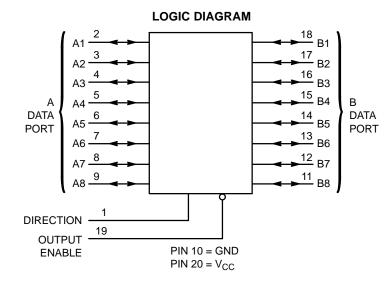
MC74HC245A

Octal 3-State Noninverting Bus Transceiver

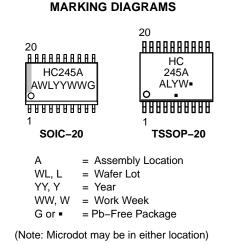

High–Performance Silicon–Gate CMOS

The MC74HC245A is identical in pinout to the LS245. The device inputs are compatible with standard CMOS outputs; with pull–up resistors, they are compatible with LSTTL outputs.

The HC245A is a 3-state noninverting transceiver that is used for 2-way asynchronous communication between data buses. The device has an active-low Output Enable pin, which is used to place the I/O ports into high-impedance states. The Direction control determines whether data flows from A to B or from B to A.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 308 FETs or 77 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant


ON Semiconductor®

http://onsemi.com

PIN ASSIGNMENT

DIRECTION [1 ●	20 🛛 V _{CC}
A1 [2	19 OUTPUT ENABLE
A2 [3	18 🛛 В1
A3 [4	17 🛛 B2
A4 [5	16 🛛 ВЗ
A5 [6	15 🛛 B4
A6 [7	14 🛛 B5
A7 [8	13 🛛 B6
A8 [9	12 🛛 В7
GND [10	11 🛛 В8

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

FUNCTION TABLE

Control Inputs		
Output Enable Direction		Operation
L	L	Data Transmitted from Bus B to Bus A
L	Н	Data Transmitted from Bus A to Bus B
Н	Х	Buses Isolated (High–Impedance State)

X = don't care

MAXIMUM RATINGS (Note 1)

Symbol	F	Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		–0.5 to V _{CC} + 0.5	V
V _{OUT}	DC Output Voltage	(Note 2)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±35	mA
I _{OUT}	DC Output Sink Current		±35	mA
I _{CC}	DC Supply Current per Supply Pin		±75	mA
I _{GND}	DC Ground Current per Ground Pin		±75	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case f	for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance	SOIC TSSOP	96 128	°C/W
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% to 35%	UL 94 V–0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	> 2000 > 200 > 1000	V
I _{LATCHUP}	Latchup Performance	Above V_{CC} and Below GND at 85°C (Note 6)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 20 ounce copper trace with no air flow.

2. I_O absolute maximum rating must observed.

Tested to EIA/JESD22–A114–A.
Tested to EIA/JESD22–A115–A.

5. Tested to JESD22-C101-A.

6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	I Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	(Figure 1) V _{CC}	= 2.0 V = 4.5 V = 6.0 V	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

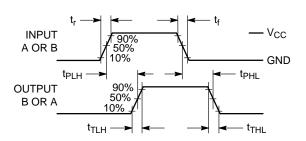
MC74HC245A

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	v _{cc} v	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
VIH	Minimum High-Level Input Voltage	$V_{out} = V_{CC} - 0.1 V$ $ I_{out} \le 20 \mu A$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$V_{out} = 0.1 V$ $ I_{out} \le 20 \mu A$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High–Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
			3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.2 3.7 5.2	
V _{OL}	Maximum Low–Level Output Voltage	$V_{in} = V_{IL}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
			3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.4 0.4 0.4	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum Three–State Leakage Current	$\begin{array}{l} \text{Output in High-Impedance State} \\ \text{V}_{\text{in}} = \text{V}_{\text{IL}} \text{ or V}_{\text{IH}} \\ \text{V}_{\text{out}} = \text{V}_{\text{CC}} \text{ or GND} \end{array}$	6.0	±0.5	±5.0	±10	μΑ
I _{CC}	Maximum Quiescent Supply Cur- rent (per Package)	$V_{in} = V_{CC} \text{ or GND}$ $I_{out} = 0 \ \mu A$	6.0	4.0	40	160	μΑ

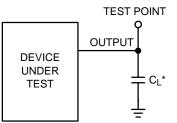
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

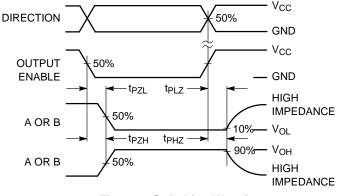
AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

	Guaranteed Limit		mit			
Symbol	Parameter	V _{CC} V	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to B, B to A (Figures 1 and 3)	2.0 3.0 4.5 6.0	75 55 15 13	95 70 19 16	110 80 22 19	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Direction or Output Enable to A or B (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 90 22 19	140 110 28 24	165 130 33 28	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to A or B (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 90 22 19	140 110 28 24	165 130 33 28	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 3.0 4.5 6.0	60 23 12 10	75 27 15 13	90 32 18 15	ns
C _{in}	Maximum Input Capacitance (Pin 1 or Pin 19)	-	10	10	10	pF
C _{out}	Maximum Three–State I/O Capacitance (I/O in High–Impedance State)	-	15	15	15	pF
			Typical	@ 25°C, V _C	_C = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Transceiver Channel) (Note 7)			40		pF

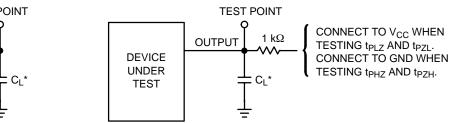

 C_{PD} Power Dissipation Capacitance (Per Transceiver Channel) (Note 7)7. Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74HC245ADWG	SOIC-20 WIDE (Pb-Free)	38 Units / Rail
NLV74HC245ADWG*	SOIC-20 WIDE (Pb-Free)	38 Units / Rail
MC74HC245ADWR2G	SOIC-20 WIDE (Pb-Free)	1000 Tape & Reel
NLV74HC245ADWR2G*	SOIC-20 WIDE (Pb-Free)	1000 Tape & Reel
MC74HC245ADTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NLV74HC245ADTG*	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74HC245ADTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel
NLV74HC245ADTR2G*	TSSOP-20 (Pb-Free)	2500 Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.



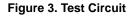


Figure 2. Switching Waveform

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 4. Test Circuit

MC74HC245A

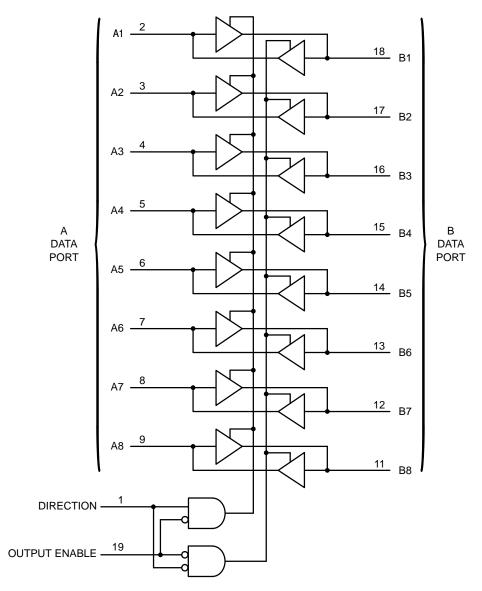
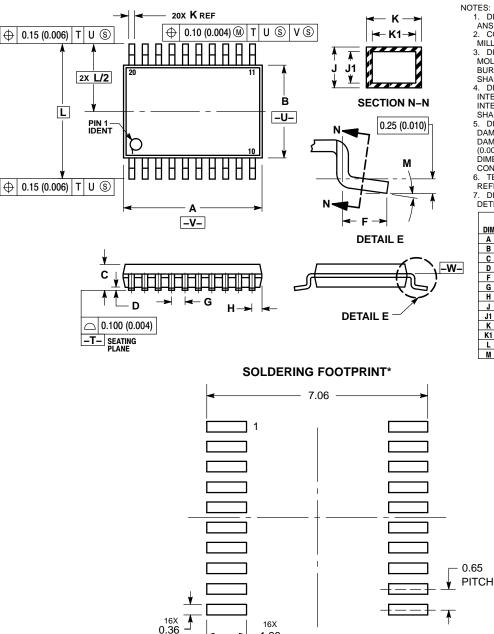
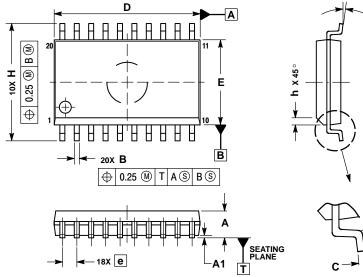



Figure 5. Expanded Logic Diagram

PACKAGE DIMENSIONS

TSSOP-20 **DT SUFFIX** CASE 948E-02 **ISSUE C**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL


DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
Η	0.27	0.37	0.011	0.015
L	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
Κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
Г	6.40	BSC	0.252 BSC	
М	0°	8°	0°	8°

T 16X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOIC-20 **DW SUFFIX** CASE 751D-05 **ISSUE G**

NOTES:

- DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 2
- DIMENSIONS D AND E DO NOT INCLUDE MOLD 3. PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B 5 DIMENSION AT MAXIMUM MATERIAL CONDITION.

		MILLIMETERS		
	DIM	MIN	MAX	
	Α	2.35	2.65	
	A1	0.10	0.25	
	В	0.35	0.49	
	С	0.23	0.32	
	D	12.65	12.95	
	Е	7.40	7.60	
	е	1.27	BSC	
L	Н	10.05	10.55	
	h	0.25	0.75	
	L	0.50	0.90	
L	θ	0 °	7 °	

ON Semiconductor and the 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative