

LY8006

3.3 W Mono Filterless Class D Audio power Amplifier — Compatible with LY8891 Single-Ended Input

Rev. 2.3

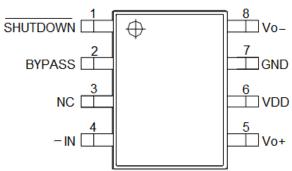
FEATURES

- 3.3 W Into 4Ω from 5.5V power supply at THD+N=10% (Typ).
- 2.0 W Into 8Ω from 5.5V power supply at THD+N=10% (Typ.).
- 2.5V~5.5V power supply.
- Low shutdown current.
- Low quiescent current.
- Minimum external components.
- No output filter required for inductive loads.
- Output pin short-circuit protection and automatic recovery.
 (short to output pin, short to GND, short to VDD)
- Low noise during turn-on and turn-off transitions.
- Easy upgrade Class AB (LY8891) to Class D (Pin to Pin Replace).
- Lead free and green package available. (RoHS Compliant)
- Space Saving Package
 - 8-pin MSOP package.

GENERAL DESCRIPTION

The LY8006 is a high efficiency, 3.3 W mono class D audio power amplifier. It is a low noise, filterless PWM architecture eliminates the output filter, reducing external component count, system cost, and simplify design.

The LY8006 is designed to meet of portable electronic devices. The LY8006 is a single 5.5V power supply, it is capable of driving 4Ω speaker load at a continuous average output of 3.3 W with 10% THD+N.


In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the LY8006.The gain of the LY8006 is externally configurable which allows independent gain control from multiple sources by summing the signals. Output pin short circuit (short to output pin, short to ground and short to VDD) protection prevent the device from damage during fault conditions.

APPLICATION

- Portable electronic devices
- Mobile Phones
- PDAs

PIN CONFIGURATION

LY8006 MSOP8 pin configuration (TOP VIEW)

Rev. 2.3

PIN DESCRIPTION

SYMBOL	Pin No.	DESCRIPTION
STWBOL	MSOP	DESCRIPTION
SHUTDOWN	1	Shutdown the device. (when LOW level is shutdown mode).
BYPASS	2	Bypass pin
NC	3	No Internal connection
-IN	4	Negative input
Vo+	5	Positive BTL output
Vdd	6	Power supply
GND	7	Ground
Vo-	8	Negative BTL output

ORDERING INFORMATION

Ordering Code	Packing	Speaker	Pin/	Output Power	Input	Output
	Type	Channels	Package	(THD+N=10%)	Type	Type
LY8006ULT	Tape&Reel	Mono	MSOP8	3.3W/4Ω @5.5V_BTL 2.7W/4Ω @5.0V_BTL 2.0W/8Ω @5.5V_BTL 1.6W/8Ω @5.0V_BTL	SE	BTL

Rev. 2.3

APPLICATION CIRCUIT



Figure 1. Application Schematic With Single-Ended Input Configuration Single-End Input With Pre-Amplifier Gain = $(150 \text{ K}\Omega / 5 \text{ K}\Omega) * 2 = 60$

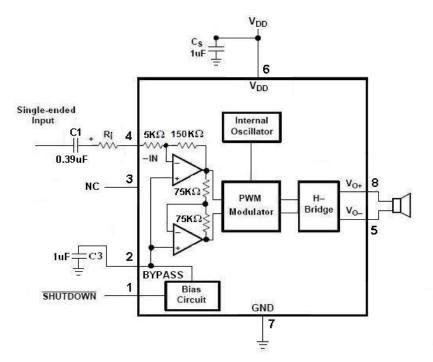


Figure 2. Application Schematic With Single-Ended Input Configuration Single-End Input With Pre-Amplifier Gain = $[150 \text{ K}\Omega / (5 \text{ K}\Omega + \text{Ri})] * 2$

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

Rev. 2.3

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	Vdd	6.0	V
Operating Temperature	Та	-40 to 85 (I grade)	°C
Input Voltage	VI	-0.3V to VDD +0.3V	V
Storage Temperature	Тѕтс	-65 to 150	°C
Power Dissipation	Po	Internally Limited	W
ESD Susceptibility	Vesd	2000	V
Junction Temperature	Тјмах	150	°C
Soldering Temperature (under 10 sec)	TSOLDER	260	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C, Unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. ^{*2}	MAX.	UNIT
Supply voltage	Vdd		2.5	-	5.5	
High-level input voltage	Vih	Shutdown	1.3	-	Vdd	V
Low-level input voltage	VIL	Shutdown	0	-	0.35	
Output offset voltage (measured differentially)	Vos	V ₁ = 0 V, Av = 2 V/V, V _{DD} = 2.5 V to 5.5 V	-	-	25	mV
Power supply rejection ratio	PSRR	V_{DD} = 5.0 V, R _L =4Ω, Inputs= GND, Av=2, Vpp=200mV, Cs=Delete. f=217Hz	-	-55		dB
		V _{DD} = 5.5V, No Load	-	3.5	4.5	
Quiescent Current	lq	V _{DD} = 3.6V, No Load	-	3.0	-	mA
		V _{DD} = 2.5V, No Load	-	2.5	3.2	
Shutdown Current	Isd	Vsнuтdow _N ≦0.5V, V _{DD} = 2.5V to 5.5V	-	0.1	2.0	μA
Total Gain (*)		V _{DD} = 2.5V to 5.5V RL = 8Ω	[300K	Ω / (5KΩ+	Ri)] x2	V/V

(*1)The audio amplifier's gain is determined by :

Pre-Amplifier Gain = $[150K\Omega / (5K\Omega + Ri)] \times 2$ Total Gain = { $[150K\Omega / (5K\Omega + Ri)] \times 2$ } x 2

where Ri is the external serial resistance at the input pin.

(*2)Typical values are included for reference only and are not guaranteed or tested.

Typical values are measured at VCC = VCC(TYP.) and TA = 25° C

Rev. 2.3

OPERATING CHARACTERISTICS (TA =	= 25°C, Unless otherwise noted)
--	---------------------------------

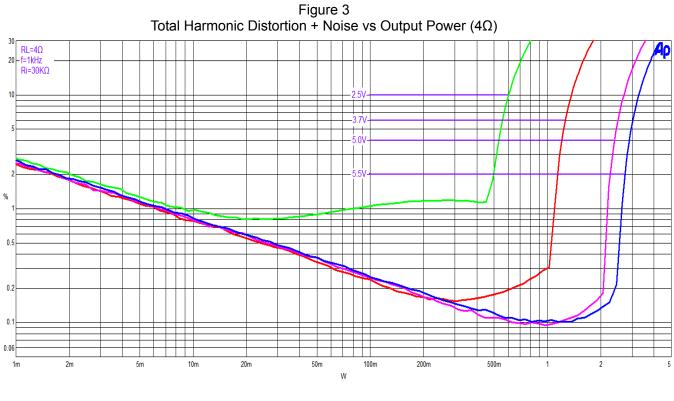
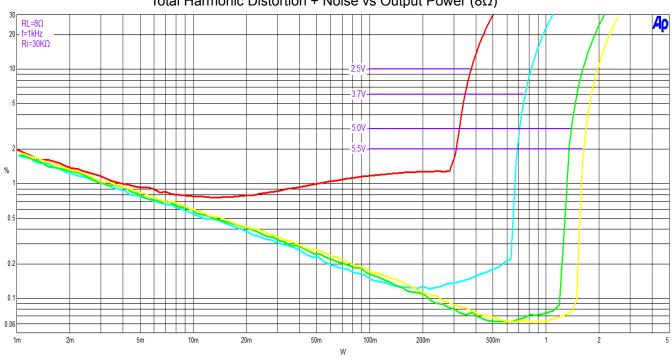
PARAMETER	SYMBOL	TEST CONDITIO	N	MIN.	TYP. ^{*2}	MAX.	UNIT
			VDD=5.5V	-	3.3	-	
		THD+N= 10%, f = 1 kHz	, VDD=5.0V	-	2.75	-	
		RL= 4 Ω	VDD=3.6V	-	1.4	-	
			VDD=2.5V	-	0.6	-	
			VDD=5.5V	-	2.6	-	
		THD+N= 1%, f = 1 kHz,	VDD=5.0V	-	2.15	-	
		RL= 4 Ω	VDD=3.6V	-	1.1	-	
Out Power	Po		VDD=2.5V	-	0.1	-	W
	FU		VDD=5.5V	-	2.0	-	vv
		THD+N= 10%, f = 1 kHz	, VDD=5.0V	-	1.6	-	
		R∟= 8 Ω	VDD=3.6V	-	0.8	-	
			VDD=2.5V	-	0.4	-	
			VDD=5.5V	-	1.6	-	-
		THD+N= 1%, f = 1 kHz,	VDD=5.0V	-	1.3	-	
		R∟= 8 Ω	VDD=3.6V	-	0.7	-	
			VDD=2.5V	-	0.1	-	
Signal-to-noise ratio	SNR	R∟ = 48Ω, Input=GND, 1.0W=0dB	VDD=5.0V	-	88	-	dB
Output voltage noise	Vn	Input=GND,R∟=4Ω,Av=2 f = 20 Hz to 20 kHz,	VDD=5.0V	-	79.4	-	uVrms
Frequency	Fc	V _{DD} = 2.5V~5.5V	•	-	250	-	kHz
		C _{bypass} :	= 1.0µF	-	360	-	
		C _{bypass} :	= 0.47µF	-	180	-	
		V _{DD} = 5.0V	= 0.33µF	-	144	-	
		VDD - 5.0V Cbypass	= 0.22µF	-	104	-	
		C _{bypass} :	= 0.1µF	-	48	-	1
Start up time from obutdown	Zı	C _{bypass} :	C _{bypass} =None		32	-	
Start-up time from shutdown	ZI	C _{bypass} :	= 1.0µF	-	250	-	ms
		C _{bypass} :	C _{bypass} = 0.47µF		128	-	1
		V _{DD} = 3.7V	= 0.33µF	-	108	-	
		Cbypass:	= 0.22µF	-	72	-	1
		C _{bypass} :	= 0.1µF	-	48	-	
		Cbypass :	=None	-	32	-	

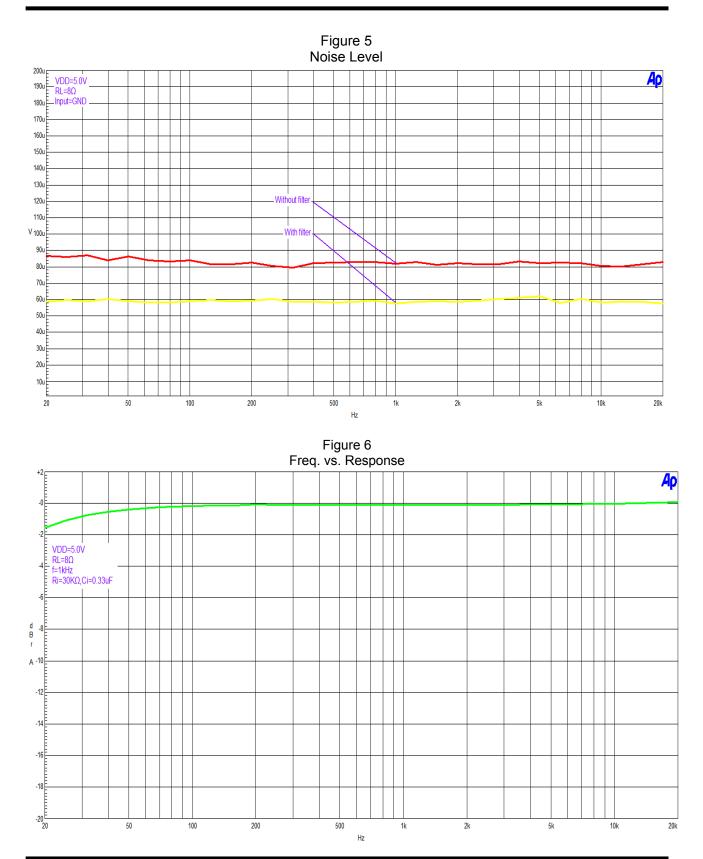
(*2)Typical values are included for reference only and are not guaranteed or tested.

