

MA82G5Dxx 数据手册

版本: 0.73

特性

- 1-T 80C51 中央处理器
- MA82G5D16/MA82G5D08 内含 16K/8K 字节闪存
 - ISP 空间可以选择为 0.5KB/1.0KB~7.5KB
 - 灵活的 IAP 大小空间设置
 - 密码保护程序区访问
 - Flash 写/擦 次数: 20,000
 - ─ Flash 数据保留时间: 100 年 25°C
 - MA82G5D16 默认空间配置
 - ★ AP 程序空间(13.5KB, 0000h~35FFh)
 - ★ IAP 数据空间(1.0KB, 3600h~39FFh)
 - ★ ISP 引导码空间(1.5KB, 3A00h~3FFFh)
 - MA82G5D08 默认空间配置
 - ★ AP 程序空间 (5.5KB, 0000h~15FFh)
 - ★ IAP 数据空间 (1.0KB, 1600h~19FFh)
 - ★ ISP 引导码空间 (1.5KB, 1A00h~1FFFh)
- 数据存储器: 1K/0.5K 字节
 - 一 片内 256 字节高速缓存
 - 5D08 片内 256 字节扩展 RAM (XRAM)
 - 5D16 片内 768 字节扩展 RAM (XRAM)
 - 5D16 扩展 RAM (XRAM)支持页访问
- 双数据指针
- 中断控制
 - 14 中断源, 4 级优先级
 - 3 个带滤波的外部中断 nINT0, nINT1 和 nINT2
 - 所有的外部中断支持高/低或上升/下降沿触发
- MA82G5DXX 共有 12 个定时器
 - RTC 定时器和 WDT 定时器
 - 定时器 0,定时器 1 和定时器 2
 - 一 PCA0, 可编程计数器阵列 0
 - 如果定时器2用于分割模式,则共有7个定时器
- 3 个 16-位 定时/计数, 定时器 0, 定时器 1 和定时器 2
 - X12 模式和时钟输出功能
 - 定时器 2 有新的 5 个操作模式,它们有着 8 个时钟源和 8 个捕捉源
 - 一 定时器 2 可以分割位两个 8 位定时器
 - 一 时钟输出(CCO) 在 T2CKO
 - 一 所有定时器支持 PWM 模式
- 1 个可编程 16 位计数/定时阵列(PCA0) 有着 6 个 CCP 模块
 - PCA0 有 6 个 CCP(捕获/比较/PWM)模块
 - 一 可重载 16 位基准计数器支持可变长度的 PWM
 - 从片内 CKM 可获得高达 100MHz 的时钟来源
 - 捕获模式, 16 位软件定时器模式和高速输出模式
 - 缓冲捕获模式可以监控窄脉冲输入
 - 8/10/12/16 位可调 PWM 模式,可被配置成:
 - * 最高 6 通道无缓冲 10/12/16 位 PWM,或
 - * 最高 6 通道带缓冲 2~8 位 PWM,或

- * 最高 3 通道带缓冲 9~16 位 PWM
- 8个键盘中断
- 10 位单端 ADC
 - 一 可编程吞吐率到 1M sps
 - 8个外部输入通道和 1 个内部输入通道(IVR/1.4V)
 - ADC VREF+从外部输入
- 模拟比较器 0
 - ─ 可选在 ACNIO 上的内部参考电压 (IVR/1.4V)
 - 4个可选 ACPIO (+)输入
 - 一 可唤醒掉电模式和 IDLE 模式
 - 滤波选项和输出给内部定时器捕捉
- 增强型 UART (S0)
 - 帧错误侦测
 - 自动地址识别
 - 速度增强机制 (X2/X4 模式), 最大波特率可达 7.3728/12.0MHz
 - 模式 4 支持 SPI 主机, SPICLK 速率可达 12MHz
- 1 个主/从 SPI 串行接口
 - SPICLK 速率可达 12MHz
 - 8位数据传送
 - 模式4高达2个SPI主机(包括串行口S0)
 - 在 SPI 从机模式下支持菊花链功能
- 2 个主/从两线串行接口: TWI0 和 STWI (SID)
 - 1 个主/从硬件引擎: TWI0
 - 用于 STWI(软件 TWI)的开始/停止串行信号侦测
- 可编程看门狗定时器(WDT),, 时钟来源为 ILRCO
 - 通过 CPU 或上电一次性使能
 - ─ WDT 溢出可中断 CPU 或 复位 CPU
 - 掉电模式(watch 模式)下支持看门狗(WDT)功能,用于自动唤醒功能
- 实时时钟模块,时钟源来自 XTAL 或 ILRCO
 - 可编程中断周期从微秒到月
 - 一 21-位长系统定时器
- 蜂鸣器功能
- 片上调试接口 (OCD)
- 在 28 脚封装中最大 25 个通用输入输出口(GPIO)
 - P3 可以设置成准双向口模式,推挽输出模式,开漏集输出模式和仅输入模式
 - P0, P1, P2, P4 和 P6 可以设置为推挽输出模式, 开漏集输出模式
 - P6.0, P6.1 和 P4.7 公用 XTAL2, XTAL1 和 RST
 - 一 可编程通用输入输出口(GPIO)的驱动力
 - 每一个脚具有片内上拉使能
- 时钟源
 - ─ 内部 12MHz/11.059MHz 振荡器(IHRCO): 工厂校对到±1%, 典型值
 - 一 外部晶振模式, 支持 32.768KHz 振荡和丢失时钟侦测(MCD)
 - 内部低功耗 32KHz RC 振荡器 (ILRCO)
 - 外部时钟输入(ECKI) 在 P6.0/XTAL2, 可达到 25MHz
 - 内部 RC 振荡输出在 P6.0/XTAL2
 - 片内时钟倍频器(CKM) 可提供高速时钟源
- 两个低电压检测
 - BOD0: 检测 1.7V

- BOD1: 选择检测电压为 4.2V/3.7V/2.4V/2.0V
- 中断 CPU 或复位 CPU
- 一 (BOD1)在掉电模式下唤醒 CPU
- 多种功耗控制模式: 掉电模式, 空闲模式, 慢频模式, 副频模式, RTC 模式, watch 模式和 monitor 模式
 - 一 所有的中断能唤醒空闲(IDLE)模式
 - 一 10 个中断源能唤醒掉电模式
 - 慢频模式和副频模式支持低速 MCU 运转
 - 一 RTC 模式在掉电模式下支持实时时钟(RTC)恢复 CPU
 - Watch 模式在掉电模式下支持看门狗(WDT) 恢复 CPU
 - Monitor 模式在掉电模式下支持 BOD1 恢复 CPU
- 工作电压范围: 1.8V 5.5V
 - flash 写操作(ISP/IAP/ICP)的最低电压为 1.8V
- 工作频率范围: 25MHz(最高)
 - 外部晶振模式, 0 12MHz 在 1.8V 5.5V 和 0 25MHz 在 2.7V 5.5V
 - CPU 工作频率可达 12MHz 在 1.8V − 5.5V 和 25MHz 在 2.2V − 5.5V
 - ─ 片内时钟倍频器(CKM)在2.7V-5.5V时CPU工作频率可达32MHz
- 工作温度
 - 工业级(-40°C 到+85°C)*
- 16字节的唯一 ID 码
- 封装类型
 - SSOP28: MA82G5D16/5D08AL28 (16K/8K)
 - SSOP20: MA82G5D16/5D08AL20
 - SOP16: MA82G5D16/5D08AS16

^{*:}抽样检测

目录

特	性		2
目:	录		5
1.	概述		10
2.	方框图		11
3.	特殊功能		12
	3.1.	SFR 图 (页 0~F)	
	3.2.	SFR 位分配(页 0~F)	
	3.3.	辅助 SFR 图(页 P)	17
	3.4.	辅助特殊功能寄存器位分配 (P页)	18
4.	引脚结构	勾	19
	4.1.	封装指南	19
	4.2.	引脚描述	20
	4.3.	功能复用	22
5.	8051 CI	PU 功能描述	27
	5.1.	CPU 寄存器	27
	5.2.	CPU 时序	
	5.3.	CPU 寻址模式	
6.	存储器组	— , ,	
	6.1.	片内程序存储器闪存(Flash)	
	6.2.	片内数据存储器 RAM	
	6.3.	片上扩展 RAM (XRAM)	
	6.4.	片外扩展数据存储器访问	
7	6.5.	关于 C51 编译器的声明标识符	
7.		居存储器(XRAM)访问	
	7.1.	MOVX 在 16 位地址的双数据指针寄存器(DPTR)应用	
^	7.2.	MOVX 在有 XRPS 的 8 位地址应用	
8.	系统时针	,	
	8.1.	时钟结构	
	8.2. 8.3.	Clock Source Switching On-chip CKM (PLL)	
	8.4.	Missing Clock Detection	
	8.5.	Safety and Fast wake-up for XTAL mode	
	8.6.	Safety wake-up for clock from CKM	
_	8.7.	时钟寄存器	
9.		定时器(WDT)	
	9.1.	WDT 结构	
	9.2.	WDT 在掉电模式和空闲模式期间	
	9.3. 9.4.	WDT 寄存器	
40	_	WDT 硬件选项	
10		中(RTC)/系统时钟	
44	10.1.	RTC 寄存器	
11			
	11.1.	复位源	
	11.2.	上电复位	52

	11.3.	外部复位	53
	11.4.	软件复位	53
	11.5.	低电压检测复位	54
	11.6.	WDT 复位	54
	11.7.	MCD 复位	54
		非法地址复位	
12			
۱۷.			
		低电压侦测器	
		省电模式	
	12.2.1.		
	12.2.2.	副频模式	
	12.2.3.	RTC 模式	
	12.2.4.	Watch 模式	
	12.2.5. 12.2.6.	Monitor 模式 空闲模式	
	12.2.6.	生	
	12.2.7.	中断唤醒掉电模式	
	12.2.0.	=	
	12.2.10		
	12.2.11		
	12.2.12	,, = p. 1	
		电源控制寄存器	
12	I/O 口配		
١٥.			
		IO 结构	
	13.1.1.	端口3准双向口结构	
	13.1.2.	端口3推挽输出结构	
	13.1.3. 13.1.4.	端口 3 仅输入(高阻抗输入)结构 端口 3 开漏输出结构	
	13.1.4.	通用仅模拟输入结构	
	13.1.5.	带上拉电阻的通用开漏输出	
	13.1.0.	通用开漏输出结构	
	13.1.7.	通用端口的数字输入结构	
	13.1.9.	通用推挽输出结构	
	13.1.10		
		I/O 口寄存器	
	13.2.1.	端口1寄存器	
	13.2.2.		
	13.2.3.	• • • • • •	
	13.2.4.	端口 4 寄存器	70
	13.2.5.	端口 6 寄存器	70
	13.2.6.	端口输出驱动力控制寄存器	71
14.	中断		72
		中断结构	
		中断源	
		中断使能	
		中断优先级	
		中断处理	
		nINTx 输入源选择和输入滤波器 (x=0~2)	
		中断寄存器	
15.		计数器	86
	15 1	定时器 () 和定时器 1	87

	15.1.1.		定时器 0/1 模式 0	87
	15.1.2.		定时器 0/1 模式 1	89
	15.1.3.		定时器 0/1 模式 2	90
	15.1.4.		定时器 0/1 模式 3	
	15.1.5.		定时器 0/1 可编程时钟输出	92
	15.1.6.		定时器 0/1 寄存器	94
	15.2.		器 2	
	15.2.1.		定时器 2 模式 0(自动重载和外部中断)	
	15.2.2.		定时器 2 模式 1(带外部中断的自动重载)	
	15.2.3.		定时器 2 模式 2(捕捉)	
	15.2.4.		定时器 2 模式 3(捕捉带自动清零)	
	15.2.5.		分割定时器 2 模式 0 (自动重载和外部中断)	
	15.2.6.		分割定时器 2 模式 1 (自动重载和外部中断)	
	15.2.7.		分割定时器 2 模式 2 (捕捉)	
	15.2.8.		分割定时器 2 模式 3 (捕捉带自动清零)	
	15.2.9.		分割定时器 2 模式 4 (8 位 PWM 模式)	
	15.2.10		波特率发生器模式(BRG)	
	15.2.11		定时器 2 可编程时钟输出	
	15.2.12		定时器 2 寄存器	
			器全局控制	
16.	可编程计	数器	器阵列(PCA0)	116
	16.1. I	PCA	概述	116
	16.2.	PCA		117
	_		/捕捉模块	
			操作模式	
	16.4.1.		捕捉模式	
	16.4.2.		## たくへ	
	16.4.3.		36 位软件定时器模式(比较模式)	
	16.4.4.		高速输出模式(比较输出模式)	
	16.4.5.		缓冲 8 位 PWM 模式	
	16.4.6.		无缓冲 10/12/16 位 PWM 模式	
	16.4.7.		缓冲 10/12/16 位 PWM 模式	
	16.4.8.		COPM 模式	
	16.4.9.		缓冲 COPM 模式	132
	16.4.10		PCA 模块输出控制	133
17	串行口0	(UA	ART0)	136
•		•	□ 0 模式 0	
			□ 0 模式 1	
			□ 0 模式 1	
			吴侦测	
		_	理器通讯	
			也址识别	
			率设置	
	17.7.1.		串行口 0 (S0) 的波特率选择	
	17.7.2.		模式 0 波特率	
	17.7.3.		模式 2 波特率	
	17.7.4.		模式 1 和 3 波特率	
			□ 0 模式 4 (SPI 主机)	
			□ 0 寄存器	
18.	串行外设	接口	□(SPI)	155
	18.1.	典型	· No. 1	156
			单主机和单从机	

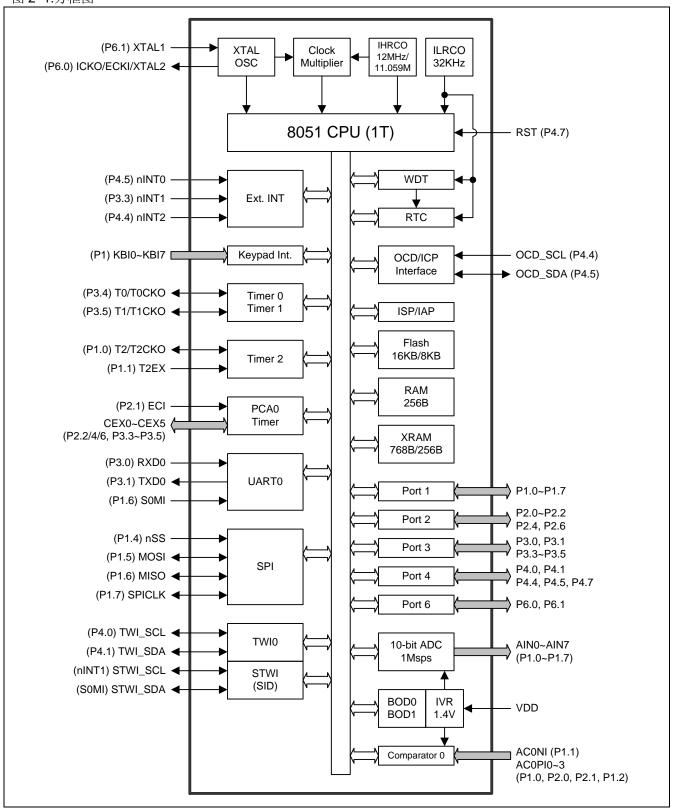
	18.1.2.		
	18.1.3.	,, , , , , , , , , , , , , , , , ,	
	18.1.4.)	
		SPI 配置	
	18.2.1.	1 // 1/ 1/ 1/ 21 12 / 2/	
	18.2.2.	,, -1, -1, -2,, -2,	
	18.2.3.	, , , , , , , , , , , , , , , , , , ,	
	18.2.4.		
	18.2.5.	*****	
	18.2.6.	- 1-1-	
	18.2.7.		
	18.3.	数据模式	
	18.4.	SPI 寄存器	162
19	.双线串行	Γ接口(TWI0)	165
	19.1.	操作模式	
	19.1.1.		
	19.1.2.		
	19.1.3.		
	19.1.4.		
	19.2.	混合状态	
	19.3.	使用 TWI	_
	19.4.	TWIO 寄存器	
~~	-		
20		□侦测(SID/STWI)	
	20.1.	SID (STWI) 结构	177
	20.2.	SID/STWI 寄存器	178
	20.3.	SID/STWI 范例代码	179
21	峰鸣器.		180
	21.1.	蜂鸣器寄存器	
	21.2.	蜂鸣器范例代码	
22		τ̃(KBI)	
	22.1.	KBI 结构	183
	22.2.	KBI 寄存器	184
23	.10 位 AD	OC	186
		ADC 结构	
		ADC 操作	
	23.2.1.		
	23.2.1.		
	23.2.2.	, , , , = , , , , , , , , , , , , , , ,	
	23.2.4.		
	23.2.5.		
	23.2.6.		
		ADC 寄存器	
O 4			
2 4		交器 0 (AC0)	
		AC0 结构	
	24.2.	ACO 寄存器	194
25	.内部电压	E参照(ⅣR, 1.4V)	196
_		IVR (1.4V) 结构	
		IVR 寄存器	
20	ISP和I		197
/n	10° All 1	4 ~	147

	26.1.	MA82G5D16 Flash 存储器配置	197
	26.2.	MA82G5D08 Flash 存储器配置	198
	26.3.	MA82G5DXX Flash 在 ISP/IAP 上的访问	199
	26.3.1.	2,44,14,124,14	
	26.3.2.	- 1 /// / 2 / 1	202
	26.3.3.		
	26.4.	ISP 操作	
	26.4.1.	341171774 = 74 IE	
	26.4.2.		
	26.4.3.	- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	26.5.	在应用编程(IAP)	
	26.5.1. 26.5.2.		
	26.5.3.		
	26.6.	ISP/IAP 寄存器	
	26.7.	ISP/IAP 示例代码	
27		R 访问	
	, ,	k功能寄存器	
		万	
30	, , , , , , , , ,	月	
	30.1.	电源电路	
	30.2.	复位电路	
	30.3.	XTAL 振荡电路	
	30.4.	ICP和 OCD 接口电路	
	30.5.	在芯片编程功能	
	30.6.	在线调试功能	
31	.电气特性	£	232
	31.1.	最大绝对额定值	232
	31.2.	直流特性	233
	31.3.	外部时钟特性	235
	31.4.	IHRCO 特性	235
	31.5.	ILRCO 特性	235
	31.6.	CKM 特性	236
	31.7.	Flash 特性	236
	31.8.	ADC 特性	237
	31.9.	串行口时序特性	238
	31.10.	时序特性	239
32	.指令集		241
33	封装形式	<u></u>	244
	33.1.	SSOP-28	
		SSOP-20	
	33.3.	SOP-16	246
34	.版本历史		247
35	免责声明	月	248

1. 概述

MA82G5DXX是基于80C51的高效1-T结构的单芯片微处理器, 每条指令需要1~7 时钟信号 (比标准的8051快 6~7倍),与标准8051指令集兼容。因此在与标准8051有同样的处理能力的情况下,MA82G5DXX只需要非常低的运行速度,同时由此能很大程度的减少耗电量。

MA82G5D16/08有16K/8K字节的内置Flash存储器用于保存代码。Flash存储器可以通过串行模式编程 (ICP, 在电路编程) 或者 ISP模式进行编程的能力。同时,也提供在应用编程(IAP)的能力。ISP和ICP让使用者无需从产品中取下微控制器就可以下载新的代码;IAP意味着应用程序正在运行时,微控制器能够在Flash中写入非易失数据。这些功能都由内建的电荷泵提供编程用的高压。


MA82G5DXX除了80C52 MCU的标准功能(例如 256 字节的随机存储器,二个外部中断,一个多源4级中断控制,一个串口(UART0)和三个定时/计数器)外,MA82G5DXX有25个额外的 I/O 端口引脚,768/256字节外部数据存储器(XRAM),一个额外的带高/低触发选项的外部中断,1MHz 10位ADC,一个 模拟比较器,一个6通道PCAs(PCA0),一个8位SPI,二个TWSIs(TWI0和STWI),键盘中断,看门狗定时器,实时时钟(RTC)模块,两个低电压检测器,一个晶振(与 P6.0 和 P6.1共用),一个高精度的内部振荡(IHRCO),一个片内时钟倍频器(CKM)来产生高速时钟源,一个低速的内部 RC 振荡器 (ILRCO) 和一个增型的串口(UART0)用来促进多处理器的通讯及一个速度增强设备 (X2/X4 模式)

MA82G5DXX有多种工作模式可以减少耗电量:空闲模式,掉电模式,慢频模式,副频模式,RTC模式,watch 模式和 monitor 模式。 在空闲模式下,CPU被冻结而外围模块和中断系统依然活动。在掉电模式下,随机存储器 RAM和特殊功能寄存器SFR的值被保存,而其他所有功能被终止。最重要的是,在掉电模式下的微控制器可以被多种中断或复位唤醒。在慢频模式,使用者可以通过8位的系统时钟分频器减慢系统速度以减少耗电量。选择副频模式系统时钟来自内部低速振荡器CPU 用一个特别慢的速度在运行。实时时钟(RTC)模式支持所有模式下的实时时钟功能,watch 模式,在掉电模式或空闲模式下WDT溢出作为一个自动定时器来唤醒CPU。Monitor 模式,在掉电模式检测电压,当电压特别低的时候会复位。

另外,MA82G5DXX 装配有笙泉独家的(OCD)接口可以用于在线仿真(ICE),OCD 接口提供在片内和在系统不干扰调试并且不占用任何资源。 支持 ICE 应用中的几个必须的操作例如: 复位、全速、停止、单步、全速到光标和断点设置。软件开发期间使用者不需要使用任何的开发板或者传统的 ICE 上应用的插头转接器,使用者只需要连接好 OCD 接口, 这强有力的接口使得开发非常容易。

2. 方框图

图 2-1.方框图

3. 特殊功能寄存器

3.1. SFR 图 (页 0~F)

表 3-1. SFR 图(页 0~F)

		0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8	0 1	P6	СН	ССАР0Н	CCAP1H	CCAP2H	ССАРЗН	CCAP4H	CCAP5H
F0	0 1	В	PAOE	PCAPWM0	PCAPWM1	PCAPWM2	PCAPWM3	PCAPWM4	PCAPWM5
E8	0 1	P4	CL	CCAP0L	CCAP1L	CCAP2L	CCAP3L	CCAP4L	CCAP5L
E0	0 1	ACC	WDTCR	IFD	IFADRH	IFADRL	IFMT	SCMD	ISPCR
D8	0	CCON	CMOD	CCAPM0	CCAPM1	CCAPM2	ССАРМ3	CCAPM4	CCAPM5
D0	0 1	PSW	SIADR	SIDAT	SISTA	SICON	KBPATN	KBCON	KBMASK
С8	0	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2	CLRL	CHRL
CO	0 1 2 3	XICON	XICFG XICFG1		ADCFG0 ADCFG1 ADCFG2 ADCFG3	ADCON0	ADCDL	ADCDH	CKCON0
В8	0	IP0L	SADEN					RTCCR	CKCON1
	0				P4M0				
В0	2	P3	P3M0	P3M1	 	PDRVC0	P6M0 	RTCTM	IP0H
A8	0	ΙΕ	SADDR			SFRPI	EIE1	EIP1L	EIP1H
Α0	0 1 2 3 4	P2	AUXR0	AUXR1	AUXR2	AUXR3 AUXR4 AUXR5 AUXR6 AUXR7			1
98	0	S0CON	S0BUF	S0BRT	SOBRC	S0CFG		AC0CON	AC0MOD
90	0 1 2 3	P1	P1M0	P1M1 P2M1 P4M1 P6M1	 T2MOD1 		P2M0 	BOREV	PCON1
88	0	TCON	TMOD	TL0	TL1	TH0	TH1	SFIE	XRPS
80	0	P0	SP	DPL	DPH	SPSTAT	SPCON	SPDAT	PCON0
		0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F

^{*:}用户需要设置 SFRPI=0x00 ~ 0x02 作为 SFR 的页访问。

(MCU 在中断时不会保留 SFRPI 的值。用户需要使用软件来保留 SFRPI 的值。)

SFRPI: SFR 页索引寄存器

SFR 页 = 0~F

SFR 地址 = 0xAC 复位值= xxxx-0000

7	6	5	4	3	2	1	0
				PIDX3	PIDX2	PIDX1	PIDX0

W W W R/W R/W R/W

Bit 7~4: 保留位。当 SFRPI 被写入时,这些位必须软件写"0"。

Bit 3~0: SFR 页索引。可用页数仅页"**0"和"1"**.

PIDX[3:0]	可选页
0000	页 0
0001	页 1
0010	页 2
0011	页 3
1111	页 F

3.2. SFR <u>位分配</u>(页 **0~F**) 表 3–2. SFR <u>位分配</u>(页 **0~F**)

符号 描述 地址 位地址及符号						复位值					
付号	描 处	地址	位-7	位-6	位-5	位-4	位-3	位-2	位-1	位-0	
SP	堆栈指针	81H	.7	.6	.5	.4	.3	.2	.1	.0	00000111
DPL	数据指针低8位	82H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
DPH	数据指针高8位	83H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
SPSTAT	SPI 状态寄存器	84H	SPIF	WCOL	THRF	SPIBSY	MODF			SPR2	00000000
SPCON	SPI 控制寄存器	85H	SSIG	SPEN	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	00000100
SPDAT	SPI 数据寄存器	86H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
PCON0	电源控制寄存器 0	87H	SMOD1	SMOD0	GF	POF0	GF1	GF0	PD	IDL	00010000
TCON	定时器控制寄存器	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000
TMOD	定时器模式寄存器	89H	T1GATE	T1C/T	T1M1	T1M0	TOGATE	T0C/T	T0M1	T0M0	00000000
TL0	定时器 0 低 8 位	8AH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
TL1	定时器 1 低 8 位	8BH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
TH0	定时器 0 高 8 位	8CH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
TH1	定时器 1 高 8 位	8DH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
SFIE	系统标志中断使能	8EH	SIDFIE	MCDRE	MCDFIE	RTCFIE	GF	BOF1IE	BOF0IE	WDTFIE	0110x000
XRPS P1	XRAM 页选择	8FH 90H	 P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	.1 P1.1	.0 <i>P</i> 1.0	11111111
P1M0	端口1	90H	P1.7	P1.6 P1M0.6	P1.5	P1.4 P1M0.4	P1.3		P1.1 P1M0.1	P1M0.0	00000000
	P1 模式寄存器 0			<u> </u>				P1M0.2			
P1M1	P1 模式寄存器 1	92H	P1M1.7	P1M1.6	P1M1.5	P1M1.4	P1M1.3	P1M1.2	P1M1.1	P1M1.0	111111111
P2M1	P2 模式寄存器 1	92H	 D4M4.7	P2M1.6	 D4M4.5	P2M1.4		P2M1.2	P2M1.1	P2M1.0	x1x1x111
P4M1	P4 模式寄存器 1	92H	P4M1.7		P4M1.5	P4M1.4			P4M1.1	P4M1.0	1x11xx11
P6M1	P6 模式寄存器 1	92H			 				P6M1.1	P6M1.0	xxxxxxx11
T2MOD1	T2 模式 1 寄存器	93H	TL2CS	TF2IG	TL2IS	T2CKS	T2MS1	CP2S2	CP2S1	CP2S0	00000000
P2M0	P2 模式寄存器 0	95H		P2M0.6		P2M0.4		P2M0.2	P2M0.1	P2M0.0	x0x0x000
BOREV	位序反转	96H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
PCON1	电源控制寄存器 1	97H	SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF	00 <mark>0</mark> 0x000
S0CON	串口 0 控制寄存器	98H	SM00 /FE	SM10	SM20	REN0	TB80	RB80	TI0	RI0	00000000
S0BUF	串□0缓存	99H	.7	.6	.5	.4	.3	.2	.1	.0	XXXXXXX
S0BRT	S0 波特率定时器	9AH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
S0BRC	S0 波特率计数器	9BH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
S0CFG	S0 配置寄存器	9CH	GF	SMOD2	URM0X3	SM30	SODOR	BTI	UTIE		00001000
AC0CON	AC0 控制寄存器	9EH	AC0LP	AC0PDX		AC0F	AC0EN	AC0INV	AC0M1	AC0M0	00x00000B
AC0MOD	ACO 模式寄存器	9FH	NVRS3	NVRS2	NVRS1	NVRS0	GF	AC0FLT		AC0PIS0	00000000B
P2	端口2	AOH		P2.6		P2.4		P2.2	P2.1	P2.0	x1x1x111
AUXR0	辅助寄存器 0	A1H	P60OC1	P600C0	P60FD				INT1H	INT0H	000xxx000
AUXR1	辅助寄存器 1	A2H					 T4)/40	 T0\/40		DPS	xxxxxxx0
AUXR2	辅助寄存器 2	A3H	STAF	STOF			T1X12	T0X12	T1CKOE	T0CKOE	
AUXR3	辅助寄存器 3	A4H	T0PS1	T0PS0	BPOC1	BPOC0	S0PS0	TWIPS1	TWIPS0	T0XL	00000000
AUXR4	辅助寄存器 4	A4H	T2PS1	T2PS0	T1PS1	T1PS0	SPIPS0	GF			000000x00
AUXR5	辅助寄存器 5	A4H		C0IC2S0	COPPS1	COPPSO	C0PS1 KBI0PS0	C0PS0			00000000
AUXR6 AUXR7	辅助寄存器 6	A4H A4H	KBI4PS1								00000x00
	辅助寄存器 7		POE5	POE4	COCKOE		 ET4		 ET0		1100xxxx
<i>IE</i> SADDR	中断使能	A8H	EA	GF4	ET2	ES0	ET1	EX1	ET0	EX0	00000000
SFRPI	从机地址 CED 京志引	A9H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
	SFR 页索引	ACH		 ETM//0	 EKD		IDX3	IDX2	IDX1	IDX0	xxxx0000
EIE1	扩展中断使能 1	ADH	EAC0 PAC0L	PTWI0L	EKB PKBL		ESF	EPCA	EADC	ESPI	000x0000
EIP1L EIP1H	扩展中断优先级1低	AEH AFH	PAC0L PAC0H	PTWI0H	PKBH		PSFL PSFH	PPCAL PPCAH	PADCL PADCH	PSPIL PSPIH	000x0000 000x0000
P3	扩展中断优先级1高	B0H			P3.5	 P3.4	P3.3		P3.1	P3.0	xx111x11
	端口3										
P3M0 P3M1	P3 模式寄存器 0 P3 模式寄存器 1	B1H B2H			P3M0.5 P3M1.5	P3M0.4 P3M1.4	P3M0.3 P3M1.3		P3M0.1 P3M1.1	P3M0.0 P3M1.0	xx000x00 xx000x00
P4M0		B2H B3H	P4M0.7		P3M1.5 P4M0.5	P4M0.4	F JIVI I . J		P3M1.1	P4M0.0	0x00x00
	P4 模式寄存器 0						D4DC4				
PDRVC0	端口驱动控制 0	B4H	P3DC1	P3DC0	P2DC1	P2DC0	P1DC1	P1DC0	 D4DC4	 D4DC0	000000xx
PDRVC1	端口驱动控制 1	B4H							P4DC1	P4DC0	xxxxxx00
P6M0	P6 模式寄存器 0	B5H							P6M0.1	P6M0.0	xxxxxx00
RTCTM	RTC 定时器寄存器	B6H	RTCCS1	RTCCS0			RTCCT3				01111111
IP0H	中断优先级 0 高	B7H		PX2H	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000
IP0L	中断优先级 0 低	B8H		PX2L	PT2L	PSL	PT1L	PX1L	PT0L	PX0L	x0000000

SADEN	从机地址屏蔽	B9H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
RTCCR	RTC 控制寄存器	BEH	RTCE	RTCO	RTCRL5	RTCRL4	RTCRL3	RTCRL2	RTCRL1	RTCRL0	00111111
CKCON1	时钟控制寄存器 1	BFH	XTOR		XCKS5	XCKS4	XCKS3	XCKS2	XCKS1	XCKS0	0x001011
XICON	外部中断控制	C0H			70103	70104	INT2H	EX2	IE2	IT2	xxxx0000
XICFG	外部中断配置	C1H	INT1IS1	INT1IS0	INT0IS1	INT0IS0		X2FLT	X1FLT	X0FLT	0000x000
XICFG1	外部中断配置 1	C1H	INT1IS2	INTOIS2	INT2IS1	INT2IS0		X2FLT1	X1FLT1	X0FLT1	0000x000
ADCFG0	ADC 配置 0	СЗН	ADCKS2	ADCKS1	ADCKS0	ADRJ			ADTM1	ADTM0	0000x000
ADCFG0 ADCFG1	ADC 配置 0	СЗН	ADCK52	ADCKST	ADCKSU	SIGN	 AOC 2	AOS.2	AOS.1	AOS.0	
		C3H	SHT.7	SHT.6	SHT.5		AOS.3				xxx00000
ADCFG2 ADCFG3	ADC 配置 2 ADC 配置 3	СЗН	ADPS1	ADPS0	HA	SHT.4	SHT.3	SHT.2	SHT.1	SHT.0	00000000
							4000				010xxxxx
ADCON0	ADC 控制 0	C4H	ADCEN		CHS3	ADCI	ADCS	CHS2	CHS1	CHS0	0x000000
ADCDL	ADC 数据低 8 位	C5H	ADCV.1	ADCV.0	 ADOV / 7	 A D O V O	 A D O \ / 5	A DOV / 4	 A D O \ / O	 A D O V O	00xxxxxx
ADCDH	ADC 数据高 8 位	C6H	ADCV.9	ADCV.8	ADCV.7	ADCV.6	ADCV.5	ADCV.4	ADCV.3	ADCV.2	00000000
CKCON0	时钟控制寄存器 0	C7H	AFS	ENCKM	CKMIS1	CKMIS0	CCKS	SCKS2	SCKS1	SCKS0	00010000
T2CON	定时器 2 控制寄存器	C8H	TF2	EXF2	RCLK/ TF2L	TCLK/ TL2IE	EXEN2	TR2	C/T2	CP/RL2	00000000
T2MOD	定时器 2 模式寄存器	C9H	T2SPL	TL2X12	T2EXH	T2X12	TR2L	TR2LC	T2OE	T2MS0	00000000
RCAP2L	定时器2捕获低8位	CAH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
RCAP2H	定时器2捕获高8位	CBH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
TL2	定时器2低8位	CCH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
TH2	定时器2高8位	CDH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CLRL	CL 重载寄存器	CEH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CHRL	CH 重载寄存器	CFH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
PSW	程序状态字	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000
SIADR	TWI0 地址寄存器	D1H	.7	.6	.5	.4	.3	.2	.1	GC	00000000
SIDAT	TWI0 数据寄存器	D2H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
SISTA	TWI0 状态寄存器	D3H									11111000
SICON	TWI0 控制寄存器	D4H	CR2	ENSI	STA	STO	SI	AA	CR1	CR0	00000000
KBPATN	键盘模式	D5H	.7	.6	.5	.4	.3	.2	.1	.0	11111111
KBCON	键盘控制	D6H	KBCS1	KBCS0					PATN_ SEL	KBIF	00xxxx01
KBMASK	键盘中断掩码	D7H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCON	PCA 控制寄存器	D8H	CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	00000000
CMOD	PCA 模式寄存器	D9H	CIDL	BME4	BME2	BME0	CPS2	CPS1	CPS0	ECF	00000000
CCAPM0	PCA 模块 0 模式	DAH		ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0	x0000000
CCAPM1	PCA 模块 1 模式	DBH		ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1	x0000000
CCAPM2	PCA 模块 2 模式	DCH		ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2	x0000000
CCAPM3	PCA 模块 3 模式	DDH		ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3	x0000000
CCAPM4	PCA 模块 4 模式	DEH		ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4	x0000000
CCAPM5	PCA 模块 5 模式 e	DFH		ECOM5	CAPP5	CAPN5	MAT5	TOG5	PWM5	ECCF5	x0000000
ACC	累加器	E0H	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00000000
WDTCR	看门狗控制寄存器	E1H	WREN	NSW	ENW	CLRW	WIDL	PS2	PS1	PS0	00000000
IFD	ISP Flash 数据	E2H	.7	.6	.5	.4	.3	.2	.1	.0	11111111
IFADRH	ISP Flash 地址高 8 位	ЕЗН	.7	.6	.5	.4	.3	.2	.1	.0	00000000
IFADRL	ISP Flash 地址低 8 位	E4H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
IFMT	ISP 模式表	E5H						MS.2	MS.1	MS.0	xxxxx000
SCMD	ISP 系列命令	E6H									XXXXXXX
ISPCR	ISP 控制寄存器	E7H	ISPEN	SWBS	SRST	CFAIL					0000xxxx
P4	端口 4	E8H	P4.7		P4.5	P4.4		-	P4.1	P4.0	1x11xx11
CL	PCA 基准定时器低	E9H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP0L	PCA 模块 0 捕获低	EAH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP1L	PCA 模块 1 捕获低	EBH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP2L	PCA 模块 2 捕获低	ECH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP3L	PCA 模块 3 捕获低	EDH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP4L	PCA 模块 4 捕获低	EEH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP5L	PCA 模块 5 捕获低	EFH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
В	B 寄存器	F0H	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00000000
PAOE	PWM 额外输出使能	F1H	POE3	POE2B	POE2A	POE2	POE1	POE0B	POE0A	POE0	10011001
PCAPWM0	PCA PWM0 模式	F2H	P0RS1	P0RS0				P0INV	ECAP0H	ECAP0L	00xxx000
PCAPWM1	PCA PWM1 模式	F3H	P1RS1	P1RS0				P1INV			00xxx000
PCAPWM2	PCA PWM2 模式	F4H	P2RS1	P2RS0				P2INV			
PCAPWM3	PCA PWM3 模式	F5H	P3RS1	P3RS0				P3INV			00xxx000
PCAPWM4	PCA PWM4 模式	F6H	P4RS1	P4RS0				P4INV			00xxx000
PCAPWM5	PCA PWM5 模式	F7H	P5RS1	P5RS0				P5INV			00xxx000
	- 500				ı	l					

P6	端口6	F8H							P6.1	P6.0	xxxxxx11
СН	PCA 基准定时器高	F9H	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP0H	PCA 模块 0 捕获高	FAH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP1H	PCA 模块 1 捕获高	FBH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP2H	PCA 模块 2 捕获高	FCH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP3H	PCA 模块 3 捕获高	FDH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP4H	PCA 模块 4 捕获高	FEH	.7	.6	.5	.4	.3	.2	.1	.0	00000000
CCAP5H	PCA 模块 5 捕获高	FFH	.7	.6	.5	.4	.3	.2	.1	.0	00000000

3.3. <u>辅助 SFR 图(页 P)</u>

MA82G5DXX 特殊功能寄存器(SFR)有一个辅助索引 P 页,它读写的方法跟标准的 8051 特殊功能寄存器的不一样。象访问 ISP/IAP 一样通过设置 IFMT 和 SCMD 来访问这个辅助的特殊功能寄存器。P 页有 256 字节有用到的为 8 个物理字节地址和 8 个逻辑字节地址。8 个物理字节地址包括 IAPLB, CKCON2, CKCON3, CKCON4, PCON2, PCON3, SPCON0 和 DCON0。8 个 逻辑字节地址包括 PCON0, PCON1, CKCON0, CKCON1, WDTCR, P4, P6 和 RTCCR。在 0~F 页访问这 8 个逻辑地址会得到相同的 SFR 值。更多详细的信息请参考章节 "27 P 页 SFR 访问"。

表 3-3. 辅助 SFR 图(页 P)

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8	P6							
F0								
E8	P4							
E0		WDTCR						
D8			-				-	
D0			-				-	
C8			-				-	
CO			-				-	CKCON0
B8			-				RTCCR	CKCON1
B0			-				-	
A8			-				-	
A0			-				-	
98			-				-	
90			-				-	PCON1
88			-				-	
80			-				-	PCON0
78			-				-	
70								
68			-					
60								
58								
50								
48	SPCON0				DCON0			
40	CKCON2	CKCON3	CKCON4		PCON2	PCON3		
38								
30								
28								
20								
18								
10								
08								
00				IAPLB				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F

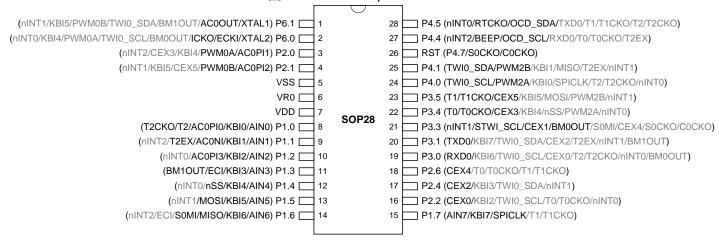
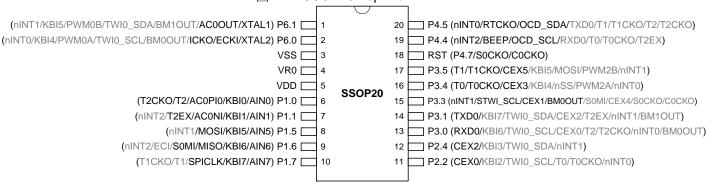

3.4. <u>辅助特殊功能寄存器位分配</u> (P 页) 表 3–4. <u>辅助 SFR 位分配</u>(P 页)

表 3-4. <u>拥助 SFR 位分配(</u> P 贝)									•		
符号	描述	地址				位地址	及符号				复位值
10 3	1000	ND ALL	Bit-7	Bit-7	Bit-7	Bit-7	Bit-7	Bit-7	Bit-7	Bit-7	及匹伍
物理字节											
IAPLB	IAP 低边界	03H	IAPLB6	IAPLB5	IAPLB4	IAPLB3	IAPLB2	IAPLB1	IAPLB0	0	
CKCON2	时钟控制 2	40H	XTGS1	XTGS0	XTALE	IHRCOE	MCKS1	MCKS0	OSCS1	OSCS0	01010000
CKCON3	时钟控制 3	41H	WDTCS1	WDTCS0	1	WDTFS	MCKD1	MCKD0	1	0	00000010
CKCON4	时钟控制 4	42H	RCSS2	RCSS1	RCSS0	RPSC2	RPSC1	RPSC0	RTCCS3	RTCCS2	00000000
PCON2	电源控制 2	44H	AWBOD1	0	BO1S1	BO1S0	BO1RE	EBOD1	BO0RE	1	0000x1x1
PCON3	电源控制 3	45H	IVREN	-		-		-			0xxxxxxx
SPCON0	SFR 页面控制 0	48H	RTCCTL	P6CTL	P4CTL	WRCTL	CKCTL1	CKCTL0	PWCTL1	PWCTL0	00000000
DCON0	设备控制 0	4CH	HSE	IAPO	-	1		IORCTL	RSTIO	OCDE	10xxx011
逻辑字书	"										
PCON0	电源控制 0	87H	SMOD1	SMOD0	GF	POF0	GF1	GF0	PD	IDL	00010000
PCON1	电源控制 1	97H	SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF	0000x0000
RTCCR	RTC 控制寄存器	BEH	RTCE	RTCO	RTCRL.5	RTCRL.4	RTCRL.3	RTCRL.2	RTCRL.1	RTCRL.0	00111111
CKCON1	时钟控制 1	BFH	XTOR		XCKS5	XCKS4	XCKS3	XCKS2	XCKS1	XCKS0	0x001011
CKCON0	时钟控制 0	C7H	AFS	ENCKM	CKMIS1	CKMIS0	CCKS	SCKS2	SCKS1	SCKS0	00010000
WDTCR	看门口控制寄存器 r	E1H	WREN	NSW	ENW	CLRW	WIDL	PS2	PS1	PS0	00000000
P4	端口4	E8H	P4.7		P4.5	P4.4			P4.1	P4.0	1x11xx11
P6	端口6	F8H							P6.1	P6.0	xxxxxx11


4. 引脚结构

4.1. 封装指南

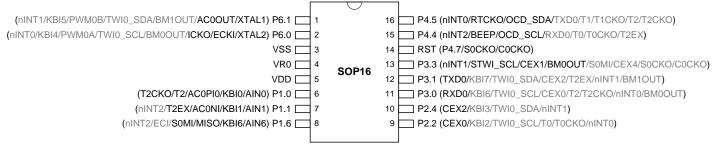

图 4-1. SOP28 Top View

图 4-2. SSOP20 Top View

图 4-3. SOP16 Top View

4.2. <u>引脚描述</u> 表 4–1. <u>引脚描述</u>

		引脚号		I/O	Han
助记符	28-Pin SOP	20-Pin SSOP	16-Pin SOP	类型	描述
P1.0 (AIN0) (KBI0) (AC0PI0) (T2) (T2CKO)	8	6	6	I/O	*端口 1.0。 * AINO: ADC 模拟输入通道 0。 * KBIO: 键盘输入 0。 * ACOPIO: 模拟比较器 0 正端输入通道 0。 * T2: 定时器/计数器 2 外部时钟输入。
P1.1 (AIN1) (KBI1) (AC0NI) (T2EX)	9	7	7	I/O	* T2CKO: 定时器 2 可编程时钟输出。 *端□ 1.1. * AIN1: ADC 模拟输入通道 1。 * KBI1: 键盘输入 1。 * ACONI: 模拟比较器 0 负端输入。 * T2EX: 定时器/计数器 2 外部控制输入。
P1.2 (AIN2) (KBI2) (AC0PI3)	10			I/O	*端□ 1.2. * AIN2: ADC 模拟输入通道 2。 * KBI2: 键盘输入 2。 * AC0PI3 模拟比较器 0 正端输入通道 3。.
P1.3 (AIN3) (KBI3) (ECI)	11			I/O	*端口 1.3. * AIN3: ADC 模拟输入通道 3。 * KBI3: 键盘输入 3。 * ECI: PCA 外部时钟输入。
P1.4 (AIN4) (KBI4) (nSS)	12			I/O	*端口 1.4. * AIN4: ADC 模拟输入通道 4。 * KBI4: 键盘输入 4。 * nSS: SPI 从机选择。
P1.5 (AIN5) (KBI5) (MOSI)	13	8		I/O	*端口 1.5. * AIN5: ADC 模拟输入通道 5。 * KBI5: 键盘输入 5。 * MOSI: SPI 主机输出& 从机输入。
P1.6 (AIN6) (KBI6) (MISO) (S0MI)	14	9	8	I/O	*端□ 1.6. * AIN6: ADC 模拟输入通道 6。 * KBI6: 键盘输入 6。 * MISO: SPI 主机输出& 从机输入。 * S0MI: UARTO SPI 主机模式数据输入。
P1.7 (AIN7) (KBI7) (SPICLK)	15	10		I/O	*端口 1.7. * AIN7: ADC 模拟输入通道 7。 * KBI7: 键盘输入 7。 * SPICLK: SPI 时钟,主机用于输出,从机用于输入。
P2.0 (AC0PI1) (PWM0A)	3			I/O	*端□ 2.0. * AC0PI1 模拟比较器 0 正端输入通道 1。. * PWM0A: PCA PWM0 输出副通道 A。
P2.1 (AC0PI2) (PWM0B)	4			I/O	*端口 2.1. * ACOPI2:模拟比较器 0 正端输入通道 2。 * PWM0B: PCA0 PWM0 输出副通道 B。
P2.2 (CEX0)	16	11	9	I/O	*端□ 2.2. * CEX0: PCA0 模块 0 外部 I/O。
P2.4 (CEX2)	17	12	10	I/O	*端□ 2.4. * CEX2: PCA0 模块 2 外部 I/O。
P2.6 (CEX4)	18		-	I/O	*端□ 2.6. * CEX4: PCA0 模块 4 外部 I/O。
P3.0 (RXD0)	19	13	11	I/O	*端□ 3.0. * RXD0: UART0 串行输入□。
P3.1 (TXD0)	20	14	12	I/O	*端□ 3.1. * TXD0: UART0 串行输出□。
P3.3 (nINT1)	21	15	13	I/O	*端□ 3.3.

(STWI_SCL) (CEX1)					* nINT1:外部中断 1 输入。 * STWI_SCL:软件 TWI 串行时钟。
					* CEX1: PCA0 模块 1 外部 I/O。
P3.4 (T0) (T0CKO)	22	16		I/O	*端口 3.4. * TO: 定时器/计数器 0 外部时钟输入。 * TOCKO: 定时器 0 可编程时钟输出。
(CEX3)					* CEX3: PCA0 模块 3 外部 I/O。
P3.5 (T1) (T1CKO) (CEX5)	23	17		I/O	*端口 3.5. * T1: 定时器/计数器 1 外部时钟输入。 * T1CKO: 定时器 1 可编程时钟输出。 * CEX5: PCA0 模块 5 外部 I/O。
P4.0 (TWI0_SCL) (PWM2A)	24			I/O	*端口 4.0. * TWI0_SCL: TWI0 串行时钟。 * PWM2A: PCA0 PWM2 输出副通道 A。
P4.1 (TWI0_SDA) (PWM2B)	25			I/O	*端口 4.1. * TWI0_SDA: TWI0 串行数据。 * PWM2A: PCA0 PWM2 输出副通道 B。
P4.4 (nINT2) (BEEP) (OCD_SCL)	27	19	15	I/O	*端口 4.4. * nINT2: 外部中断 2 输入。 * BEEP: 蜂鸣器输出。 * OCD_SCL: OCD 接口,串行时钟。
P4.5 (nINT0) (RTCKO) (OCD_SDA)	28	20	16	I/O	*端口 4.5. * nINT0: 外部中断 0 输入。 * OCD_SDA: OCD 接口,串行数据。 * RTCKO: RTC 可编程时钟输出。
P6.0 (XTAL2) (ECKI) (ICKO)	2	2	2	I/O O I O	*端口 6.0. * XTAL2: 片上晶振振荡电路输出。 * ECKI: 在外部时钟输入模式下,这是时钟输入引脚。 * ICKO: 内部时钟(MCK) 输出。
P6.1 (XTAL1) (AC0OUT)	1	1	1	I/O	*端口 6.1. * XTAL1: 片上晶振振荡电路输入。 * ACOOUT: 模拟比较器 0 输出。
RST (P4.7) (C0CKO)	26	18	14	I I/O	* RST: 外部复位 RESET 输入, 高电平有效。 *端□ 4.7. * C0CKO: PCA 基本计数器的可编程时钟输出。
VR0	6	4	4	I/O	* VR0. 参考电压 0. 接 0.1uF 和 4.7uF 电容到 VSS。
VDD	7	5	5	Р	电源输入。
VSS	5	3	3	G	地,0V参考。

4.3. 功能复用

许多 I/O 引脚,除了普通的 I/O 口功能之外,还能复用其他内部功能。对于这些数码外设,默认状态是 GPIOs。然而,用户可以通过 AXRU0~AXUR7 相对应的控制位重新定义端口的功能。

AUXRO: 辅助寄存器 0

SFR 页 = 0~F

SFR 地址 = 0xA1

复位值= 000x-xx00

7	6	5	4	3	2	1	0
P60OC1	P60OC0	P60FD				INT1H	INTOH
R/W	R/W	R/W	W	W	W	R/W	R/W

Bit 7~6: P6.0 功能配置控制位 1 和位 0,这两位仅仅当内部 RC 振荡(IHRCO 或 ILRCO)被选择为系统时钟源时有效。这种情况,XTAL2 和 XTAL1 改变功能作 P6.0 和 P6.1,当外部时钟输入模式,P6.0 专用于时钟输入。在内部振荡模式,P6.0 为普通 I/O 或时钟源发生器提供下列选项,当 P60OC[1:0] 索引为非 P6.0 GPIO 功能时,P6.0 将驱动内部 RC 振荡器输出为其它设备提供时钟源。

P60OC[1:0]	P60 功能	I/O 模式
00	P60	By P6M0.0
01	MCK	By P6M0.0
10	MCK/2	By P6M0.0
11	MCK/4	By P6M0.0

了解详情,请参考"**錯誤!找不到参照來源。 錯誤!找不到参照來源。**" P6.0 作为时钟输出功能时,建议设置 P6M0.0 为"1" 来选择 P6.0 为推挽输出模式。

Bit 5: P60FD, P6.0 快速驱动

0: P6.0 默认驱动输出.

1: P6.0 快速驱动输出使能。若 P6.0 被配置为时钟输出, 当 P6.0 输出频率大于 12MHz (5V) 或者大于 6MHz (3V) 时使能此位。

AUXR1: 辅助寄存器 1

SFR 页 = 0~F

SFR 地址 = 0xA2

复位值= xxxx-xxx0

7	6	5	4	3	2	1	0
							DPS
W	W	W	W	W	W	W	R/W

AUXR2: 辅助寄存器 2

SFR 页 = 0~F

SFR 地址 = 0xA3

复位值= 00xx-0000

0	07.0 1.0	交压區 60,000							
7	6	5	4	3	2	1	0		
STAF	STOF			T1X12	T0X12	T1CKOE	T0CKOE		
R/W	R/W	W	W	R/W	R/W	R/W	R/W		

AUXR3: 辅助寄存器 3

SFR 页 = **仅 0 页**

SFR 地址 = 0xA4

复位值= 0000-0000

7	6	5	4	3	2	1	0
T0PS1	T0PS0	BPOC1	BPOC0	S0PS0	TWIPS1	TWIPS0	T0XL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7~6: TOPS1~0, 定时器 0 端口引脚选择位[1:0]。

T0PS1~0	T0/T0CKO
00	P3.4
01	P4.4
10	P2.2
11	P2.6

Bit 3: SOPSO, 串口 0 (UARTO) 端口引脚选择位。

S0PS0	RXD0	TXD0
0	P3.0	P3.1
1	P4.4	P4.5

Bit 2~1: TWIPS1~0, TWI0 端口引脚选择位[1:0]。

TWIPS1~0	TWI0_SCL	TWI0_SDA
00	P4.0	P4.1
01	P6.0	P6.1
10	P3.0	P3.1
11	P2.2	P2.4

AUXR4: 辅助寄存器 4

SFR 页 = 仅 1 页

SFR 地址 = 0xA4

复位值= 0000-0x00

7	6	5	4	3	2	1	0
T2PS1	T2PS0	T1PS1	T1PS0	SPIPS0		AC00E	AC0FLT1
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 7~6: T2PS1~0, 定时器 2 端口引脚选择位[1:0]。

T2PS1~0	T2/T2CKO	T2EX
00	P1.0	P1.1
01	P3.0	P3.1
10	P4.0	P4.1
11	P4.5	P4.4

Bit 5~4: T1PS1~0, 定时器 1 端口引脚选择位[1:0]。

T1PS1~0	T1/T1CKO
00	P3.5
01	P4.5
10	P1.7
11	P2.6

Bit 3: SPIPS0, SPI 端口引脚选择位。

SPIPS0	nSS	MOSI	MISO	SPICLK
0	P1.4	P1.5	P1.6	P1.7
1	P3.4	P3.5	P4.1	P4.0

Bit 1: ACOOE, ACOOUT 在端口引脚上使能输出。

0: 禁止 AC0OUT 在端口上输出

1: 使能 ACOOUT 在 P6.1 上输出.

AUXR5: 辅助寄存器 5

SFR 页 =仅 2 页

SFR 地址 = 0xA4

复位值= 0000-0000

7	6	5	4	3	2	1	0
C0IC4S0	C0IC2S0	C0PPS1	C0PPS0	C0PS1	C0PS0	ECIPS0	C0COPS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: COIC4S0, PCA0 输入通道 4 输入选择。

C0IC4S0	CEX4 输入
0	CEX4 端口引脚
1	AC0OUT

Bit 6: C0IC2S0, PCA0 输入通道 2 输入选择。

C0IC2S0	CEX2 输入
0	CEX2 端口引脚
1	ILRCO

Bit 5: COPPS1, {PWM2A, PWM2B}端口引脚选择位。

C0PPS1	PWM2A	PWM2B
0	P4.0	P4.1
1	P3.4	P3.5

Bit 4: COPPSO, {PWMOA, PWMOB}端口引脚选择位。

C0PPS0	PWM0A	PWM0B
0	P2.0	P2.1
1	P6.0	P6.1

Bit 3: C0PS1, PCA0 端口引脚选择位 1。

C0PS1	CEX3	CEX5
0	P3.4	P3.5
1	P2.0	P2.1

Bit 2: COPSO, PCAO 端口引脚选择位 0。

C0PS0	CEX0	CEX2	CEX4
0	P2.2	P2.4	P2.6
1	P3.0	P3.1	P3.3

Bit 1: ECIPSO, PCA0 ECI 端口引脚选择位。

ECIPS0	ECI
0	P1.3
1	P1.6

Bit 0: COCOPS, PCA0 时钟输出(COCKO)端口引脚选择位。

C0COPS	C0CKO
0	P4.7
1	P3.3

AUXR6: 辅助寄存器 6

SFR 页 =仅 3 页

SFR 地址 = 0xA4

复位值= 0000-0x00

				<u> </u>			
7	6	5	4	3	2	1	0
KBI4PS1	KB4IPS0	KBI6PS0	KBI2PS0	KBI0PS0		SOMIPS	S0COPS
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 7~6: KBI4PS1~0, KBI4~5端口引脚选择位[1:0]。

KBI4PS1~0	KBI4	KBI5
00	P1.4	P1.5
01	P3.4	P3.5
10	P6.0	P6.1
11	P2.0	P2.1

Bit 5: KBI6PS0, KBI6~7端口引脚选择位。

KBI6PS0	KBI6	KBI7
0	P1.6	P1.7
1	P3.0	P3.1

Bit 4: KBI2PS0, KBI2~3 端口引脚选择位。

KBI2PS0	KBI2	KBI3
0	P1.2	P1.3
1	P2.2	P2.4

Bit 3: KBI0PS0, KBI0~1 端口引脚选择位。

KBI0PS	KBI0	KBI1
0	P1.0	P1.1
1	P4.0	P4.1

Bit 2: 保留位。当 AUXR6 写入时,此位必须写入"0"。

Bit 1: SOMIPS, SOMI 端口引脚选择位。

S0MIPS	SOMI
0	P1.6
1	P3.3

Bit 0: SOCOPS, SOBRG 时钟输出(SOCKO)端口引脚选择位。

S0COPS	S0CKO
0	P4.7
1	P3.3

AUXR7: 辅助寄存器 7

SFR 页 =仅 4 页

SFR 地址 = 0xA4

复位值= 1100-xxxx

7	6	5	4	3	2	1	0
POE5	POE4	C0CKOE	SPI0M0				
R/W	R/W	R/W	R/W	w	w	w	w

Bit 7: POE5, PCA0 PWM5 主通道(PWM5O)输出控制。

0: 禁止 PWM5O 在端口引脚上输出。

1: 使能 PWM5O 在端口引脚上输出。默认是使能的。

Bit 6: POE4, PCA0 PWM4 主通道(PWM4O)输出控制。

0: 禁止 PWM4O 在端口引脚上输出。

1: 使能 PWM4O 在端口引脚上输出。默认是使能的。

Bit 5: COCKOE, PCAO 时钟输出使能。

0: 禁止 PCA0 时钟输出。

1: PCA0 基本定时器溢出率的二分之一时钟输出使能。

Bit 4: SPIMO, SPI 模式控制 0。

0: 禁止 SPI 菊花链功能。

1: SPI 从机模式的 SPI 菊花链功能使能。

XICFG: 外部中断配置寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0xC1

复位值= 0000-x000

7	6	5	4	3	2	1	0
INT1IS.1	INT1IS.0	INT0IS.1	INT0IS.0		X2FLT	X1FLT	X0FLT
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7~6: INT1IS.1~0,由 INT1IS.2 决定功能的 nINT1 输入引脚选择位如下表定义。

INT1IS.2~0	选择 nINT1 的端口引脚		
000	P3.3		
001	P3.1		
010	P3.5		
011	P4.1 P6.1		
100			
101	P2.1		
110	P1.5		
111	P2.4		

Bit 5~4: INT0IS.1~0, 由 INT0IS.2 决定功能的 nINT0 输入引脚选择位如下表定义。

INT0IS.2~0	选择 nINT0 的端口引脚
000	P4.5
001	P3.0
010	P3.4
011	P4.0
100	P6.0
101	P1.2
110	P1.4
111	P2.2

XICFG1: 外部中断配置 1 寄存器

SFR 页 = **仅1页**

SFR 地址 = 0xC1

复位值= 0000-x000

7	6	5	4	3	2	1	0
INT1IS.2	INT0IS.2	INT2IS.1	INT2IS.0		X2FLT1	X1FLT1	X0FLT1
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7: INT1IS2, 由 INT1IS.1~0 决定功能的 nINT1 输入端口引脚选择位。

Bit 6: INT0IS2, 由 INT0IS.1~0 决定功能的 nINT0 输入端口引脚选择位。

Bit 5~4: INT2IS1~0, nINT2 输入引脚选择位如下表定义的功能

INT2IS.1~0	选择 nINT2 的端口引脚
00	P4.4
01	P2.0
10	P1.1
11	P1.6

5. 8051 CPU 功能描述

5.1. CPU 寄存器

PSW: 程序状态字

SFR 页 = 0~F

SFR 地址 = 0xD0 复位值= 0000-0000

7	6	5	4	3	2	1	0
CY	AC	F0	RS1	RS0	OV	F1	Р
R/W							

CY: 进位标志 AC: 辅助进位标志

F0: 用户可设定的标志位 0 RS1: 寄存器组选择位 1 RS0: 寄存器组选择位 0

OV: 溢出标志

F1: 用户可设定的标志位 1

P: 奇偶标志

程序状态字 (PSW) 包含反映 CPU 当前状态的几个状态位。PSW 属于特殊功能寄存器 SFR 区,包含进位标志,辅助进位标志 (应用于 BCD 操作),两个寄存器组选择位,溢出标志, 奇偶标志和两个用户可设定的标志位。

进位标志,不仅有算术运算的进位功能,也充当许多布尔运算的"累加器"。

RS0 和 RS1 被用来选择 4 组中的任意一组寄存器组, 祥见章节"6.2 片内数据存储器 RAM"。一些指令参考这些内存(RAM)的位置比如 从 R0 到 R7。

奇偶位反映累加器内 1 的个数的状况,累加器中 1 的个数是奇数则 P=1, 否则 P=0。

SP: 堆栈指针

SFR 页 = 0~F

SFR 地址 = 0x81 复位值= 0000-0111

7	6	5	4	3	2	1	0
SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
R/W							

堆栈指针保持栈顶位置,每执行一个 PUSH 指令,会自动增加,复位后默认值为为 0x07。

DPL: 数据指针低字节

SFR 页 = 0~F

SFR 地址 = 0x82 复位值= 0000-0000

7	6	5	4	3	2	1	0
DPL.7	DPL.6	DPL.5	DPL.4	DPL.3	DPL.2	DPL.1	DPL.0
R/W							

DPL 是 16 位 DPTR 的低字节, DPTR 用来间接访问 XRAM 和程序空间。

DPH: 数据指针高字节

SFR 页 = 0~F

SFR 地址 = 0x83 复位值= 0000-0000

7	6	5	4	3	2	1	0
DPH.7	DPH.6	DPH.5	DPH.4	DPH.3	DPH.2	DPH.1	DPH.0
R/W							

DPH 是 16 位 DPTR 的高字节, DPTR 用来间接访问 XRAM 和程序空间。

ACC: 累加器

SFR 页 = 0~F

SFR 地址 = 0xE0 复位值= 0000-0000

7	6	5	4	3	2	1	0
ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W							

算术运算的累加器

B: B 寄存器

SFR 页 = 0~F

SFR 地址 = 0xF0复位值= 0000-0000 7 6 5 4 3 2 1 0 **B.7 B.6 B.5 B.4** B.3 **B.2** B.1 B.0

R/W R/W R/W R/W R/W R/W R/W R/W

另一个算术运算的累加器

5.2. CPU 时序

MA82G5DXX 是基于 80C51 的高效 1-T 结构的单芯片微处理器,与 8051 指令集兼容,每条指令需要 1~7 个时钟信号(比标准 8051 快 6~7 倍)。使用流线型结构同标准的 8051 结构比较大大增加了指令完成的速度 ,指令的时序也和标准的 8051 不同。

多数8051执行指令,一个区别是建立在机器周期和时钟周期之间,机器周期来自2到12个时钟周期长度。然而,1-T结构的80C51执行指令是基于单独的时钟周期时序。所有指令时序被指定在时钟周期期间。关于1T-80C51指令更详细的说明,请参考"錯誤! 找不到参照來源。 錯誤! 找不到参照來源。",这里有每一条指令的助记符、字节数、时钟周期数。

5.3. CPU 寻址模式

直接寻址(DIR)

直接寻址时操作数用指令中一个8位地址的区域表示,只有内部数据存储器和特殊功能寄存器可以直接寻址。

间接寻址(IND)

间接寻址时指令用一个包含操作数地址的寄存器表示,内部和外部存储器均可间接寻址。

8 位地址的地址寄存器可以是选中区的 R0 或 R1 或堆栈指针, 16 位地址的地址寄存器只能是 16 位的"数据指针"寄存器-DPTR。

寄存器指令寻址(REG)

包含从 R0 到 R7 的寄存器区可以被某些指令存取,这些指令的操作码中用 3 位寄存器说明。存取寄存器的指令有更高的代码效率,因为这种模式减少了一个地址字节。当指令被执行时,其中被选取的区一个 8 位寄存器被存取。执行时,用 PSW 寄存器中两位区选择位来选择四分之一区。

特殊寄存器指令寻址

一些指令具有一个特定的寄存器,例如,一些指令常用于累加器,或数据指针等等,所以没有需要指向它的地址字节。操作码本身就行了。

立即寻址(IMM)

常量的数值可以在程序存储器中跟随操作码。

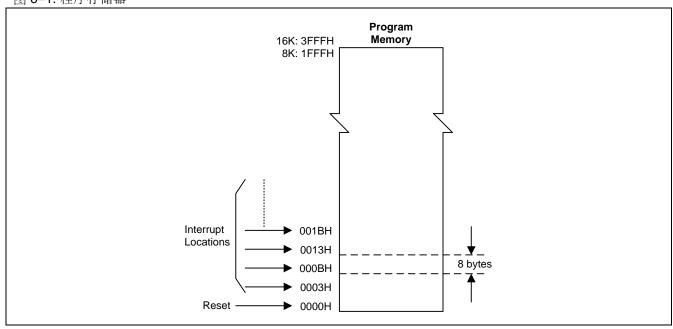
索引寻址

索引寻址只能访问程序存储器,且只读。这种寻址模式用查表法读取程序存储器。一个16位基址寄存器(数据指针 DPTR或程序计数器PC)指向表的基地址,累加器提供偏移量。程序存储器中表项目地址由基地址加上累加器数据 后形成。另一种索引寻址方式是利用"case jump"指令。跳转指令中的目标地址是基地址加上累加器数据后的值。

6. 存储器组织

像所有的80C51一样,MA82G5DXX的程序存储器和数据存储器的地址空间是分开的,这样8位微处理器可以通过一个8位的地址快速而有效的访问数据存储器。

程序存储器(ROM)只能读取,不能写入。最大可以达到 **16K/8K** 字节。在 **MA82G5DXX** 中,所有的程序存储器都是片上 Flash 存储器。因为没有设计外部程序使能 (/EA)和编程使能 (/PSEN) 信号,所以不允许外接程序存储器。


数据存储器使用与程序存储器不同的地址空间。**MA82G5DXX** 只有 256 字节的内部和 768/256 字节的片上扩展存储器(XRAM)。

6.1. 片内程序存储器闪存(Flash)

程序存储器用来保存让 CPU 进行处理的程序代码,如图 6-1 所示。复位后,CPU 从地址为 0000H 的地方开始运行,用户应用代码的起始部分应该放在这里。为了响应中断,中断服务位置(被称为中断矢量)应该位于程序存储器。每个中断在程序存储器中有一个固定的起始地址,中断使 CPU 跳到这个地址运行中断服务程序。举例来说,外部中断 0 被指定到地址 0003H,如果使用外部中断 0,那么它的中断服务程序一定是从 0003H 开始的。如果中断未被使用,那么这些地址就可以被一般的程序使用。

中断服务程序的起始地址之间有 8 字节的地址间隔:外部中断 0,0003H;定时器 0,000BH;外部中断 1,0013H;定时器 1,001BH等等。如果中断服务程序足够短,它完全可以放在这 8 字节的空间中。如果其他的中断也被使用的话,较长的中断服务程序可以通过一条跳转指令越过后面的中断服务起始地址。

图 6-1. 程序存储器

6.2. 片内数据存储器 RAM

图 6-2 向 MA82G5DXX 使用者展示了内部和外部数据存储器的空间划分。内部数据存储器被划分为三部分,通常被称为低 128 字节 RAM,高 128 字节 RAM 和 128 字节 SFR 空间。内部数据存储器的地址线只有 8 位宽,因此地址空间只有 256 字节。SFR 空间的地址高于 7FH,用直接地址访问;而用间接访问的方法访问高 128 字节的 RAM。这样虽然 SFR 和高 128 字节 RAM 占用相同的地址空间(80H—FFH),但他们实际上是分开的。

如图 6-3 所示,低 128 字节 RAM 与所有 80C51 一样。最低的 32 字节被划分为 4 组每组 8 字节的寄存器组。指令中称这些寄存器为 R0 到 R7。程序状态字 (PSW) 中的两位用于选择哪组寄存器被使用。这使得程序空间能够被更有效的使用,因为对寄存器访问的指令比使用直接地址的指令短。接下来的 16 字节是可以位寻址的存储器空间。80C51 的指令集包含一个位操作指令集,这区域中的 128 位可以被这些指令直接使用。位地址从 00H 开始到7FH 结束。

所有的低 128 字节 RAM 都可以用直接或间接地址访问,而高 128 字节 RAM 只能用间接地址访问。

图 6-4给出了特殊功能寄存器 (SFR) 的概览。SFR包括端口寄存器,定时器和外围器件控制器,这些寄存器只能用直接地址访问。SFR 空间中有16个地址同时支持位寻址和直接寻址。可以位寻址的 SFR 的地址末位是0H 或8H。

图 6-2. 数据存储器

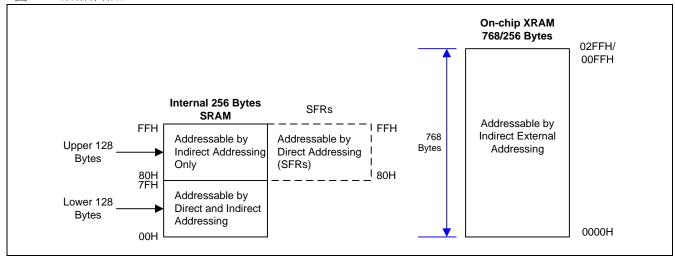


图 6-3. 内部 RAM 的低 128 字节

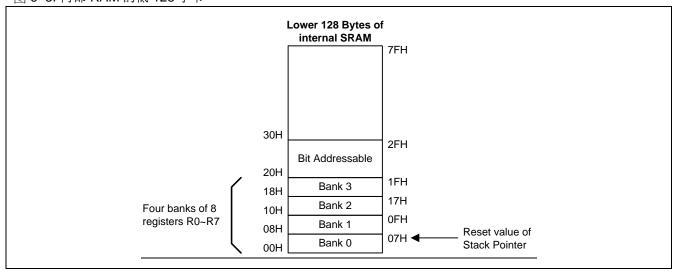
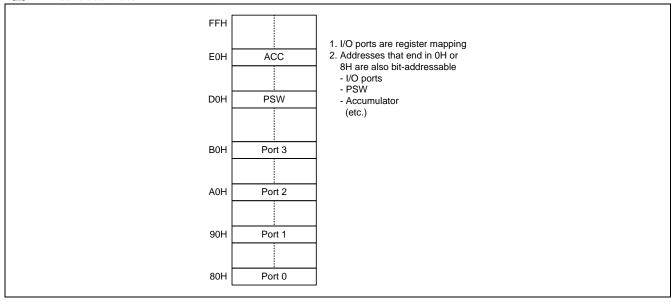



图 6-4. 特殊功能寄存器 SFR 空间

6.3. 片上扩展 RAM (XRAM)

访问片上扩展 RAM (XRAM),参考图 6–2,这 **768/256** 字节的 XRAM (0000H to **02FFH/00FFH**) 可以被外部移动指令"MOVX @Ri" 和 "MOVX @DPTR"间接访问,在 C51 编译器中,使用"pdata"或"xdata"声明变量分配到 XRAM中,编译后,被"pdata"或"xdata"声明过的变量将分别通过"MOVX @Ri"或"MOVX @DPTR"指令进行存取,这样 **MA82G5DXX** 硬体才能正确访问 XRAM。

6.4. 片外扩展数据存储器访问

MA82G5DXX 不支持片外扩展数据存储器访问不支持。

6.5. 关于 C51 编译器的声明标识符

C51 编译器的声明识别符与 MA82G5DXX 存储空间的对应关系如下:

data

128 字节的内部数据存储空间 (00h~7Fh)。使用除 MOVX 和 MOVC 以外的指令,可以直接或间接的访问。全部或部分的堆栈可能保存在此区域中。

idata

间接数据。256 字节的内部数据存储空间 (00h~FFh) 使用除 MOVX 和 MOVC 以外的指令间接访问。全部或部分的 堆栈可能保存在此区域中。此区域包括 data 区 和 data 区以上的 128 字节。

sfr

特殊功能寄存器。CPU 寄存器和外围部件控制/状态寄存器,只能通过直接地址访问。

xdata

外部数据或片上的扩展 RAM (XRAM);通过"MOVX @DPTR"指令访问标准 80C51 的 64K 存储空间。 **MA82G5DXX** 有 **768/256** 字节的片上 xdata 存储空间。

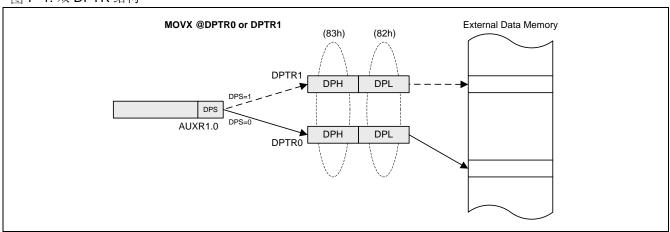
pdata

分页的外部数据(256 字节) 或片上的扩展 RAM(XRAM): 重叠的 256 字节的存储器地址通过"MOVX @Ri"指令访问。MA82G5DXX 有 256 字节片上 pdata 存储器它与片上 xdata 存储器共享。

code

16K/8K 字节程序存储空间。通过"MOVC **@**A+DTPR"访问,作为程序部分被读取。**MA82G5DXX** 有 **16K/8K** 字节的片上程序存储器。

7. 外部数据存储器(XRAM)访问


MA82G5DXX 系列 MCU 内含有 768 字节被映射到外部数据存储空间的数据存储器(XRAM)。外部数据存储空间可以使用外部移动指令(MOVX)和数据指针(DPTR)访问,或使用(R0 或 R1)的 MOVX 间接访问模式。如果 MOVX 指令使用 8 位寻址操作(比如@R1),16 位地址的高字节则由 XRAM 的页选择寄存器(XRPS)决定。

使用 MOVX 指令访问内部的 XRAM 存储空间。MOVX 指令有使用两种间接寻址方法。第一种方法是使用数据指针 (DPTR),一个包含外部数据存储器 (XRAM) 读写有效地址的 16 位寄存器。第二种方法是使用 R0 或 R1 结合 XRPS 寄存器来获取有效的外部数据存储器 (XRAM) 地址。

7.1. MOVX 在 16 位地址的双数据指针寄存器(DPTR)应用

如图 7-1 所示的双 DPTR 结构是能让芯片指定外部数据存储器的定位地址的一种方法。有两个 16 位 DPTR 寄存器,和一个称作为 DPS(AUXR1.0)的控制位,允许在程序代码和外部存储器之间的切换。

图 7-1. 双 DPTR 结构

DPTR 指令

使用 DPS 位的六条指令参考 DPTR 的当前选择,如下:

INC DPTR ; 数据指针加 1

MOV DPTR,#data16 ; DPTR 加载 16 位常量 MOV A,@A+DPTR ; 将代码字节移动到 ACC

MOVX A,@DPTR ; 移动外部 RAM(16 位地址)到 ACC MOVX @DPTR,A ; 移动 ACC 到外部 RAM(16 位地址)

JMP @A+DPTR : 直接跳转到 DPTR

AUXR1: 辅助寄存器 1

SFR 页 = 0~F

SFR 地址 = 0xA2

POR+复位值= xxxx-xxx0

	7	6	5	4	3	2	1	0
Γ								DPS
	W	W	W	W	W	W	W	R/W

Bit 0: DPS, DPTR选择位,用来在DPTR0和DPTR1之间切换。

0: 选择 DPTR0. 1: 选择 DPTR1.

DPS	选择 DPTR
0	DPTR0
1	DPTR1

DPL:数据指针低 8 位

SFR 页

SFR 地址 = 0x82

复位值= 0000-0000

7	6	5	4	3	2	1	0
DPL.7	DPL.6	DPL.5	DPL.4	DPL.3	DPL.2	DPL.1	DPL.0
R/W							

DPL 寄存器是 16 位 DPTR 的低字节。DPTR 用于间接访问 XRAM 和闪存(Flash)存储器的编址。

DPH: 数据指针高 8 位

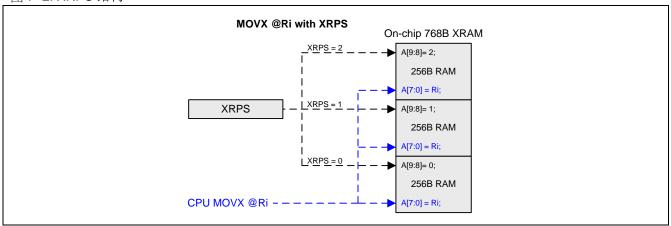
SFR 页

= 0~F

= 0~F

SFR 地址 = 0x83

复位值= 0000-0000


7	6	5	4	3	2	1	0
DPH.7	DPH.6	DPH.5	DPH.4	DPH.3	DPH.2	DPH.1	DPH.0
D/M	DAM	D ///	DAM	D/M	D/M	D/M	D ///

DPL 寄存器是 16 位 DPTR 的高字节。DPTR 用于间接访问 XRAM 和闪存(Flash)存储器的编址。

7.2. MOVX 在有 XRPS 的 8 位地址应用

MOVX 指令的 8 位地址是由 XRPS SFR 的值作为有效地址的高 8 位和 R0 或 R1 的值作为有效地址的低 8 位构成。这条指令仅在 MA82G5D16 访问 768 字节的 XRAM 时有效。

图 7-2. XRPS 结构

XRPS: XRAM 页 选择寄存器

SFR 页 = 0~F

SFR 地址 = 0x8F 复位值= xxxx-xx00

7	6	5	4	3	2	1	0
						XRPS.1	XRPS.0
W	W	W	W	W	W	R/W	R/W

Bit 7~2: 保留位。当 XRPS 被写入时,这些位必须软件写"0"。

: XRPS, XRAM 的页选择。XRPS 寄存器是 16 位外部数据存储器地址的高字节,当用于 8 位 MOVX 指令时有效地选择 RAM 的 256 字节页。因此 XRPS 寄存器的高位(保留位)总应是零,XRPS 决定 XRAM 访问的是哪一页。在 MA82G5DXX 中,XRPS 索引三页的 256 字节页 RAM。

例如:如果 XRPS = 0x01,则访问 XRAM 的 0x0100 到 0x01FF 地址。

8. 系统时钟

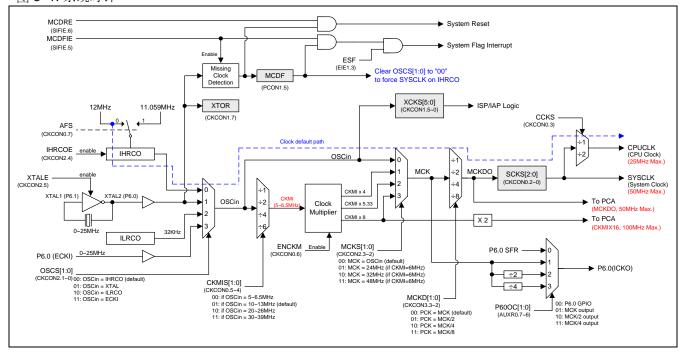
系统时钟有 4 个时钟来源:内部快频 RC 震荡器 (IHRCO),外部晶振,内部慢频 RC 震荡器(ILRCO) 和外部频率输入。如图 8-1 所示 MA82G5DXX 系统时钟结构。

MA82G5DXX 总是由 IHRCO 12MHz 启动,并且保留晶振脚作为 P6.0/P6.1 通用 IO 口功能。软件可以根据应用要求自由切换 4 种时钟的任意一种作为系统时钟,但必须等时钟稳定后才能切换。如果软件选择外部时钟模式, 脚 P6.0 和 P6.1 分配给 XTAL2 和 XTAL1,并且 P6.0/P6.1 普通 I/O 功能失效。 在外部时钟输入模式 (ECKI), 时钟源来自 P6.0 , P6.1 仍然是普通 I/O 口。

