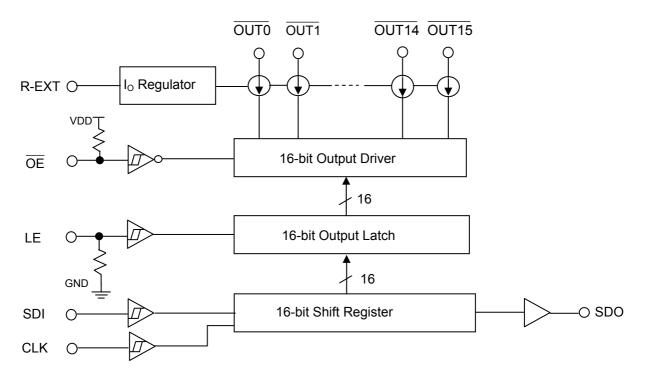

16-Channel Constant Current LED Sink Driver with Low Knee Voltage

- 16 constant-current output channels
- Constant output current invariant to load voltage change:
 Constant output current range:
 - $3-45mA@V_{DD}=5V;$
 - 3-30mA@V_{DD}=3.3V
- Excellent output current accuracy:
 - -between channels: ±1.5% (typ.) and ±3% (max.)
 - -between ICs: ±3% (typ.) and ±6% (max.)
- Low Knee Voltage:

 I_{OUT} =20mA@ V_{DS} =0.2V; V_{DD} =3.3V

 I_{OUT} =20mA@ V_{DS} =0.2V; V_{DD} =5.0V

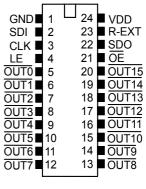
- Output current adjusted through an external resistor
- Fast response of output current, OE (min.): 70ns with good uniformity between output channels
- Staggered delay of output
- 25MHz clock frequency
- Schmitt trigger input
- 3.3V/ 5V supply voltage
- "Pb-free & Green" Package



Product Description

MBI5035 is a 16-channel constant current LED driver with V_{DS} =0.2V @ I_{OUT} =20mA, which is excellent compared to the conventional design. MBI5035 is especially designed for low power consumption LED display applications. The low knee voltage (LKV) design makes MBI5035 work at a constant output current with low V_{DS} and still guarantee PrecisionDriveTM feature. With PrecisionDriveTM, MBI5035 is designed for LED displays which require to operate at low current and match the luminous intensity of each channel. MBI5035 contains a serial buffer and data latches converting serial input data into parallel output format. At MBI5035 output stage, sixteen regulated current ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of V_F variations.

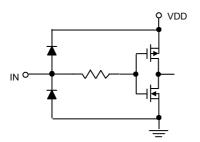
MBI5035 provides users with great flexibility and device performance in their low power system design for LED display applications. It accepts an input voltage range from 3.3V to 5.0V and maintains constant current up from 3mA to 45mA determined by an external resistor, R_{ext} , which gives users flexibility in controlling the light intensity of LEDs. MBI5035 guarantees to endure maximum 17V at the output port. The high clock frequency, 25 MHz, also satisfies the system requirements of high volume data transmission.


Block Diagram

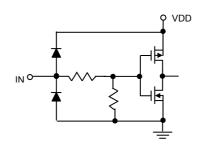
Terminal Description

Pin No.	Pin Name	Function
1	GND	Ground terminal for control logic and current sink
2	SDI	Serial-data input to the shift register
3	CLK	Clock input terminal for data shift on rising edge
4	LE	Data strobe input terminal Serial data is transferred to the output latch when LE is high. The data will be latched when LE goes low.
5~20	OUT0 ~ OUT15	Constant current output terminals
21	ŌĒ	Output enable terminal When \overline{OE} is (active) low, the output drivers are enabled; when \overline{OE} is high, all output drivers are turned OFF (blanked).
22	SDO	Serial-data output to the following SDI of next driver IC. SDO signal changes on rising edge of CLK.
23	R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels
24	VDD	3.3V/5V supply voltage terminal

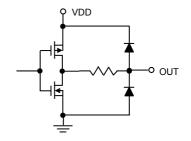
Pin Configuration

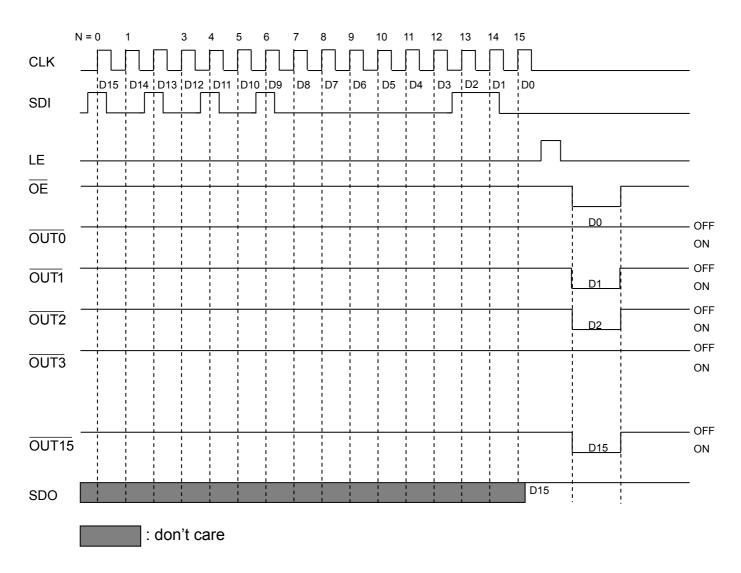


MBI5035 GF\GP


Equivalent Circuits of Inputs and Outputs

OE terminal


CLK, SDI terminal


LE terminal

SDO terminal

Timing Diagram

Truth Table

CLK	LE	ŌĒ	SDI	OUTOOUT7OUT15	SDO
	Н	L	D _n	<u>Dn</u> <u>Dn - 7</u> <u>Dn - 15</u>	D _{n-15}
	L	L	D _{n+1}	No Change	D _{n-14}
	Н	L	D _{n+2}	Dn+2Dn-5Dn-13	D _{n-13}
—	Х	L	D _{n+3}	Dn+2 Dn-5 Dn-13	D _{n-13}
—	Х	Н	D _{n+4}	Off	D _{n-13}

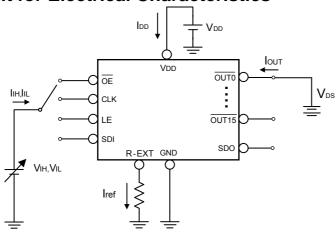
Maximum Ratings

Charac	Characteristic		Rating	Unit
Supply Voltage		V _{DD}	0~7.0	V
Input Voltage		V _{IN}	-0.4~V _{DD} +0.4	V
Output Current		I _{OUT}	+50	mA
Sustaining Voltage at OU	T Port	V _{DS}	-0.5~+17.0	V
GND Terminal Current		I _{GND}	+800	mA
Power Dissipation	GF-type	Б	2.35	10/
(On PCB, Ta=25°C)*	GP-type	P _D	1.76	W
Thermal Resistance	GF-type	В	53.28	°C/W
(On PCB, Ta=25°C)*	GP-type	$R_{th(j-a)}$	70.90	C/VV
Junction Temperature		$T_{j,max}$	150**	°C
Operating Ambient Temperature		T _{opr}	-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C

^{*}The PCB size is 76.2mm*114.3mm in simulation. Please refer to JEDEC JESD51.

Note: The performance of thermal dissipation is strongly related to the size of thermal pad, thickness and layer numbers of the PCB. The empirical thermal resistance may be different from simulative value. Users should plan for expected thermal dissipation performance by selecting package and arranging layout of the PCB to maximize the capability.

^{**}Operation at the maximum rating for extended periods may reduce the device reliability; therefore, the suggested junction temperature of the device is under 125°C.


Electrical Characteristics (V_{DD} = 5.0V)

Characte	eristics	Symbol	Condi	tion	Min.	Тур.	Max.	Unit
Supply Voltage	ge	V_{DD}	-		4.5	5.0	5.5	V
Sustaining Vo	oltage at	V _{DS}	OUT0~OUT15		-	-	17.0	V
	,	I _{OUT}	Refer to "Test Circ Electrical Charact		3	-	45	mA
Output Curre	nt	I _{OH}	SDO		-	-	-1.0	mA
	1	I _{OL}	SDO		-	-	1.0	mA
Input Voltage	"H" level	V _{IH}	Ta =-40~85°C		$0.7xV_{DD}$	-	V_{DD}	V
input voitage	"L" level	V _{IL}	Ta =-40~85°C		GND	-	$0.3xV_{DD}$	٧
Output Leaka	age Current	I _{OH}	V _{DS} =17.0V		-	-	0.5	μΑ
Output	SD0	V _{OL}	I _{OL} =+1.0mA		-	-	0.4	V
Voltage	SDO	V _{OH}	I _{OH} =-1.0mA		V _{DD} -0.4	-	-	V
Output Curre	nt 1	I _{OUT1}	V _{DS} =0.25V R _{ext} =930 Ω		-	20	-	mA
Current Skev	(Channel)	dl _{OUT1}	dI_{OUT1} I_{OUT} =20mA V_{DS} =0.25V R_{ext} =930 Ω		-	±1.5	±3.0	%
Current Skev	` '	dl _{OUT2}	I_{OUT} =20mA V_{DS} =0.25V	R _{ext} =930Ω	-	±3.0	±6.0	%
Output Curre Output Voltag Regulation		%/dV _{DS}	V _{DS} within 0.5V ar	nd 1.5V	-	±0.2	±0.5	%/V
Output Curre Supply Voltage Regulation		%/dV _{DD}	V _{DD} within 4.5V ar	nd 5.5V	-	±1.0	±2.0	%/V
Low Knee Vo	ltage	V _{DS}	I _{OUT} =20mA		-	0.2	0.25	V
Pull-up Resis	tor	R _{IN} (up)	ŌE		250	500	800	ΚΩ
Pull-down Re	esistor	R _{IN} (down)			250	500	800	ΚΩ
			R _{ext} =Open, OUT	0 ~ OUT15 =Off	-	4.0	6.0	
	"OFF"	I _{DD} (off) 2	R _{ext} =6000Ω, OUT	0 ~ OUT15 =Off	-	5.5	7.5	
Supply Current		I _{DD} (off) 3	R _{ext} =930Ω, OUT	0 ~ OUT15 =Off	-	8.0	10	mA
	"ON"	I _{DD} (on) 1	R _{ext} =6000Ω, OUT	0 ~ OUT15 =On	-	5.5	7.5	
	ON	I _{DD} (on) 2	R_{ext} =930 Ω , \overline{OUT}	0 ~ OUT15 =On	-	8.0	10	

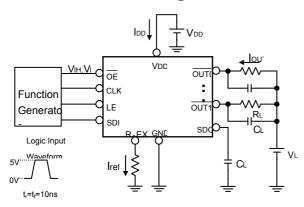
Electrical Characteristics (V_{DD} = 3.3V)

Charact	eristics	Symbol	Conc	dition	Min.	Тур.	Max.	Unit
Supply Voltag	е	V_{DD}		-	3.0	3.3	3.6	V
Sustaining Vo Ports	Itage at OUT	V _{DS}	OUT0~ OUT1	5	-	-	17.0	V
		Іоит	Refer to "Test C Electrical Chara		3	-	30	mA
Output Currer	t	I _{OH}	SDO		-	-	-1.0	mA
		I _{OL}	SDO		-	-	1.0	mA
Innut \/altaga	"H" level	V _{IH}	Ta=-40~85°C		$0.7xV_{DD}$	-	V_{DD}	V
Input Voltage	"L" level	V _{IL}	Ta=-40~85°C		GND	-	$0.3xV_{DD}$	V
Output Leaka	ge Current	I _{OH}	V _{DS} =17.0V		-	-	0.5	μΑ
Output	SDO	V _{OL}	I _{OL} =+1.0mA		-	-	0.4	V
Voltage	SDO	V _{OH}	I _{OH} =-1.0mA		V _{DD} -0.4	-	-	V
Output Currer	t 1	I _{OUT1}	V _{DS} =0.25V R _{ext} =930 Ω		-	20	-	mA
Current Skew	(Channel)	dl _{OUT1}	I _{OUT} =20mA V _{DS} =0.25V	R _{ext} =930Ω	-	±1.5	±3.0	%
Current Skew	(IC)	dl _{OUT2}	I _{OUT} =20mA V _{DS} =0.25V	R _{ext} =930Ω	-	±3.0	±6.0	%
Output Currer Output Voltag Regulation		%/dV _{DS}	V _{DS} within 0.5V	and 1.5V	-	±0.2	±0.5	%/V
Output Currer Supply Voltag Regulation		%/dV _{DD}	V _{DD} within 3.0V	and 3.6V	-	±1.0	±2.0	%/V
Low Knee Vo	tage	V_{DS}	I _{OUT} =20mA		-	0.2	0.25	V
Pull-up Resist	Pull-up Resistor R _{IN} (up) OE		250	500	800	ΚΩ		
Pull-down Re	Pull-down Resistor R		LE		250	500	800	ΚΩ
		I _{DD} (off) 1	R _{ext} =Open, Ol	JT0~OUT15 =Off	-	3.5	5.5	
	"OFF"	I _{DD} (off) 2	R _{ext} =6000Ω,	JT0 ~ OUT15 =Off	-	5.0	7.0	
Supply Current		I _{DD} (off) 3	R _{ext} =930Ω,	JT0 ~ OUT15 =Off	-	7.5	9.5	mA
33.10.11	"ON!"	I _{DD} (on) 1	R _{ext} =6000Ω,	JT0 ~ OUT15 =On	-	5.0	7.5	
	"ON"	I _{DD} (on) 2	R_{ext} =930 Ω , \overline{OL}	JT0 ~ OUT15 =On	-	7.5	9.5	

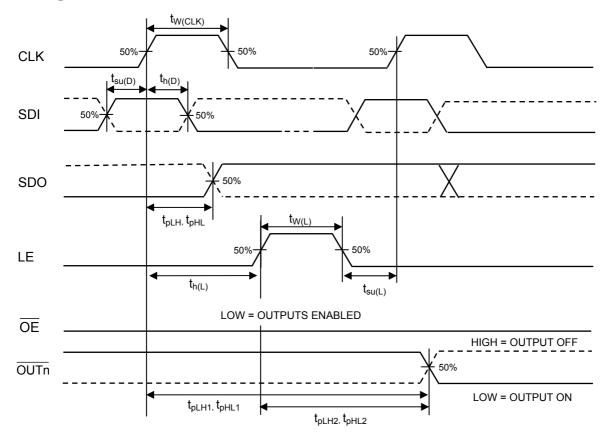
Test Circuit for Electrical Characteristics

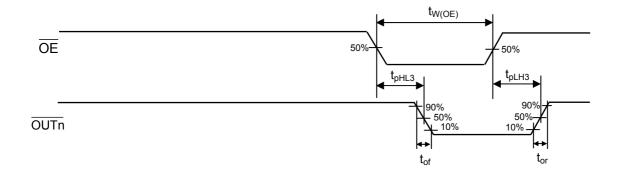
Switching Characteristics (V_{DD}= 5.0V)

Characteristics		Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay	LE-OUT0	t _{pLH1}		-	55	65	ns
Propagation Delay Time	OE - OUTO	t _{pLH2}		-	55	65	ns
("L" to "H")	CLK-SDO	t _{pLH}		-	-	40	ns
Propagation Delay	LE-OUT0	t _{pHL1}		-	35	45	ns
Time	OE - OUTO	t _{pHL2}		-	35	45	ns
("H" to "L")	CLK-SDO	t _{pHL}		-	-	40	ns
Staggered Delay of Output*	Output Group 1~ Output Group 2	t _{stag1}		-	5	10	ns
Dulgo Width	CLK	t _{w(CLK)}	$V_{IH}=V_{DD}$ $V_{IL}=GND$ Rext=930 Ω	20	-	_	ns
Pulse Width	LE	$t_{w(L)}$		20	-	_	ns
Data Clock Frequency		F _{CLK}	$R_L=150\Omega$ $C_L=10PF$	-	-	25	MHz
Hold Time for LE		t _{h(L)}	I _{OUT} =20mA	10	10	_	ns
Setup Time for LE		t _{su(L)}	C1=100nF C2=22 μ F	10	10	_	ns
Hold Time for SDI		t _{h(D)}	C _{SDO} =10PF	5	5	_	ns
Setup Time for SDI		t _{su(D)}	V _L =3.3V	3	3	_	ns
Maximum CLK Rise Tin	ne	t _r		-	-	500	ns
Maximum CLK Fall Time		t _f		-	-	500	ns
SDO Rise Time		$t_{r,SDO}$		-	10	_	ns
SDO Fall Time		$t_{f,SDI}$		-	10	_	ns
Output Rise Time of Output Ports		t _{or}		-	30	40	ns
Output Fall Time of Out	out Ports	t _{of}		-	30	40	ns
OE Pulse Width		t _{w(OE)}		70	100	-	ns


^{*}MBI5035 has a built-in stagger circuit to perform delay mechanism. Among output ports exist a graduated 5ns delay time between $\overline{OUT2n}$ and $\overline{OUT2n+1}$, by which the output ports will be divided to two groups at a different time so that the instant current from the power line will be lowered.

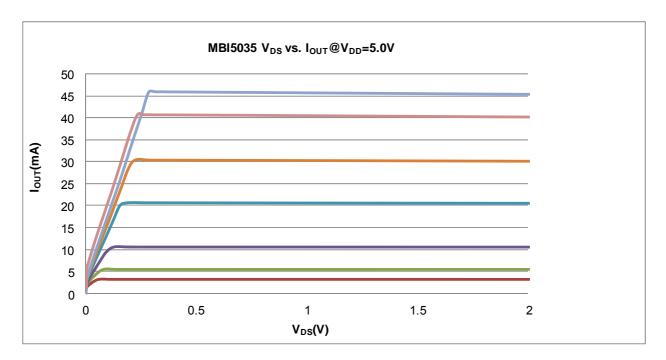
Switching Characteristics (V_{DD}= 3.3V)

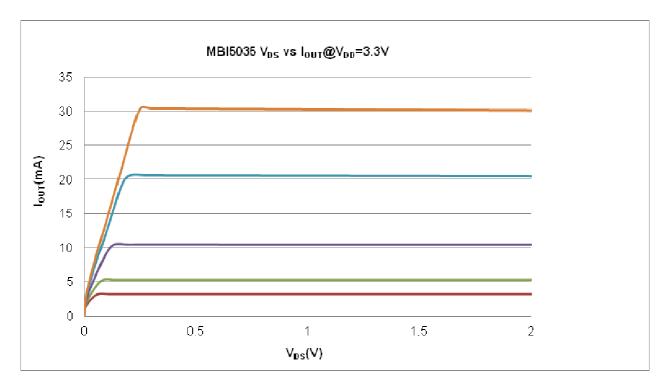

Characteristics		Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time	LE-OUT0	t _{pLH1}	$V_{IH}=V_{DD}$ $V_{IL}=GND$ $Rext=930\Omega$ $R_{L}=150\Omega$ $C_{L}=10PF$ $I_{OUT}=20mA$ $C1=100nF$		65	75	ns
	OE - OUTO	t _{pLH2}		-	65	75	ns
("L" to "H")	CLK-SDO	t _{pLH}		-	-	50	ns
Propagation Delay	LE-OUT0	t_{pHL1}		-	40	50	ns
Time	OE - OUTO	t _{pHL2}		-	40	50	ns
("H" to "L")	CLK-SDO	t_{pHL}		-	-	50	ns
Staggered Delay of Output	Output Group 1~Output Group 2	t _{stag1}		-	10	15	ns
Pulse Width	CLK	$t_{w(CLK)}$	V _{IL} =GND Rext=930Ω	20	-	-	ns
Puise Width	LE	$t_{w(L)}$		20	-	-	ns
Data Clock Frequency		F _{CLK}		-	-	20	MHz
Hold Time for LE		$t_{h(L)}$	I _{OUT} =20mA	10	-	-	ns
Setup Time for LE		t _{su(L)}	C1=100nF C2=22 µ F	10	-	-	ns
Hold Time for SDI		$t_{h(D)}$	C _{SDO} =10PF	5	-	-	ns
Setup Time for SDI		t _{su(D)}	V _L =3.3V	3	_	-	ns
Maximum CLK Rise Ti	me	t _r		-	-	500	ns
Maximum CLK Fall Time		t _f		-	-	500	ns
SDO Rise Time		$t_{r,SDO}$		-	10	-	ns
SDO Fall Time		t _{f,SDI}		-	10	-	ns
Output Rise Time of Output Ports		t _{or}		-	35	45	ns
Output Fall Time of Ou	itput Ports	t _{of}		-	35	45	ns
OE Pulse Width		t _{w(OE)}		100	130	-	ns


^{*}MBI5035 has a built-in stagger circuit to perform delay mechanism. Among output ports exist a graduated 10ns delay time between $\overline{OUT2n}$ and $\overline{OUT2n+1}$, by which the output ports will be divided to two groups at a different time so that the instant current from the power line will be lowered.

Test Circuit for Switching Characteristics

Timing Waveform

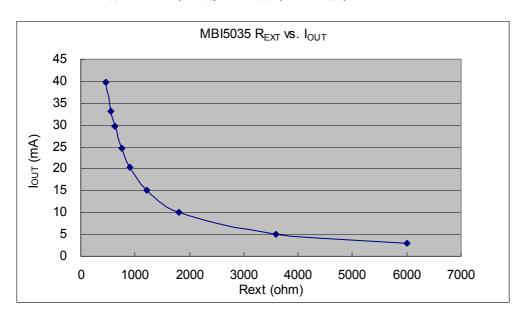



Application Information

Constant Current

To design LED displays, MBI5035 provides nearly no variations in current from channel to channel and from IC to IC. This can be achieved by:

- 1) The maximum current variation between channels is less than ±3%, and that between ICs is less than ±6%.
- 2) In addition, the current characteristic of output stage is flat and users can refer to the below figure. The output current can be kept constant regardless of the variations of LED forward voltages(V_F). This performs as a perfect static load regulation.

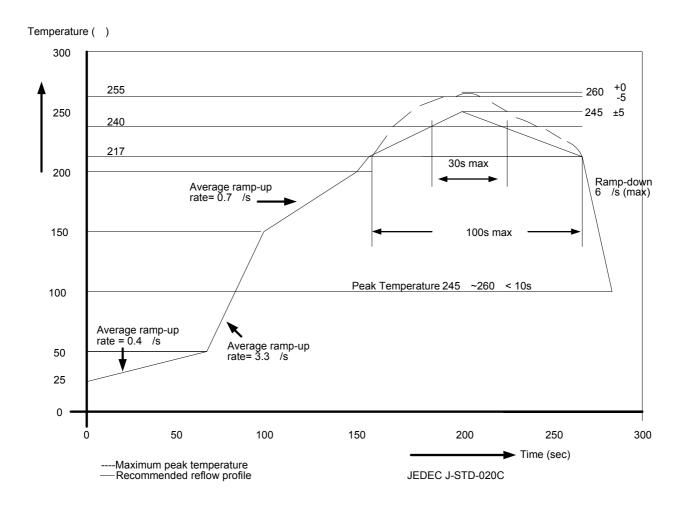

Adjusting Output Current

with Low Knee Voltage

The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{OUT} and R_{ext} is shown in the following figure.

Also, the output current can be calculated from the equation:

 V_{R-EXT} =1.24V; I_{OUT} = V_{R-EXT} *(1/ R_{ext})x15; R_{ext} =(V_{R-EXT} / I_{OUT})x15


Where R_{ext} is the resistance of the external resistor connected to R-EXT terminal and V_{R-EXT} is the voltage of R-EXT terminal. The magnitude of current (as a function of R_{ext}) is around 20mA at 930 Ω and 10mA at 1860 Ω .

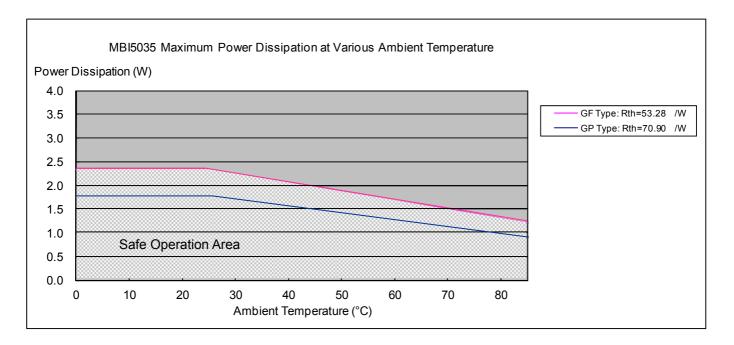
Staggered Delay of Output

MBI5035 has a built-in staggered circuit to perform delay mechanism. Among output ports exist a graduated 5ns delay time between $\overline{OUT2n}$ and $\overline{OUT2n+1}$, by which the output ports will be divided to two groups at a different time so that the instant current from the power line will be lowered.

Soldering Process of "Pb-free" Package Plating*

Macroblock has defined "Pb-Free" to mean semiconductor products that are compatible with the current RoHS requirements and selected 100% pure tin (Sn) to provide forward and backward compatibility with the higher-temperature Pb-free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it adopts tin/lead (SnPb) solder paste, and please refer to the JEDEC J-STD-020C for the temperature of solder bath. However, in the whole Pb-free soldering processes and materials, 100% pure tin (Sn) will all require from 245 °C to 260°C for proper soldering on boards, referring to JEDEC J-STD-020C as shown below.

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ 2000
<1.6mm	260 +0 °C	260 +0 °C	260 +0 °C
1.6mm – 2.5mm	260 +0 °C	250 +0 °C	245 +0 °C
2.5mm	250 +0 °C	245 +0 °C	245 +0 °C


^{*}For details, please refer to Macroblock's "Policy on Pb-free & Green Package".

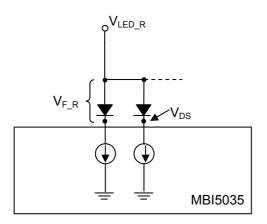
Package Power Dissipation (PD)

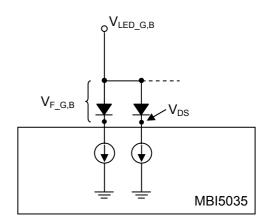
The maximum allowable package power dissipation is determined as $P_D(max)=(Tj-Ta)/R_{th(j-a)}$. When 16 output channels are turned on simultaneously, the actual package power dissipation is

 $P_D(act)=(I_{DD}xV_{DD})+(I_{OUT}xDutyxV_{DS}x16)$. Therefore, to keep $P_D(act)\leq P_D(max)$, the allowable maximum output current as a function of duty cycle is:

 $I_{OUT} = \{ [(Tj - Ta)/R_{th(j-a)}] - (I_{DD}xV_{DD})\}/V_{DS}/Duty/16, \ where \ Tj = 150^{\circ}C.$

Condition: I _{OUT} =50mA, 16 output channels				
Device Type	$R_{th(j-a)}$ (°C/W)			
GF	53.28			
GP	70.90			

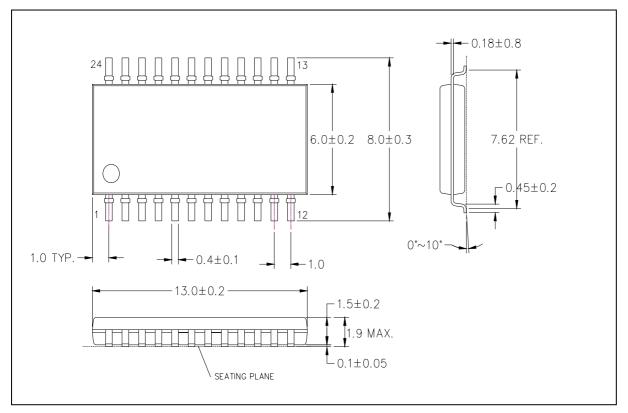

The maximum power dissipation, $P_D(max)=(Tj-Ta)/R_{th(j-a)}$, decreases as the ambient temperature increases.

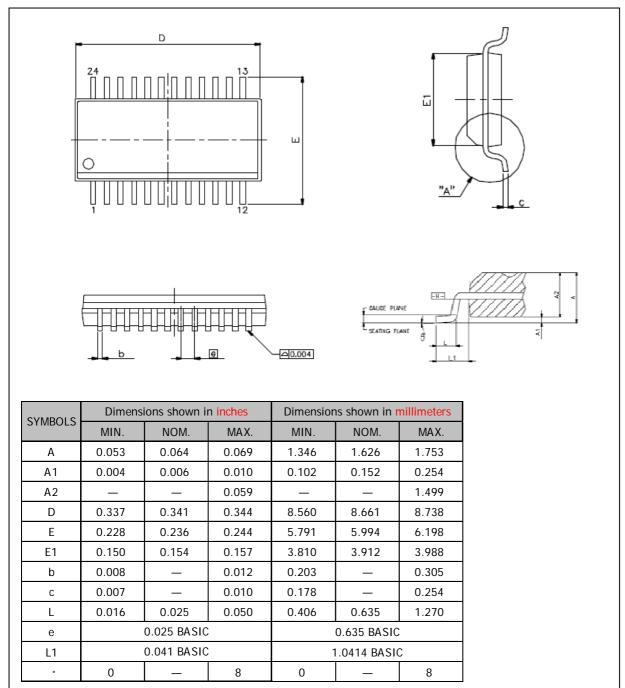

Load Supply Voltage (V_{LED})

MBI5035 are designed to operate with V_{DS} ranging from 0.2V to 0.6V (depending on I_{OUT} =3~45mA) to lower the heat dissipation and reduce the temperature on the package. In this case, it is recommended to use the lowest possible supply voltage V_{LED} . Because the V_F of red LED differs from green and blue LED, we suggest to separate V_{LED} from V_{LED} .

 $\ensuremath{V_{\text{DS}}}\text{=}\ensuremath{V_{\text{LED}}}\text{-}\ensuremath{V_{F}}$, with $\ensuremath{V_{DS}}$ ranging from 0.2V to 0.6V

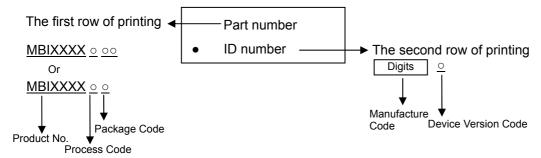
The applications are shown in the following figures.




Switching Noise Reduction

LED driver ICs are frequently used in switch-mode applications which always behave with switching noise due to the parasitic inductance on PCB. To eliminate switching noise, refer to "Application Note for 8-bit and 16-bit LED Drivers- Overshoot".

Package Outline


MBI5035GF Outline Drawing

MBI5035 GP Outline Drawing

Note: The unit for the outline drawing is mm.

Product Top-mark Information

Product Revision History

Datasheet version	Device version code
V1.00	Α
V1.01	A
V2.00	В

Product Ordering Information

Part Number	"Pb-free & Green" Package Type	Weight (g)
MBI5035GF-B	SOP24L-300-1.00	0.28
MBI5035GP-B	SSOP24L-150-0.64	0.11

^{*}Please place your order with the "product ordering number" information on your purchase order (PO).

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.