

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LB1846MC -

Monolithic Digital IC

Low-Voltage/Low Saturation Voltage Type Bidirectional Motor Driver

Overview

The LB1846MC is 2-channel low-voltage, low saturation voltage type bidirectional motor driver IC that is optimal for use as 2-phase stepping motor drivers in printers, cameras and other portable equipment. The output circuits are of the bipolar type, with PNP transistors in the upper side and NPN transistors in the lower side, and they achieve low saturation output and low power characteristics despite being provided in a miniature package.

The LB1846MC products can directly control a motor from signals from a microcontroller. The LB1846MC is optimal for 1-2 phase excitation drive for 2-phase stepping motors using 4-input logic (IN1, IN2, IN3 and IN4).

Another point is that these IC include built-in thermal shutdown circuits so that IC scorching or burning is prevented in advance even if the IC output is shorted.

Functions

- Optimal for 1-2 phase excitation drive for 2-phase stepping motors
- Standby current: Zero Thermal shutdown circuit
- Low saturation voltage. V_O (sat) = 0.55V typical at I_O = 400mA
- No limitations on the magnitude relationship between the power supply voltage (V_{CC}) and the input voltage (V_{IN})

Specifications

Absolute Maximum Ratings at Ta = 25°C

	•			
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		-0.3 to +8.0	V
Output voltage	Vout		V _{CC} + V _{SF}	V
Input voltage	V _{IN}		-0.3 to +8.0	V
Ground pin outflow current	I _{GND}	Per channel	800	mA
Allowable power dissipation	Pd max	When mounted*	870	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +150	°C

^{*1:} When mounted on the specified printed circuit board (114.3mm × 76.2mm × 1.5mm), glass epoxy board

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

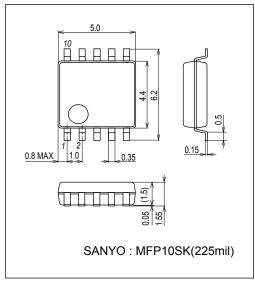
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

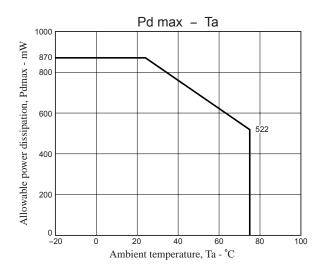
Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

LB1846MC

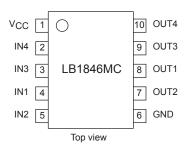
Allowable Operating Ranges at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		2.5 to 7.5	V
Input high-level voltage	V _{IH}		2.5 to 7.5	V
Input low-level voltage	V _{IL}		-0.3 to +0.7	V

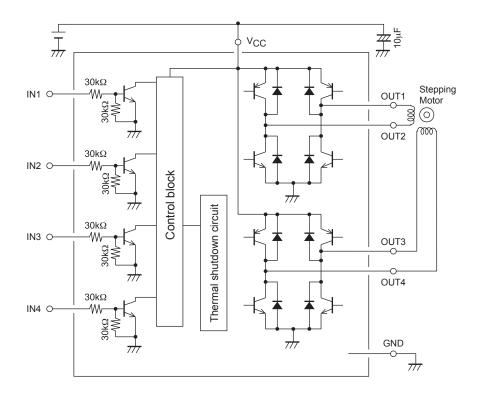

Electrical Characteristics at Ta = 25°C, $V_{CC} = 5V$


Parameter	Cumbal	Conditions	Ratings			l lait		
Parameter	Symbol Conditions -		min	typ	max	Unit		
Current drain	I _{CC} 0	IN1, 2, 3, 4 = 0V		0.1	10	μΑ		
	I _{CC} 1	IN1, 3 = 3V, IN2, 4 = 0V		30	40	mA		
Output saturation voltage	V _{OUT} 1	V _{IN} = 3V or 0V, V _{CC} = 3 to 7.5V, I _{OUT} = 200mA		0.27	0.4	V		
	V _{OUT} 2	V_{IN} = 3V or 0V, V_{CC} = 4 to 7.5V, I_{OUT} = 400mA		0.55	0.8	V		
Input current	I _{IN}	V _{IN} = 5V		150	200	μΑ		
Spark Killer Diode								
Reverse current	I _S (leak)				30	μΑ		
Forward voltage	V _{SF}	I _{OUT} = 400mA			1.7	V		

Package Dimensions

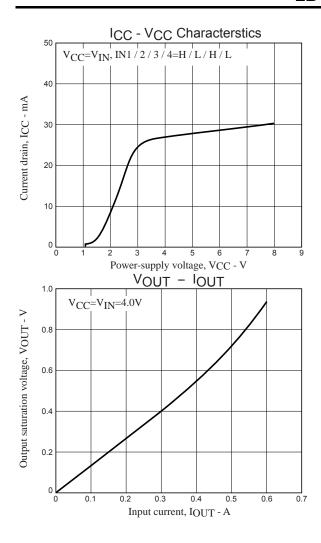

unit: mm (typ)

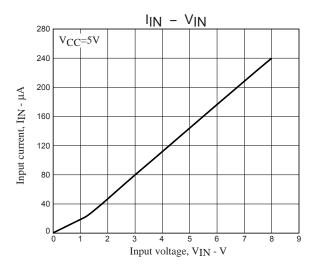
3420



Pin Assignment

Block Diagram


Truth Tables


IN1	IN2	IN3	IN4	OUT1	OUT2	OUT3	OUT4	Note
L	L	L	L	OFF	OFF	OFF	OFF	Standby
Н	L	L	L	Н	L	OFF	OFF	
Н	L	Н	L	Н	L	Н	L	
L	L	Н	L	OFF	OFF	Н	L	
L	Н	Н	L	L	Н	Н	L	4 O alexander Matter
L	Н	L	L	L	Н	OFF	OFF	1-2 phase excitation
L	Н	L	Н	L	Н	L	Н	
L	L	L	Н	OFF	OFF	L	Н	
Н	L	L	Н	Н	L	L	Н	
Н	Н	-	-	The logic output for the first high-level input is produced. *2				
-	-	Н	Н					

Note: *1 "-" indicates a "don't care" input.

^{*2} If two high levels (H/H) are input to the IN1/IN2 pins with the timing shown in (1) in the figure below, then the IN2 input that arrived later will be ignored and the IC will function as though an H/L combination is applied to the IN1/IN2 pins. Similarly, the timing shown in (2) results in a L/H combination on the IN1/IN2 pins.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned

This catalog provides information as of March, 2012. Specifications and information herein are subject to change without notice.