40V，1．7A，Boost for 10 White LED Driver

＊GENERAL DESCRIPTION

The AX2016 is a step－up converter designed for driving up to 10 series white LEDs for backlighting application．The AX2016 uses current mode， 1 MHz fixed frequency architecture to regulate the LED current，which is set through an external current sense resistor．Its low $300 \mathrm{mV} / 250 \mathrm{mV} / 200 \mathrm{mV}$ feedback voltage reduces power loss and improves efficiency．The OV pin monitors the output voltage and turns off the converter if an over－voltage condition is present due to an open circuit condition．The AX2016 includes under－voltage lockout，current limiting and thermal shutdown protection preventing damage in the event of an output overload．The driver is available in small 6－pin SOT－23 package．

＊FEATURES

－$\quad 2.5 \mathrm{~V}$ to 5.5 V operating input voltage range
－Drives up to 10 series White LEDs
－ 1 MHz Fixed Switching Frequency
－Wide range for PWM dimming（ 200 Hz to 200 KHz ）
－Internal 1．7A switching current limit
－Over Voltage Protection（OVP）
－Internal Soft－start Function
－Current limit and Thermal shutdown protection
－Under voltage Lockout
－Available in the 6－pin SOT－23 Package

＊BLOCK DIAGRAM

＊PIN ASSIGNMENT

The package of AX2016 is SOT－23－6L；the pin assignment is given by：

Name	Description
SW	Switch Output Pin
GND	Ground Pin
FB	Feedback Pin；Put a Resistor to GND to Setting the Current
EN	Enable with Dimming Pin；Internal Floating；Logic High Active
OV	OVP Sense Pin
VCC	Power Input Pin

－ORDER／MARKING INFORMATION

Order Information	Top Marking

＊ABSOLUTE MAXIMUM RATINGS（at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ）

Characteristics	Symbol	Rating	Unit
V_{CC} Pin Voltage	V_{CC}	-0.3 to 6	V
SW Pin Voltage	V_{SW}	-0.3 to 45	V
OV Pin Voltage	V_{OV}	-0.3 to 45	V
EN，FB Pin Voltage		-0.3 to 6	V
Power Dissipation	PD	$\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$	mW
Storage Temperature Range	T_{ST}	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{OP}	-40 to +125	${ }^{\circ} \mathrm{C}$
Thermal Resistance from Junction to case	θ_{JC}	130	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance from Junction to ambient	θ_{JA}	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note：θ_{JA} is measured with the PCB copper area of approximately 1 in² 2（Multi－layer）．

＊ELECTRICAL CHARACTERUSTICS

Note1：Guaranteed by design．

* APPLICATION CIRCUIT

(1) 10 series LED application

$I_{\text {LED }}=V_{F B} / R 3, V_{F B}=300 \mathrm{mV}(A X 2016)$
$V_{F B}=200 \mathrm{mV}(A X 2016 \mathrm{~A})$
(2) LED Dimming application

$\mathrm{I}_{\mathrm{LED}}=\mathrm{V}_{\mathrm{FB}} / \mathrm{R} 3, \mathrm{~V}_{\mathrm{FB}}=300 \mathrm{mV}(\mathrm{AX2016})$
$V_{F B}=200 \mathrm{mV}(A X 2016 \mathrm{~A})$

APPLICATION INFORMATION

Setting the ILed Current

Application circuit item shows the basic application circuit with AX2016 adjustable output version. The external resistor sets the LED output current according to the following equation:

$$
l_{\text {LED }}=\left(\mathrm{V}_{\mathrm{FB}} / \mathrm{R} 3\right)
$$

Part No.	ILED	R3	
AX2016	20 mA	15Ω	6 mW
	350 mA	0.857Ω	105 mW

Over Voltage Protection

The Over Voltage Protection is detected by a junction breakdown detecting circuit. Once Vout goes over the detecting voltage, SW pin stops switching and the power N -MOSFET will be turned off. Then, the Vout will be clamped to be near Vovp.

Under Voltage Lockout (UVLO)

To avoid mis-operation of the device at low input voltages an under voltage lockout is included that disables the device, if the input voltage falls below $(2.25 \mathrm{~V}-100 \mathrm{mV})$.

Input Capacitor Selection

The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. A $4.7 \mu \mathrm{~F}$ ceramic capacitor for most applications is sufficient. For a lower output power requirement application, this value can be decreased.

Output Capacitor Selection

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectrics are recommended due to their low ESR and high ripple current. A 1uF ceramic capacitors works for most of the applications. Higher capacitor values can be used to improve the load transient response.

* TYPICAL CHARACTERISTICS

Efficiency vs. Output Current

Output Voltage vs. Output Current

Frequency vs. Input Voltage

Efficiency vs. Input Voltage

Quiescent Current vs. Input Voltage

Frequency vs. Temperature

＊TYPICAL CHARACTERISTICS（CONTINUOUS）

Reference Voltage vs．Input Voltage

Reference Voltage vs．Temperature

Enable Threshold vs．Input Voltage

＊TYPICAL CHARACTERISTICS（CONTINUOUS）

Steady State Operation

PWM Dimming from EN $(\mathbf{2 0 0 H z})$

Power ON from EN

PWM Dimming from EN（20KHz）

PACKAGE OUTLINES

(1) SOT-23-6L

DETAL A

DETAL A

Symbol	Dimensions in Millimeters			Dimensions in Inches				
	Min.	Nom.	Max.	Min.	Nom.	Max.		
A	-	-	1.45	-	-	0.057		
A1	0	-	0.15	0	0.003	0.006		
A2	0.9	1.1	1.3	0.035	0.043	0.051		
b	0.3	0.4	0.5	0.012	0.016	0.02		
C	0.08	-	0.22	0.003	0.006	0.009		
D	2.7	2.9	3.1	0.106	0.114	0.122		
E1	1.4	1.6	1.8	0.055	0.063	0.071		
E	2.6	2.8	3	0.102	0.11	0.118		
L	0.3	0.45	0.6	0.012	0.018	0.024		
L1	0.5	0.6	0.7	0.02	0.024	0.028		
e1	1.9 BSC							
0.95 BSC								
e	0.075 BSC							
O	00	40	80	00	40	80		

JEDEC outline: MO-178 AB

