WD3124DA

1000mA Buck/Boost
 Charge Pump Flash LED Driver

Description

The WD3124DA is a current-regulated charge pump ideal for powering high brightness LEDs for camera flash applications. The charge pump can be set to regulate two current levels for FLASH and TORCH modes.

The WD3124DA automatically switches modes between step-up and step-down ensuring that LED current does not depend on the forward voltage. It switches at 2.2 MHz , allowing the use of tiny components. The supply voltage ranges from 2.7 V to 5.5 V and is ideally suited for all applications powered by a single LI-Ion battery cell or three to four NiCd, NiMH , or Alkaline battery cells.

The WD3124DA also features a very low shutdown current, an automatic soft-start mode to limit inrush current, as well as over current, over voltage and over-Thermal shutdown control.

A low current sense reference voltage (50 mV) allows the use of small 0603 current sensing resistors.

The WD3124DA is available in Green DFN3×3-10L package and is specified over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Output Current up to 1000 mA
- Up to 95\% Efficiency in Torch Mode
- Adjustable FLASH Mode Current
- Automatic Buck/Boost Mode Switchover
- Wide Input Voltage Range: 2.7V to 5.5 V
- Minimum External Components: No Inductors
- High Frequency Operation: 2.2 MHz
- Low 50mV Reference for Low Loss Sensing
- PWM Dimming Control
- Automatic Soft Start Limits Inrush Current
- Low Ripple and EMI

Http//:www.sh-willsemi.com

DFN3x3-10L

Pin configuration (Top view)

WD3124DA

3124DA = Device code
Y = Year code
W = Week code
Marking

Order Information

Device	WD3124DA-10/TR
Function	With timeout
Package	DFN3x3-10L
Shipping	3000/Reel\&Tape

Applications

- Cellphones
- PADs

Pin configuration (Top view)

Pin descriptions

Symbol	DFN3x3-10L	Descriptions
VIN	1	Input voltage for the charge pump. Decouple with $4.7 \mu \mathrm{~F}$ or $10 \mu \mathrm{~F}$ ceramic capacitor close to the pins of the IC.
C1	2	Positive input for the external flying capacitor. Connect a ceramic $1 \mu \mathrm{~F}$ capacitor close to the pins of the IC.
C2	3	Negative input for the external flying capacitor. Connect a ceramic $1 \mu \mathrm{~F}$ capacitor close to the pins of the IC.
FLASH	4	Logic input to toggle operation between FLASH and TORCH mode. In TORCH mode FB is regulated to the internal 50 mV reference. In FLASH mode FB reference voltage can be adjusted by changing the resistor from $\mathrm{R}_{\text {SET }}$ pin to ground. Choose the external current sense resistor ($\mathrm{R}_{\text {SENSE }}$) based on desired current in TORCH mode and Flash mode.
EN	5	Shutdown control input. Connect to VIN for normal operation, connect to ground for shutdown. For normal operation, suggest connecting to VIN only after the VIN has settled if the VIN ramping up is slow.
$\mathrm{R}_{\text {SET }}$	6	Connect a resistor from this pin to ground. When in FLASH mode (FLASH = High) this resistor sets the current regulation point according to the following: $\mathrm{VFB}=\left(1.26 \mathrm{~V} / \mathrm{R}_{\mathrm{SET}}\right) \times 10.2 \mathrm{k} \Omega$
FB	7	Feedback input for the current control loop. Connect directly to the current sense resistor.
SGND	8	Internal ground pin. Control circuitry returns current to this pin.
PGND	9	Power ground pin. Flying capacitor current returns through this pin.
VOUT	10	Charge Pump Output Voltage. Decouple with an external capacitor. At least $1 \mu \mathrm{~F}$ is recommended. If Higher value capacitor is used, output ripple is smaller.

Typical applications

Figure1. Single LED flash circuit @ 850mA flash current

Figure 2. Multiple LED flash circuit @1000mA flash current

Block diagram

Absolute maximum ratings

Parameter	Symbol	Value	Unit
VIN,VOUT pin voltage range	V	$-0.3 \sim 6$	V
EN, FB pin voltage range	-	$-0.3 \sim 5.5$	V
Output Current Pulse(Flash)	$\mathrm{I}_{\text {O(Flash) }}$	1.5	A
Output Current Continuous(Torch)	$\mathrm{I}_{\text {O(Torch) }}$	0.4	A
Power Dissipation (Note 1)		3	W
Junction to Ambient Thermal Resistance (Note 1)	$\mathrm{R}_{\text {өJA }}$	57	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Lead temperature(Soldering, 10s)	T_{L}	260	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	Topr	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$
ESD Ratings	HBM	8000	V
	MM	400	V

These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Note 1: Surface mounted on FR-4 Board using 1 square inch pad size, dual side, 1oz copper

Electronics Characteristics

(Full $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=4.7 \mathrm{uF}, \mathrm{C}_{\mathrm{F}}=\mathrm{C}_{\mathrm{OUT}}=1 \mathrm{uF}, \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}$, typical values at $+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Voltage Range	$\mathrm{V}_{\text {IN }}$		2.7		5.5	V
Quiescent Current	I_{Q}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}-5.5 \mathrm{~V} \text { FLASH=GND, } \\ & 1 \mathrm{X} \text { Mode } \mathrm{I}_{\mathrm{LOAD}}=100 \mathrm{uA} \end{aligned}$		0.3		mA
	I_{Q}	FLASH = High, $2 \times$ mode		2		mA
Shutdown Supply Current	$\mathrm{I}_{\text {SHDN }}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$			1	uA
Feedback referenceVoltage	$V_{\text {FB }}$	FLASH $=\mathrm{V}_{\mathrm{IN}}, \mathrm{R}_{\text {SET }}=68 \mathrm{k} \Omega$	175	190	205	mV
		FLASH = GND	45	50	55	mV
FB Pin Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=0.3 \mathrm{~V}$			1	uA
Oscillator Frequency	$\mathrm{f}_{\text {OSC }}$			2.2		MHz
Charge Pump Equivalent Resistance ($1 \times$ mode)		$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$		0.5	0.7	Ω
Charge Pump Equivalent Resistance ($2 \times$ mode)				3		Ω
EN, FLASH Logic Low	$\mathrm{V}_{\text {EN,FLASH H }}$				0.4	V
EN, FLASH Logic High	$V_{\text {EN,FLASHL }}$		1.3			V
EN, FLASH Pin Current	$\mathrm{I}_{\text {EN,FLASH }}$				1	uA
V ${ }_{\text {OUt }}$ Turn-on Time		$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{FB}$ within 90% of regulation		250		us
Thermal Shutdown Temperature	$\mathrm{T}_{\text {SHDN }}$			150		${ }^{\circ} \mathrm{C}$
Maximum Flash ON time		$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	0.8	1.2	1.6	s

Typical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{IN}}=4.7 \mathrm{uF}, \mathrm{C}_{\mathrm{OUT}}=4.7 \mathrm{uF}, \mathrm{C}_{\mathrm{F}}=1 \mathrm{uF}\right.$, unless otherwise noted)

Ripple 1X Flash 1000mA

Ripple 2X Flash 1000 mA

Startup 1000 mA Flash

Time(80us/div)

Ripple 1X Torch 250mA

Ripple 2X Torch 250mA

Startup 250mA Torch

GEMI
WD3124DA

Efficiency vs. Input Voltage

Battery Current vs. Input Voltage

Torch in 1X to Flash in 2X Mode

Output Current vs. Input Voltage

Operation Information

The WD3124DA is a charge pump regulator designed for converting a Li-lon battery voltage of 2.7 V to 4.2 V to drive a white LED used in digital still camera Flash and Torch applications. Flash mode of WD3124DA is usually used with a pulse about 1.2 seconds to generate a high intensity Flash. Torch of WD3124DA can be used continuously at a lower output current than Flash and is often used for several seconds in a digital still camera "movie" mode.

The WD3124DA also has two modes of operation to control the output current: the 1 X mode and 2 X mode. Operation begins after the enable pin EN receives a logic high, and then WD3124DA goes through a soft-start mode designed to reduce inrush current. The WD3124DA starts in the 1X mode, which acts like a linear regulator to control the output current by continuously monitoring the feedback pin FB. In 1X mode, as FB pin is below the regulation point, the WD3124DA automatically switches to the 2X mode. The WD3124DA remains in the 2 X mode until one of four things happens:

1) The enable pin EN has been toggled.
2) The Flash pin has changed from high to low.
3) VIN is cycled or VIN recovers
4) A thermal fault occurs.

The 2 X mode is the charge pump mode where the output can be pumped as high as two times the input voltage, provided the output does not exceed the maximum voltage for the WD3124DA, which is internally limited to about 5.5 V . In the 2 X mode, as in the 1X mode, the output current is regulated by the voltage at the FB pin.

In the Torch mode, (Flash = "GND") the Flash pin is set to logic low and the WD3124DA FB pin regulates to typical 50 mV output:

$$
V_{F B}=50 \mathrm{mV} \text { (Torch Mode) }
$$

When in Flash mode, (Flash = "High"), the FB regulation voltage is set by the resistor $R_{\text {SET }}$ connected between the $R_{\text {SET }}$ pin and SGND and the equation:

$$
\mathrm{V}_{\mathrm{FB}}=\left(1.26 \mathrm{~V} / \mathrm{R}_{\mathrm{SET}}\right) \times 10.2 \mathrm{k} \Omega \text { (Flash Mode) }
$$

The output current is then set in either Flash or Torch mode by the equation:

$$
\mathrm{I}_{\text {OUT }}=\mathrm{V}_{\mathrm{FB}} / R_{\text {SENSE }}
$$

Typical values of $R_{\text {SET }}$ are $68 \mathrm{k} \Omega$ to $150 \mathrm{k} \Omega$ for a range of VFB $=205 \mathrm{mV}$ to 93 mV in Flash mode

Application Information

Flash timeout protection

Due to the high currents typically available in Flash mode, it is necessary to protect the white LED from damage if left on too long. The WD3124DA has a timeout in Flash mode of approximately 1.2 seconds after which it will go into torch mode. Operation will not begin again in Flash mode until the Enable pin or Flash pin have been set Low and then High again.

Over Temperature Protection

When the temperature of WD3124DA rises above $150^{\circ} \mathrm{C}$, the over temperature protection circuitry turns off the output switches to prevent damage to the device. If the temperature drops back down below $135^{\circ} \mathrm{C}$, the part automatically recovers and executes a soft start cycle.

Over Voltage Protection

The WD3124DA has over voltage protection. If the output voltage rises above the 5.5 V threshold, the over voltage protection shuts off all of the output switches to prevent the output voltage from rising further. When the output decreases below 5.3V, the device resumes normal operation.

Over Current Protection

The over current protection circuitry monitors the average current out of the $\mathrm{V}_{\text {OUT }}$ pin. If the average output current exceeds approximately 1.5 Amp , then the over current protection circuitry shuts off the output switches to protect the chip.

Brightness Control Using PWM

Dimming control can be achieved by applying a PWM control signal to the EN pin. The brightness of the white LEDs is controlled by increasing and decreasing the duty cycle of the PWM signal. While the operating frequency range of the PWM control is from 60 Hz to 700 Hz , the recommended maximum brightness frequency range of the PWM signal is
from 60 Hz to 200 Hz . A repetition rate of at least 60 Hz is required to prevent flicker.

Component Selection

The WD3124DA charge pump circuit requires 3 capacitors (recommended values): $4.7 \mu \mathrm{~F}$ input, $4.7 \mu \mathrm{~F}$ output and $1 \mu \mathrm{~F}$ flying capacitors. For the input capacitor, a larger value of $10 \mu \mathrm{~F}$ will help reduce input voltage ripple for applications sensitive to ripple on the battery voltage. All the capacitors should be surface mount ceramic for low lead inductance necessary at the 2.2 MHz switching frequency of the WD3124DA and to obtain low ESR, which improves bypassing on the input and output and improves output voltage drive by reducing output resistance. Ceramic capacitors with X5R or X7R temperature grade are recommended for most applications. A selection of recommended capacitors included in below table:

Part Number	Capacitance /voltage	CapacitorSize /Type /Thickness	ESR @100 K
C1005X5R01105M	1uF/6.3V	0402/X5R/0.5mm	0.03
C1608X5R0J475K	4.7uF/6.3V	0603/X5R/0.9mm	0.02
C2012X5R0J106M	10uF/6.3V	0805/X5R/1.35mm	0.02
GRM155R60J105KE19B	1uF/6.3V	0402/X5R/0.55mm	0.03
GRM188R60J475KE19	4.7uF/6.3V	0603/X5R/0.9mm	0.02
GRM21BR60J106KE19L	10uF/6.3V	0805/X5R/1.35mm	0.02

The input and output capacitors should be located as close to the V_{IN} and $\mathrm{V}_{\text {OUT }}$ pins as possible to obtain best bypassing, and the returns should be connected directly to the PGND pin or to the thermal pad ground located under the WD3124DA. The flying capacitor should be located as close to the C1 and C2 pins as possible. To obtain lower output ripple, the $\mathrm{C}_{\text {Out }}$ value can be increased from $1 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ or $4.7 \mu \mathrm{~F}$ with a corresponding decrease in output ripple. For output currents of 500 mA to 1000 mA , the recommended C_{F} flying capacitor value of $1 \mu \mathrm{~F}$ should be used.

Resistor Selection

The sense resistor $R_{\text {SENSE }}$ is determined by the value needed in the Torch mode for the desired output current by the equation:
$R_{\text {SENSE }}=V_{F B} / I_{\text {OUT }}$ where $V_{F B}=50 \mathrm{mV}$ (Torch Mode).

Once the $R_{\text {SENSE }}$ resistor has been selected for Torch mode, the V_{FB} voltage can be selected for Flash mode using the following equation:
$V_{F B}=I_{\text {OUT }} \times R_{\text {SENSE }}$ (Flash Mode) where $I_{\text {OUT }}$ is for Flash Mode.

Next, the $\mathrm{R}_{\text {SET }}$ resistor can be selected for Flash mode using the following equation:

$$
R_{\mathrm{SET}}=(1.26 \mathrm{~V} / \mathrm{VFB}) \times 10.2 \mathrm{k} \Omega \text { (Flash Mode) }
$$

For an example of 200 mA Torch mode and 600 mA Flash mode, the values $R_{\text {SENSE }}=0.25 \Omega, \mathrm{~V}_{\mathrm{FB}}=$ 150 mV (Flash, Mode), and $\mathrm{R}_{\text {SET }}=86.6 \mathrm{k} \Omega$ are calculated. The power, obtained in the Flash mode
would be:

$$
P_{\text {FLASH }}=V_{F B} \times I_{\mathrm{OUT}}=150 \mathrm{mV} \times 600 \mathrm{~mA}=90 \mathrm{~mW}
$$

The typical 0603 surface mount resistor is rated $1 / 10$, Watt continuous power and $1 / 5$ Watt pulsed power, more than enough for this application. For other applications, the $P_{\text {FLASH }}$ power can be calculated and resistor size selected. The $\mathrm{R}_{\text {SENSE }}$ resistor is recommended to be size 0603 for most applications. The range of typical resistor values and sizes are shown in below table:

Reference R $_{\text {SET }}$ Resistor:

Part Reference	Value(Ω)	Tolerance	Package Size	Flash Current (mA) @ $\mathrm{R}_{\text {SENSE }}=$				
				0.22Ω	0.27Ω	0.33Ω	0.39Ω	0.47Ω
$\mathrm{R}_{\text {SET }}$	62k	5\%	0402	940	766	627	530	440
$\mathrm{R}_{\text {SET }}$	68K	5\%	0402	859	700	572	484	402
$\mathrm{R}_{\text {SET }}$	75K	5\%	0402	778	634	518	438	363
$\mathrm{R}_{\text {SET }}$	82K	5\%	0402	712	580	474	401	333
$\mathrm{R}_{\text {SET }}$	91K	5\%	0402	640	522	427	361	300
$\mathrm{R}_{\text {SET }}$	100K	5\%	0402	584	476	389	329	273
$\mathrm{R}_{\text {SET }}$	120K	5\%	0402	486	396	324	274	227
$\mathrm{R}_{\text {SET }}$	140K	5\%	0402	416	340	278	235	195
$\mathrm{R}_{\text {SET }}$	150K	5\%	0402	389	317	259	219	182

Reference R $_{\text {SENSE }}$ Resistor:

Part Reference	Value (Ω)	Tolerance	Package Size	Torch Current (mA)
$R_{\text {SENSE }}$	0.22	5%	0603	227
$R_{\text {SENSE }}$	0.27	5%	0603	185
$R_{\text {SENSE }}$	0.33	5%	0603	151
$R_{\text {SENSE }}$	0.39	5%	0603	128
$R_{\text {SENSE }}$	0.47	5%	0603	106

EVALUATION BOARD LAYOUT

Printed Circuit Board Layout Recommendations

Follow the PCB layout guidelines for optimal performance:

1. Place the flying capacitor CF as close to the chip as possible as possible; otherwise $2 x$ mode performance will be compromised. Also keep analog components away from this capacitor.
2. Place input and output decoupling capacitors as close to the chip as possible to reduce switching noise and output ripple.
3. The power traces, consisting of the VIN/GND trace, the VOUT trace and the WLED trace should be kept short and wide. Also minimize the feedback loop area (consisting of WLED/FB) small.
4. Connect the exposed pad to the GND plane to achieve the best power dissipation.

Package outline dimensions

TDFN3x3-10L

TOP VIEW

SIDE VIEW

BOTTOM VIEW

RECOMMENDED LAND PATTERN (Unit:mm)

SYMBOL	Dimensions In mm		Dimensions In Inches	
	Min	Max	Min	Max
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A2	0.203REF		0.008REF	
D	2.900	3.100	0.114	0.122
D1	2.300	2.500	0.091	0.098
E	2.900	3.100	0.114	0.112
E1	1.600	1.800	0.063	0.071
k	0.200MIN		0.008 MIN	
b	0.180	0.300	0.007	0.012
e	0.500TPY		0.020TYP	
L	0.300	0.500	0.012	0.020

