from the power source. Follow the programming guidelines from Table 2.

	DIVIDER RESIS	STANCE (k Ω) ⁽¹⁾
OUTPUT VOLTAGE (V)	R1	R2
2.5	187	169
3.3	301	169
3.6	348	169
4	402	169
5	549	169
6.45	750	169

Table 2.	Output	Voltage	Programming	Guide
----------	--------	---------	-------------	-------

(1) 1% values shown

(1)

13.2.2 Detailed Design Procedure

13.2.2.1 Capacitor Selection

Like all low dropout regulators, the TPS763xx requires an output capacitor connected between OUT and GND to stabilize the internal loop control. The minimum recommended capacitance value is 4.7 μ F and the ESR (equivalent series resistance) must be between 0.3 Ω and 10 Ω . Capacitor values 4.7 μ F or larger are acceptable, provided the ESR is less than 10 Ω . Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described above. Most of the commercially available 4.7 μ F surface-mount solid tantalum capacitors, including devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above (see Table 3).

PART NO.	MFR	VALUE	MAX ESR	SIZE (H × L × W)
T494B475K016AS	Kemet	4.7 μF	1.5 Ω	1.9 × 3.5 × 2.8
195D106x0016x2T	Sprague	10 µF	1.5 Ω	1.3 × 7 × 2.7
695D106x003562T	Sprague	10 µF	1.3 Ω	2.5 × 7.6 × 2.5
TPSC475K035R0600	AVX	4.7 μF	0.6 Ω	2.6 × 6 × 3.2

Table	3.	Capacitor	Selection
-------	----	-----------	-----------

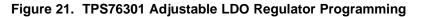
13.2.2.2 Output Voltage Programming

The output voltage of the TPS76301 adjustable regulator is programmed using an external resistor divider as shown in Figure 21. The output voltage is calculated using Equation 1.

$$V_{O} = 0.995 \times V_{ref} \times \left(1 + \frac{R1}{R2}\right)$$

where

• Vref = 1.192 V typical (the internal reference voltage)

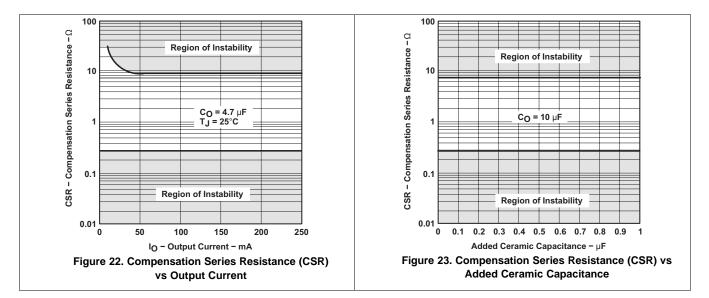

0.995 is a constant used to center the load regulator (1%)

Resistors R1 and R2 must be chosen for approximately 7- μ A divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values must be avoided as leakage currents at FB increase the output voltage error. TI recommends choosing a design procedure of R2 = 169 k Ω to set the divider current at 7 μ A and then calculate R1 using Equation 2.

$$R1 = \left(\frac{V_{O}}{0.995 \times V_{ref}} - 1\right) \times R2$$

$$V_{I} = \frac{1}{1 \ \mu F} = \frac{1}{$$

Copyright © 2016, Texas Instruments Incorporated



13.2.2.3 Reverse Current

The TPS763xx pass element has a built-in back diode that safely conducts reverse currents when the input voltage drops below the output voltage (for example, during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage is anticipated, external limiting might be appropriate.

13.2.3 Application Curves

TPS763

SLVS1811-DECEMBER 1998-REVISED DECEMBER 2016

14 Power Supply Recommendations

A $1-\mu F$ or larger input capacitor must be used.

14.1 Power Dissipation and Junction Temperature

Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature allowable to avoid damaging the device is 150°C. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_D , which must be less than or equal to $P_{D(max)}$.

The maximum-power-dissipation limit is determined using Equation 3.

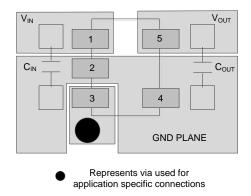
$$P_{D(max)} = \frac{T_J max - T_A}{R_{\theta, JA}}$$

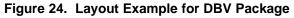
where

- T_Jmax is the maximum allowable junction temperature
- R_{0JA} is the thermal resistance junction-to-ambient for the package, see *Thermal Information*
- T_A is the ambient temperature

The regulator dissipation is calculating using Equation 4.

$$\mathsf{P}_{\mathsf{D}} = (\mathsf{V}_{\mathsf{I}} - \mathsf{V}_{\mathsf{O}}) \times \mathsf{I}_{\mathsf{O}}$$


Power dissipation resulting from quiescent current is negligible.


15 Layout

15.1 Layout Guidelines

- Place input and output capacitors as close to the device as possible.
- Use copper planes for device connections to optimize thermal performance.
- Place thermal vias around the device to distribute the heat.

15.2 Layout Example

(3)

(4)

16 Device and Documentation Support

16.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

16.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

16.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

16.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

16.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

17 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)				Qty	(2)	(6)	(3)		(4/5)	
TPS76301DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PAZI	Samples
TPS76301DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PAZI	Samples
TPS76301DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PAZI	Samples
TPS76301DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PAZI	Samples
TPS76316DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	РВНІ	Samples
TPS76316DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBHI	Samples
TPS76316DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	РВНІ	Samples
TPS76316DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBHI	Samples
TPS76318DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBAI	Samples
TPS76318DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBAI	Samples
TPS76318DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBAI	Samples
TPS76318DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBAI	Samples
TPS76325DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBBI	Samples
TPS76325DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBBI	Samples
TPS76325DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBBI	Samples
TPS76325DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBBI	Samples
TPS76327DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBCI	Samples

PACKAGE OPTION ADDENDUM

17-Mar-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
TPS76327DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBCI	Sample
TPS76327DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBCI	Sample
TPS76328DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBDI	Sample
TPS76328DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBDI	Sample
TPS76328DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBDI	Sample
TPS76328DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBDI	Sample
TPS76330DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBII	Sample
TPS76330DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBII	Sample
TPS76330DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBII	Sample
TPS76330DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBII	Sample
TPS76333DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBEI	Sample
TPS76333DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBEI	Sample
TPS76333DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBEI	Sample
TPS76333DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PBEI	Sample
TPS76338DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBFI	Sample
TPS76338DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBFI	Sample
TPS76338DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBFI	Sampl
TPS76350DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBGI	Sampl

17-Mar-2017

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS76350DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBGI	Samples
TPS76350DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBGI	Samples
TPS76350DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PBGI	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

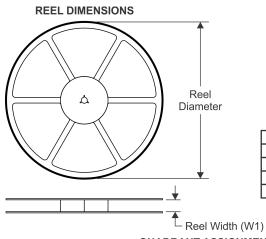
17-Mar-2017

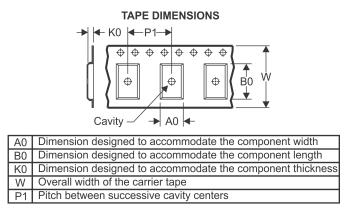
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS763 :

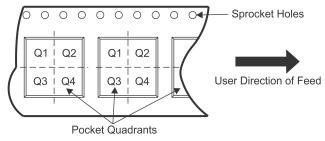
• Automotive: TPS763-Q1

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


PACKAGE MATERIALS INFORMATION

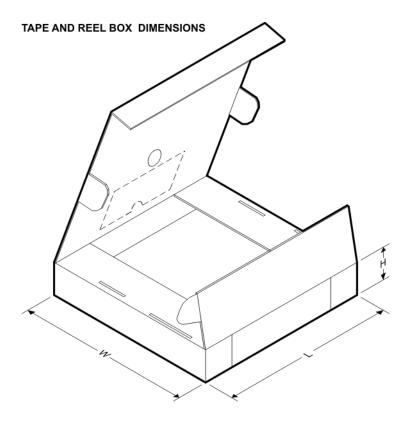
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS76301DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76301DBVR	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS76301DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76301DBVT	SOT-23	DBV	5	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS76316DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76316DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76318DBVR	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS76318DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TPS76318DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76318DBVT	SOT-23	DBV	5	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS76325DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76325DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76327DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76327DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76328DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76328DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76330DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76330DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3


PACKAGE MATERIALS INFORMATION

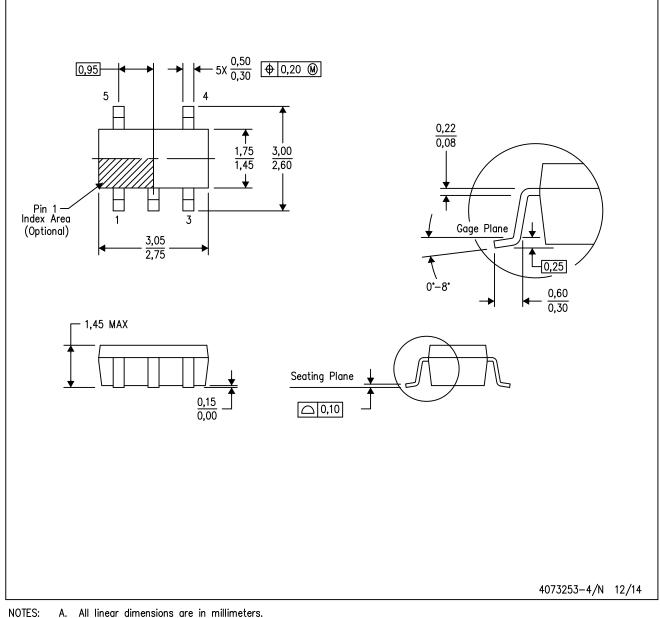
www.ti.com

3-Aug-2017

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS76333DBVR	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS76333DBVT	SOT-23	DBV	5	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS76333DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76338DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76338DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76350DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS76350DBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS76301DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76301DBVR	SOT-23	DBV	5	3000	203.0	203.0	35.0
TPS76301DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76301DBVT	SOT-23	DBV	5	250	203.0	203.0	35.0
TPS76316DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76316DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76318DBVR	SOT-23	DBV	5	3000	203.0	203.0	35.0
TPS76318DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76318DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76318DBVT	SOT-23	DBV	5	250	203.0	203.0	35.0

PACKAGE MATERIALS INFORMATION

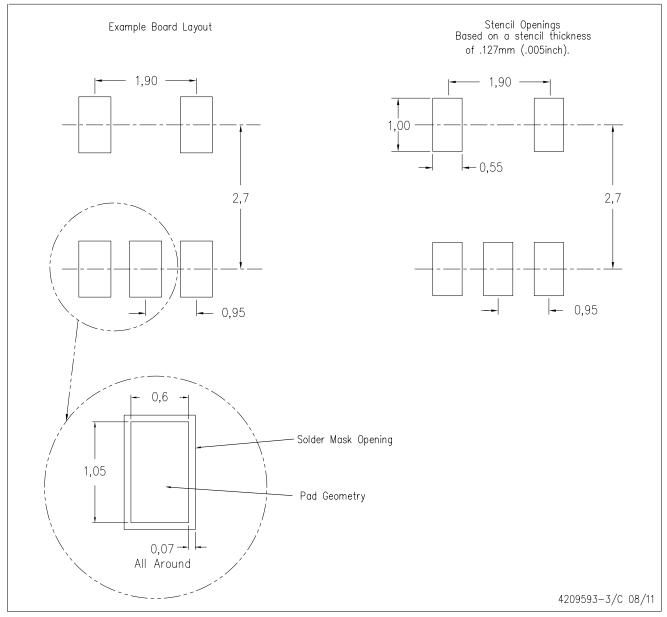

www.ti.com

3-Aug-2017

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS76325DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76325DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76327DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76327DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76328DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76328DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76330DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76330DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76333DBVR	SOT-23	DBV	5	3000	203.0	203.0	35.0
TPS76333DBVT	SOT-23	DBV	5	250	203.0	203.0	35.0
TPS76333DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76338DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76338DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS76350DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS76350DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE



- All linear dimensions are in millimeters. A.
 - This drawing is subject to change without notice. Β.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. C.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated