

INA181

ZHCSG77 - APRIL 2017

INA181 双向低侧和高侧电压输出 电流感应放大器

特性

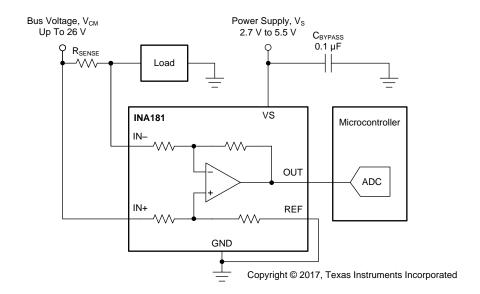
- 共模范围 (V_{CM}): -0.2V 至 +26V
- 高带宽: 350kHz
- 偏移电压:
 - − ±150µV(最大值), V_{CM} = 0V
 - ±500μV (最大值), V_{CM} = 12V
- 输出转换率: 2V/us
- 双向电流感应功能
- 精度:
 - ±1% 增益误差(最大值)
 - 1-μV/°C 偏移漂移(最大值)
- 增益选项:
 - 20 V/V (A1 器件)
 - 50 V/V (A2 器件)
 - 100 V/V (A3 器件)
 - 200 V/V (A4 器件)
- 静态电流: 260µA (每个通道的最大值)

2 应用

- 电机控制
- 电池监控
- 电源管理
- 照明控制
- 过流检测

3 说明

INA181 是一系列经成本优化的双向电流感应放大器 (也称为电流分流监控器),可在独立于电源电压的 -0.2V 至 +26V 共模电压感测电流感应电阻器上的压 降。INA181 以四个固定增益器件选项集成匹配电阻器 增益网络: 20 V/V、50 V/V、100 V/V 或 200 V/V。该 匹配增益电阻器网络可最大限度地减小增益误差并降低 温度漂移。


INA181 由一个 2.7V 至 5.5V 的单电源供电,消耗 260μA 的最大电源电流。

所有器件选项均具有扩展级额定工作温度范围(-40°C 至 +125°C), 并且采用 6 引脚 SOT-23 封装。

器件信息(1)

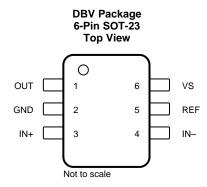
器件型号	封装	封装尺寸 (标称值)
INA181	SOT-23 (6)	2.90mm x 1.60mm

(1) 要了解所有可用封装,请见数据表末尾的封装选项附录。

目录

1	特性 1		8.4 Device Functional Modes	15
2	应用 1	9	Application and Implementation	18
3	说明1		9.1 Application Information	18
4	修订历史记录 2		9.2 Typical Application	22
5	Device Comparison Table	10	Power Supply Recommendations	
6	Pin Configurations and Functions		10.1 Common-Mode Transients Greater Than 26 V	′ <mark>2</mark> 4
7	Specifications	11	Layout	25
•	7.1 Absolute Maximum Ratings		11.1 Layout Guidelines	25
	7.2 ESD Ratings		11.2 Layout Example	25
	7.3 Recommended Operating Conditions	12	器件和文档支持	26
	7.4 Thermal Information		12.1 文档支持	26
	7.5 Electrical Characteristics		12.2 接收文档更新通知	26
	7.6 Typical Characteristics		12.3 社区资源	26
8	Detailed Description		12.4 商标	26
U	8.1 Overview		12.5 静电放电警告	26
	8.2 Functional Block Diagram		12.6 Glossary	26
	8.3 Feature Description	13	机械、封装和可订购信息	26
	0.0 1 oatar 0 0000 prioriti			

4 修订历史记录


日期	修订版本	注释
4 月	*	首次发布。

5 Device Comparison Table

PRODUCT	CHANNEL	GAIN (V/V)
INA181A1	1	20
INA181A2	1	50
INA181A3	1	100
INA181A4	1	200

6 Pin Configurations and Functions

Pin Functions

PIN		TYPE	DESCRIPTION		
NAME	NO.	IIPE	DESCRIPTION		
GND	2	Analog	Ground		
IN-	4	Analog input	Current-sense amplifier negative input. For high-side applications, connect to load side of sense resistor. For low-side applications, connect to ground side of sense resistor.		
IN+	3	Analog input	Current-sense amplifier positive input. For high-side applications, connect to busvoltage side of sense resistor. For low-side applications, connect to load side of sense resistor.		
OUT	1	Analog output	Output voltage		
REF	5	Analog input	Reference input		
VS	6	Analog	Power supply, 2.7 V to 5.5 V		

TEXAS INSTRUMENTS

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage, V _S		6	V	
Analog inputs, IN+, IN-(2)	Differential (V _{IN+}) – (V _{IN} –)	-26	26	V
Analog inputs, IN+, IN-\-	Common-mode ⁽³⁾	GND - 0.3	26	V
Input voltage range	at REF pin	GND - 0.3	V _S + 0.3	V
Output voltage	GND - 0.3	$V_{S} + 0.3$	V	
Maximum output current, I _{OUT}		8	mA	
Operating free-air temperature, TA	-55	150	°C	
Junction temperature, T _J		150	°C	
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
\/		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±3000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V_{CM}	Common-mode input voltage (IN+ and IN-)	-0.2	12	26	V
Vs	Operating supply voltage	2.7	5	5.5	V
T_A	Operating free-air temperature	-40		125	°C

7.4 Thermal Information

		INA181	
	THERMAL METRIC (1)	DBV (SOT-23)	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	198.7	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	120.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	52.3	°C/W
ΨJT	Junction-to-top characterization parameter	30.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	52.0	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ V_{IN+} and V_{IN-} are the voltages at the IN+ and IN- pins, respectively.

