MOSFET – Small Signal, Complementary, SOT-963, 1.0 x 1.0 mm

20 V, 220 mA / -200 mA

Features

- Complementary MOSFET Device
- Offers a Low R_{DS(on)} Solution in the Ultra Small 1.0x1.0 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics.
- This is a Pb–Free Device

Applications

- Load Switch with Level Shift
- Optimized for Power Management in Ultra Portable Equipment

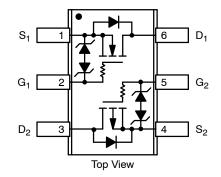
MAXIMUM RATINGS (T_J = 25° C unless otherwise specified)

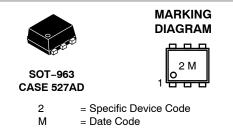
David			Symbol	Value	Unit	
Para	Parameter					
Drain-to-Source Voltag		V _{DSS}	20	V		
Gate-to-Source Voltag	le		V _{GS}	±8	V	
N-Channel	Steady	$T_A = 25^{\circ}C$		220		
Continuous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		160		
	t ≤ 5 s	$T_A = 25^{\circ}C$	1	280		
P-Channel	Steady	$T_A = 25^{\circ}C$	I _D	-200	mA	
Continuous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		-140		
	t ≤ 5 s	$T_A = 25^{\circ}C$		-250		
Power Dissipation	Steady			125		
(Note 1)	State	$T_A = 25^{\circ}C$	PD		mW	
	t ≤ 5 s			200		
Pulsed Drain Current	N-Channel	+ 10.00	1	800	m۸	
	P-Channel $t_p = 10 \ \mu s$		IDM	-600	mA	
Operating Junction and	perature	_T _J ,	–55 to	°C		
			T _{STG}	150		
Source Current (Body I	:)	۱ _S	200	mA		
Lead Temperature for S (1/8" from case for		oses	ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz. Cu.

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
	1.5 Ω @ 4.5 V	
N-Channel	2.0 Ω @ 2.5 V	
20 V	3.0 Ω @ 1.8 V	0.22 A
	4.5 Ω @ 1.5 V	
	5.0 Ω @ –4.5 V	
P-Channel	6.0 Ω @ –2.5 V	-0.2 A
20 V	7.0 Ω @ -1.8 V	
	10 Ω @ –1.5 V	

PINOUT: SOT-963

ORDERING INFORMATION

Device	Package	Shipping [†]
NTUD3169CZT5G	SOT-963 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Ambient - Steady State, Minimum Pad (Note 3)	$R_{ hetaJA}$	1000	°C/W
Junction-to-Ambient – t \leq 5 s (Note 3)		600	

3. Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz. Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

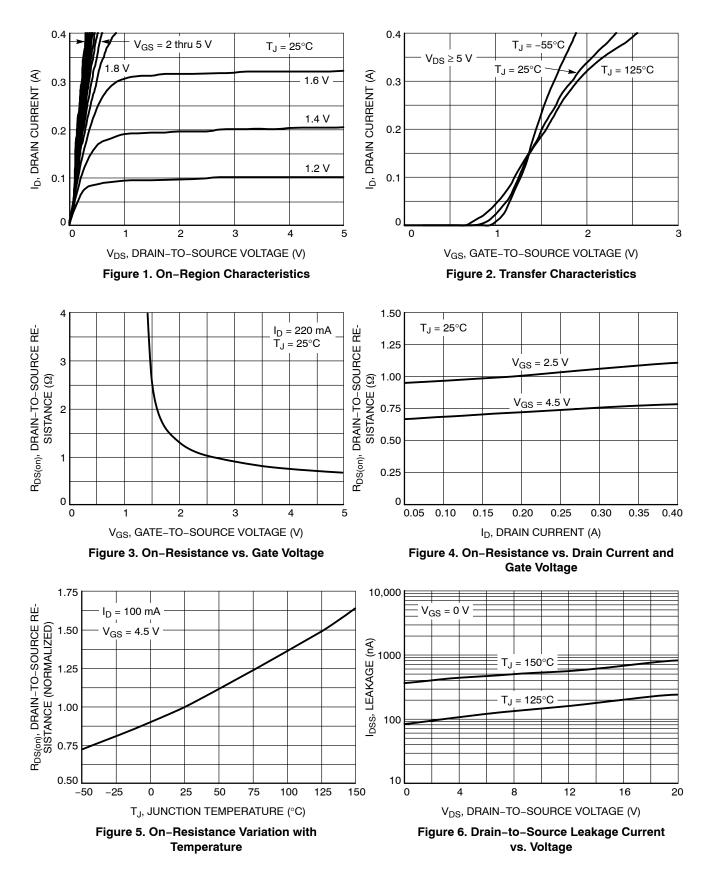
Parameter	Symbol	N/P	Test Condition	on	Min	Тур	Max	Unit				
OFF CHARACTERISTICS		-										
Drain-to-Source Breakdown Voltage	M	Ν		I _D = 250 μA	20			V				
	V _{(BR)DSS}	Р	$V_{GS} = 0 V$	I _D = -250 μA	-20			V				
Zero Gate Voltage Drain Current			$T_J = 25^{\circ}C$			50						
	I _{DSS} -	N	$V_{GS} = 0 V, V_{DS} = 5.0 V$	T _J = 85°C			200	~^				
		IDSS	DSS	DSS	DSS	Р		$T_J = 25^{\circ}C$			-50	nA
			P	$V_{GS} = 0 V, V_{DS} = -5.0 V$	T _J = 85°C			-200				
Zero Gate Voltage Drain Current	1	N	V_{GS} = 0 V, V_{DS} = 16 V	T 05°C			100	~^				
	IDSS	Р	$V_{GS} = 0 V, V_{DS} = -16 V$	T _J = 25°C			-100	nA				
Gate-to-Source Leakage Current	I	Ν					±100	~^				
IG	IGSS	I_{GSS} P $V_{DS} = 0 V, V_{GS} = \pm 5.0 V$	±3.0 V			±100	nA					

ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage		Ν	$V_{GS} = V_{DS}$	I _D = 250 μA	0.4		1.0	V								
	V _{GS(TH)}	Р		I _D = -250 μA	-0.4		-1.0									
Drain-to-Source On Resistance		Ν	V _{GS} = 4.5 V, I _D = 1	100 mA		0.75	1.5									
		Р	V _{GS} = -4.5V, I _D = -	-100 mA		2.0	5.0									
		Ν	V_{GS} = 2.5 V, I _D =	50 mA		1.0	2.0									
		Р	$V_{GS} = -2.5V, I_D = -2.5V$	–50 mA		2.6	6.0									
		Ν	V _{GS} = 1.8 V, I _D =	20 mA		1.4	3.0	0								
	R _{DS(on)}	Р	$V_{GS} = -1.8V, I_D = -1.8V$	–20 mA		3.4	7.0	Ω								
						Ν	V _{GS} = 1.5 V, I _D =	10 mA		1.8	4.5					
				Р	V_{GS} = -1.5 V, I _D =	–10 mA		4.0	10							
										Ν	V_{GS} = 1.2 V, I _D =	1.0 mA		2.8		
													Р	V_{GS} = -1.2 V, I _D = -	–1.0 mA	
Forward Transconductance	_	Ν	V _{DS} = 5.0 V, I _D = 1	125 mA		0.48		0								
	9fs	Р	V _{DS} = -5.0 V, I _D = -	-125 mA		0.35		S								
Source-Drain Diode Voltage	V _{SD}	Ν	V _{GS} = 0 V, I _S = 10 mA	$T_J = 25^{\circ}C$		0.6	1.0	V								
		Р	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -10 \text{ mA}$			-0.6	-1.0									

CAPACITANCES

Input Capacitance	C _{ISS}			12.5	
Output Capacitance	C _{OSS}	Ν	f = 1 MHz, V _{GS} = 0 V V _{DS} = 15 V	3.6	
Reverse Transfer Capacitance	C _{RSS}	1		2.6	
Input Capacitance	C _{ISS}			13.5	pF
Output Capacitance	C _{OSS}	Р	f = 1 MHz, V _{GS} = 0 V V _{DS} = -15 V	3.8	
Reverse Transfer Capacitance	C _{RSS}	1		2.0	


4. Switching characteristics are independent of operating junction temperatures

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	N/P	Test Condition	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, V	'_{GS} = 4.5 V (Not	e 4)					
Turn-On Delay Time	t _{d(ON)}				16.5		
Rise Time	t _r	N	V_{GS} = 4.5 V, V_{DD} = 10 V, I_D = 200 mA, R_G = 2.0 Ω		25.5		
Turn-Off Delay Time	t _{d(OFF)}		$R_{G} = 2.0 \Omega$		142		
Fall Time	t _f	1			80		20
Turn-On Delay Time	t _{d(ON)}				26		ns
Rise Time	t _r	Р	V _{GS} = -4.5 V, V _{DD} = -15 V,		46		
Turn-Off Delay Time	t _{d(OFF)}]	$I_D = -200 \text{ mA}, R_G = 2.0 \Omega$		196		
Fall Time	t _f	1			145		

4. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS (N-CHANNEL)

