1A, 1.5MHz Synchronous Step-Down Converter

General Description

The AME5253A is a high efficiency monolithic synchronous buck regulator using a constant frequency, current mode architecture. Capable of delivering 1A output current over a wide input voltage range from 2.5 V to 5.5 V .

Supply current with no load is $400 \mu \mathrm{~A}$ and drops to $<1 \mu \mathrm{~A}$ in shutdown. The 2.5 V to 5.5 V input Voltage range makes the AME5253A ideally suited for single Li-Ion batterypowered applications. 100\% duty cycle provides low dropout operation, extending battery life in portable systems. PWM pulse skipping mode operation provides very low output ripple voltage for noise sensitive applications. At very light load, the AME5253A will automatically skip pulses in pulse skip mode operation to maintain output regulation.

The internal synchronous switch increases efficiency and eliminates the need for an external Schottky diode. Low output voltages are easily supported with the 0.6 V feedback reference voltage. The AME5253A is available in SOT-25 packages.

Other features include soft start, lower internal reference voltage with 2% accuracy, over temperature protection, and over current protection.

Features

- High Efficiency: Up to 95\%
- Shutdown Mode Draws < $1 \mu \mathrm{~A}$ Supply Current
- 2.5V to 5.5V Input Range
- Adjustable Output From 0.6 V to $\mathrm{V}_{\text {IN }}$
- 1A Output Current
- Low Dropout Operation: 100\% Duty Cycle
- No Schottky Diode Required
- 1.5MHz Constant Frequency PWM Operation
- SOT-25 Packages
- All AME' s Lead Free Product Meet RoHS Standard

Applications

- Cellular Telephones
- Personal Information Appliances
- Wireless and DSL Modems
- MP3 Players
- Portable Instruments

Typical Application

Figure $1: 1.8 \mathrm{~V}$ at 1000 mA Step-Down Requlator

$$
\mathrm{C}_{\mathrm{FwD}}: 22 \mathrm{pF} \sim 220 \mathrm{pF}
$$

1A, 1.5MHz Synchronous Step-Down Converter

■ Function Block Diagram

Figure 2: Founction Block Diagram

Pin Configuration

AME5253A-AEVADJ

1. EN
2. GND
3. SW
4. IN
5. FB

* Die Attach:

Conductive Epoxy

■ Pin Description

Pin Number	Pin Name	Pin Description
1	EN	Enable Control Input, active high.
2	GND	Ground. Tie directly to ground plane.
3	SW	Switch Node Connection to Inductor.
4	IN	Input Supply Voltage Pin. Bypass this pin with a capacitor as close to the device as possible.
5	FB	Output voltage Feedback input.

■ Ordering Information

Pin Configuration	Package Type	Number of Pins	Output Voltage
A 1. EN (sot-25) 2. GND 3. SW 4. IN 5. FB	E: SOT-2X	V: 5	ADJ: Adjustable

Absolute Maximum Ratings

Parameter	Symbol	Maximum	Unit
Input Supply Voltage	V_{IN}	-0.3 to 6.5	V
EN, $\mathrm{V}_{\text {OUT }}$ Voltage	$\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{OUT}}$	-0.3 to V_{IN}	
SW Voltage	V_{SW}	-0.3 to V_{IN}	
ESD Classification	B^{*}		

Caution: Stress above the listed absolute maximum rating may cause permanent damage to the device.

* HBM B: 2000V~3999V

- Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply Voltage Voltage	V_{IN}	2.5 to 5.5	V
Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$

- Thermal Information

Parameter	Package	Die Attach	Symbol	Maximum	Unit
Thermal Resistance* (Junction to Case)	SOT-25	Conductive Epoxy	$\theta \mathrm{Jc}$	81	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (Junction to Ambient)			θ_{JA}	260	
Internal Power Dissipation			P_{D}	400	mW
Solder Iron (10Sec)**				350	${ }^{\circ} \mathrm{C}$

[^0]
1A, 1.5MHz Synchronous Step-Down Converter

- Electrical Specifications

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.6 \mathrm{~V}, \mathrm{~L}=2.2 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{MAX}}=1 \mathrm{~A}$ unless otherwise specified.

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Input voltage	$\mathrm{V}_{\text {IN }}$		2.5		5.5	V
Adjustable Output Range	$V_{\text {out }}$		$\mathrm{V}_{\text {FB }}$		$\mathrm{V}_{10}-0.2$	V
Feedback Voltage	$\mathrm{V}_{\text {FB }}$		0.588	0.6	0.612	V
Feedback Pin Bias Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {IN }}$	-50		50	nA
Quiescent Current	I_{0}	$\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {FB }}=1 \mathrm{~V}$		0.4	0.5	mA
Shutdown Current	$\mathrm{I}_{\text {SHDN }}$	$\mathrm{V}_{\mathrm{EN}}=\mathrm{GND}$		0.1	1	$\mu \mathrm{A}$
Switch Frequency	$\mathrm{f}_{\text {osc }}$		1.2	1.5	1.8	MHz
High-side Switch On-Resistance	$\mathrm{R}_{\mathrm{DS}, \mathrm{ON}, \text { LHI }}$	$\mathrm{I}_{\text {SW }}=200 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$		0.28		Ω
Low-side Switch On-Resistance	$\mathrm{R}_{\mathrm{DS}, \mathrm{ON}, \mathrm{LO}}$	$\mathrm{I}_{\mathrm{SW}}=200 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=3.6 \mathrm{~V}$		0.25		Ω
Switch Current Limit	$\mathrm{I}_{\text {sw, CL }}$	$\mathrm{V}_{\mathrm{IN}}=2.5$ to 5.5 V	1.4	1.6		A
EN High (Enabled the Device)	$\mathrm{V}_{\text {EN,HI }}$	$\mathrm{V}_{\text {IN }}=2.5$ to 5.5 V	1.5			V
EN Low (Shutdown the Device)	$\mathrm{V}_{\text {EN,Lo }}$	$\mathrm{V}_{\text {IN }}=2.5$ to 5.5 V			0.4	V
Input Undervoltage Lockout	$\mathrm{V}_{\text {UVLO }}$	rising edge		1.8		V
Input Undervoltage Lockout Hysteresis	V UVLo,HYSt			0.1		V
Thermal Shutdown Temperature	OTP	Shutdown, temperature increasing		160		${ }^{\circ} \mathrm{C}$
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$		100			\%
SW Leakage Current		$\begin{gathered} \mathrm{EN}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{SW}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \end{gathered}$	-1		1	$\mu \mathrm{A}$

AME5253A

1A, 1.5MHz Synchronous Step-Down Converter

Detailed Description

Main Control Loop

AME5253A uses a constant frequency, current mode step-down architecture. Both the main (P-channel MOSFET) and synchronous (N-channel MOSFET) switches are intermal. During normal operation, the internal top power MOSFET is turned on each cycle when the oscillator sets the RS latch, and turned off when the current comparator resets the RS latch. While the top MOSFET is off, the bottom MOSFET is turned on until either the inductor current starts to reverse as indicated by the current reversal comparator IRCMP.

Pulse Skipping Mode Operation

At light loads, the inductor current may reach zero or reverse on each pulse. The bottom MOSFET is turned off by the current reversal comparator, IRCMP, and the switch voltage will ring. This is discontinuous mode operation, and is normal behavior for the switching regulator.

Short-Circuit Protection

When the output is shorted to ground, the frequency of the oscillator is reduced to about 180 KHz . This frequency foldback ensures that the inductor current hsa more time do decay, thereby preventing runaway. The oscillator's frequency will progressively increase to 1.5 MHz when V_{FB} or $\mathrm{V}_{\text {out }}$ rises above 0 V .

Dropout Operation

As the input supply voltage decreases to a value approaching the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the main switch to remain on for more than one cycle until it reaches 100% duty cycle. The output voltage will then be determined by the input voltage minus the voltage drop across the P-channel MOSFET and the inductor.

Application Information

The basic AME5253A application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load current and begins with the selection of the inductor value and followed by C_{IN} and $\mathrm{C}_{\text {out }}$.

Inductor Selection

For a given input and output voltage, the inductor value and operating frequency determine the ripple current. The ripple current DIL increases with higher $\mathrm{V}_{\mathbb{N}}$ and decreases with higher inductance.

$$
\Delta I_{L}=\frac{1}{(f)(L)} V_{\text {OUT }}\left(1-\frac{V_{\text {OUT }}}{V_{I N}}\right)
$$

A reasonable starting point for setting ripple current is $\Delta \mathrm{I}_{\mathrm{L}}=0.4(\operatorname{Imax})$. The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation. For better efficiency, choose a low DC-resistance inductor.

$\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {out }}$ Selection

The input capacitance, $\mathrm{C}_{\text {IN }}$ is needed to filter the trapezoidal current at the source of the top MOSFET. To prevent large voltage transients, a low ESR input capacitorsized for the maximum RMS current must be used. The maximum RMS capacitor current is given by:

$$
I_{\text {RMS }}=I_{\text {OUT }(M A X)} \frac{V_{\text {OUT }}}{V_{I N}} \sqrt{\frac{V_{I N}}{V_{\text {OUT }}}-1}
$$

This formula has a maximum at $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {OUT }}$, where $I_{\text {RMs }}=I_{\text {out }} / 2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Note that the capacitor manufacturer ripple current ratings are often based on 2000 hours of life. This makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required.

1A, 1.5MHz Synchronous Step-Down Converter

The selection of $\mathrm{C}_{\text {out }}$ is determined by the effective series resistance(ESR) that is required to minimize voltage ripple and load step transients. The output ripple, $\mathrm{V}_{\text {out }}$, is determined by:

$$
\Delta V_{\text {OUT }} \cong \Delta I_{L}\left(E S R+\frac{1}{8 f C_{\text {OUT }}}\right)
$$

Using Ceramic Input and Output Capacitors

Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at the input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, $\mathrm{V}_{\mathbb{I N}}$. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at $\mathrm{V}_{\text {IN }}$ large enough to damage the part.

Output Voltage Programming

The output voltage is set by an external resistive divider according to the following equation :

$$
V_{O U T}=V_{R E F} \times\left(1+\frac{R_{1}}{R_{2}}\right)
$$

Where $\mathrm{V}_{\text {REF }}$ equals to 0.6 V typical. The resistive divider allows the FB pin to sense a fraction of the output voltage as shown in Figure 3.

Figure 3: Setting the AME5253A Output Voltage

Thermal Considerations

In most applications the AME5253A does not dissipate much heat due to its high efficiency. But, in applications where the AME5253A is running at high ambient temperature with low supply voltage and high duty cycles, such as in dropout, the heat dissipated may exceed the maximum junction temperature of the part. If the junction temperature reaches approximately $160^{\circ} \mathrm{C}$, both power switches will be turned off and the SW node will become high impedance. To avoid the AME5253A from exceeding the maximum junction temperature, the user will need to do some thermal analysis. The goal of the thermal analysis is to determine whether the power dissipated exceeds the maximum junction temperature of the part. The temperature rise is given by:

$$
T_{R}=(P D)\left(\theta_{J A}\right)
$$

Where PD is the power dissipated by the regulator and θ_{JA} is the thermal resistance from the junction of the die to the ambient temperature.

1A, 1.5MHz Synchronous Step-Down Converter

Figure 4: 1.2V Step-Down Regulator Cfwd: 22pF~220pF

Figure 5: 1.5V Step-Down Regulator
$\mathrm{C}_{\text {FwD }}$ 22pF~220pF

Figure 6: 1.6V Step-Down Regulator $\mathrm{C}_{\text {Fwd: }}$ 22pF~220pF

Figure 7: 2.5V Step-Down Regulator Cfwo: 22pF~220pF

Figure 8: 3.3V Step-Down Regulator Cfwd: 22pF~220pF

1A, 1.5MHz Synchronous Step-Down Converter

PC Board Layout Checklist

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the AME5253A. These items are also illustrated graphically in Figures 9 . Check the following in your layout:

1. The power traces, consisting of the GND trace, the SW trace and the V_{IN} trace should be kept short, direct and wide.
2. Does the V_{FB} pin connect directly to the feedback resistors? The resistive divider R2/R1 must be connected between the (+) plate of $\mathrm{C}_{\text {out }}$ and ground.
3. Does the (+) plate of CIN connect to $\mathrm{V}_{\mathbb{1}}$ as closely as possible? This capacitor provides the AC current to the internal power MOSFETs.
4. Keep the switching node, SW , away from the sensitive V_{FB} node.
5. Keep the (-) plates of $\mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\text {OUT }}$ as close as possible.

Cwd: 22pF~220pF

Figure 9: AME5253A Adjustable Voltage
Regulator Layout Diagram

1A, 1.5MHz Synchronous Step-Down Converter

Application Information

External components selection

Supplier	Inductance $(\boldsymbol{\mu})$	Current Rating $(\mathbf{m A})$	DCR $(\mathbf{m} \boldsymbol{\Omega})$	Dimensions $(\mathbf{m m})$	Series
TAIYO YUDEN	2.2	1480	60	$3.00 \times 3.00 \times 1.50$	NR 3015
GOTREND	2.2	1500	58	$3.85 \times 3.85 \times 1.80$	GTSD32
Sumida	2.2	1500	75	$4.50 \times 3.20 \times 1.55$	CDRH2D14
Sumida	4.7	1000	135	$4.50 \times 3.20 \times 1.55$	CDRH2D14
TAIYO YUDEN	4.7	1020	120	$3.00 \times 3.00 \times 1.50$	NR 3015
GOTREND	4.7	1100	146	$3.85 \times 3.85 \times 1.80$	GTSD32

Table 1. Recommended Inductors

Supplier	Capacitance $(\boldsymbol{\mu F})$	Package	Part Number
TDK	4.7	603	C1608.J日0.J475M
MURATA	4.7	603	GRM188R60.J475KE19
TAIYO YUDEN	4.7	603	JMK107B.J475RA
TAIYO YUDEN	10	603	JMK107B.J106MA
TDKK	10	805	C2012.JB0.J106M
MURATA	10	805	GRM219R60.J106ME19
MURATA	10	805	GRM219R60.J106KE19
TAIYO YUDEN	10	JMK212B.J106RD	

Table 2. Recommended Capacitors for C_{iN} and $\mathrm{C}_{\text {out }}$

■ Characterization Curve

Efficiency vs. Output Current

Characterization Curve

1A, 1.5MHz Synchronous Step-Down Converter

- Characterization Curve

Current Limit vs. Temperature

Heavy Load Mode Output Voltage Ripple

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$
$V_{\text {OUT }}=1.2 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~A}$

1) $V_{S w}=2 V / d i v$
2) $V_{\text {out }}=10 \mathrm{mV} / \mathrm{div}$
3) $I_{\llcorner }=500 \mathrm{~mA} / \mathrm{div}$

Light Load Mode output voltage ripple

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$
$\mathrm{I}_{\text {out }}=50 \mathrm{~mA}$

1) $V_{S W}=2 V / d i v$
2) $V_{\text {out }}=10 \mathrm{mV} / \mathrm{div}$
3) $I_{L}=500 \mathrm{~mA} / \mathrm{div}$

Load Step

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$
$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \sim 1 \mathrm{~A} \sim 0 \mathrm{~A}$

1) $V_{\text {OUT }}=100 \mathrm{mV} / \mathrm{div}$
2) $I_{\text {OUT }}=500 \mathrm{~mA} / \mathrm{div}$

1A, 1.5MHz Synchronous Step-Down Converter

Characterization Curve

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$
$\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \sim 1 \mathrm{~A} \sim 50 \mathrm{~mA}$

1) $V_{\text {out }}=100 \mathrm{mV} / \mathrm{div}$
2) $I_{\text {OUT }}=500 \mathrm{~mA} / \mathrm{div}$

Power On from EN

$\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$
$\mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$

1) $\mathrm{EN}=2 \mathrm{~V} / \mathrm{div}$
2) $V_{\text {OUT }}=500 \mathrm{mV} / \mathrm{div}$
3) $I_{L}=1 \mathrm{~A} / \mathrm{div}$

Load Step

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$
$V_{\text {OUT }}=1.8 \mathrm{~V}$
$\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA} \sim 1 \mathrm{~A} \sim 200 \mathrm{~mA}$

1) $V_{\text {OUT }}=100 \mathrm{mV} / \mathrm{div}$
2) $I_{\text {out }}=500 \mathrm{~mA} / \mathrm{div}$

Power Off from EN

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$
$V_{\text {out }}^{\text {IN }}=1.8 \mathrm{~V}$
$\mathrm{l}_{\text {OUT }}=1 \mathrm{~A}$

1) $\mathrm{EN}=2 \mathrm{~V} / \mathrm{div}$
2) $V_{\text {out }}=2 \mathrm{~V} / \mathrm{div}$
3) $I_{L}=500 \mathrm{~mA} / \mathrm{div}$

1A, 1.5MHz Synchronous Step-Down Converter

Tape and Reel Dimension
SOT-25

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Pitch (P0)	Part Per Full Reel	Reel Size
SOT-25	$8.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	3000 pcs	$180 \pm 1 \mathrm{~mm}$

Package Dimension

SOT-25

SYMBOLS	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	0.90	1.30	0.0354	0.0512		
A $_{1}$	0.00	0.15	0.0000	0.0059		
b	0.30	0.55	0.0118	0.0217		
D	2.70	3.10	0.1063	0.1220		
E	1.40	1.80	0.0551	0.0709		
e	1.90 BSC		0.0748 BSC			
H	2.60		3.00	0.1024		0.1181
L	0.37 BSC		0.0146 BSC			
$\theta 1$	0°		10°	0°		10°
S $_{1}$	0.95 BSC		0.0374 BSC			

■ Lead Pattern

SOT-25

Note:

1. Lead pattern unit description:

BSC: Basic. Represents theoretical exact dimension or dimension target.
2. Dimensions in Millimeters.
3. General tolerance $\pm 0.05 \mathrm{~mm}$ unless otherwise specified.

Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president
of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.
© AME, Inc. , March 2016
Document: 1283-DS5253A-A. 04

Corporate Headquarter

AME, Inc.
8F, 12, WenHu St., Nei Hu
Taipei 114, Taiwan.
Tel: 8862 2627-8687
Fax: 8862 2659-2989

[^0]: * Measure θ_{JC} on center of molding compound if IC has no tab.
 ** MIL-STD-202G210F