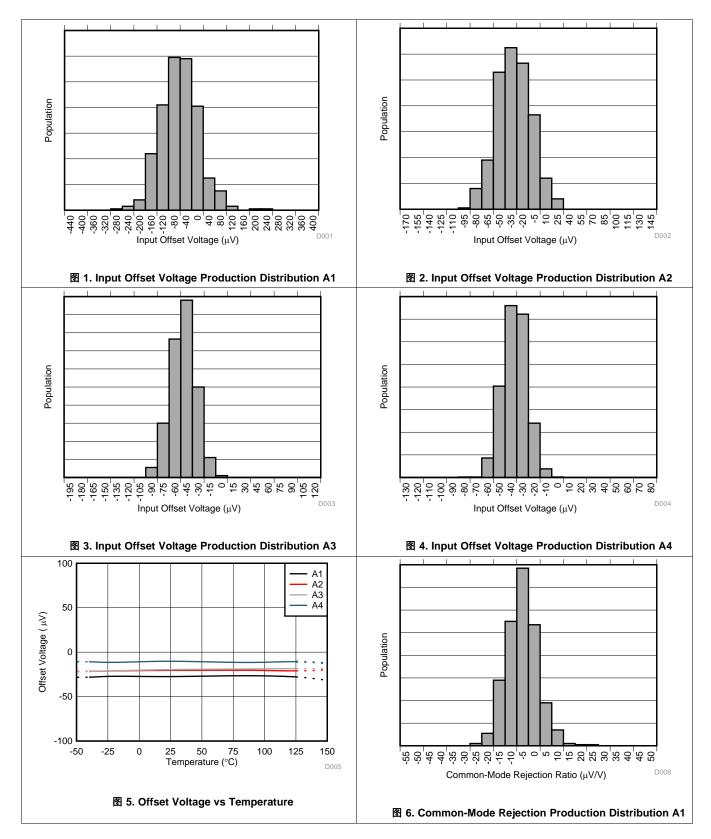
⁽³⁾ Input voltage at any pin can exceed the voltage shown if the current at that pin is limited to 5 mA.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 Electrical Characteristics

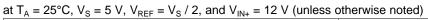
at $T_A = 25$ °C, $V_S = 5$ V, $V_{REF} = V_S$ / 2, $V_{IN+} = 12$ V, and $V_{SENSE} = V_{IN+} - V_{IN-}$ (unless otherwise noted)

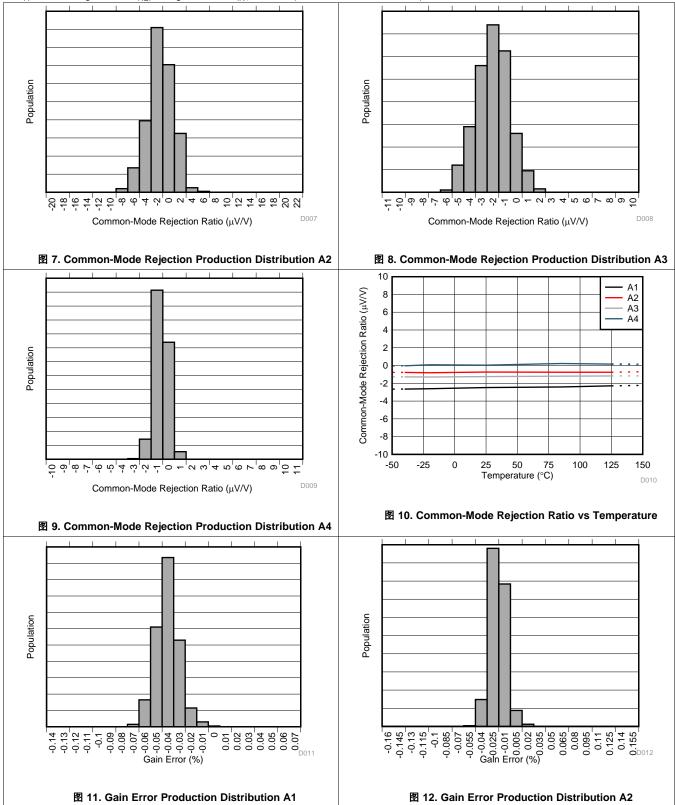
	PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT
INPUT					
CMRR	Common-mode rejection ratio, RTI (1)	$V_{IN+} = 0 \text{ V to } 26 \text{ V}, V_{SENSE} = 0 \text{ mV},$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	84 100		dB
	Officet voltage DTI	V _{SENSE} = 0 mV	±100	±500	μV
Vos	Offset voltage, RTI	V _{SENSE} = 0 mV, V _{IN+} = 0 V	±25	±150	μV
dV _{OS} /dT	Offset drift, RTI	$V_{SENSE} = 0 \text{ mV}, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	0.2	1	μV/°C
PSRR	Power-supply rejection ratio, RTI	$V_S = 2.7 \text{ V to } 5.5 \text{ V}, V_{IN+} = 12 \text{ V}, V_{SENSE} = 0 \text{ mV}$	±8	±40	μV/V
	Input bigg gurrant	V _{SENSE} = 0 mV, V _{IN+} = 0 V	-6		μΑ
I _{IB}	Input bias current	V _{SENSE} = 0 mV	75		μA
I _{IO}	Input offset current	V _{SENSE} = 0 mV	±0.05		μA
OUTPUT					
		A1 devices	20		V/V
0	0 :	A2 devices	50		V/V
G	Gain	A3 devices	100		V/V
		A4 devices	200		V/V
E _G	Gain error	$V_{OUT} = 0.5 \text{ V to } V_{S} - 0.5 \text{ V},$ $T_{A} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	±0.1%	±1%	
	Gain error vs temperature	T _A = -40°C to +125°C	1.5	20	ppm/°C
	Nonlinearity error	V _{OUT} = 0.5 V to V _S - 0.5 V	±0.01%		
	Maximum capacitive load	No sustained oscillation	1		nF
VOLTAGE	OUTPUT ⁽²⁾			,	
V _{SP}	Swing to V _S power-supply rail ⁽³⁾	$R_L = 10 \text{ k}\Omega$ to GND, $T_A = -40^{\circ}\text{C}$ to +125°C	$(V_S) - 0.02$	$(V_S) - 0.03$	V
V _{SN}	Swing to GND ⁽³⁾	$R_L = 10 \text{ k}\Omega$ to GND, $T_A = -40^{\circ}\text{C}$ to +125°C	(V _{GND}) + 0.0005	(V _{GND}) + 0.005	V
FREQUE	NCY RESPONSE				
		A1 devices, C _{LOAD} = 10 pF	350		kHz
BW	Bandwidth	A2 devices, C _{LOAD} = 10 pF	210		kHz
DVV	Bandwidth	A3 devices, C _{LOAD} = 10 pF	150		kHz
		A4 devices, C _{LOAD} = 10 pF	105		kHz
SR	Slew rate		2		V/µs
NOISE, R	TI ⁽¹⁾				
	Voltage noise density		40		nV/√ Hz
POWER S	SUPPLY			,	
	Ouissant surrent	V _{SENSE} = 0 mV	195	260	μA
IQ	Quiescent current	$V_{SENSE} = 0 \text{ mV}, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		300	μA

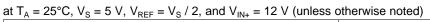

⁽¹⁾ RTI = referred-to-input.

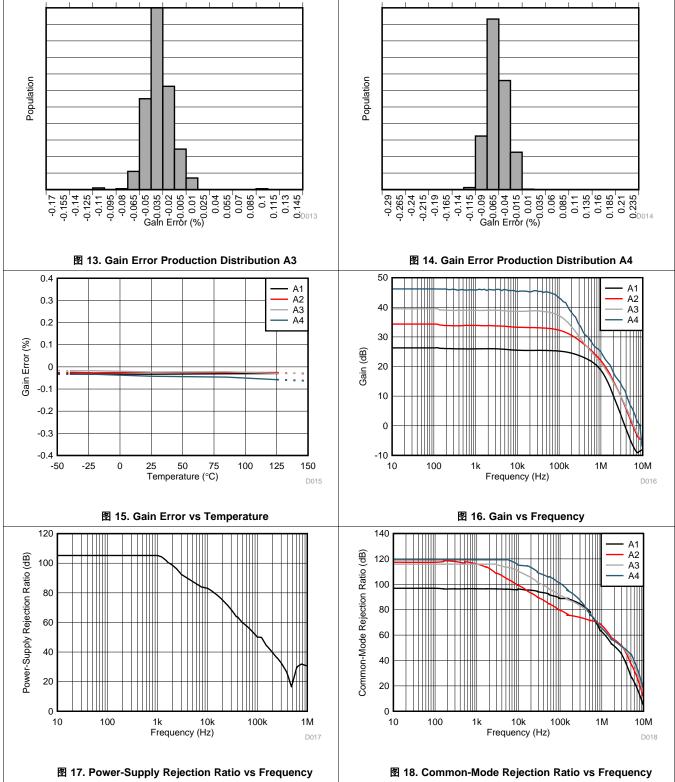
See 19.

⁽²⁾ See 图 19.(3) Swing specifications are tested with an overdriven input condition.

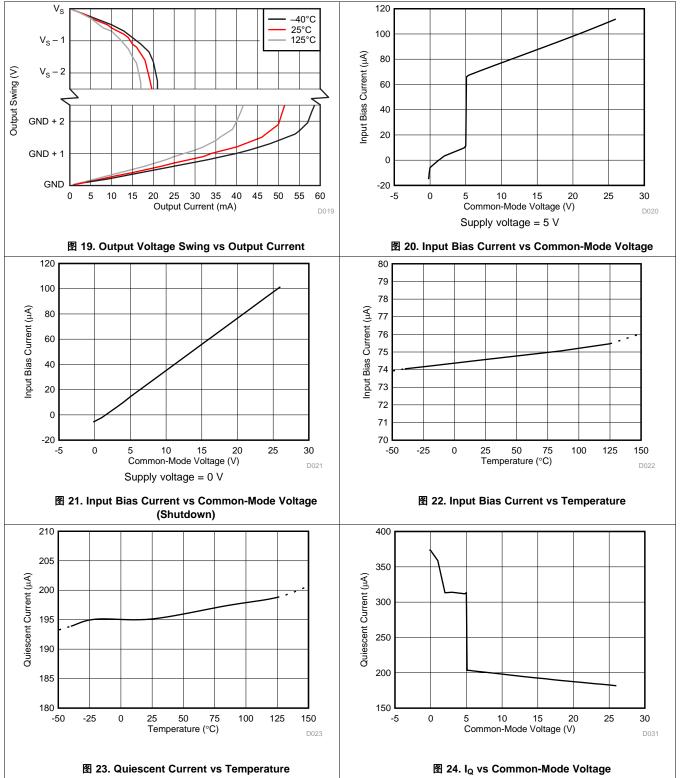

TEXAS INSTRUMENTS

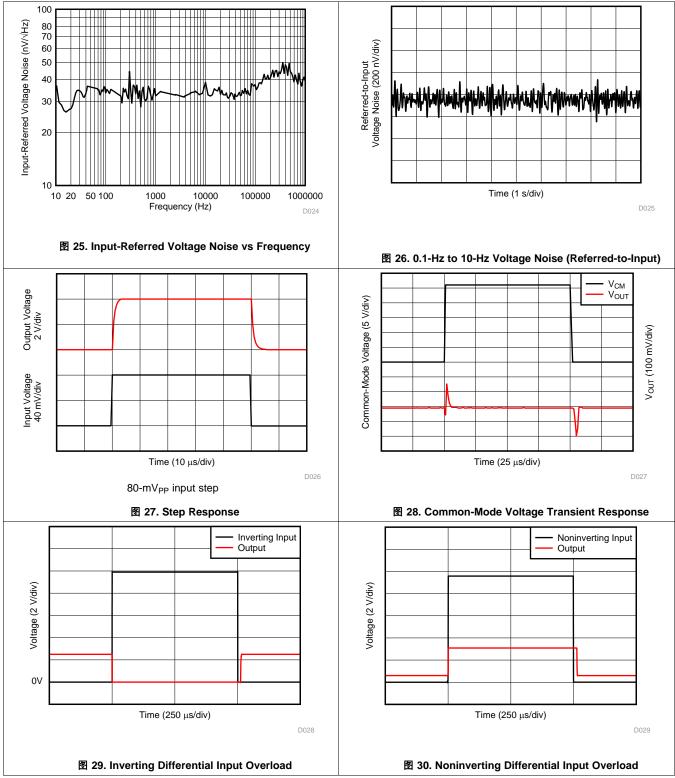

7.6 Typical Characteristics


Typical Characteristics (接下页)

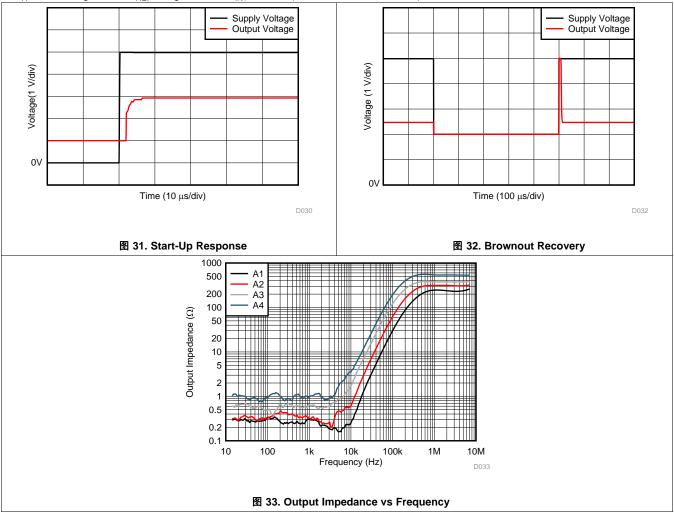


TEXAS INSTRUMENTS


Typical Characteristics (接下页)

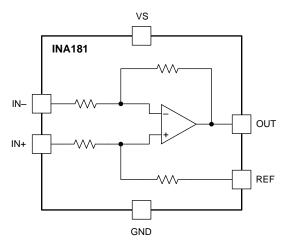


Typical Characteristics (接下页)


TEXAS INSTRUMENTS

Typical Characteristics (接下页)

Typical Characteristics (接下页)


TEXAS INSTRUMENTS

8 Detailed Description

8.1 Overview

The INA181 is a 26-V, common-mode, current-sensing amplifier used in both low-side and high-side configurations. This specially-designed, current-sensing amplifier accurately measures voltages developed across current-sensing resistors on common-mode voltages that far exceed the supply voltage powering the device. Current can be measured on input voltage rails as high as 26 V, and the device can be powered from supply voltages as low as 2.7 V.

8.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

(1)

www.ti.com.cn

8.3 Feature Description

8.3.1 High Bandwidth and Slew Rate

The INA181 supports small-signal bandwidths as high as 350 kHz, and large-signal slew rates of 2 V/µs. The ability to detect rapid changes in the sensed current, as well as the ability to quickly slew the output, make the INA181 a good choice for applications that require a quick response to input current changes. One application that requires high bandwidth and slew rate is low-side motor control, where the ability to follow rapid changing current in the motor allows for more accurate control over a wider operating range. Another application that requires higher bandwidth and slew rates is system fault detection, where the INA181 is used with an external comparator and a reference to quickly detect when the sensed current is out of range.

8.3.2 Bidirectional Current Monitoring

The INA181 senses current flow through a sense resistor in both directions. The bidirectional current-sensing capability is achieved by applying a voltage at the REF pin to offset the output voltage. A positive differential voltage sensed at the inputs results in an output voltage that is greater than the applied reference voltage; likewise, a negative differential voltage at the inputs results in output voltage that is less than the applied reference voltage. The output voltage of the current-sense amplifier is shown in 公式 1.

$$V_{OUT} = (I_{LOAD} \times R_{SENSE} \times GAIN) + V_{REF}$$

where

- ILOAD is the load current to be monitored.
- R_{SENSE} is the current-sense resistor.
- GAIN is the gain option of the selected device.
- V_{REF} is the voltage applied to the REF pin.

8.3.3 Wide Input Common-Mode Voltage Range

The INA181 supports input common-mode voltages from -0.2 V to +26 V. Because of the internal topology, the common-mode range is not restricted by the power-supply voltage (V_S) as long as V_S stays within the operational range of 2.7 V to 5.5 V. The ability to operate with common-mode voltages greater or less than V_S allow the INA181 to be used in high-side, as well as low-side, current-sensing applications, as shown in 8.34.

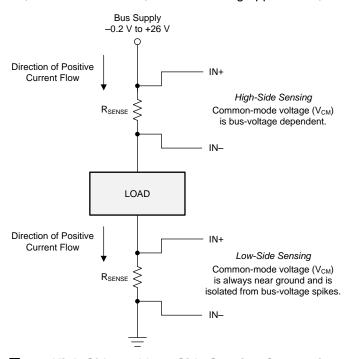


图 34. High-Side and Low-Side Sensing Connections

TEXAS INSTRUMENTS

Feature Description (接下页)

8.3.4 Precise Low-Side Current Sensing

When used in low-side current sensing applications the offset voltage of the INA181 is less than 150 μ V. The low offset performance of the INA181 has several benefits. First, the low offset allows the device to be used in applications that must measure current over a wide dynamic range. In this case, the low offset will improve the accuracy when the sensed currents are on the low end of the measurement range. Another advantage of low offset is the ability to sense lower voltage drop across the sense resistor accurately, thus allowing a lower-value shunt resistor. Lower-value shunt resistors reduce power loss in the current sense circuit, and help improve the power efficiency of the end application.

The gain error of the INA181 is specified to be within 1% of the actual value. As the sensed voltage becomes much larger than the offset voltage, this voltage becomes the dominant source of error in the current sense measurement.

8.3.5 Rail-to-Rail Output Swing

The INA181 allows linear current sensing operation with the output close to the supply rail and GND. The maximum specified output swing to the positive rail is 30 mV, and the maximum specified output swing to GND is only 5 mV. In order to compare the output swing of the INA181 to an equivalent operational amplifier (op amp), the inputs are overdriven to approximate the open-loop condition specified in op amp data sheets. The current-sense amplifier is a closed-loop system; therefore, the output swing to GND can be limited by the product of the offset voltage and amplifier gain during unidirectional operation ($V_{REF} = 0 \text{ V}$).

For devices that have positive offset voltages, the swing to GND is limited by the larger of either the offset voltage multiplied by the gain or the swing to GND specified in the *Electrical Characteristics* table.

For example, in an application where the INA181A4 (gain = 200 V/V) is used for low-side current sensing and the device has an offset of 40 μ V, the product of the device offset and gain results in a value of 8 mV, greater than the specified negative swing value. Therefore, the swing to GND for this example is 8 mV. If the same device has an offset of -40 μ V, then the calculated zero differential signal is -8 mV. In this case, the offset helps overdrive the swing in the negative direction, and swing performance is consistent with the value specified in the *Electrical Characteristics* table.

The offset voltage is a function of the common-mode voltage as determined by the CMRR specification; therefore, the offset voltage increases when higher common-mode voltages are present. The increase in offset voltage limits how low the output voltage can go during a zero-current condition when operating at higher common-mode voltages with $V_{REF} = 0 \text{ V}$. The typical limitation of the zero-current output voltage vs common-mode voltage for each gain option is shown in $\boxed{8}$ 35.

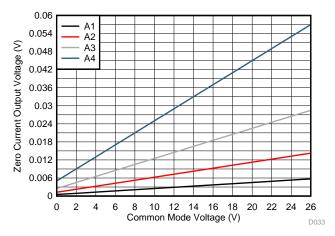


图 35. Zero-Current Output Voltage vs Common-Mode Voltage

8.4 Device Functional Modes

8.4.1 Normal Mode

The INA181 is in normal operation when the following conditions are met:

- The power supply voltage (V_S) is between 2.7 V and 5.5 V.
- The common-mode voltage (V_{CM}) is within the specified range of -0.2 V to +26 V.
- The maximum differential input signal times gain plus V_{REF} is less than V_S minus the output voltage swing to V_S.
- The minimum differential input signal times gain plus V_{REF} is greater than the swing to GND (see the Rail-to-Rail Output Swing section).

During normal operation, the device produces an output voltage that is the *gained-up* representation of the difference voltage from IN+ to IN- plus the reference voltage at V_{RFF} .

8.4.2 Unidirectional Mode

The device can be configured to monitor current flowing in one direction (unidirectional) or in both directions (bidirectional) depending on how the REF pin is configured. The most common case is unidirectional where the output is set to ground when no current is flowing by connecting the REF pin to ground, as shown in 36. When the current flows from the bus supply to the load, the input signal across IN+ to IN- increases, and causes the output voltage at the OUT pin to increase.

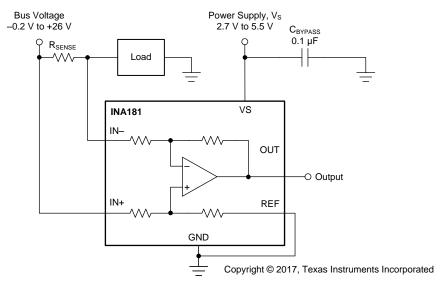


图 36. Unidirectional Application

The linear range of the output stage is limited by how close the output voltage can approach ground under zero input conditions. In unidirectional applications where measuring very low input currents is desirable, bias the REF pin to a convenient value above 50 mV to get the output into the linear range of the device. To limit common-mode rejection errors, buffer the reference voltage connected to the REF pin.

A less-frequently used output biasing method is to connect the REF pin to the power-supply voltage, V_S . This method results in the output voltage saturating at 200 mV less than the supply voltage when no differential input signal is present. This method is similar to the output saturated low condition with no input signal when the REF pin is connected to ground. The output voltage in this configuration only responds to negative currents that develop negative differential input voltage relative to the device IN- pin. Under these conditions, when the differential input signal increases negatively, the output voltage moves downward from the saturated supply voltage. The voltage applied to the REF pin must not exceed V_S .

TEXAS INSTRUMENTS

Device Functional Modes (接下页)

8.4.3 Bidirectional Mode

The INA181 is a bidirectional, current-sense amplifier capable of measuring currents through a resistive shunt in two directions. This bidirectional monitoring is common in applications that include charging and discharging operations where the current flowing through the resistor can change directions.

图 37. Bidirectional Application

The ability to measure this current flowing in both directions is enabled by applying a voltage to the REF pin, as shown in \boxtimes 37. The voltage applied to REF (V_{REF}) sets the output state that corresponds to the zero-input level state. The output then responds by increasing above V_{REF} for positive differential signals (relative to the IN– pin) and responds by decreasing below V_{REF} for negative differential signals. This reference voltage applied to the REF pin can be set anywhere between 0 V to V_{S} . For bidirectional applications, V_{REF} is typically set at mid-scale for equal signal range in both current directions. In some cases, however, V_{REF} is set at a voltage other than mid-scale when the bidirectional current and corresponding output signal do not need to be symmetrical.

8.4.4 Input Differential Overload

If the differential input voltage $(V_{\text{IN+}} - V_{\text{IN-}})$ times gain exceeds the voltage swing specification, the INA181 drives the output as close as possible to the positive supply or ground, and does not provide accurate measurement of the differential input voltage. If this input overload occurs during normal circuit operation, then reduce the value of the shunt resistor or use a lower-gain version with the chosen sense resistor to avoid this mode of operation. If a differential overload occurs in a fault event, then the output of the INA181 returns to the expected value approximately 20 μ s after the fault condition is removed.

Device Functional Modes (接下页)

8.4.5 Shutdown Mode

Although the INA181 does not have a shutdown pin, the low power consumption of the device allows the output of a logic gate or transistor switch to power the INA181. This gate or switch turns on and off the INA181 power-supply quiescent current.

However, in current shunt monitoring applications, there is also a concern for how much current is drained from the shunt circuit in shutdown conditions. Evaluating this current drain involves considering the simplified schematic of the INA181 in shutdown mode, as shown in § 38.

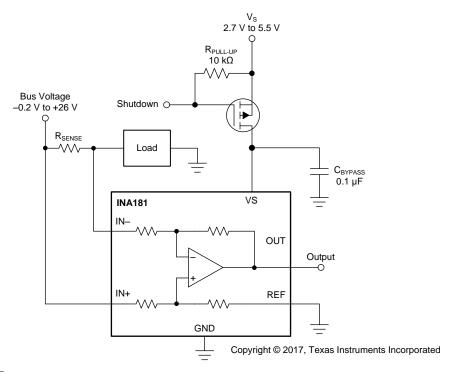


图 38. Basic Circuit to Shut Down the INA181 With a Grounded Reference

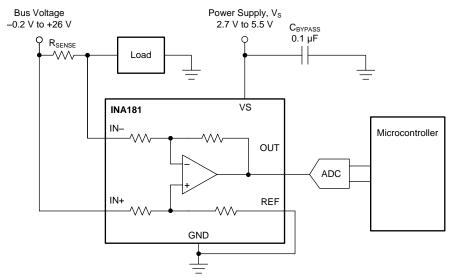
There is typically slightly more than 500 k Ω of impedance (from the combination of 500-k Ω feedback and input gain set resistors) from each input of the INA181 to the OUT pin and to the REF pin. The amount of current flowing through these pins depends on the voltage at the connection. For example, if the REF pin is grounded, the calculation of the effect of the 500 k Ω impedance from the shunt to ground is straightforward. However, if the reference is powered while the INA181 is in shutdown mode, instead of assuming 500 k Ω to ground, assume 500 k Ω to the reference voltage.

Regarding the 500-k Ω path to the output pin, the output stage of a disabled INA181 does constitute a good path to ground. Consequently, this current is directly proportional to a shunt common-mode voltage present across a 500-k Ω resistor.

As a final note, as long as the shunt common-mode voltage is greater than V_S when the device is powered up, there is an additional and well-matched 55- μ A typical current that flows in each of the inputs. If less than V_S , the common-mode input currents are negligible, and the only current effects are the result of the 500- $k\Omega$ resistors.

9 Application and Implementation

注


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The INA181 amplifies the voltage developed across a current-sensing resistor as current flows through the resistor to the load or ground. The ability to drive the reference pin to adjust the functionality of the output signal offers multiple configurations, as discussed in previous sections.

9.1.1 Basic Connections

₹ 39 shows the basic connections of the INA181. Connect the input pins (IN+ and IN−) as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistor.

Copyright © 2017, Texas Instruments Incorporated

NOTE: To help eliminate ground offset errors between the device and the analog-to-digital converter (ADC), connect the REF pin to the ADC reference input and then to ground.

图 39. Basic Connections

A power-supply bypass capacitor of at least $0.1~\mu F$ is required for proper operation. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors close to the device pins.

(2)

(3)

www.ti.com.cn

Application Information (接下页)

9.1.2 R_{SENSE} and Device Gain Selection

The accuracy of the INA181 is maximized by choosing the current-sense resistor to be as large as possible. A large sense resistor maximizes the differential input signal for a given amount of current flow and reduces the error contribution of the offset voltage. However, there are practical limits as to how large the current-sense resistor can be in a given application. The INA181 has a typical input bias currents of 75 μA for each input when operated at a 12-V common-mode voltage input. When large current-sense resistors are used, these bias currents cause increased offset error and reduced common-mode rejection. Therefore, using current-sense resistors larger than a few ohms is generally not recommended for applications that require current-monitoring accuracy. A second common restriction on the value of the current-sense resistor is the maximum allowable power dissipation that is budgeted for the resistor. 公式 2 gives the maximum value for the current sense resistor for a given power dissipation budget:

$$R_{SENSE} < \frac{PD_{MAX}}{I_{MAX}^2}$$

where:

- PD_{MAX} is the maximum allowable power dissipation in R_{SENSE}.
- I_{MAX} is the maximum current that will flow through R_{SENSE}.

An additional limitation on the size of the current-sense resistor and device gain is due to the power-supply voltage, V_S , and device swing to rail limitations. In order to make sure that the current-sense signal is properly passed to the output, both positive and negative output swing limitations must be examined. $\triangle \vec{\pm} 3$ provides the maximum values of R_{SENSE} and GAIN to keep the device from hitting the positive swing limitation.

$$I_{MAX} \times R_{SENSE} \times GAIN < Vs - V_{SP} - V_{REE}$$

where:

- I_{MAX} is the maximum current that will flow through R_{SENSE}.
- GAIN is the gain of the current sense-amplifier.
- V_S is the minimum supply voltage of the device.
- V_{SP} is the positive output swing as specified in the data sheet.
- V_{RFF} is the externally applied voltage on the REF pin.

To avoid positive output swing limitations when selecting the value of R_{SENSE}, there is always a trade-off between the value of the sense resistor and the gain of the device under consideration. If the sense resistor selected for the maximum power dissipation is too large, then it is possible to select a lower-gain device in order to avoid positive swing limitations.

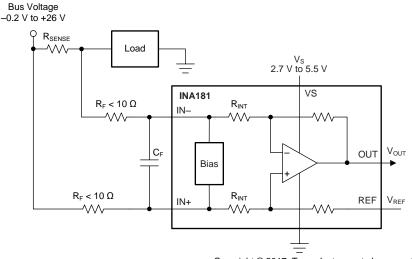
The negative swing limitation places a limit on how small of a sense resistor can be used in a given application. 公式 4 provides the limit on the minimum size of the sense resistor.

$$I_{MIN} \times R_{SENSE} \times GAIN > V_{SN} - V_{REF}$$

where:

- I_{MIN} is the minimum current that will flow through R_{SENSE}.
- · GAIN is the gain of the current sense amplifier.
- V_{SN} is the negative output swing of the device (see Rail-to-Rail Output Swing).
- V_{RFF} is the externally applied voltage on the REF pin.

In addition to adjusting the offset and gain, the voltage applied to the REF pin can be slightly increased to avoid negative swing limitations.


(4)

TEXAS INSTRUMENTS

Application Information (接下页)

9.1.3 Signal Filtering

Provided that the INA181 output is connected to a high impedance input, the best location to filter is at the device output using a simple RC network from OUT to GND. Filtering at the output attenuates high-frequency disturbances in the common-mode voltage, differential input signal, and INA181 power-supply voltage. If filtering at the output is not possible, or filtering of only the differential input signal is required, it is possible to apply a filter at the input pins of the device. 40 provides an example of how a filter can be used on the input pins of the device.

Copyright © 2017, Texas Instruments Incorporated

图 40. Filter at Input Pins

The addition of external series resistance creates an additional error in the measurement; therefore, the value of these series resistors must be kept to $10~\Omega$ (or less, if possible) to reduce impact to accuracy. The internal bias network shown in 图 40 present at the input pins creates a mismatch in input bias currents when a differential voltage is applied between the input pins. If additional external series filter resistors are added to the circuit, the mismatch in bias currents results in a mismatch of voltage drops across the filter resistors. This mismatch creates a differential error voltage that subtracts from the voltage developed across the shunt resistor. This error results in a voltage at the device input pins that is different than the voltage developed across the shunt resistor. Without the additional series resistance, the mismatch in input bias currents has little effect on device operation. The amount of error these external filter resistors add to the measurement can be calculated using 公式 6, where the gain error factor is calculated using 公式 5.

Gain Error Factor =
$$\frac{1250 \times R_{INT}}{(1250 \times R_F) + (1250 \times R_{INT}) + (R_F \times R_{INT})}$$

where:

- $\bullet \quad \mathsf{R}_{\mathsf{INT}} \ \mathsf{is} \ \mathsf{the} \ \mathsf{internal} \ \mathsf{input} \ \mathsf{resistor}.$
- R_F is the external series resistance.

(5)

Application Information (接下页)

With the adjustment factor from $\Delta \vec{z}$ 5, including the device internal input resistance, this factor varies with each gain version, as shown in \bar{z} 1. Each individual device gain error factor is shown in \bar{z} 2.

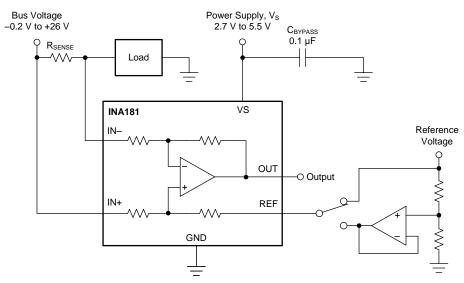
表 1. Input Resistance

PRODUCT	GAIN	R _{INT} (kΩ)
INA181A1	20	25
INA181A2	50	10
INA181A3	100	5
INA181A4	200	2.5

表 2. Device Gain Error Factor

PRODUCT	SIMPLIFIED GAIN ERROR FACTOR	
	25000	
INA181A1	$(21 \times R_F) + 25000$	
INA181A2	10000	
	$(9 \times R_F) + 10000$	
111111111	1000	
INA181A3	$R_{F} + 1000$	
	2500	
INA181A4	$\overline{(3\times R_F)+2500}$	

The gain error that can be expected from the addition of the external series resistors can then be calculated based on 公式 6:


Gain Error (%) =
$$100 - (100 \times Gain Error Factor)$$
 (6)

For example, using an INA180A2 and the corresponding gain error equation from $\frac{1}{8}$ 2, a series resistance of 10 Ω results in a gain error factor of 0.991. The corresponding gain error is then calculated using $\frac{1}{2}$ 6, resulting in an additional gain error of approximately 0.89% solely because of the external 10- Ω series resistors.

TEXAS INSTRUMENTS

9.2 Typical Application

One application for the INA181 is to monitor bidirectional currents. Bidirectional currents are present in systems that have to monitor currents in both directions; common examples are monitoring the charging and discharging of batteries and bidirectional current monitoring in motor control. The device configuration for bidirectional current monitoring is shown in 41. Applying stable REF pin voltage closer to the middle of device supply voltage allows both positive- and negative-current monitoring, as shown in this configuration. Configure the INA181 to monitor unidirectional currents by grounding the REF pin.

Copyright © 2017, Texas Instruments Incorporated

图 41. Bidirectional Application

9.2.1 Design Requirements

The design requirements for the circuit shown in 图 41, are listed in 表 3

DESIGN PARAMETER EXAMPLE VALUE Power-supply voltage, V_S 5 V 12 V Bus supply rail, V_{CM} Mode of operation Bidirectional < 450 mW R_{SENSE} power loss Maximum sense current, I_{MAX} ±20 A Accuracy Less than 3.5% at maximum current, T_J = 25°C > 100 kHz Small-signal bandwidth

表 3. Design Parameters

9.2.2 Detailed Design Procedure

The maximum value of the current sense resistor is calculated based on the maximum power loss requirement. By applying $\Delta \Xi$ 2, the maximum value of the current-sense resistor is calculated to be 1.125 mΩ. This is the maximum value for sense resistor R_{SENSE}; therefore, select R_{SENSE} to be 1 mΩ because it is the closest standard resistor value that meets the power-loss requirement.

The next step is to select the appropriate gain and reduce R_{SENSE} , if needed, to keep the output signal swing within the V_S range. The design requirements call for bidirectional current monitoring; therefore, a voltage between 0 and V_S must be applied to the REF pin. The bidirectional currents monitored are symmetric around 0 (that is, ± 20 A); therefore, the ideal voltage to apply to V_{REF} is V_S / 2 or 2.5 V. If the positive current is greater than the negative current, using a lower voltage on V_{REF} has the benefit of maximizing the output swing for the given range of expected currents. Using $\Delta \vec{x}$ 3, and given that I_{MAX} = 20 A , R_{SENSE} = 1 m Ω , and V_{REF} = 2.5 V,

the maximum current-sense gain calculated to avoid the positive swing-to-rail limitations on the output is 122.5. Likewise, using 公式 4 for the negative-swing limitation results in a maximum gain of 124.75. Selecting the gain-of-100 device maximizes the output range while staying within the output swing range. If the maximum calculated gains are slightly less than 100, the value of the current-sense resistor can be reduced to keep the output from hitting the output-swing limitations.

To calculate the accuracy at peak current, the two factors that must be determined are the gain error and the offset error. The gain error of the INA181 is specified to be a maximum of 1%. The error due to the offset is constant, and is specified to be 500 μ V (maximum) for the conditions where $V_{CM}=12$ V and $V_S=5$ V. Using $\stackrel{\star}{\Sigma}$ 7, the percentage error contribution of the offset voltage is calculated to be 2.5%, with total offset error = 500 μ V, $R_{SENSE}=1$ m Ω , and $I_{SENSE}=20$ A.

Total Offset Error (%) =
$$\frac{\text{Total Offset Error (V)}}{I_{\text{SENSE}} \times R_{\text{SENSE}}} \times 100\%$$
(7)

One method of calculating the total error is to add the gain error to the percentage contribution of the offset error. However, in this case, the gain error and the offset error do not have an influence or correlation to each other. A more statistically accurate method of calculating the total error is to use the RMS sum of the errors, as shown in 公式 8.

Total Error (%) =
$$\sqrt{\text{Total Gain Error (%)}^2 + \text{Total Offset Error (%)}^2}$$
 (8)

After applying $\Delta \pm 8$, the total current sense error at maximum current is calculated to be 2.7%, and that is less than the design example requirement of 3.5%.

The gain-of-100 device also has a bandwidth of 150 kHz that meets the small-signal bandwidth requirement of 100 kHz. If higher bandwidth is required, lower-gain devices can be used at the expense of either reduced output voltage range or an increased value of R_{SENSE}.

9.2.3 Application Curve

An example output response of a bidirectional configuration is shown in

42. With the REF pin connected to a reference voltage (2.5 V in this case), the output voltage is biased upwards by this reference level. The output rises above the reference voltage for positive differential input signals, and falls below the reference voltage for negative differential input signals.

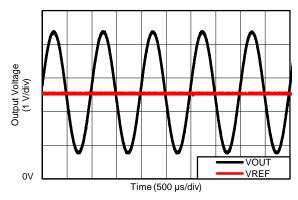


图 42. Bidirectional Application Output Response

10 Power Supply Recommendations

The input circuitry of the INA181 accurately measures beyond the power-supply voltage, V_S . For example, V_S can be 5 V, whereas the bus supply voltage at IN+ and IN- can be as high as 26 V. However, the output voltage range of the OUT pin is limited by the voltages on the VS pin. The INA181 also withstands the full differential input signal range up to 26 V at the IN+ and IN- input pins, regardless of whether or not the device has power applied at the VS pin.

10.1 Common-Mode Transients Greater Than 26 V

With a small amount of additional circuitry, the INA181 can be used in circuits subject to transients higher than 26 V, such as automotive applications. Use only Zener diodes or Zener-type transient absorbers (sometimes referred to as transzorbs)—any other type of transient absorber has an unacceptable time delay. Start by adding a pair of resistors as a working impedance for the Zener diode; see 8.43. Keep these resistors as small as possible; most often, around 10 Ω . Larger values can be used with an effect on gain that is discussed in the $Signal\ Filtering\$ section. This circuit limits only short-term transients; therefore, many applications are satisfied with a $10-\Omega$ resistor along with conventional Zener diodes of the lowest acceptable power rating. This combination uses the least amount of board space. These diodes can be found in packages as small as SOT-523 or SOD-523.

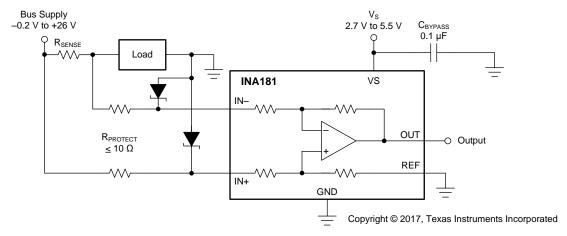


图 43. Transient Protection Using Dual Zener Diodes

In the event that low-power Zener diodes do not have sufficient transient absorption capability, a higher-power transzorb must be used. The most package-efficient solution involves using a single transzorb and back-to-back diodes between the device inputs, as shown in 图 44. The most space-efficient solutions are dual, series-connected diodes in a single SOT-523 or SOD-523 package. In either of the examples shown in 图 43 and 图 44, the total board area required by the INA181 with all protective components is less than that of an SO-8 package, and only slightly greater than that of an MSOP-8 package.

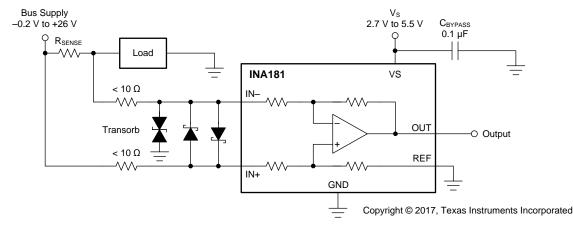


图 44. Transient Protection Using a Single Transzorb and Input Clamps

11 Layout

www.ti.com.cn

11.1 Layout Guidelines

- Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique
 makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing
 of the current-sensing resistor commonly results in additional resistance present between the input pins.
 Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can
 cause significant measurement errors.
- Place the power-supply bypass capacitor as close as possible to the device power supply and ground pins.
 The recommended value of this bypass capacitor is 0.1 μF. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies.

11.2 Layout Example

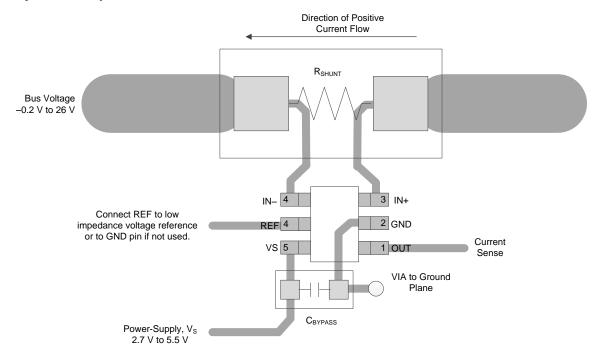


图 45. Recommended Layout

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

相关文档如下:

《INA180-181EVM 用户指南》(SBOU183)

12.2 接收文档更新通知

如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册 后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。

12.3 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可 能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对 本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

2-May-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
INA181A1IDBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	18JD	Samples
INA181A1IDBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	18JD	Samples
INA181A2IDBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	1AED	Samples
INA181A2IDBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	1AED	Samples
INA181A3IDBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	1AFD	Samples
INA181A3IDBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	1AFD	Samples
INA181A4IDBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	1AGD	Samples
INA181A4IDBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	1AGD	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

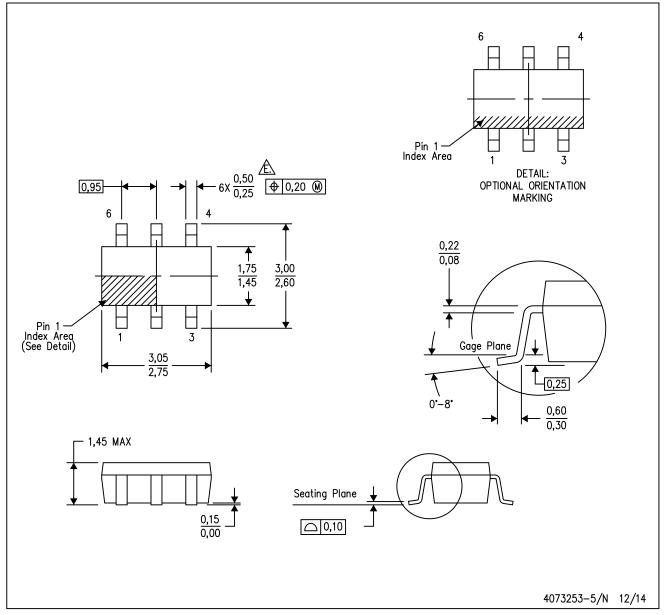
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

2-May-2017

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

重要声明

德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。

TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 己认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。

复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

买方和在系统中整合 TI 产品的其他开发人员(总称"设计人员")理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且应全权负责并确保应用的安全性,及设计人员的应用(包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够(1)预见故障的危险后果,(2)监视故障及其后果,以及(3)降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何应用前,将彻底测试该等应用和该等应用中所用 TI 产品的功能。

TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称"TI资源"),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、访问或使用任何特定的 TI资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI资源。

TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。

设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

TI 资源系"按原样"提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔偿,TI 概不负责。

除 TI 己明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担任何责任。

如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将任何 TI 产品用于关乎性命的医疗设备,除非己由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的所有医疗设备。

TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。

设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2017 德州仪器半导体技术(上海)有限公司