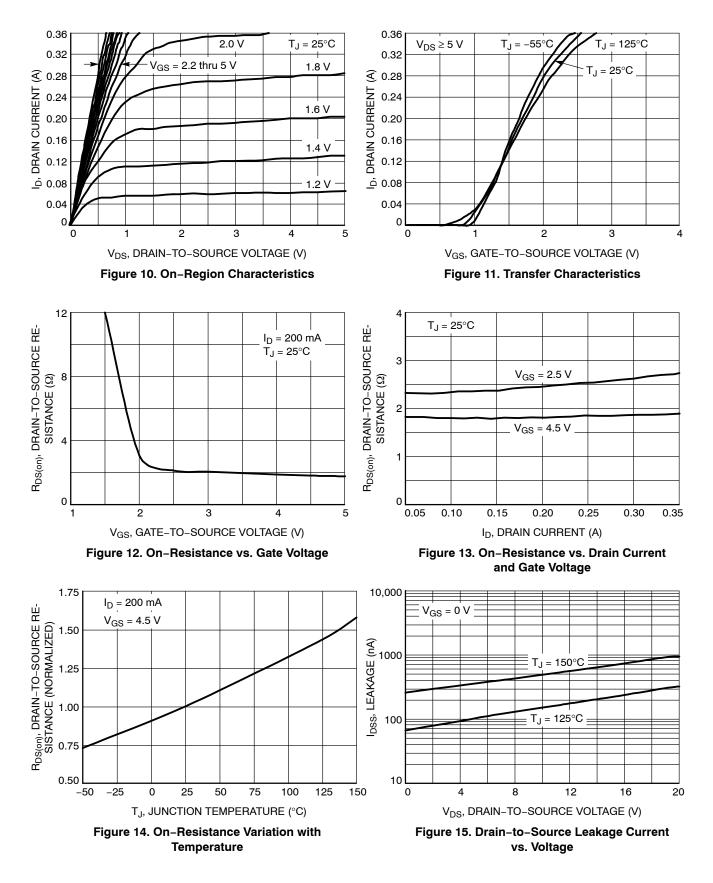
TYPICAL CHARACTERISTICS (N-CHANNEL)

0.6

0.8

1

0.4


V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V) Figure 9. Diode Forward Voltage vs. Current

0

0

0.2

TYPICAL CHARACTERISTICS (P-CHANNEL)

TYPICAL CHARACTERISTICS (P-CHANNEL)

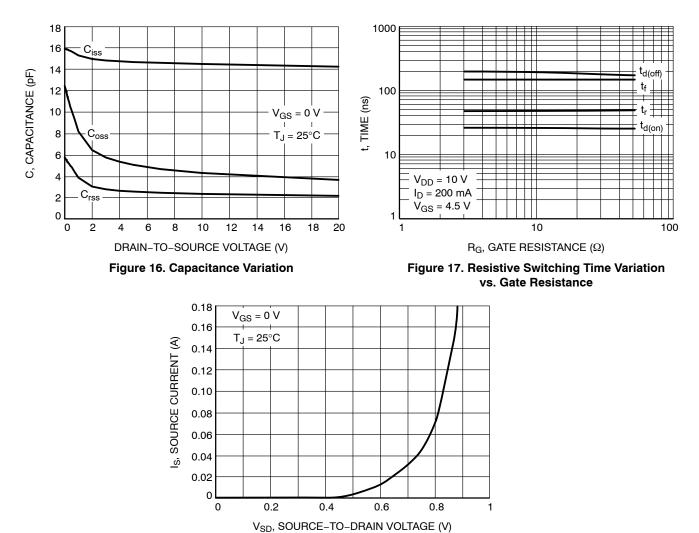
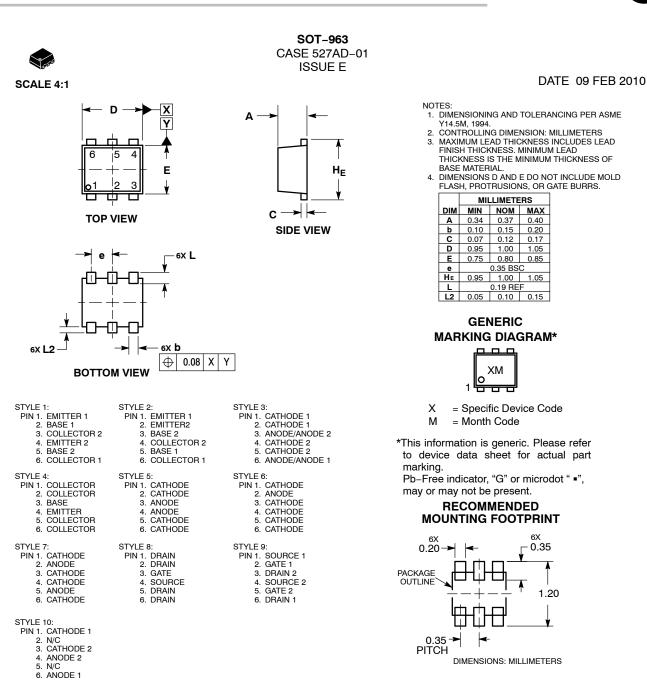



Figure 18. Diode Forward Voltage vs. Current

DOCUMENT NUMBER:	98AON26456D	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOT-963, 1X1, 0.35P		PAGE 1 OF 1				
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an inticular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically				

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative