

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOR

MM74HC138 3-to-8 Line Decoder

General Description

The MM74HC138 decoder utilizes advanced silicon-gate CMOS technology and is well suited to memory address decoding or data routing applications. The circuit features high noise immunity and low power consumption usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL logic.

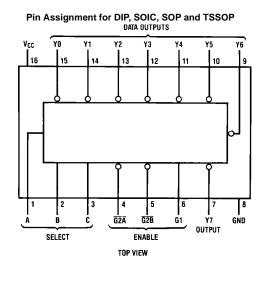
The MM74HC138 has 3 binary select inputs (A, B, and C). If the device is enabled, these inputs determine which one of the eight normally HIGH outputs will go LOW. Two active LOW and one active HIGH enables (G1, G2A and G2B) are provided to ease the cascading of decoders.

The decoder's outputs can drive 10 low power Schottky TTL equivalent loads, and are functionally and pin equivalent to the 74LS138. All inputs are protected from damage due to static discharge by diodes to $\rm V_{CC}$ and ground.

September 1983

Revised February 1999

Features

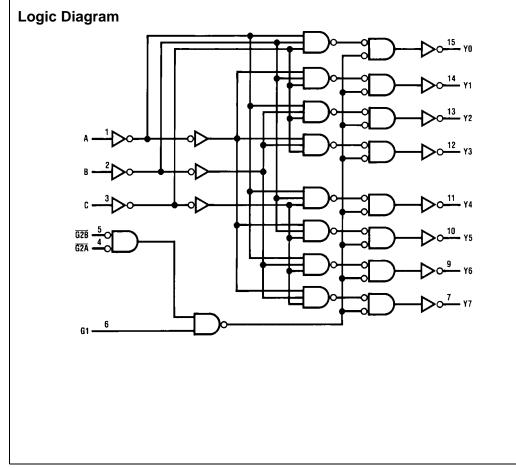

- Typical propagation delay: 20 ns
- Wide power supply range: 2V–6V
- Low quiescent current: 80 µA maximum (74HC Series)
- Low input current: 1 μA maximum
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC138M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC138SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC138MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC138N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram


www.fairchildsemi.com

MM74HC138

Truth Table													
	Inputs				Outputs								
	Enable		Select										
	G1	G2 (Note 1)	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
	Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
	L	х	х	Х	Х	н	н	н	н	н	н	н	н
	н	L	L	L	L	L	н	н	н	н	н	н	н
	н	L	L	L	н	н	L	н	н	н	н	н	н
	н	L	L	н	L	н	н	L	н	н	н	н	н
	н	L	L	н	н	н	н	н	L	н	н	н	н
	н	L	н	L	L	н	н	н	н	L	н	н	н
	н	L	н	L	н	н	н	н	н	н	L	н	н
	н	L	н	н	L	н	н	н	н	н	н	L	н
	н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = HIGH Level, L = LOW Level, X = don't care

Note 1: $\overline{G2} = G2A+G2B$

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Recommended Operating Conditions

	-
(Note 3)	
Supply Voltage (V _{CC})	-0.5 to + 7.0 V
DC Input Voltage (V _{IN})	$-$ 1.5 to $V_{CC}+1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC}^{}+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	± 20 mA
DC Output Current, per pin (I _{OUT})	± 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	± 50 mA
Storage Temperature Range (T _{STG})	- 65°C to $+$ 150°C
Power Dissipation (P _D)	
(Note 4)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

	Min	Max	Units				
Supply Voltage (V _{CC})	2	6	V				
DC Input or Output Voltage	0	V _{CC}	V				
(V _{IN} , V _{OUT})							
Operating Temperature Range (T _A)	-40	+85	°C				
Input Rise or Fall Times							
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns				
$V_{CC} = 4.5V$		500	ns				
$V_{CC} = 6.0V$		400	ns				
Note 2: Absolute Maximum Patings are those values beyond which dam-							

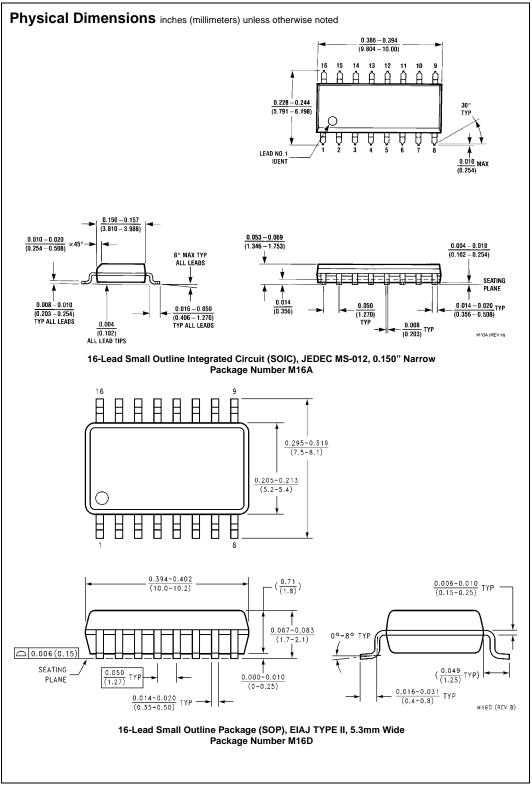
Note 2: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 3: Unless otherwise specified all voltages are referenced to ground. Note 4: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

$T_A=-40$ to $85^\circ C$ $T_A=25^\circ C$ Symbol Parameter Conditions Units v_{cc} Тур **Guaranteed Limits** Minimum HIGH Level VIH 2 0V 1.5 1.5 V 4.5V 3.15 Input Voltage 3 15 V 6.0V V 4.2 4.2 VIL Maximum LOW Level 2.0V 0.5 0.5 V Input Voltage 4.5V 1.35 1.35 V 6.0V V 1.8 1.8 Minimum HIGH Level $V_{IN} = V_{IH} \text{ or } V_{IL}$ V_{OH} | I_{OUT} | ≤ 20 μA 2.0V 2.0 V Output Voltage 1.9 1.9 4.5V 4.5 4.4 4.4 V 6.0V 6.0 5.9 5.9 V $V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}}$ $|I_{OUT}| \le 4.0 \text{ mA}$ 4.5V 3.98 3.84 V 4.2 $|I_{OUT}| \le 5.2 \text{ mA}$ 6.0V 5.7 5.48 5.34 V Maximum LOW Level VOL $V_{IN} = V_{IH} \text{ or } V_{IL}$ 2.0V V Output Voltage $\mid I_{OUT} \mid \le 20 \ \mu A$ 0 0.1 0.1 4.5V 0 0.1 0.1 V 6.0V V 0 0.1 0.1 $V_{IN} = V_{IH} \text{ or } V_{IL}$ | I_{OUT} | ≤ 4.0 mA 4.5V 0.2 0.26 0.33 V 0.33 | I_{OUT} | ≤ 5.2 mA 6.0V 0.2 0.26 V μΑ $V_{IN} = V_{CC}$ or GND 6.0V ±0.1 ±1.0 I_{IN} Maximum Input Current Maximum Quiescent $V_{IN} = V_{CC} \text{ or } GND$ 6.0V 8.0 80 μΑ Icc Supply Current $I_{OUT} = 0 \ \mu A$

Note 5: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

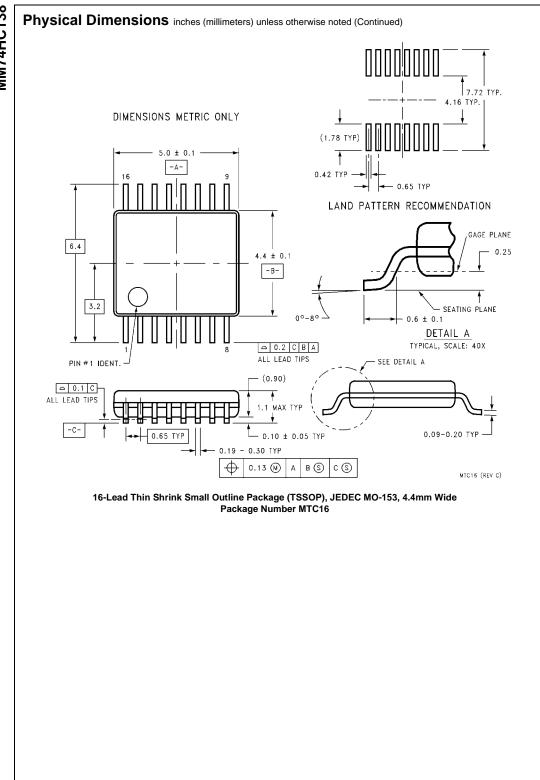
DC Electrical Characteristics (Note 5)

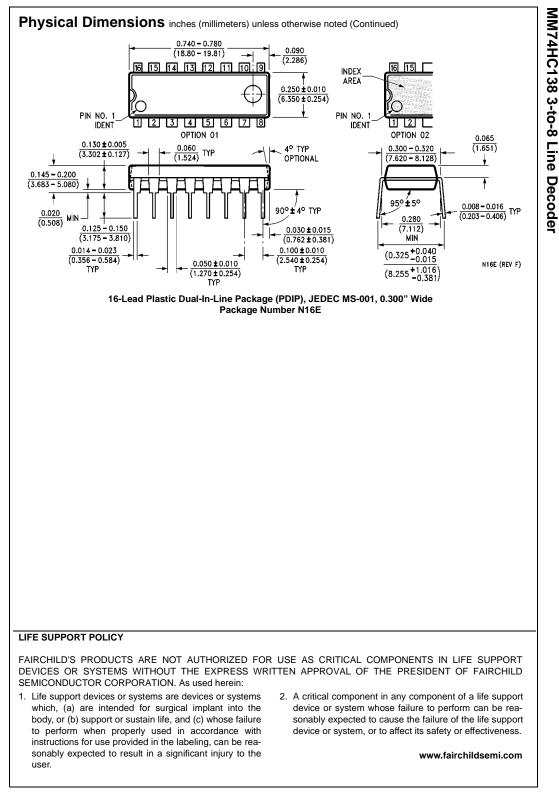

MM74HC138

• • • • • • • •	$V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$						
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units		
t _{PLH}	Maximum Propagation		18	25	ns		
	Delay, Binary Select to any Output						
t _{PHL}	Maximum Propagation		28	35	ns		
	Delay, Binary Select to any Output						
t _{PHL} , t _{PLH}	Maximum Propagation		18	25	ns		
	Delay, G1 to any Output						
t _{PHL}	Maximum Propagation		23	30	ns		
	Delay G2A or G2B to						
	Output						
t _{PLH}	Maximum Propagation		18	25	ns		
	Delay G2A or G2B to Output						

AC Electrical Characteristics

$C_L = 50 \text{ pF}, \, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified) $T_A = 25^{\circ}C$ $T_A{=}{-}40$ to $85^\circ C$ Symbol Parameter Conditions V_{CC} Units Тур **Guaranteed Limits** t_{PLH} Maximum Propagation 2.0V 75 150 189 ns Delay Binary Select to 4.5V 15 30 38 ns any Output LOW-to-HIGH 6.0V 13 26 32 ns Maximum Propagation 2.0V 100 200 252 t_{PHL} ns Delay Binary Select to any 4.5V 20 40 50 ns Output HIGH-to-LOW 6.0V 17 34 43 ns 2.0V 75 150 189 t_{PHL}, t_{PLH} Maximum Propagation ns Delay G1 to any 4.5V 15 30 38 ns 6.0V 13 26 32 Output ns t_{PHL} Maximum Propagation 2.0V 82 175 221 ns Delay G2A or G2B to 4.5V 28 35 44 ns Output 6.0V 22 30 37 ns Maximum Propagation 2.0V 75 150 189 t_{PLH} ns Delay $\overline{\text{G2A}} \text{ or } \overline{\text{G2B}}$ to 4.5V 15 30 38 ns Output 6.0V 13 26 32 ns Output Rise and 30 95 2.0V 75 $t_{\mathsf{TLH}},\,t_{\mathsf{THL}}$ ns Fall Time 4.5V 8 15 19 ns 6.0V 7 13 16 ns CIN Maximum Input 3 10 10 pF Capacitance C_{PD} Power Dissipation (Note 6) 75 pF Capacitance Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption,


 $I_{S} = C_{PD} V_{CC} f + I_{CC}.$



MM74HC138

www.fairchildsemi.com

5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC