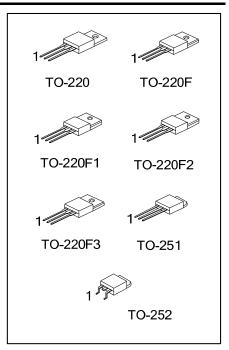
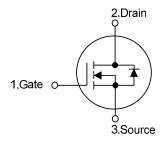
UNISONIC TECHNOLOGIES CO., LTD

7N65K-MTQ Power MOSFET

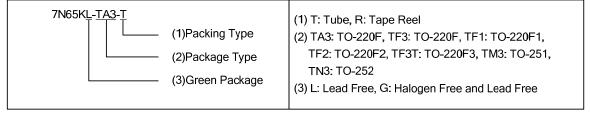

7A, 650V N-CHANNEL **POWER MOSFET**

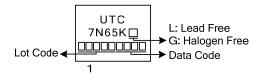
DESCRIPTION


The UTC 7N65K-MTQ is a high voltage power MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche characteristics. This power MOSFET is usually used in high speed switching applications of switching power supplies and adaptors.

FEATURES

- * $R_{DS(ON)}$ < 1.6 Ω @ V_{GS} = 10 V, I_D = 3.5 A
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness


SYMBOL


ORDERING INFORMATION

Ordering Number		Deekees	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
7N65KL-TA3-T	7N65KG-TA3-T	TO-220	G	D	S	Tube	
7N65KL-TF3-T	7N65KG-TF3-T	TO-220F	G	D	S	Tube	
7N65KL-TF1-T	7N65KG-TF1-T	TO-220F1	G	D	S	Tube	
7N65KL-TF2-T	7N65KG-TF2-T	TO-220F2	G	D	S	Tube	
7N65KL-TF3T-T	7N65KG-TF3T-T	TO-220F3	G	D	S	Tube	
7N65KL-TM3-T	7N65KG-TM3-T	TO-251	G	D	S	Tube	
7N65KL-TN3-R	7N65KG-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	650	V
Gate-Source Voltage		V_{GSS}	±30	V
Avalanche Current (Note 2)		I _{AR}	7	Α
Continuous Drain Current		I_{D}	7	Α
Pulsed Drain Current (Note 2)		I_{DM}	24	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	350	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	ns
	TO-220	P _D	125	W
Power Dissipation	TO-220F/TO-220F1 TO-220F3		40	W
	TO-220F2		42	W
	TO-251/TO-252		55	W
Junction Temperature		T_J	+150	°C
Operating Temperature		T_OPR	-55 ~ + 150	°C
Storage Temperature		T_{STG}	-55 ~ + 150	°C

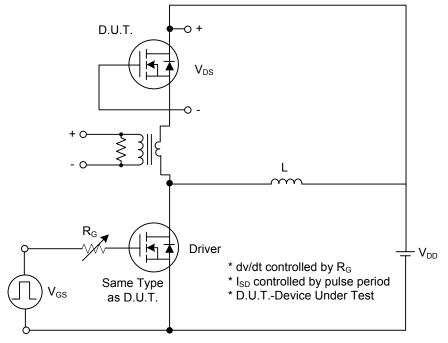
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

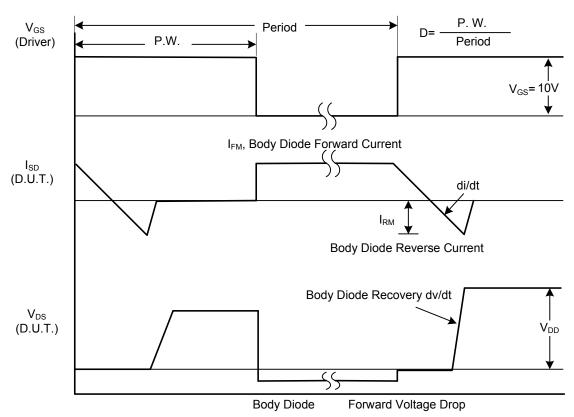
- 2. Repetitive Rating : Pulse width limited by T_{J}
- 3. L = 14.28mH, I_{AS} = 7A, V_{DD} = 90V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 7A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT	
Junction to Ambient	TO-220/TO-220F TO-220F1/TO-220F2 TO-220F3	ӨЈА	62.5	°C/W	
	TO-251/TO-252		110		
Junction to Case	TO-220		1.0		
	TO-220F/TO-220F1 TO-220F3	θЈС	3.2	°C/W	
	TO-220F2		2.97		
	TO-251/TO-252		2.27		

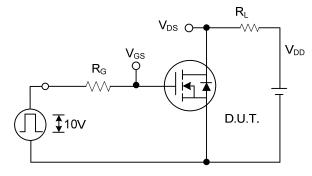

■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

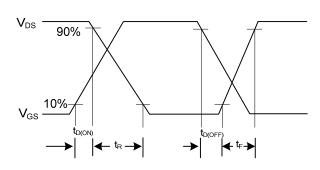
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	650			V	
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 650V, V_{GS} = 0V$			10	μΑ	
Cata Source Leakage Current	orward	- I _{GSS}	$V_{GS} = 30V, V_{DS} = 0V$			100	nA	
Gate- Source Leakage Current	Reverse		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA	
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$	I _D =250μA, Referenced to 25°C		0.53		V/°C	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$			4.0	V	
Static Drain-Source On-State Resistance		R _{DS(ON)}	$V_{GS} = 10V, I_D = 3.5A$			1.6	Ω	
DYNAMIC CHARACTERISTICS								
Input Capacitance		C_{ISS}	V 05V V 0V		875	1000	pF	
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0 MHz		88	120	pF	
Reverse Transfer Capacitance		C_{RSS}	- 1.0 VIIIZ		8	25	pF	
SWITCHING CHARACTERISTICS								
Turn-On Delay Time		$t_{D(ON)}$			50	60	ns	
Turn-On Rise Time		t_R	V_{DD} =30V, I_{D} =0.5A,		65	80	ns	
Turn-Off Delay Time		$t_{D(OFF)}$	$R_G = 25\Omega$ (Note 1, 2)		110	130	ns	
Turn-Off Fall Time		t _F			55	70	ns	
Total Gate Charge		Q_G	V _{DS} =50V, I _D =1.3A,		22.5	40	nC	
Gate-Source Charge		Q_GS	V _{GS} =10V (Note 1, 2)		7.5		nC	
Gate-Drain Charge		Q_GD	(Note 1, 2)		5		nC	
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
Drain-Source Diode Forward Voltage		V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 7 \text{ A}$			1.4	V	
Maximum Continuous Drain-Source Diode		1				7	^	
Forward Current		Is				1	Α	
Maximum Pulsed Drain-Source Diode		le				28	Α	
Forward Current		I _{SM}				20	^	
Body Diode Reverse Recovery Time		t _{rr}	I _S =7A, di/dt=100A/µs		320		ns	
Body Diode Reverse Recovery Charge		Q_{RR}	15-17, di/di-1007/µ3		2.4		nC	


Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

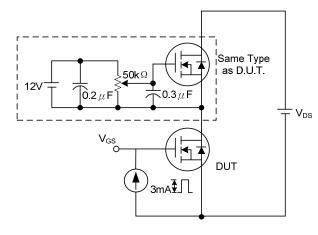
^{2.} Essentially independent of operating temperature

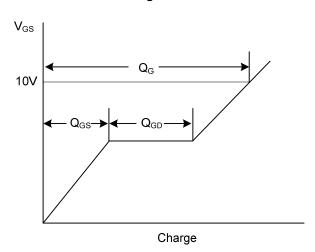
■ TEST CIRCUITS AND WAVEFORMS

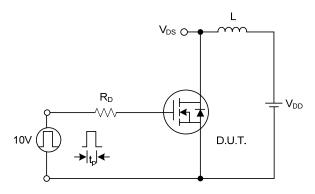

Peak Diode Recovery dv/dt Test Circuit

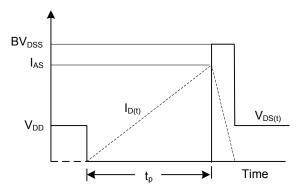

Peak Diode Recovery dv/dt Waveforms

7N65K-MTQ Power MOSFET

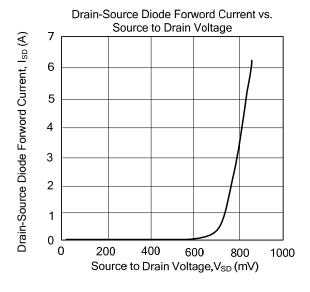

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

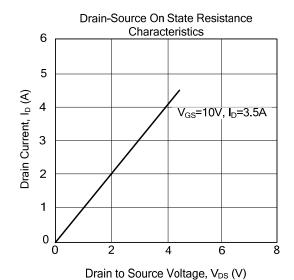

Switching Test Circuit

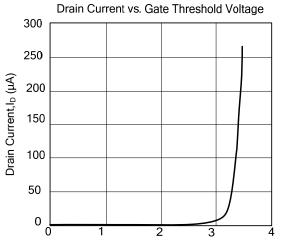

Switching Waveforms


Gate Charge Test Circuit

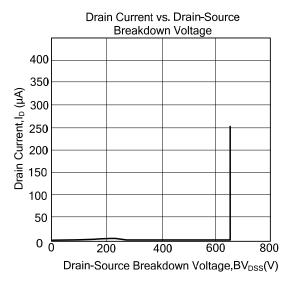
Gate Charge Waveform


Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms

7N65K-MTQ Power MOSFET


■ TYPICAL CHARACTERISTICS

Gate Threshold Voltage, V_{TH} (V)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.