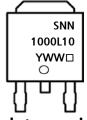


N-Ch Trench MOSFET

Power Switching Application

Features

- Drain-source breakdown voltage: BV_{DSS}=100V
- Low gate charge device
- Low drain-source On resistance: R_{DS(on)}=68mΩ (Typ.)
- Advanced trench process technology
- High avalanche energy, 100% test


G C

TO-252

Ordering Information

Part Number	Marking	Package
SNN1000L10D	SNN1000L10	TO-252

Marking Information

Column 1, 2: Device Code Column 3: Production Information e.g.) YWWN

-. YWW: Date Code (year, week)
-. □: Factory Management Code

Absolute maximum ratings (T_C=25°C unless otherwise noted)

Characteristic	Symbol		Rating	Unit												
Drain-source voltage	V _{DSS}		V _{DSS}		V _{DSS}		V _{DSS}		V _{DSS}		V _{DSS}		$V_{ extsf{DSS}}$		V _{DSS} 100	
Gate-source voltage		V_{GSS}	±20	V												
Drain current (DC) *	I _D	T _c =25°C	14.6	А												
		T _c =100°C	9.23	А												
Drain current (Pulsed) *		I _{DM}	25	А												
Single pulsed avalanche energy (Note 1)		E _{AS}	9	mJ												
Single avalanche current		I _{AS}	6	А												
Power dissipation		P_D	30	W												
Operating junction temperature	Tı		150	°C												
Storage temperature range	T_{stg}		T_{stg}		-55 to 150	°C										

^{*} Limited only maximum junction temperature

Thermal Characteristics

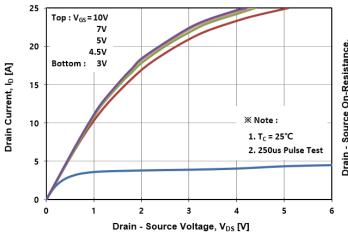
Characteristic	Symbol	Rating	Unit
Thermal resistance, junction to case	R _{th(j-c)}	Max. 4.16	0C /\ \ /
Thermal resistance, junction to ambient	R _{th} (j-a)	Max. 62	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	BV _{DSS}	I _D =250uA, V _{GS} =0	100	-	-	V
Gate threshold voltage	$V_{\text{GS(th)}}$	I _D =250uA, V _{DS} =V _{GS}	1.2	-	2.9	V
Drain-source cut-off current	l _{DSS}	V _{DS} =80V, V _{GS} =0V	-	-	10	uA
		V _{DS} =80V, V _{GS} =0V, T _J =55°C	-	-	100	
Gate leakage current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
Drain-source on-resistance	D	V _{GS} =10V, I _D =5A	-	-	100	mΩ
	R _{DS(ON)}	V_{GS} =4.5V, I_D =3A	-	-	110	mΩ
Forward transfer conductance (Note 2)	9 fs	V_{DS} =5V, I_{D} =5A	-	14	-	S
Input capacitance	C _{iss}	0.514.14	-	1028	-	pF
Output capacitance	Coss	V_{DS} =25V, V_{GS} =0V, f=1MHz	-	46	-	
Reverse transfer capacitance	C _{rss}	1 - 1101112	=	36	-	
Turn-on delay time (Note 2, 3, 4)	t _{d(on)}		=	3.8	-	ns
Rise time (Note 2, 3, 4)	t _r	V _{DD} =50V, I _D =5A	=	25.8	-	
Turn-off delay time (Note 2, 3, 4)	t _{d(off)}	$R_G=3\Omega$, $V_{GS}=10V$	-	16.8	-	
Fall time (Note 2, 3, 4)	t _f		-	8.8	-	
Total gate charge (Note 2, 3, 4)	Qg	V _{DS} =50V, V _{GS} =10V I _D =5A	-	12.5	-	
Gate-source charge (Note 2, 3,4)	Q_{gs}		-	3.5	-	nC
Gate-drain charge (Note 2, 3, 4)	Q_{gd}	ריים די	=	1.5	-	

Source-Drain Diode Ratings and Characteristics (T_C=25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Source current (DC)	Is	Integral reverse diode	-	-	14.6	А
Source current (Pulsed)	I _{SM}	in the MOSFET	-	-	25	А
Forward voltage	V_{SD}	V _{GS} =0V, I _S =1A	-	-	1.2	V


Note:

- 1. L=0.5mH, I_{AS} =6A, V_{DD} =25V, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C
- 2. Pulse test: Pulse width≤300us, Duty cycle≤1.5%
- 3. Essentially independent of operating temperature typical characteristics
- 4. Guaranteed by design, not subject to production testing.

Typical Electrical Characteristics Curves

Fig. 1 Typical Output Characteristics

Fig. 2 On-Resistance vs. Gate Source Voltage

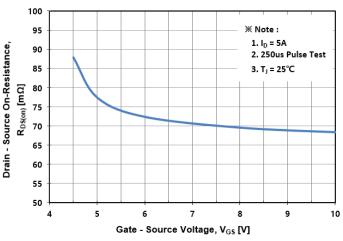
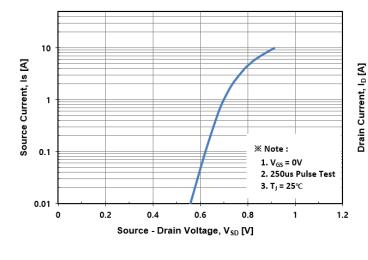



Fig.3 Forward Characteristics of Reverse

Fig. 4 Safe Operating Area Characteristics

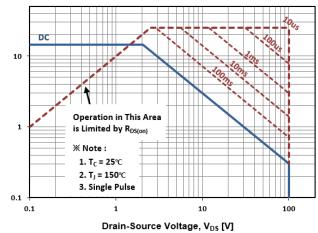


Fig. 5 Capacitance Characteristics

10000

| 1000 | Ciss | Ciss | Ciss | Coss | Ciss | Coss | Ciss |

Fig. 6 Total Gate Charge Characteristics

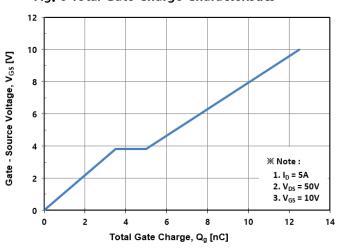
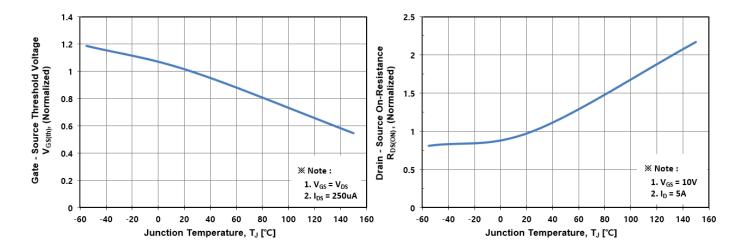



Fig. 7 Normalized V_{GS(th)} vs. T_j Characteristics

Fig. 8 Normalized R_{DS(on)} vs. T_j Characteristics

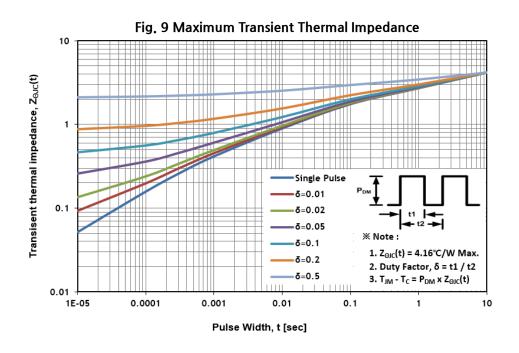


Fig. 10 Gate Charge Test Circuit & Waveform

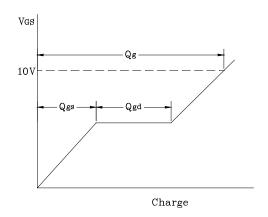
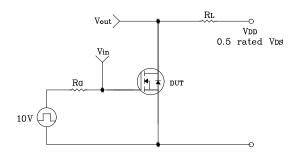



Fig. 11 Resistive Switching Test Circuit & Waveform

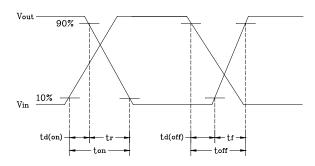
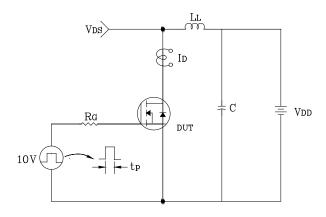



Fig. 12 E_{AS} Test Circuit & Waveform

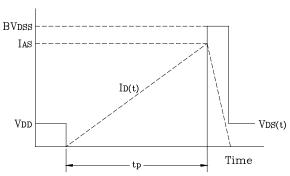
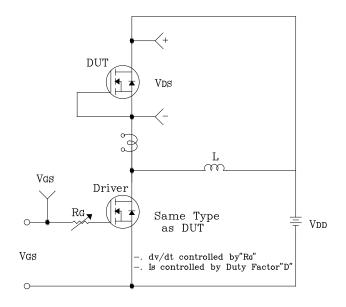
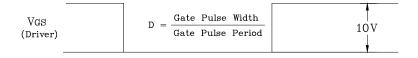
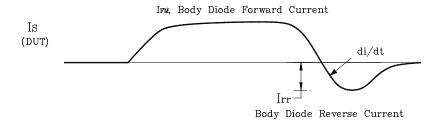
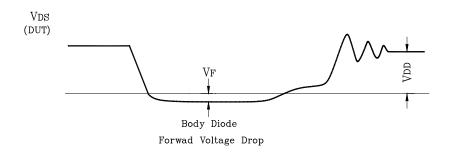
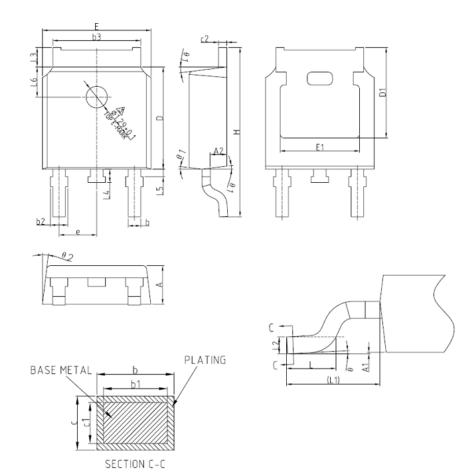
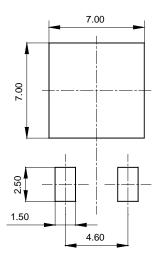






Fig. 13 Diode Reverse Recovery Time Test Circuit & Waveform





Package Outline Dimensions

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER) NOM 2.30 MAX 2.38 MIN 0.72 0.71 0.72 5.13 0.47 0.46 0.47 0.76 6.00 5.25 6.50 4.70 2.186 9.80 6.10 6.60 2.386 10.40 1.40 0.90 0.60 0.15 1.25 1.00 0.75 1.80REF

Recommended Land Pattern [unit: mm]

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.