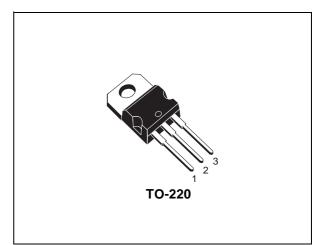
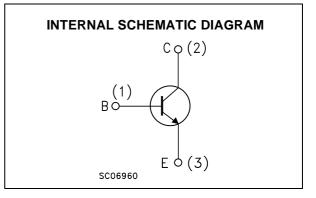


BUL742C HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

Ordering Code	Marking	Package / Shipment
BUL742C	BUL742C	TO-220 / Tube

- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED


APPLICATIONS:


- ELECTRONIC BALLAST FOR FLUORESCENT LIGHTING
- SWITCH MODE POWER SUPPLIES

DESCRIPTION

The device is manufactured using High Voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability.

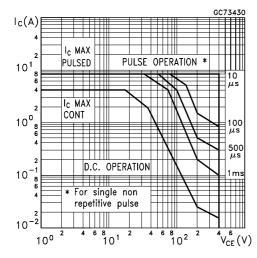
Thanks to an increased intermediate layer, it has an intrinsic ruggedness which enables the transistor to withstand an high collector current level during breakdown condition, without using the transil protection usually necessary in typical converters for lamp ballast.

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	1050	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	400	V
V _{EBO}	Emitter-Base Voltage ($I_C = 0$, $I_B < 2$ A, $t_p < 10$ ms)	V(BR)EBO	V
Ι _C	Collector Current	4	Α
I _{CM}	Collector Peak Current (t _p < 5 ms)	8	Α
Ι _Β	Base Current	2	Α
I _{BM}	Base Peak Current (t _p < 5 ms)	4	Α
Ptot	Total Dissipation at $T_c = 25 \text{ °C}$	70	W
T _{stg}	Storage Temperature	-65 to 150	°C
Тj	Max. Operating Junction Temperature	150	°C

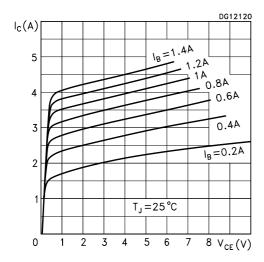
ABSOLUTE MAXIMUM RATINGS

BUL742C

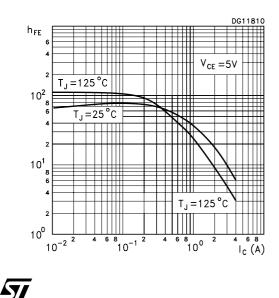
THERMAL DATA

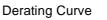

R _{thj-case}	Thermal Resistance Junction-case	Max	1.79	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W

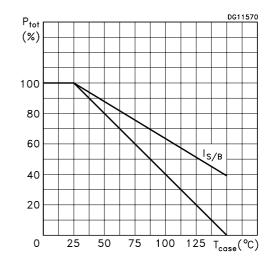
ELECTRICAL CHARACTERISTICS (T_j = 25 °C unless otherwise specified)

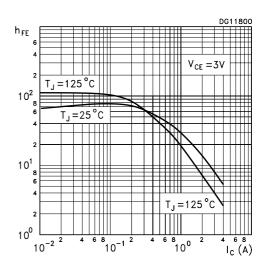

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
ICES	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1050 V				100	μA
ICEO	Collector Cut-off Current (I _B = 0)	V _{CE} = 400 V				250	μA
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 1 mA		12		24	V
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage $(I_B = 0)$	I _C = 10 mA		400			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 1 A I _C = 3.5 A	I _B = 0.2 A I _B = 1 A			0.5 1.5	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 3.5 A	I _B = 1 A			1.5	V
h _{FE} *	DC Current Gain	$I_{\rm C} = 0.1 \text{ A}$ $I_{\rm C} = 0.8 \text{ A}$	V _{CE} = 5 V V _{CE} = 3 V	48 25		100 50	
t _s t _f	RESISTIVE LOAD Storage Time Fall Time		V _{CC} = 125 V t _p = 300 μs (See Figure 1)		2.4 350		µs ns
E _{ar}	Repetitive Avalanche Energy	L = 2 mH V _{BE} = -5 V	C = 1.8 nF (See Figure 2)	6			mJ

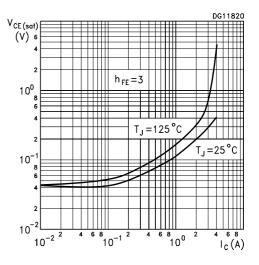
* Pulsed: Pulse duration = 300 μ s, duty cycle = 1.5 %.


Safe Operating Area

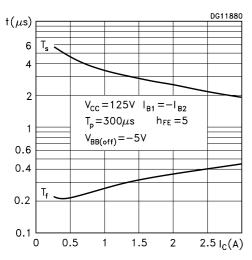


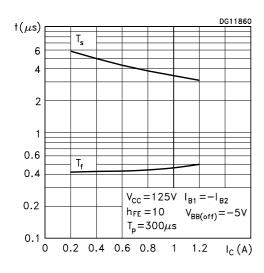

Output Characteristics


DC Current Gain

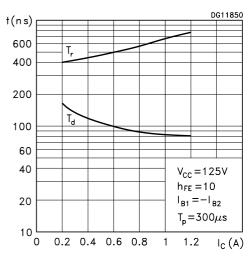


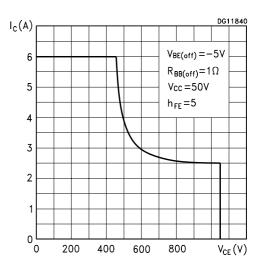
DC Current Gain

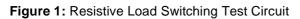

Collector-Emitter Saturation Voltage

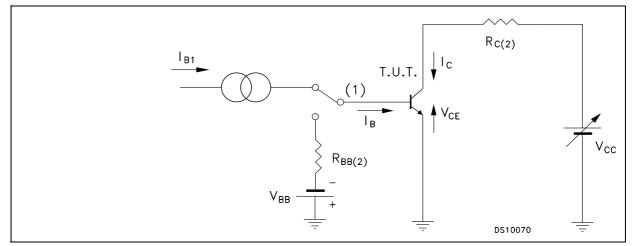

Base-Emitter Saturation Voltage


Resistive Load Switching Off Times

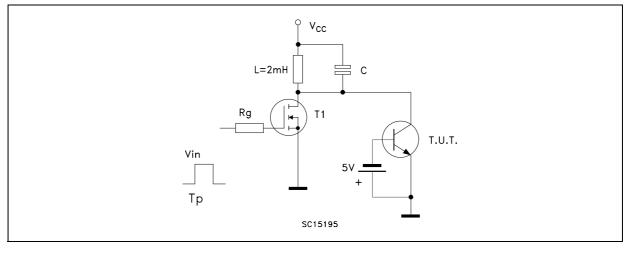

Resistive Load Switching Off Times


Resistive Load Switching On Times

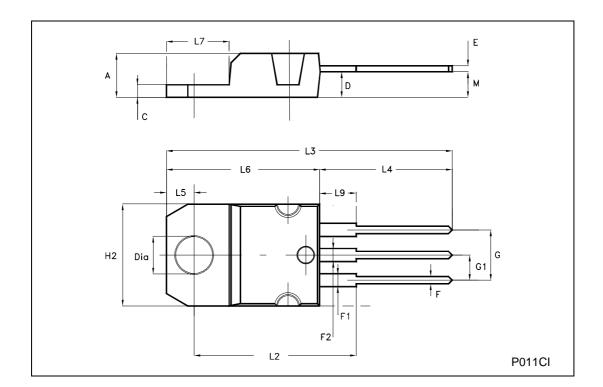

Resistive Load Switching On Times



Reverse Biased Safe Operating Area



47/


Figure 2: Energy Rating Test Circuit

BUL742C

DIM.	mm			inch		
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.052
D	2.40		2.72	0.094		0.107
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.202
G1	2.40		2.70	0.094		0.106
H2	10.00		10.40	0.394		0.409
L2		16.40			0.645	
L4	13.00		14.00	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
М		2.60			0.102	
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

57