
MOSFET – Power, Dual, N-Channel with Integrated Schottky WDFN, (3 mm x 3 mm)

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	17.4 m Ω @ 10 V	A FF
30 V	25 mΩ @ 4.5 V	11 A
Q2 Bottom	13.3 m Ω @ 10 V	13 A
FET 30 V	20 mΩ @ 4.5 V	13 A

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

30 V, High Side 11 A / Low Side 13 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Low Side MOSFET with Integrated Schottky
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- DC–DC Converters
- System Voltage Rails
- Point of Load

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise stated)

Parameter				Symbol	Value	Unit
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage			Q1	V _{GS}	±20	V
Gate-to-Source Voltage	Q2					
Continuous Drain Current $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	Q1	I _D	8.3	
		T _A = 85°C			6.0	1.
		T _A = 25°C	Q2		9.6	A
		T _A = 85°C			6.9	
Power Dissipation		T _A = 25°C	Q1	PD	1.82	W
RθJA (Note 1)			Q2		1.88	
Continuous Drain Current $R_{\theta JA} \leq$ 10 s (Note 1)		T _A = 25°C	Q1	I _D	11	
		T _A = 85°C			8	
	Steady	T _A = 25°C	Q2		13	A
	State	T _A = 85°C			9.1	
Power Dissipation		T _A = 25°C	Q1	PD	3.23	W
$R_{\theta JA} \leq 10 \text{ s} (\text{Note 1})$			Q2		3.27	
Continuous Drain Current		T _A = 25°C	Q1	۱ _D	5.5	
R _{θJA} (Note 2)		T _A = 85°C			4.0	
		T _A = 25°C	Q2		6.3	A
		T _A = 85°C			4.5	
Power Dissipation		T _A = 25 °C	Q1	PD	0.80	W
R _{θJA} (Note 2)			Q2		0.81	
Pulsed Drain Current		TA = 25°C	Q1	I _{DM}	65	Α
		tp = 10 μs	Q2		70	
Operating Junction and Storage Temperature			Q1	T _J , T _{STG}	–55 to +150	°C
			Q2			
Source Current (Body Diode)			Q1	۱ _S	4.2	А
	Q2		6.0			
Drain to Source DV/DT		dV/dt	6	V/ns		
Single Pulse Drain-to-Source Avalanche Energy (T V_{GS} = 10 V, I_L = 9.0 A_{pk}, L = 0.3 mH, R_G = 25 Ω)	Q1	EAS	12	mJ		
Single Pulse Drain-to-Source Avalanche Energy (T V_{GS} = 10 V, I _L = 9.5 A _{pk} , L = 0.3 mH, R _G = 25 Ω)	Q2	EAS	13.5			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu
Surface-mounted on FR4 board using the minimum recommended pad size of 90 mm²

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	FET	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	Q1	R_{\thetaJA}	68.8	
	Q2		66.4	
Junction-to-Ambient - Steady State (Note 4)	Q1	R_{\thetaJA}	156.4	0000
	Q2		153.9	°C/W
Junction-to-Ambient – (t \leq 10 s) (Note 3)	Q1	R_{\thetaJA}	38.7	
	Q2		38.2	

Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu
Surface-mounted on FR4 board using the minimum recommended pad size of 90 mm²

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Break-	Q1	V _{(BR)DSS}	V _{GS} = 0 V,	I _D = 250 μA	30			V
down Voltage	Q2				30			1
Drain-to-Source Break- down Voltage Temperature	Q1	V _{(BR)DSS}				18		mV / °C
Coefficient	Q2	· 7/TJ				15		
Zero Gate Voltage Drain	Q1	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			1	μΑ
Current			$V_{DS} = 24 V$	T _J = 125°C			10	1
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			500	
Gate-to-Source Leakage	Q1	I _{GSS}	V_{GS} = 0 V, VDS = ±20 V				±100	nA
Current	Q2						±100	1

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	Q1	V _{GS(TH)}	V _{GS} = VDS,	I _D = 250 μA	1.2		2.2	V
	Q2				1.2		2.2	
Negative Threshold Temper- ature Coefficient	Q1	V _{GS(TH)} / T _J				4.5		mV / °C
	Q2	IJ				4.0		-0
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 9 A		14	17.4	
ance			V _{GS} = 4.5 V	I _D = 9 A		20	25	
	Q2		V _{GS} = 10 V	I _D = 11 A		11	13.3	mΩ
			V _{GS} = 4.5 V	I _D = 11 A		16	20	
Forward Transconductance	Q1	9 FS	V _{DS} = 1.5	V, I _D = 9 A		16		S
	Q2					18		

CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	Q1	C		605	
Input Capacitance	Q2	C _{ISS}		660	
Output Capacitance	Q1		190	рF	
	Q2	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V	325	ρг
	Q1	0		102	
Reverse Capacitance Q2		C _{RSS}		17.5	

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES	& GATE	RESISTANC	E					-
	Q1					6.5		
Total Gate Charge	Q2	Q _{G(TOT)}				5.0		1
T I I I I O I OI	Q1					1.1		1
Threshold Gate Charge	Q2	Q _{G(TH)}				1.1		
	Q1		V_{GS} = 4.5 V, V_{DS}	_s = 15 V; I _D = 9 A		1.9		nC
Gate-to-Source Charge	Q2	Q _{GS}				2.0		1
	Q1					3.2		1
Gate-to-Drain Charge	Q2	Q _{GD}				1.46		1
	Q1					12		
Total Gate Charge	Q2	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS}	= 15 V; I _D = 9 A		10.6		nC
SWITCHING CHARACTERIS	TICS (No	te 6)						-
	Q1				8.0			
Turn-On Delay Time	Q2	t _{d(ON)}				7.5		
Rise Time	Q1		Vcc = 4.5 V Vcc = 15 V			7.2		- ns
	Q2	t _r				11.2		
	Q1		V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 9 A, R_{G} = 3.0 Ω			11		
Turn-Off Delay Time	Q2	t _{d(OFF)}			11.6			
	Q1					3.3		1
Fall Time	Q2	t _f				1.9		1
SWITCHING CHARACTERIS	TICS (No	te 6)						
	Q1					4.2		
Turn-On Delay Time	Q2	t _{d(ON)}				4.3		1
D: T	Q1					11.6		1
Rise Time	Q2	• t _r	V _{GS} = 10 V.	Vns = 15 V.		11.4		1
	Q1		V _{GS} = 10 V, I _D = 9 A, F	$R_{G} = 3.0 \Omega$		14.1		ns
Turn-Off Delay Time	Q2	t _{d(OFF)}				14.3		1
	Q1					2.0		1
Fall Time		• t _f				1.3		1
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS						-
	<u> </u>		V _{GS} = 0 V.	$T_J = 25^{\circ}C$		0.80	1.2	
	Q1		V _{GS} = 0 V, I _S = 3 A	T _J = 125°C		0.65		1
Forward Voltage		V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.50	0.80	V
	Q2		$I_{\rm S} = 2 \rm A$	T _J = 125°C	ł	0.45		-

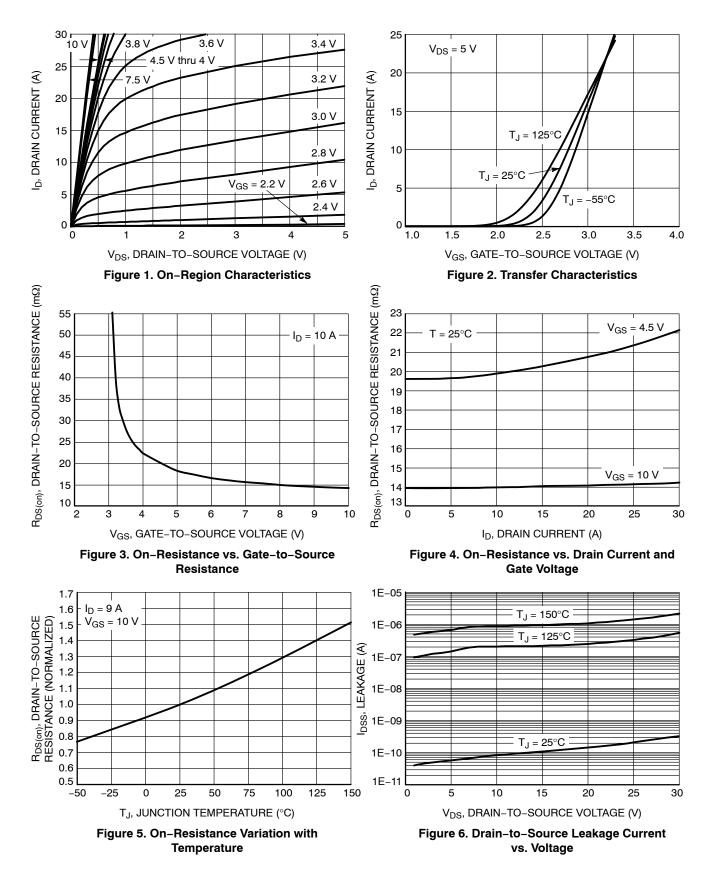
 $\begin{array}{ll} \text{5. Pulse Test: pulse width} \leq 300 \ \mu\text{s}, \ \text{duty cycle} \leq 2\% \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \end{array}$

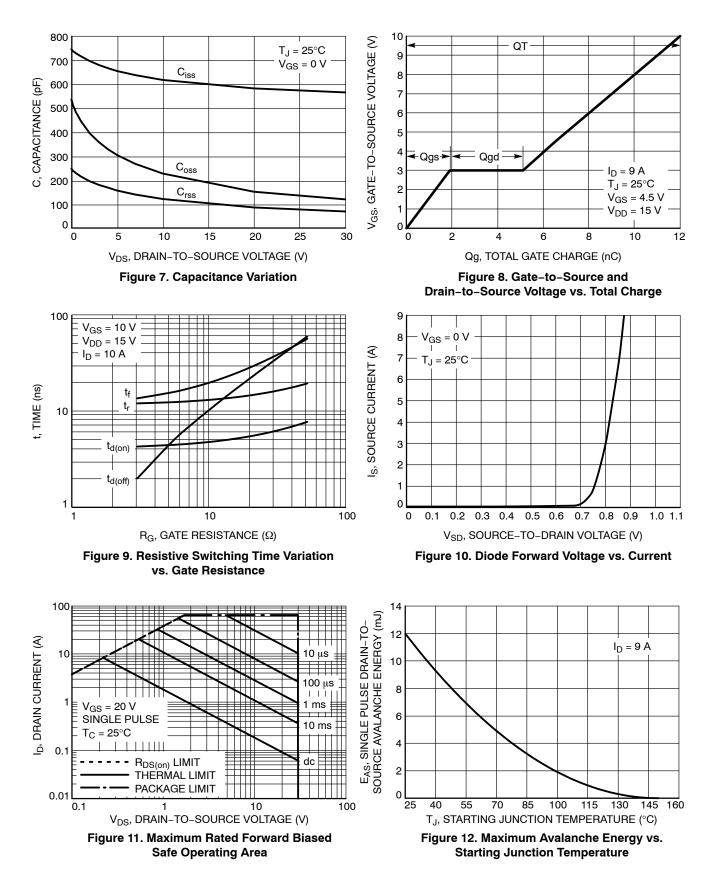
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

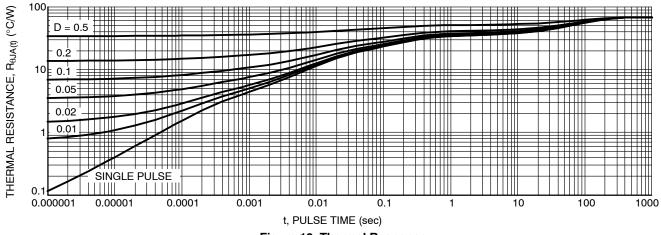
Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHA	RACTE	RISTICS					
	Q1				17.9		
Reverse Recovery Time	Q2	t _{RR}			23.3		
Charge Time	Q1	ta	V_{GS} = 0 V, d_{IS}/d_t = 100 A/µs, I_S = 3 A		9.0		
	Q2				11.3		ns
Dischause Time	Q1	414			9.0		
Discharge Time	Q2	tb			12		
Reverse Recovery Charge Q1 Q2	Q1	0			8.0		
	Q2	Q _{RR}			12		nC

PACKAGE PARASITIC VALUES

0	Q1			0.36	
Source Inductance	Q2	LS		0.36	nH
Drain Inductoria	Q1			0.054	nH
Drain Inductance	Q2	LD	T _A = 25°C	0.054	
Cata Industance	Q1			1.3	
Gate Inductance	Q2	LG		1.3	nH
Osta Dasistanas	Q1	Р		0.8	0
Gate Resistance	Q2	R _G		0.8	Ω

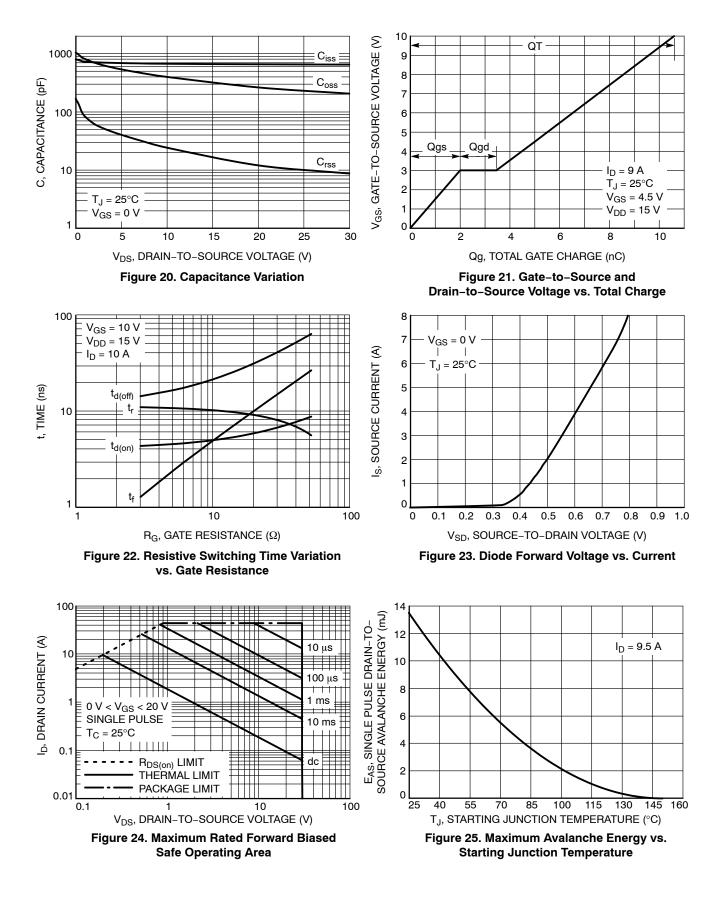

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%


6. Switching characteristics are independent of operating junction temperatures.


ORDERING INFORMATION

Device	Package	Shipping [†]
NTLLD4901NFTWG	WDFN8 (Pb–Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



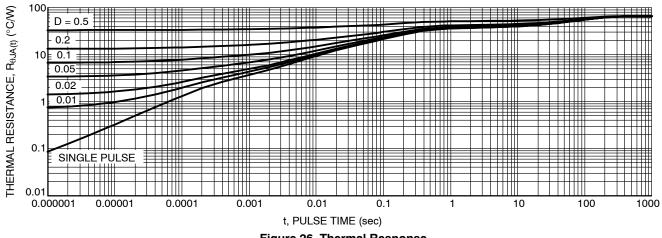
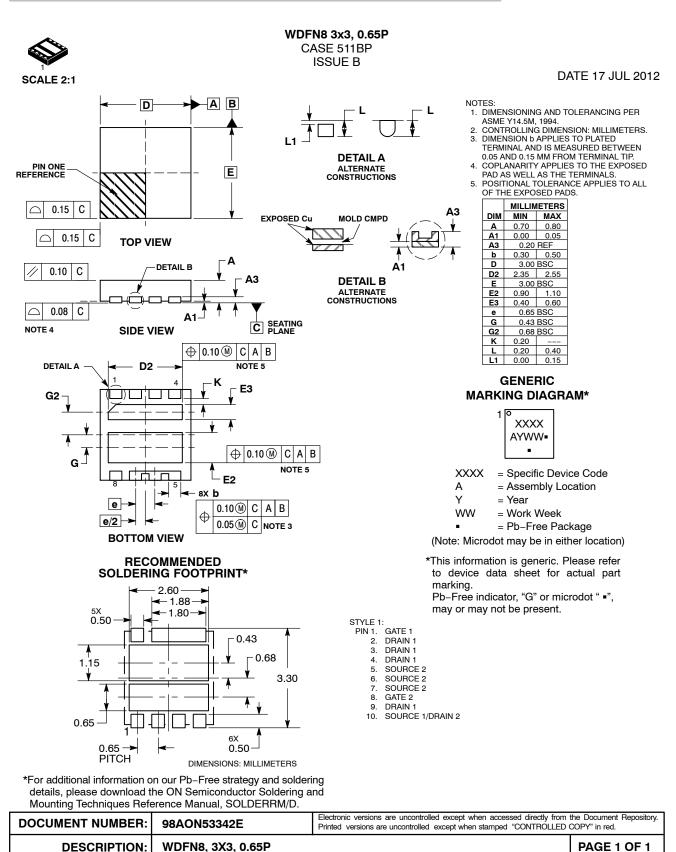



Figure 26. Thermal Response

ON Semiconductor and 💵 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>