MMBT7002

N-Channel Enhancement Mode Field Effect Transistor

Features

- High density cell design for low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$
- Voltage controlled small signal switching
- High saturation current capability
- High speed switching

1.Gate 2.Source 3.Drain TO-236 Plastic Package
Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$V_{\text {DSS }}$	60	V
Drain-Gate Voltage ($\mathrm{R}_{\mathrm{GS}} \leqslant 1 \mathrm{M} \Omega$)	$V_{\text {DGR }}$	60	V
Gate-Source Voltage -Continuous -Non Repetitive (tp < 50 $\mu \mathrm{s}$)	$V_{\text {GSS }}$	$\begin{aligned} & \pm 20 \\ & \pm 40 \end{aligned}$	V
Maximum Drain Current -Continuous -Pulsed	I_{D}	$\begin{aligned} & 115 \\ & 800 \end{aligned}$	mA
Total Power Dissipation	$\mathrm{P}_{\text {tot }}$	200	mW
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Unit
Drain Source Breakdown Voltage at $I_{D}=10 \mu \mathrm{~A}$	$B V_{\text {DSS }}$	60	-	V
Zero Gate Voltage Drain Current at $\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}$	$l_{\text {DSs }}$	-	1	$\mu \mathrm{A}$
Gate-Body Leakage Current at $V_{G S}= \pm 20 \mathrm{~V}$	$\pm \mathrm{I}_{\text {GSS }}$	-	100	nA
Gate Threshold Voltage at $V_{D S}=V_{G S}, I_{D}=250 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1	2.5	V
On-State Drain Current at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=7.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	500	-	mA
$\begin{aligned} & \text { Drain-Source On-Voltage } \\ & \text { at } V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{DS} \text { (ON) }}$	-	$\begin{gathered} 3.75 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Static Drain-Source On-Resistance at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	-	7.5	Ω
Forward Transconductance at $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}$	$\mathrm{g}_{\text {FS }}$	80	-	mS
Input Capacitance at $V_{D S}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {iss }}$	-	50	pF
Output Capacitance at $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {oss }}$	-	25	pF
Reverse Transfer Capacitance at $V_{D S}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {rss }}$	-	5	pF
Turn-On Time at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=25 \Omega$	$\mathrm{t}_{\text {on }}$	-	20	ns
Turn-Off Time at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=25 \Omega$	$\mathrm{t}_{\text {off }}$	-	20	ns

