COMPLIANT

Vishay Siliconix

0.37 Ω , Low Capacitance, Dual DPDT / Quad SPDT Analog Switch

DESCRIPTION

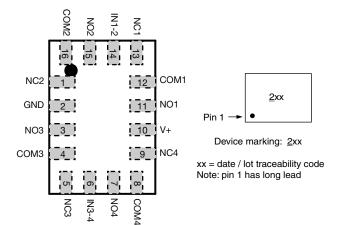
The DG2788A, is a four-channel single-pole double-throw (SPDT) analog switch with two control inputs. It is also known as a two-channel double-pole double-throw (DPDT) configuration. The part is designed to operate from 1.8 V to 5.5 V single power rail. All switches conduct equally well in both directions, offering rail to rail signal witching and can be used both as multiplexers as well as de-multiplexers.

The DG2788A offers low parasitic capacitance and highly matched low and flat switch resistance over the full signal range. It features break-before-make switching and low control logic threshold. The part supports rail to rail fast edge pulsing signals and have 0.1 ns/typ. propagation delay. It is ideal for both analog and digital signal switching in space constrain applications requiring high performance and efficient use of board space.

The DG2788A comes in a small miniQFN-16 lead package of 2.6 mm x 1.8 mm x 0.55 mm.

FEATURES

- 1.8 V to 5.5 V single supply operation
- Low resistance: 0.37 Ω/typ. at 2.7 V
- Highly flat and matched R_{ON}
- Low parasitic capacitance,
 C_{ON} = 26 pF, C_{OFF} = 14.5 pF
- High bandwidth: 338 MHz
- 0.1 ns/typ. propagation delay for rail to rail fast edge pulsing signal
- Guaranteed logic high 1.2 V, logic low 0.3 V
- Break before make switching
- Signal swing over V+ capable
- Power down protection
- Latch up current: 300 mA (JESD78)
- ESD / HBM: > 2 kV
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>


BENEFITS

- Low and flat resistance
- · Excellent total harmonic distortion
- Low parasitic capacitance
- Low voltage control interface

APPLICATIONS

- · Analog and digital signal switching
- SMA optical image stabilization
- Relay replacement
- Portable instrumentation
- Smart phones and tablets
- · Modems and peripherals
- · Data storage

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE						
LOGIC	NC1, 2, 3 and 4	NO1, 2, 3 and 4				
0	On	Off				
1	Off	On				

www.vishay.com

Vishay Siliconix

ORDERING INFORMATION						
TEMPERATURE RANGE	PACKAGE	PART NUMBER	MIN. ORDER / PACK. QUANTITY			
-40 °C to +85 °C lead (Pb)-free	miniQFN-16	DG2788ADN-T1-GE4	Tape and reel, 3000 units			

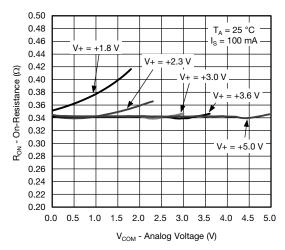
ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)						
PARAMETER		SYMBOL	LIMIT	UNIT		
Reference to GND	V+		-0.3 to +6	V		
	IN, COM, NC, NO a		-0.3 to (V+ + 0.3)	¬		
Current (any terminal except NO, NC, or	r COM) 30		30			
Continuous current (NO, NC, or COM)			± 300	mA		
Peak current (pulsed at 1 ms, 10 % duty cycle)			± 500			
Storage temperature (D suffix)	ge temperature (D suffix)		-65 to +150	°C		
Package solder reflow conditions d	miniQFN-16		250			
Power dissipation (packages) ^b	miniQFN-16 ^c		525	mW		

Notes

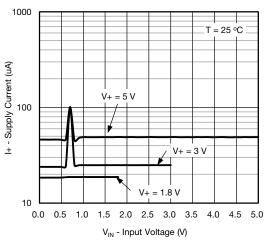
- a. Signals on NC, NO, or COM, or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 6.6 mW/°C above 70 °C
- d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

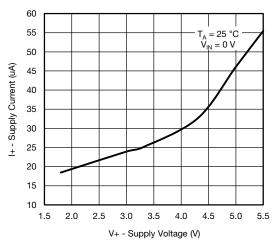
Vishay Siliconix

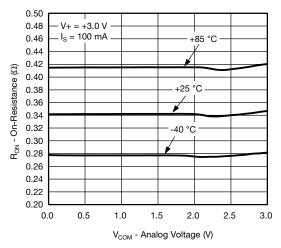
PARAMETER SYMBOL TEST CONDITIONS Unloss of the reviews a specified V+ 3 V, ± 10 %, V _N = 0.5 or 1.4 V ° TYP, ° MAX, ° MA	SPECIFICATIONS (V+ = 3 V)								
Name	PARAMETER	SYMBOL		темр а				LINIT	
Analog signal range d	TANAMETEN	OTIMBOL		ı Livii .				ONIT	
On-resistance Rom V+=2.7 V, V _{COM} = 0 to 2.7 V, I _{NO} , I _{NO} = 100 mA Rom - 0.37 0.5 0.5 Rom flatness d Ratiness Rom match d ARON V+=2.7 V, V _{COM} = 0 to V+, I _{NO} , I _{NO} = 100 mA Rom - 0.01 0.05 0.05 Switch off leakage current I _{NO} , I _{NO} = 100 mA Rom - 0.01 0.05 - 0.05 - 0.05 Switch off leakage current I _{NO} , I _{NO} = 100 mA Rom - 0.1 - 0.05 - 0.05 Rom - 0.05 - 0.05 - 0.05 - 0.05 Rom - 0.1 - 0.0 0.05 Rom - 0.2 - 0.0 0.05 Rom	unalog Switch								
No. Fo.	Analog signal range d			Full	0	-	V+	V	
Ron flatness d Ron	On-registance	Б	$V+ = 2.7 \text{ V}, V_{COM} = 0 \text{ to } 2.7 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$	Room	ı	0.37	0.5		
Rom flatness Rom	On-resistance	HON		Full	ı	-	0.6		
No match Ah No No match Ah No No No No No No No No	R _{ON} flatness ^d		$V+ = 2.7 \text{ V}, V_{COM} = 0 \text{ to } V+,$	Room	-	0.01	0.05	Ω	
Switch off leakage current Switch off leakage current V+ = 5.5 V, V _{NO} , V _{NC} = 0.5 V/4 V, V _{COM} = 4 V/0.5 V Room	R _{ON} match ^d	ΔR_{ON}	INO, INC = TOO ITIA	Room	-	0.05	-		
Switch off leakage current Oscillation		I _{NO(off)} ,		Room	-0.1	-	0.1		
No	0. 31-16 - 16 1-16 1-16 1-16 1-16		$V_{+} = 5.5 \text{ V}, V_{NO}, V_{NC} = 0.5 \text{ V} / 4 \text{ V},$	Full	-0.5	-	0.5		
Channel-on leakage current CoM(on) V+ = 5.5 V, V _{NO} , V _{NC} = V _{COM} = 0.5 V / 4 V Room -1.2 - 2 1.2	Switch off leakage current			Room	-1.2	-	1.2		
Common		ICOM(off)		Full	-2	-	2	μΑ	
Digital Control Full -2 - 2 2	Channel-on leakage		V 55VV V V 05V/4V	Room	-1.2	-	1.2		
Input high voltage	· ·	I _{COM(on)}	$V+ = 5.5 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 0.5 \text{ V} / 4 \text{ V}$	Full	-2	-	2		
Input low voltage ViNL Input capacitance CiN Input capacitance CiN Input capacitance CiN Input current InNL or Inh ViN = 0 or V + Full -1 -5 1 μA	Digital Control								
Input low voltage ViNL Input capacitance CiN Input capacitance CiN Input capacitance CiN Input current InNL or Inh ViN = 0 or V + Full -1 -5 1 μA	Input high voltage	V _{INH}		Full	1.2	-	-	.,	
Input capacitance C _{IN} Input current	Input low voltage			Full	-	-	0.3	V	
Input current Input curre	Input capacitance			Full	-	5	-	pF	
Turn-on time to No Vortice 1.5 V, RL = 50 Ω, CL = 35 pF Full 1 -	Input current		$V_{IN} = 0$ or V+	Full	-1	-	1	μA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic Characteristics								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Room	-	30	50	μs	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on time		V V 45V D 5000 05 5	Full	-	-	150		
Simple Full - - 3	T ""		V_{NO} or $V_{NC} = 1.5 \text{ V}$, $H_{L} = 50 \Omega$, $G_{L} = 35 \text{ pH}$	Room	-	0.35	1		
	Turn-off time			Full	-	-	3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Break-before-make time	t _d		Full	1	-	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charge injection d	Q _{INJ}	$C_L = 1 \text{ nF}, V_{GEN} = 1.5 \text{ V}, R_{GEN} = 0 \Omega$	Room	-	-245	-	рС	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3 dB bandwidth			Room	-	338	-	MHz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	-82	-	dB	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Off-isolation ^a	OIRR	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$	_	-	-56	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		X _{TALK}	-	Room	-	-87	-		
	Crosstalk a, i				-	-61	-		
		THD+N	R _L = 50 Ω, 1 V _{p-p} , f = 1 kHz	Room	-	-104.1	-	dB	
		C _{NO(off)}		Room	-	14.5	-		
Channel-on capacitance CNO(on) CNC(on) CNC(on) Room - 26 - Room - 26 - CNC(on)	· '			Room	-	14.5	-	pF	
Room - 26 -			f = 1 MHz		-		-		
Power Supply Power supply range V+ 1.8 - 5.5 V	Channel-on capacitance d				-	26	-		
Power supply range V+ 1.8 - 5.5 V	Power Supply								
		V+			1.8	-	5.5	V	
	Power supply current		$V_{IN} = 0$ or V+	Full		24	60	μA	

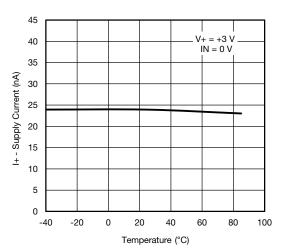

Notes

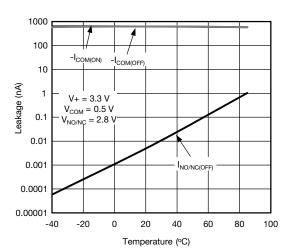
- a. Room = 25 °C, full = as determined by the operating suffix
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet
- c. Typical values are for design aid only, not guaranteed nor subject to production testing
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = input voltage to perform proper function
- f. Crosstalk measured between channels


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

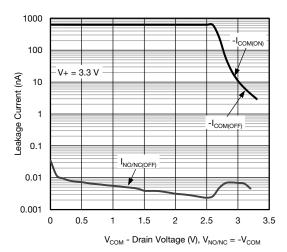

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

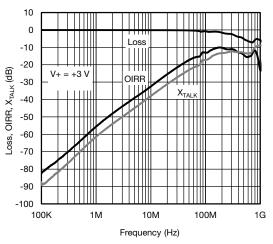

R_{ON} vs. V_{COM} and Supply Voltage

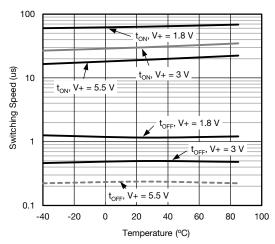

Supply Current vs. Input Voltage

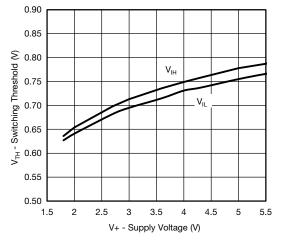

Supply Current vs. Supply Voltage

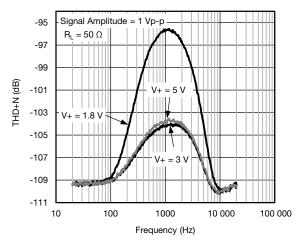
R_{ON} vs. Analog Voltage and Temperature

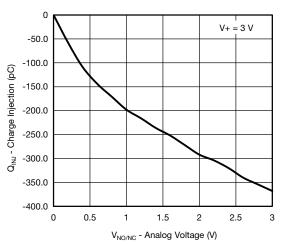

Supply Current vs. Temperature


Leakage Current vs. Temperature

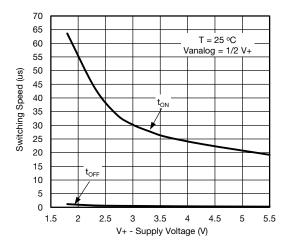

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

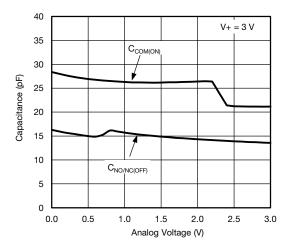

Leakage Current vs. Drain Voltage


Insertion Loss, Off-Isolation Crosstalk vs. Frequency

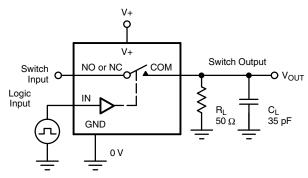

Switching Time vs. Temperature

Switching Threshold vs. Supply Voltage

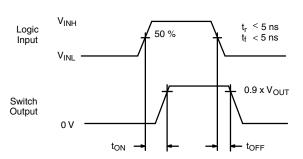

Total Harmonic Distortion and Noise vs. Frequency


Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



Switching Time vs. Supply Voltage


Capacitance vs. Analog Voltage

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

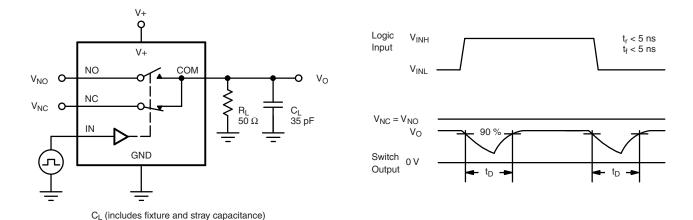
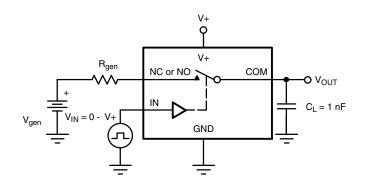
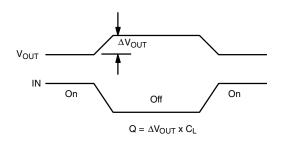
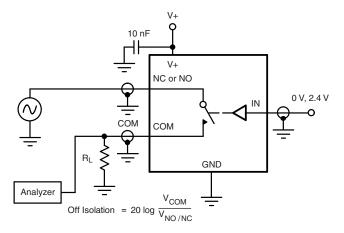




Fig. 2 - Break-Before-Make Interval



IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

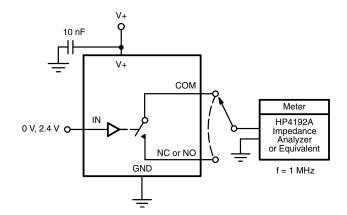
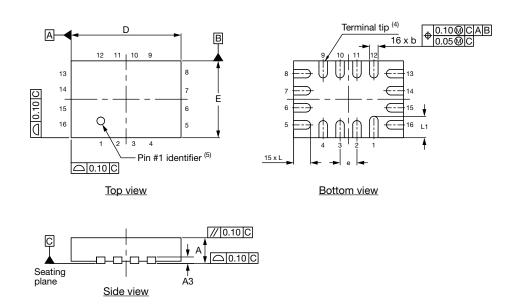



Fig. 5 - Channel Off / On Capacitance

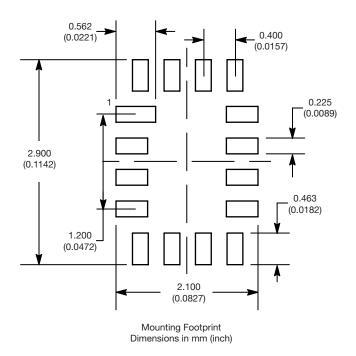
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?79391.

Thin miniQFN16 Case Outline

DIMENSIONS	MILLIMETERS (1)			INCHES		
DIMENSIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
А	0.50	0.55	0.60	0.020	0.022	0.024
A1	0	-	0.05	0	-	0.002
A3	0.15 ref.			0.006 ref.		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	2.50	2.60	2.70	0.098	0.102	0.106
е	0.40 BSC			0.016 BSC		
Е	1.70	1.80	1.90	0.067	0.071	0.075
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.018	0.020	0.022
N (3)	16			16		
Nd ⁽³⁾	4			4		
Ne ⁽³⁾	4			4		

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.


ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.