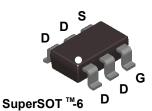
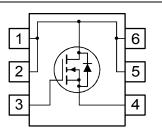


ON Semiconductor®

FDC3512

80V N-Channel PowerTrench[®] MOSFET Features


General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$ and fast switching speed.

Applications

• DC/DC converter

- 3.0 A, 80 V R_{DS(ON)} = 77 mΩ @ V_{GS} = 10 V $R_{DS(ON)} = 88 \text{ m}\Omega @ V_{GS} = 6 \text{ V}$
- · High performance trench technology for extremely low R_{DS(ON)}
- Low gate charge (13nC typ)
- High power and current handling capability
- · Fast switching speed

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		80	V
V _{GSS}	Gate-Source Voltage		± 20	V
I _D	Drain Current – Continuous	(Note 1a)	3.0	А
	– Pulsed		20	
P _D	Maximum Power Dissipation	(Note 1a)	1.6	W
		(Note 1b)	0.8	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C
Therma	I Characteristics	·		
Rom	Thermal Resistance Junction-to-Ambient	(Note 1a)	78	°C/W

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	30	°C/W

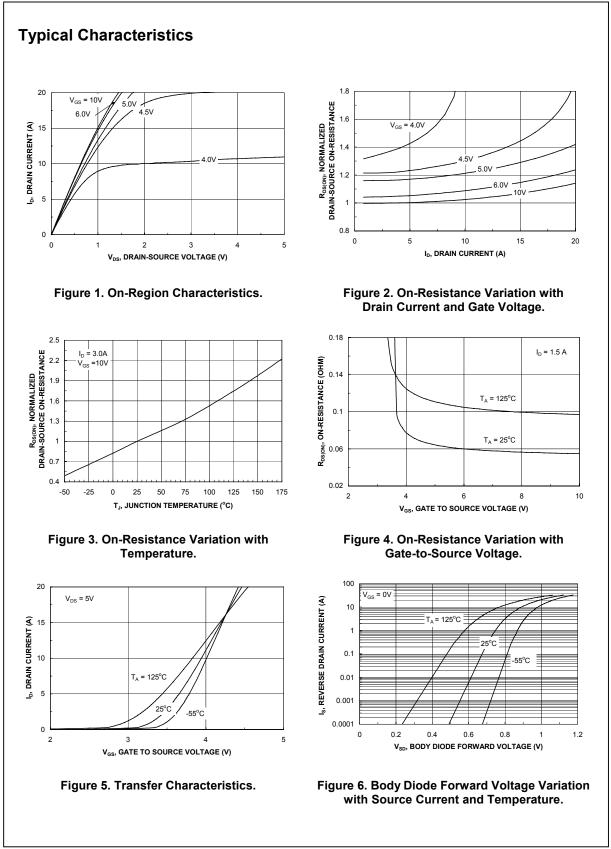
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.352	FDC3512	7"	8mm	3000 units

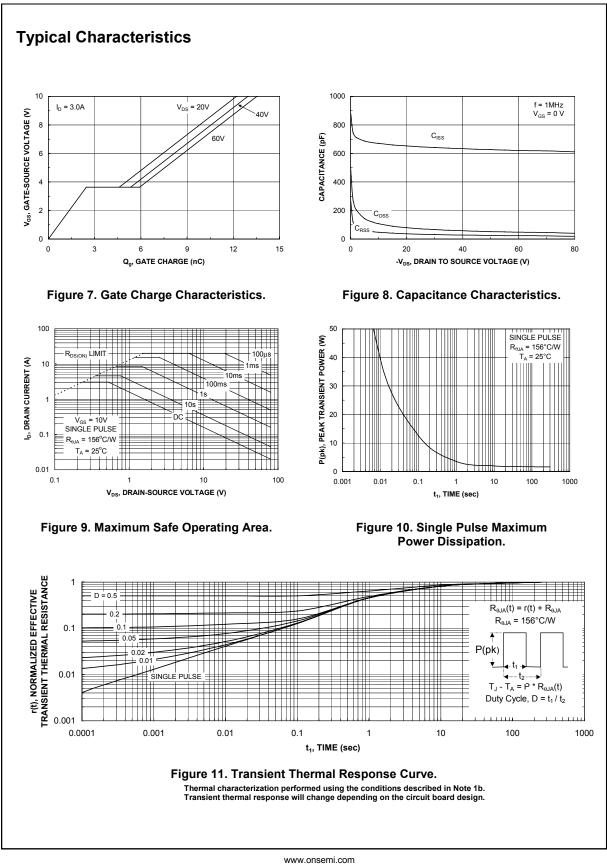
©2002 Semiconductor Components Industries, LLC. October-2017, Rev. 2

Publication Order Number: FDC3512/D

FDC3512


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (Note	2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 40 \text{ V}$, $I_D = 3.0 \text{ A}$			90	mJ
AR	Drain-Source Avalanche Current				3.0	Α
Off Char	acteristics		1			1
BV _{DSS}	Drain–Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	80			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		80		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 64 V, V_{GS} = 0 V$			1	μA
GSSF	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2	2.4	4	V
$\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-6		mV/°0
R _{DS(on)}	Static Drain–Source On Resistance	$ \begin{array}{l} V_{GS} = 10 \text{ V}, \ I_D = 3.0 \text{ A} \\ V_{GS} = 6.0 \text{ V}, \ I_D = 2.8 \text{ A} \\ V_{GS} = 10 \text{ V}, \ I_D = 3.0 \text{ A}; T_J = 125^{\circ}\text{C} \end{array} $		56 61 97	77 88 141	mΩ
D(on)	On–State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	10			Α
g _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 3.0 A		14		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 40 V$, $V_{GS} = 0 V$,		634		pF
Coss	Output Capacitance	f = 1.0 MHz		58		pF
Crss	Reverse Transfer Capacitance			28		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 40 V$, $I_D = 1 A$,		7	14	ns
t _r	Turn–On Rise Time	$V_{GS} = 10$ V, $R_{GEN} = 6 \Omega$		3	6	ns
t _{d(off)}	Turn–Off Delay Time			24	28	ns
t _f	Turn–Off Fall Time			4	8	ns
Qg	Total Gate Charge			13	18	nC
Q _{gs}	Gate–Source Charge			2.4		nC
Q _{gd}	Gate–Drain Charge			2.8		nC
Drain–So	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Sourc				1.3	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 1.3 A$ (Note 2)		0.8	1.2	V
r) rr	Diode Reverse Recovery Time Diode Reverse Recovery Charge	I _F = 3.0 A, d _{iF} /d _t = 300 A/µs (Note 2)		28.2 48		nS nC

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.


a. 78°C/W when mounted on a 1in² pad of 2oz copper on FR-4 board.

b. 156°C/W when mounted on a minimum pad.

2. Pulse Test: Pulse Width $\leq 300~\mu s,$ Duty Cycle $\leq 2.0\%$

FDC3512

FDC3512

4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative