

Electrical Characteristics ( $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STATIC PARAMETERS |  |  |  |  |  |  |
| $B V_{\text {DSS }}$ | Drain-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | 40 |  |  | V |
| IDSs | Zero Gate Voltage Drain Current | $\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  | 1 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{T}_{\mathrm{J}}=55^{\circ} \mathrm{C}$ |  |  | 5 |  |
| IGSS | Gate-Body leakage current | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$ |  |  | $\pm 100$ | nA |
| $\mathrm{V}_{\text {GS }(\text { (h) }}$ | Gate Threshold Voltage | $\mathrm{V}_{\text {DS }}=\mathrm{V}_{G S} \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ | 1.55 | 2.1 | 2.7 | V |
| $\mathrm{I}_{\mathrm{DON})}$ | On state drain current | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=5 \mathrm{~V}$ | 120 |  |  | A |
| $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ | Static Drain-Source On-Resistance | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ |  | 9.4 | 11.3 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ |  | 14 | 17 |  |
|  |  | $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ |  | 11 | 13.8 | $\mathrm{m} \Omega$ |
| $\mathrm{g}_{\mathrm{FS}}$ | Forward Transconductance | $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ |  | 50 |  | S |
| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  | 0.7 | 1 | V |
| $\mathrm{I}_{\text {S }}$ | Maximum Body-Diode Continuous Current |  |  |  | 25 | A |
| DYNAMIC PARAMETERS |  |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ | 1200 | 1500 | 1950 | pF |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 150 | 215 | 280 | pF |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 80 | 135 | 190 | pF |
| $\mathrm{R}_{\mathrm{g}}$ | Gate resistance | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ | 1.7 | 3.5 | 5.3 | $\Omega$ |
| SWITCHING PARAMETERS |  |  |  |  |  |  |
| $\mathrm{Q}_{\mathrm{g}}$ (10V) | Total Gate Charge | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ | 22 | 27.2 | 33 | nC |
| $\mathrm{Q}_{\mathrm{g}}(4.5 \mathrm{~V})$ |  |  | 10 | 13.6 | 16 | nC |
| $\mathrm{Q}_{\mathrm{gs}}$ | Gate Source Charge |  | 3.6 | 4.5 | 5.4 | nC |
| $\mathrm{Q}_{\mathrm{gd}}$ | Gate Drain Charge |  | 3.8 | 6.4 | 9 | nC |
| $\mathrm{t}_{\text {(on) }}$ | Turn-On DelayTime | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \Omega, \\ & \mathrm{R}_{\mathrm{GEN}}=3 \Omega \end{aligned}$ |  | 6.4 |  | ns |
| $\mathrm{t}_{\mathrm{r}}$ | Turn-On Rise Time |  |  | 17.2 |  | ns |
| $t_{\text {D(off }}$ | Turn-Off DelayTime |  |  | 29.6 |  | ns |
| $\mathrm{t}_{\mathrm{f}}$ | Turn-Off Fall Time |  |  | 16.8 |  | ns |
| $\mathrm{t}_{\text {r }}$ | Body Diode Reverse Recovery Time | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=500 \mathrm{~A} / \mu \mathrm{s}$ | 9 | 13 | 17 | ns |
| $\mathrm{Q}_{\text {rr }}$ | Body Diode Reverse Recovery Charge | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=500 \mathrm{~A} / \mu \mathrm{s}$ | 25 | 35 | 45 | nC |

$A$. The value of $R_{\theta J A}$ is measured with the device mounted on $1 \mathrm{in}^{2} \mathrm{FR}-4$ board with $20 z$. Copper, in a still air environment with $T_{A}=25^{\circ} \mathrm{C}$. The Power dissipation $P_{D S M}$ is based on $R_{\text {өJA }}$ and the maximum allowed junction temperature of $150^{\circ}$. The value in any given application depends on the user's specific board design.
B. The power dissipation $P_{D}$ is based on $T_{J(M A X)}=150^{\circ} \mathrm{C}$, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature $T_{(\operatorname{mAX})}=150^{\circ} \mathrm{C}$. Ratings are based on low frequency and duty cycles to keep initial $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
D. The $R_{\theta J A}$ is the sum of the thermal impedence from junction to case $R_{\theta J C}$ and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle $0.5 \%$ max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}=150^{\circ} \mathrm{C}$. The SOA curve provides a single pulse rating.
G. The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on $1 \mathrm{in}^{2}$ FR-4 board with 2 oz . Copper, in a still air environment with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


Fig 1: On-Region Characteristics (Note E)


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)


Figure 2: Transfer Characteristics (Note E)


Figure 4: On-Resistance vs. Junction Temperature (Note E)


Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


Figure 12: Single Pulse Avalanche capability (Note C)


Figure 14: Current De-rating (Note F)


Figure 13: Power De-rating (Note F)


Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)


Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit \& Waveform



Resistive Switching Test Circuit \& Waveforms


Unclamped Inductive Switching (UIS) Test Circuit \& Waveforms


Diode Recovery Test Circuit \& Waveforms

Version $\quad$ B

Title

## DFN5X6 PACKAGE MARKING DESCRIPTION



Green product

| NOTE: |  |
| :--- | :--- |
| LOGO | - AOS Logo |
| 6884 | - Part number code |
| F | - Fab code |
| A | - Assembly location code |
| Y | - Year code |
| W | - Week code |
| L\&T | - Assembly lot code |


| PART NO. | DESCRIPTION | CODE |
| :--- | :---: | :---: |
| AON6884 | Green product | 6884 |
| AON6884L | Green product | 6884 |


| Document No. | PO-00045 |
| :--- | :---: |
| Version | rev B |

DFN5x6_8L_EP2_P PACKAGE OUTLINE


RECOMMENDED LAND PATTERN


UNIT: mm

| SYMBOLS | DIMENSIONS IN MILLIMETERS |  |  | DIMENSIONS IN INCHES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | NOM | MAX | MIN | NOM | MAX |
| A | 0.85 | 0.95 | 1.00 | 0.033 | 0.037 | 0.039 |
| A1 | 0.00 | --- | 0.05 | 0.000 | --- | 0.002 |
| b | 0.30 | 0.40 | 0.50 | 0.012 | 0.016 | 0.020 |
| c | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 |
| D | 5.20 BSC |  |  | 0.205 BSC |  |  |
| D1 | 4.35 BSC |  |  | 0.171 BSC |  |  |
| D2 | 0.50 | 0.60 | 0.75 | 0.020 | 0.024 | 0.030 |
| E | 5.55 BSC |  |  | 0.219 BSC |  |  |
| E1 | 6.05 BSC |  |  | 0.238 BSC |  |  |
| E2 | 3.82 BSC |  |  | 0.150 BSC |  |  |
| e | 1.27 BSC |  |  | 0.050 BSC |  |  |
| L | 0.45 | 0.55 | 0.65 | 0.018 | 0.022 | 0.026 |
| L1 | 0 | --- | 0.15 | 0 | --- | 0.006 |
| L2 | 0.68 REF |  |  | 0.027 REF |  |  |
| $\theta$ | $0^{\circ}$ | --- | $10^{\circ}$ | $0^{\circ}$ | - | $10^{\circ}$ |

NOTE

1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
2. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

DFN5x6 Carrier Tape


UNIT: MM

| PACKAGE | AO | B0 | K0 | D0 | D1 | E | E 1 | E2 | P0 | P1 | P2 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DFN5x6 <br> $(12 \mathrm{~mm})$ | 6.30 <br> $\pm 0.10$ | 5.45 <br> $\pm 0.10$ | 1.30 <br> $\pm 0.10$ | 1.50 <br> MIN. | 1.55 <br> $\pm 0.05$ | 12.00 <br> $\pm 0.30$ | 1.75 <br> $\pm 0.10$ | 5.50 <br> $\pm 0.10$ | 8.00 <br> $\pm 0.10$ | 4.00 <br> $\pm 0.10$ | 2.00 <br> $\pm 0.10$ | 0.30 <br> $\pm 0.05$ |

## DFN5x6 Reel



UNIT: MM

| TAPE SIZE | REEL SIZE | M | N | W | W1 | H | K | S | $G$ | R | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 mm | Ф330 | $\begin{gathered} \varnothing 330.00 \\ \pm 0.50 \end{gathered}$ | $\begin{aligned} & \varnothing 97.00 \\ & \pm 0.10 \end{aligned}$ | $\begin{aligned} & 13.00 \\ & \pm 0.30 \end{aligned}$ | $\begin{aligned} & 17.40 \\ & \pm 1.00 \end{aligned}$ | $\not{ }^{\circ} 13.00$ <br> $+0.50$ <br> $-0.20$ | 10.60 | $\begin{gathered} 2.00 \\ \pm 0.50 \end{gathered}$ | - | --- | - |

## DFN5x6 Tape



# AOS Semiconductor Product Reliability Report 

## AON6884, wev

Plastic Encapsulated Device

This AOS product reliability report summarizes the qualification result for AON6884. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AON6884 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

## Table of Contents:

I. Product Description
II. Package and Die information
III. Reliability Stress Test Summary and Results
IV. Reliability Evaluation

## I. Product Description:

The AON6884 uses advanced trench technology to provide excellent $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with low gate charge. This is an all purpose device that is suitable for use in a wide range of power conversion applications

Details refer to the datasheet.

## II. Die / Package Information:

AON6884
Process
Package Type
Lead Frame
Die Attach
Bond
Mold Material
Moisture Level

Standard sub-micron 40V Dual N-Channel MOSFET
DFN5x6 EP2
Bare Cu
Ag Epoxy
Au Wire
Epoxy resin with silica filler Up to Level 1
III. Reliability Stress Test Summary and Results

| Test Item | Test Condition | Time Point | Total Sample Size | Number of Failures | Reference Standard |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HTGB | $\begin{gathered} \text { Temp }=150^{\circ} \mathrm{C}, \\ \text { Vgs }=100 \% \text { of Vgsmax } \end{gathered}$ | $\begin{aligned} & \hline 168 / 500 / \\ & 1000 \text { hours } \end{aligned}$ | 924 pcs | 0 | JESD22-A108 |
| HTRB | $\text { Temp }=150^{\circ} \mathrm{C}$ Vds=80\% of Vdsmax | 168 / 500 / <br> 1000 hours | 924 pcs | 0 | JESD22-A108 |
| MSL Precondition | $168 \mathrm{hr} 85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}+$ 3 cycle reflow@260ํ (MSL 1) | - | 2772 pcs | 0 | JESD22-A113 |
| HAST | $\begin{gathered} 130^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \\ 33.3 \mathrm{psi}, \\ \text { Vds }=80 \% \text { of Vdsmax } \end{gathered}$ | 96 hours | 924 pcs | 0 | JESD22-A110 |
| Autoclave | $\begin{gathered} 121^{\circ} \mathrm{C}, 29.7 \mathrm{psi}, \\ \mathrm{RH}=100 \% \end{gathered}$ | 96 hours | 924 pcs | 0 | JESD22-A102 |
| Temperature Cycle | $\begin{gathered} -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}, \\ \text { air to air, } \end{gathered}$ | $250 / 500$ cycles | 924 pcs | 0 | JESD22-A104 |

Note: The reliability data presents total of available generic data up to the published date.

## IV. Reliability Evaluation

## FIT rate (per billion): 3.27 <br> MTTF = 34926 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate $=\mathrm{Chi}^{2} \times 10^{9} /[2(\mathrm{~N})(\mathrm{H})(\mathrm{Af})]=3.27$
MTTF $=10^{9} /$ FIT $=34926$ years
$\mathbf{C h i}^{2}=$ Chi Squared Distribution, determined by the number of failures and confidence interval
$\mathbf{N}=$ Total Number of units from burn-in tests
$\mathbf{H}=$ Duration of burn-in testing
$\mathbf{A f}=$ Acceleration Factor from Test to Use Conditions ( $\mathrm{Ea}=0.7 \mathrm{eV}$ and Tuse $=55^{\circ} \mathrm{C}$ )
Acceleration Factor $[\mathbf{A f}]=\operatorname{Exp}[E \mathrm{E} / \mathbf{k}(1 / \mathrm{Tj} \mathrm{u}-1 / \mathrm{T} \mathrm{j})]$
Acceleration Factor ratio list:

|  | 55 deg C | 70 deg C | 85 deg C | 100 deg C | 115 deg C | 130 deg C | 150 deg C |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Af | 259 | 87 | 32 | 13 | 5.64 | 2.59 | 1 |

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16
Tj u =The use junction temperature in degree (Kelvin), $\mathrm{K}=\mathrm{C}+273.16$
$\mathbf{k}=$ Boltzmann's constant, $8.617164 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

