SN74AHC245-Q1 OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPU

SCLS527A - AUGUST 2003 - REVISED APRIL 2008

- **Qualified for Automotive Applications**
- ESD Protection Exceeds 1000 V Per MIL-STD-883, Method 3015; Exceeds 100 V Using Machine Model (C = 200 pF, R = 0)
- Operating Range 2-V to 5.5-V V_{CC}

description/ordering information

The SN74AHC245 octal bus transceiver is designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

This device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses effectively are isolated.

DW	OR F (TC	PW P P VI	ACI EW)	< A	GE
DIR A1	1	υ	20 19		V _{CC} OE
A2 A3 A4			17 16		В1 В2 В3
A5 A6	6		15 14		B4 B5
A7 A8 GND	U 8 [9 [10)	13 12 11		B6 B7 B8

To ensure the high-impedance state during power up or power down, $\overline{\mathsf{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION[†]

TA	PAC	(AGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
4000 1- 40500	SOIC – DW	Tape and reel	SN74AHC245QDWRQ1	AHC245Q1		
-40°C to 125°C	TSSOP – PW	Tape and reel	SN74AHC245QPWRQ1	AHC245Q1		

⁺ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

‡Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

FUNCTION TABLE (each transceiver)

INP	UTS	
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	Х	Isolation

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2008, Texas Instruments Incorporated

SN74AHC245-Q1 OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCLS527A - AUGUST 2003 - REVISED APRIL 2008

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, VI (see Note 1): Control inputs	–0.5 V to 7 V
I/O, output voltage range, V _O (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0): Control inputs	–20 mA
I/O, output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	±20 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±25 mA
Continuous current through V _{CC} or GND	±75 mA
Package thermal impedance, θ_{JA} (see Note 2): DW package	58°C/W
PW package	83°C/W
Storage temperature range, T _{stg}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		2	5.5	V
		$V_{CC} = 2 V$	1.5		
VIH	High-level input voltage	$V_{CC} = 3 V$	2.1		V
		V _{CC} = 5.5 V	3.85		
		$V_{CC} = 2 V$		0.5	
VIL	Low-level input voltage	$V_{CC} = 3 V$		0.9	V
		V _{CC} = 5.5 V		1.65	
VI	Input voltage	OE or DIR	0	5.5	V
VO	Output voltage	A or B	0	VCC	V
		$V_{CC} = 2 V$		-50	μΑ
ЮН	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4	
		$V_{CC} = 5 V \pm 0.5 V$		-8	mA
		$V_{CC} = 2 V$		50	μΑ
lol	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4	
		V_{CC} = 5 V ± 0.5 V	8		mA
	land to a Marcale and the set	V_{CC} = 3.3 V \pm 0.3 V		100	
$\Delta t / \Delta V$	input transition rise of fail rate	$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$		20	ns/V
TA	Operating free-air temperature		-40	125	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS	V	T,	₄ = 25°C	;			LINUT
	ARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MIN MAX 1.9	UNIT
			2 V	1.9	2		1.9		
		I _{OH} = -50 μA	3 V	2.9	3		2.9		
PARAMETER VOH VOL II A or B inputs ICE or DIR		4.5 V	4.4	4.5		4.4		V	
		$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		
		$I_{OH} = -8 \text{ mA}$	VCC $T_A = 25^{\circ}C$ MIN TYP MAX 2 V 1.9 2 1.9 3 V 2.9 3 2.9 4.5 V 4.4 4.5 4.4 3 V 2.58 2.48 3 V 2.58 2.48 4.5 V 3.94 3.8 2 V 0.1 3 V 0.1 3 V 0.1 3 V 0.36 2 V 0.1 3 V 0.36 5.5 V ±0.1 GND, or V H 5.5 V ±0.1 SND, IO = 0 5.5 V ±0.1 SND, IO = 0 5.5 V ±0.25 SND 5.5 V 4 SND 5.5 V 4						
			2 V			0.1		0.1	
		l _{OL} = 50 μA	3 V			0.1		0.1	
VOL			4.5 V			0.1		0.1	V
		I _{OL} = 4 mA	3 V			0.36		0.5	
		I _{OL} = 8 mA	4.5 V			0.36		0.5	
	A or B inputs		5.5 V			±0.1		±1	
II.	OE or DIR	$V_{I} = 5.5 V \text{ or GND}$	0 V to 5.5 V			±0.1		±1	μΑ
loz†		$V_{O} = V_{CC}$ or GND, VI (\overline{OE}) = VIL or VIH	5.5 V			±0.25		±2.5	μΑ
ICC		$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		40	μΑ
Ci	OE or DIR	$V_{I} = V_{CC} \text{ or GND}$	5 V		2.5	10			pF
Cio	A or B inputs	$V_I = V_{CC}$ or GND	5 V		4				pF

[†] The parameter I_{OZ} includes the input leakage current.

SN74AHC245-Q1 OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCLS527A - AUGUST 2003 - REVISED APRIL 2008

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	FROM	то	LOAD	Τį	λ = 25°C	;			
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
^t PLH	A as D	DerA	0. 45		5.8	8.4	1	10	
^t PHL	A OF B	BOLA	CL = 15 pF		5.8	8.4	1	10	ns
^t PZH		A or D	0. 15 pF		8.5	13.2	1	15.5	
^t PZL	ÛE	A OF B	$C_L = 15 \text{ pF}$		8.5	13.2	1	15.5	ns
^t PHZ		A as D	0. 45		8.9	12.5	1	15.5	
^t PLZ	ÛE	A or B	CL = 15 pF		8.9	12.5	1	15.5	115
^t PLH	A an D	DenA	0 50 - 5		8.3	11.9	1	13.5	
^t PHL	A OF B	BOLA	CL = 50 pF		8.3	11.9	1	13.5	ns
^t PZH		A as D	0. 50.55		11	16.7	1	19	
^t PZL	ÛE	A OF B	CL = 50 pF		11	16.7	1	19	ns
^t PHZ		A or B	$C_1 = 50 \text{ pc}$		11.5	15.8	1	18	200
tPLZ	UE	AUB	CL = 50 pr		11.5	15.8	1	18	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	FROM	то	LOAD	Тд	_= 25°C	;			
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
^t PLH	A or D	D or A	0. 15 5		4	5.5	1	6.5	
^t PHL	AUD	BOIA	CL = 15 pr		4	5.5	1	6.5	ns
^t PZH		A or D	0. 15 5		5.8	8.5	1	10	~~
^t PZL	ÛE	AUD	CL = 15 pr		5.8	8.5	1	10	ns
^t PHZ		A an D	0. 45		5.6	7.8	1	9.2	
^t PLZ	ÛE	A or B	CL = 15 pr		5.6	7.8	1	9.2	115
^t PLH	A as D	D er A	0 50 5		5.5	7.5	1	8.5	
^t PHL	A or B	B or A	CL = 50 pF		5.5	7.5	1	8.5	ns
^t PZH		A an D	0 50 - 5		7.3	10.6	1	12	
^t PZL	ÛE	A OF B	CL = 50 pF		7.3	10.6	1	12	ns
^t PHZ		A or B	$C_1 = 50 \text{ pF}$		7	9.7	1	11	200
^t PLZ	UE	AUD	CL = 50 pr		7	9.7	1	11	115

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see Note 4)

	PARAMETER	MIN	TYP	MAX	UNIT
VOL(P)	Quiet output, maximum dynamic V _{OL}		0.9		V
VOL(V)	Quiet output, minimum dynamic V _{OL}		-0.9		V
VOH(V)	Quiet output, minimum dynamic V _{OH}		4.3		V
VIH(D)	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V

NOTE 4: Characteristics are for surface-mount packages only.

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST C	ONDITIONS	TYP	UNIT
Cpd	Power dissipation capacitance	No load,	f = 1 MHz	14	pF

O Vcc **S1** O Open $\mathbf{R}_{\mathbf{I}} = \mathbf{1} \mathbf{k} \Omega$ TEST **S**1 From Output From Output Test Under Test **Under Test** Point tPLH/tPHL Open CL CL tPLZ/tPZL Vcc (see Note A) (see Note A) GND tPHZ/tPZH **Open Drain** Vcc LOAD CIRCUIT FOR LOAD CIRCUIT FOR **TOTEM-POLE OUTPUTS 3-STATE AND OPEN-DRAIN OUTPUTS** Vcc 50% V_CC **Timing Input** 0 V tw th tsu VCC VCC 50% V_{CC} 50% V_{CC} Input 50% V_{CC} 50% V_{CC} **Data Input** 0 V 0 V **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** PULSE DURATION SETUP AND HOLD TIMES - Vcc Vcc Output 50% V_{CC} 50% V_{CC} 50% V_{CC} 50% V_{CC} Input Control 0 V 0 V tp7I - tPLZ ^tPLH ^tPHL Output VOH ≈Vcc Waveform 1 In-Phase 50% V_{CC} 50% V_{CC} 50% V_{CC} S1 at VCC V_{OL} + 0.3 V Output VOL VOL (see Note B) tPHL --1 ^tPLH tPZH -- tPHZ Output ۷он ۷он Waveform 2 **Out-of-Phase** 50% V_{CC} V_{OH} – 0.3 V 50% V_{CC} 50% V_{CC} S1 at GND Output ≈0 V VOL (see Note B) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES ENABLE AND DISABLE TIMES** INVERTING AND NONINVERTING OUTPUTS LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_Q = 50 Ω , t_r \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74AHC245QPWRG4Q1	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC245Q1	Samples
SN74AHC245QPWRQ1	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC245Q1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

17-Mar-2017

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AHC245-Q1 :

- Catalog: SN74AHC245
- Enhanced Product: SN74AHC245-EP
- Military: SN54AHC245

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC245QPWRG4Q 1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74AHC245QPWRQ1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

19-Nov-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC245QPWRG4Q1	TSSOP	PW	20	2000	367.0	367.0	38.0
SN74AHC245QPWRQ1	TSSOP	PW	20	2000	367.0	367.0	38.0

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