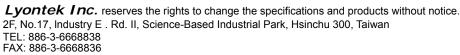
Typical values are measured at VCC = VCC(TYP.) and TA = 25° C

Rev. 2.3

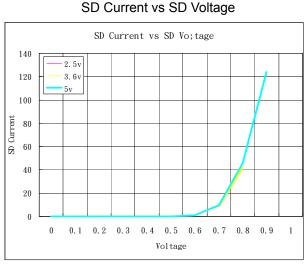
TYPICAL PERFORMANCE CHARACTERISTICS

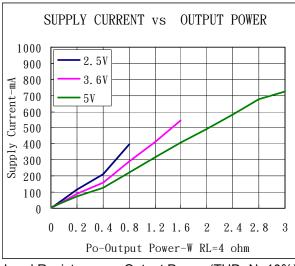



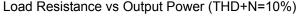

Figure 4 Total Harmonic Distortion + Noise vs Output Power (8Ω)



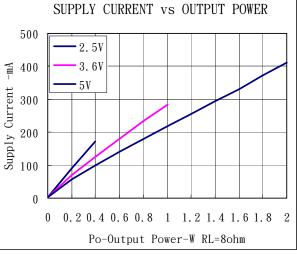
Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

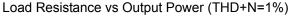

Rev. 2.3

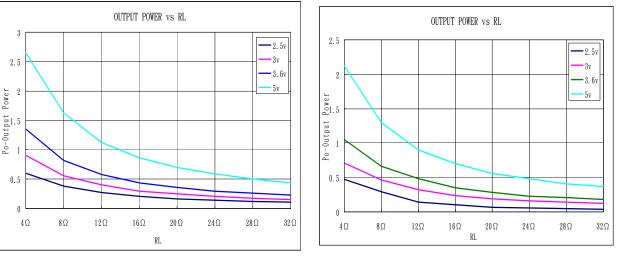




Rev. 2.3

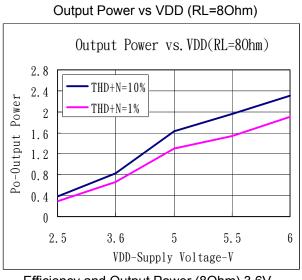

Supply Current vs Output Power (RL= 4Ω)

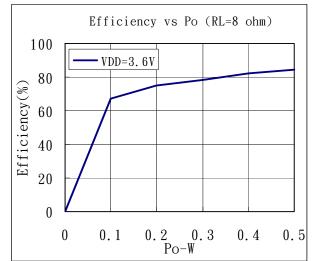


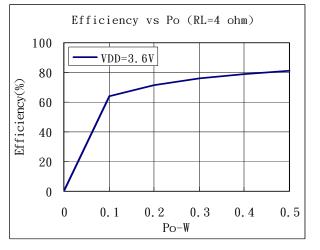


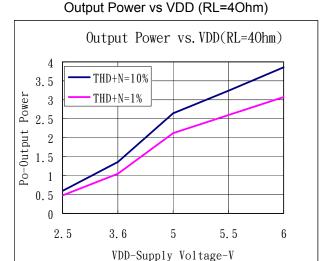
Quiescent vs Supply voltage QUIESCENT CURRENT VS SUPPLY VOLTAGE 4 No Load 3.8 8Ω Iq-Quiescent Current-mA 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 2.5 3 3.5 4 4.5 5 5.5 VDD-Supply Voltage-V

Supply Current vs Output Power (RL= 8Ω)

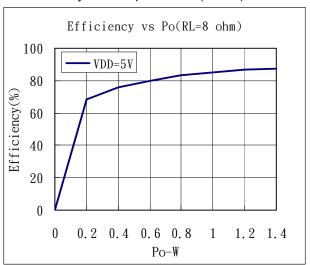



Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

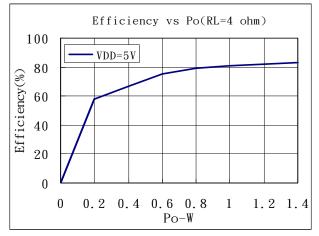

Rev. 2.3



Efficiency and Output Power (80hm) 3.6V



Efficiency and Output Power (40hm) 3.6V



Efficiency and Output Power (80hm) 5.0V

Efficiency and Output Power (40hm) 5.0V

Rev. 2.3

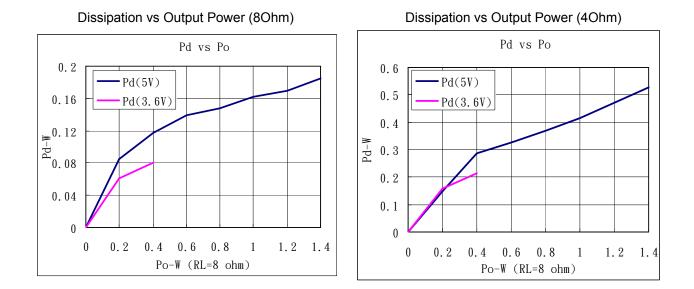
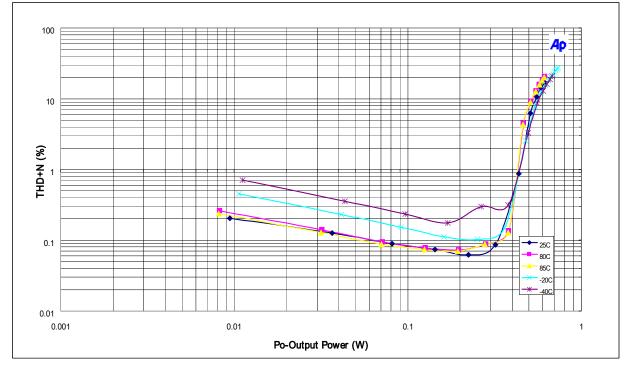
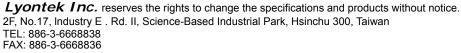




Figure 7 THD+N & Output Power vs Temperature (VDD=3V, RL=8Ω)

Rev. 2.3

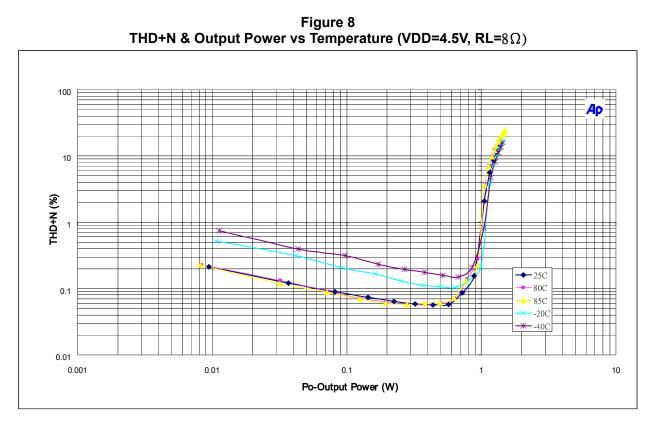
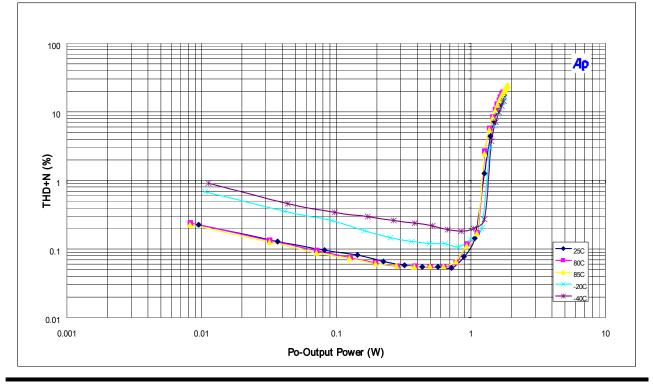
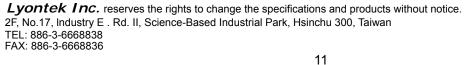




Figure 9 THD+N & Output Power vs Temperature (VDD=5.0V, RL=8Ω)

Rev. 2.3

APPLICATION INFORMATION

Input Resistors (Ri) and Gain

The input resistors (Ri) set the gain of the amplifier according to the equation.

Pre-Amplifier Gain = $(Rf / Ri) \times 2 = [150K\Omega / (5K\Omega + Ri)] \times 2$

Total Gain = $[(Rf / Ri) \times 2] \times 2 = \{[150K\Omega / (5K\Omega + Ri)] \times 2\} \times 2$

Avp = 20 x log {2 x [(Rf /Ri) x2]}

The resistor matching is very important in the amplifiers. Balance of the output on the reference voltage depends on matched ratio of the resistors. CMRR, PSRR, and cancellation of the second harmonic distortion if resistor mismatch occurs. Therefore, it is recommended to use 1% tolerance resistors or better to keep the performance optimized. Matching is more important than overall tolerance.

Resistor arrays with 1% matching can be used with a tolerance greater than 1%.Place the input resistors very close to the LY8006 to limit noise injection on the high-impedance nodes. For optimal performance the gain should be set to 2 V/V or lower. Lower gain allows the LY8006 to operate at its best,

	Table 1. Typical Total Gain and Avd Values							
Rf (KΩ)	150	150	150	150	150	150		
Ri (KΩ)	300	150	100	75	50	37.5		
Pre AMP. Gain	1	2	3	4	6	8		
Total Gain	2	4	6	8	12	16		
Avd (db)	6.02	12.04	15.56	18.06	21.58	24.08		

For example

Input Capacitors (Ci)

The LY8006 using a single-ended source, So the input coupling capacitors are required. The input capacitors and input resistors form a high-pass filter with the corner frequency(fc), determined in the equation.

fc = 1 / (2π Ri Ci)

The value of the input capacitor is important to consider as it directly affects the bass (low frequency) performance of the circuit. Speakers in wireless phones cannot usually respond well to low frequencies, so the corner frequency can be set to block low frequencies in this application. Equation is reconfigured to solve for the input coupling capacitance.

Ci = 1 / (2π Ri fc)

If the corner frequency is within the audio band, the capacitors should have a tolerance of $\pm 10\%$ or better, because any mismatch in capacitance causes an impedance mismatch at the corner frequency and below.

Rev. 2.3

For example

In the table 2 shows the external components. Rin in connect with Cin to create a high-pass filter.

Table 2. Typical Component Values						
Reference	Description	Note				
Ri	150KΩ	1% tolerance resistors				
Ci	0.22uF	80%/-20%				

Ci = 1 / (2π Ri fc)

Ci = 1 / ($2\pi * 150 K\Omega * 4.8 Hz$)=0.221uF , Use 0.22uF

Two Single-Ended Input Signals

Two resistors and two capacitors are needed for summing single-ended input signals. The gain and corner frequencies (fc1 and fc2) for each input source can be set independently.

Pre-Amplifier Gain 1 = $[150K\Omega / (5K\Omega + Ri1)] \times 2$

Pre-Amplifier Gain 2 = $[150K\Omega / (5K\Omega + Ri2)] \times 2$

Ci1 = 1 / (2π Ri1 fc1)

 $Ci2 = 1 / (2\pi Ri2 fc2)$

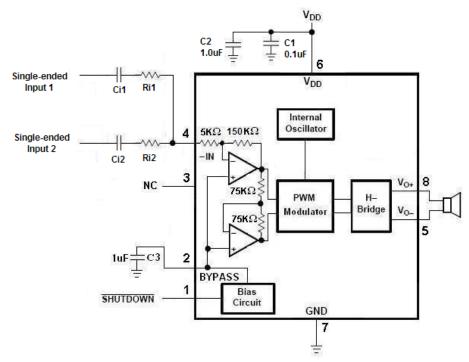
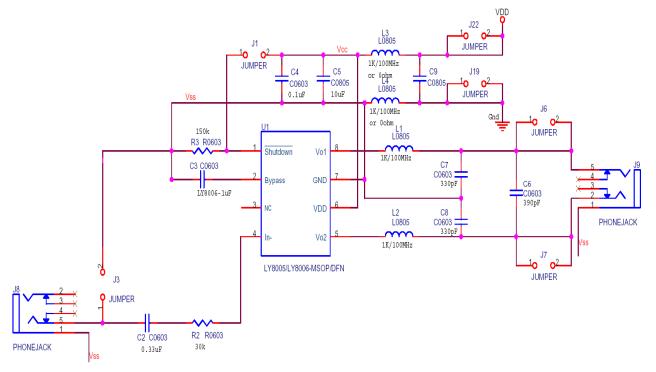


Figure 10. Application Schematic With Two Single-Ended Inputs Configuration

Rev. 2.3


PCB Layout

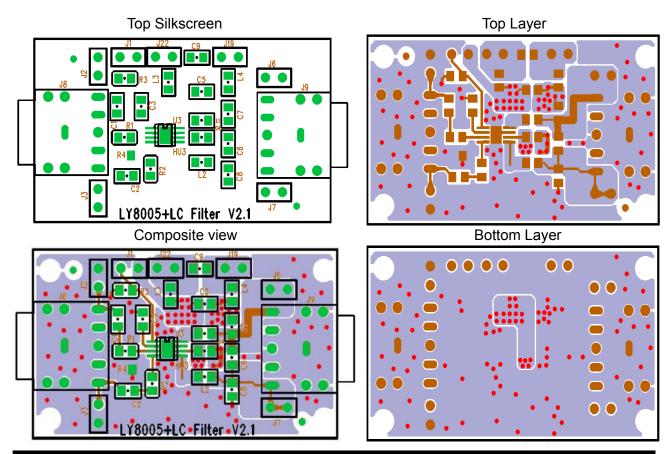
All the external components must place very close to the LY8006. The input resistors need to be very close to the LY8006 input pins so noise does not couple on the high impedance nodes between the input resistors and the input amplifier of the LY8006. Then place the decoupling capacitor Cs, close to the LY8006 is important for the efficiency of the class-D amplifier. Any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency.

Making the high current traces going to VDD, GND, Vo+ and Vo- pins of the LY8006 should be as wide as possible to minimize trace resistance. If these traces are too thin, the LY8006's performance and output power will decrease. The input traces do not need to be wide, but do need to run side-by-side to enable common-mode noise cancellation.

LY8006UL Demo Board Artwork

Demo Board Application Circuit

Figure 11. Demo Board Application Circuit

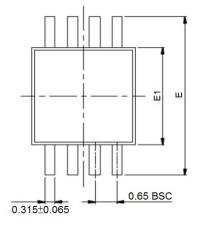

Rev. 2.3

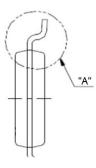
Demo Board BOM List

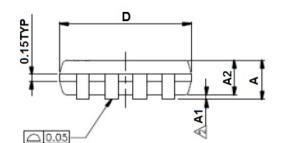
No.	Description	Reference	Note			
1	Resistor, 30KΩ	R2	1/16W,1%			
2	Resistor, 150KΩ	R3	1/16W,1%			
3	Capacitor, 330pF(Option)	C7,C8	80%/-20%, nonpolarized			
4	Capacitor, 390pF(Option)	C6	80%/-20%, nonpolarized			
5	Capacitor, 0.1uF	C4	80%/-20%, nonpolarized			
6	Capacitor, 0.33uF	C2	80%/-20%, nonpolarized			
7	Capacitor, 1.0uF	C3	80%/-20%, nonpolarized			
8	Capacitor, 10.0uF	C5	80%/-20%, 6.3 V			
9	Chip Bead 1KΩ/100MHz(Option)	L1,L2,L3,L4	1000Ω(1KΩ)±25%/100MHz			
10	IC	U1	LY8006UL, MSOP8			
11	1*2 Pin Header	J1	J1, Open \rightarrow shutdown Mode			

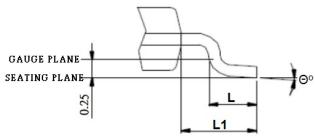
LY8006 V2.1 BOM List

Demo Board Artwork






Rev. 2.3


PACKAGE OUTLINE DIMENSION

8 Pin 118mil MSOP Package Outline Dimension

SYMBOLS	MIN,	NOM.	MAX.		
A	_	_	1.10		
A1	0.00	-	0.15		
A2	0.75	0.85	0.95		
D	3.00 BSC				
E		4.90 BSC			
E1		3.00 BSC			
L	0.40	0.60	0.80		
L1	0.95 REF				
θ°	0	-	8		
UNIT : MM					

- NOTES: 1.JEDEC OUTLINE : MD-187 AA 2.DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. 3.DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION, INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. 4.DIMENSION '0.22' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE '0.22' DIMENSION AT MAXIMUM MATERIAL CONDITION, DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPAC BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM. 5.DIMENSIONS 'D' AND 'E1' TO BE DETERMINED AT DATUM PLANE [].
- PLANE H .