在置位 XTALE (CKCON2.5) 使能外部晶振后,XTOR(CKCON1.7)被硬件置位表示外部晶振已经稳定可以软件切换给 OSCin 使用了。XTOR 是仅读位。在切换外部晶振作为系统时钟源之前,MCU 必须轮询它。

内建 IHRCO 提供两种频率供软件选择。通过软件置位 AFS(CKCON0.7)选择另一个频率 11.0592MHz。 IHRCO 的 12MHz 和 11.059 MHz 都可以给系统时钟提供高精度的频率。详细的 IHRCO 性能,请参考章节("31.4 IHRCO")。在 IHRCO 或 ILRCO 模式, P6.0 可以作为内部 *MCK*或 2 分频时钟(*MCK*/2)输出或 4 分频时钟(*MCK*/4)输出给其他系统时钟源应用。

内置 ILRCO 提供约 32KHz 的低功耗,低速频率给 WDT 和系统时钟源使用。对于需低功耗运行的软件,MCU 可以选择 ILRCO 作为系统时钟源。若要查找详细的 IHRCO 性能,请参考章节"31.5 ILRCO")。在 ILRCO 模式下,可以将 P6.0 配置为内部 MCK或 2 分频时钟(MCK/2)输出或 4 分频时钟(MCK/4)输出为系统中的应用。


MA82G5DXX 包含了一个时钟倍频器(CKM)产生高速时钟用于系统时钟源。 MA82G5DXX 的 CKM 应用如图 8-1 所示,它的典型输入频率是 6MHz。在使能 CKM 之前,软件必须配置 CKMIS1~0(CKCON.5~4)获得适当的 CKMI 频率用作 CKM 输入源。 CKM 可以产生 CKMHI 的 4/5.33/8 倍的频率,通过设置 MCKS1~0 (CKCON2.3~2) 选择不同的 CKM 输出,为 MCU 提供高速操作,而无需高频时钟源。要找到详细的 CKM 性能,请参考章节 "31.6 CKM)。

通过时钟分配器分配 4 种时钟源的一种作为系统时钟(SYSCLK),如图 8–1 所示。用户能通过设置 CKCON0 寄存器的 SCKS2~SCKS0 位获得适当的系统时钟。

8.1. 时钟结构

图 8-1 展示了 MA82G5DXX 的主要时钟系统。系统时钟来自于外部振荡电路或内部振荡器。

图 8-1. 系统时钟

- 8.2.
- 8.3.
- 8.4.
- 8.5.
- 8.6.

8.7. 时钟寄存器

CKCONO: 时钟控制寄存器 0

SFR 页 = **0~F&P**

SFR 地址 = 0xC7

复位值= 0001-0000

Ī	7	6	5	4	3	2	1	0
Ī	AFS	ENCKM	CKMIS1	CKMIS0	CCKS	SCKS2	SCKS1	SCKS0
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: AFS,交替频率选择。

0: 选择 IHRCO 为 12MHz。

1: 选择 IHRCO 为 11.059MHz。

Bit 6: ENCKM, 使能时钟倍频器 (X8)。

0: 禁止 X8 时钟倍频器。

1: 使能 X8 时钟倍频器。

Bit 5~4: CKMIS1 ~ CKMIS0, 时钟倍频器输入选项。

CKMIS[1:0]	时钟倍频器输入选项
0 0	OSCin/1 (当 OSCin = 5 ~ 7MHz)
0 1	OSCin/2 (当 OSCin = 10 ~ 14MHz)
1 0	OSCin/4 (当 OSCin = 20 ~ 28MHz)
1 1	OSCin/6 (当 OSCin = 30 ~ 42MHz)

Bit 3: CCKS, CPU 时钟选择。

0: 选择 SYSCLK 为 CPU 时钟。

1: 选择 SYSCLK/2 为 CPU 时钟。

Bit 2~0: SCKS2~SCKS0,可编程系统时钟选项。

SCKS[2:0]	系统时钟(SYSCLK)
0 0 0	MCKDO/1
0 0 1	MCKDO/2
0 1 0	MCKDO/4
0 1 1	MCKDO/8
1 0 0	MCKDO/16
1 0 1	MCKDO/32
1 1 0	MCKDO/64
1 1 1	MCKDO/128

CKCON1: 时钟控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0xBF

复位值= 0x00-1011

				<u> </u>			
7	6	5	4	3	2	1	0
XTOR		XCKS5	XCKS4	XCKS3	XCKS2	XCKS1	XCKS0
R	W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: XTOR, 晶振准备位。仅读。

0: 晶振没有准备好。

1: 晶振准备好了。当使能 XTALE, XTOR 报告晶振已经达到了计数启动。

Bit 6: 保留位。当 CKCON1 被写入时,这位必须软件写"0"。

Bit 5~0: 根据 OSCin 频率值设置 ISP/IAP 操作 时基,依照 OSCin 这 6 位写恰当值参考如下。

[XCKS5~XCKS0] = OSCin - 1,在 OSCin=1~40 (MHz)范围。

例如,

(1)如果 OSCin=12MHz,则 [XCKS5~XCKS0] 填入 11,也就是,00-1011B。

(2)如果 OSCin=6MHz,则 [XCKS5~XCKS0] 填入 5,也就是,00-0101B。

OSCin	XCKS[5:0]		
1MHz	00-0000		
2MHz	00-0001		
3MHz	00-0010		
4MHz	00-0011		
38MHz	10-0101		
39MHz	10-0110		
40MHz	10-0111		

XCKS 的默认值= 00-1011 且 OSCin= 12MHz。

CKCON2: 时钟控制寄存器 2

 $SFR 页 = \mathbf{QP}$ 页

SFR 地址 = 0x40

复位值= 0101-0000

7	6	5	4	3	2	1	0
XTGS1	XTGS0	XTALE	IHRCOE	MCKS1	MCKS0	OSCS1	OSCS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7~6: XTGS1~XTGS0, OSC 驱动控制寄存器。

XTGS1, XTGS0	增益定义
0, 0	增益应用于 32.768K
0, 1	增益应用于 2MHz ~ 25MHz
其它	保留

Bit 5: XTALE, 外部晶振(XTAL) 使能。

0: 禁止 XTAL 振荡电路。 此时, XTAL2 和 XTAL1 作为 P6.0 和 P6.1 使用。

1: 使能 XTAL 振荡电路。 如果软件置位该位,软件必须轮询 XTOR (CKCON1.7)是否为 1, 用来标明晶振是否为 OSCin 时钟选择准备好。

Bit 4: IHRCOE,内部高频 RC 振荡使能。

0: 禁止内部高频 RC 振荡器。

1: 使能内部高频 RC 振荡器。如果软件设置这个位,在 IHRCOE 位使能后,必须等待 **32 us** IHRCOE 才能稳定输出。

Bit 3~2: MCKS[1:0], MCK 时钟源选择。

MCKS[1:0]	MCK 时钟源选择	OSCin =12MHz CKMIS = [01]	OSCin =11.059MHz CKMIS = [01]
0 0	OSCin	12MHz	11.059MHz
0 1	CKMI x 4 (ENCKM =1)	24MHz	22.118MHz
1 0	CKMI x 5.33 (ENCKM =1)	32MHz	29.491MHz
1 1	CKMI x 8 (ENCKM =1)	48MHz	44.236MHz

Bit 1~0: OSCS[1:0], OSCin 时钟源选择。

	200[110], 20011111111111111111111111111111111111						
OSCS[1:0]	OSCin 时钟源选择						
0 0	IHRCO						
0 1	XTAL						
1 0	ILRCO						
1 1	ECKI,外部时钟输入(P6.0)作为 OSCin。						

CKCON3: 时钟控制寄存器 3

SFR 页 =仅 P 页

SFR 地址 = 0x41

复位值= 0000-0010

	7	6	5	4	3	2	1	0
WD.	TCS1	WDTCS0	0	WDTFS	MCKD1	MCKD0	1	0
R	/W	R/W	W	R/W	R/W	R/W	W	W

Bit 7~6: WDTCS1~0, WDT 时钟源选择。

Bit 5: 保留位。当 CKCON3 被写入时,这位必须软件写"0"。

Bit 4: WDTFS, WDT 溢出源选择。

Bit 3~2: MCKD[1:0], MCK 驱动器输出选择。

MCKD[1:0]	MCKDO 频率	例如 MCK = 12MHz	例如 MCK = 48MHz
0 0	MCKDO = MCK	MCKDO = 12MHz	MCKDO = 48MHz
0 1	MCKDO = MCK/2	MCKDO = 6MHz	MCKDO = 24MHz
1 0	MCKDO = MCK/4	MCKDO = 3MHz	MCKDO = 12MHz
1 1	MCKDO = MCK/8	MCKDO = 1.5MHz	MCKDO = 6MHz

Bit 1~0: 保留位。当 CKCON3 被写入时,这二位必须软件写"10"。

AUXRO: 辅助寄存器 0

SFR 页 = 0~F

SFR 地址 = 0xA1

复位值= 000x-xx00

7	6	5	4	3	2	1	0
P60OC1	P60OC0	P60FD				INT1H	INTOH
R/W	R/W	R/W	W	W	W	R/W	R/W

Bit 7~6: P60 输出配置控制位 1 和 0,这两位仅仅当内部振荡(IHRCO 或 ILRCO)被选择为系统时钟源时有效。这种情况,在晶振模式, P6.0 和 P6.1 改变为 XTAL2 和 XTAL1 功能,在外部时钟输入模式, P6.0 专用于时钟输入口。在内部振荡条件下, P6.0 为普通 I/O 或时钟源发生器提供下列选项, 当 P60OC[1:0] 索引为非 P6.0 GPIO 功能时, P6.0 将驱动内部 RC 振荡器输出为其它设备提供时钟源。

P60OC[1:0]	P60 功能	I/O 模式
00	P60	By P6M0.0
01	MCK	By P6M0.0
10	MCK/2	By P6M0.0
11	MCK/4	By P6M0.0

P6.0 作为时钟输出功能时, 建议设置 P6M0.0 为"1" 来选择 P6.0 为推挽输出模式。

Bit 5: P60FD, P6.0 快速驱动

0: P6.0 默认驱动输出。

1: P6.0 快速驱动输出使能。若 P6.0 被配置为时钟输出, 当 P6.0 输出频率大于 12MHz (5V) 或者大于 6MHz (3V) 的应用时使能此位。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97

POR = 0000-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 5: MCDF, 丢失时钟侦测标志。

- 0: 必须由软件写"1"清除, 软件写"0"不操作。
- 1: 侦测到外部晶振振荡输入出现一个丢失时钟事件此位置位。MCDF 写"1"清零。由 MCDFIE 使能丢失时钟侦测模块。如果 MCDFIE 为零,丢失时钟侦测模块无效。一旦一个丢失时钟事件发生,在再次从 OSCin 切换到 XTAL 之前,软件必须清零 MCDF。

SFIE: 系统标志中断使能寄存器

SFR 页 = 0~F

SFR 地址 = 0x8E

POR = 0110-x000

7	6	5	4	3	2	1	0
SIDFIE	MCDRE	MCDFIE	RTCFIE		BOF1IE	BOF0IE	WDTFIE
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 6: MCDRE, 使能丢失时钟侦测事件产生系统复位。

0: 禁止丢失时钟侦测(MCD)事件触发系统复位。

1: 使能丢失时钟侦测 (MCD)事件触发系统复位。默认是使能的。

Bit 5: MCDFIE, 使能 MCDF (PCON1.5)中断。

0: 禁止 MCDF 中断。

1: 使能 MCD 模块和使能 MCDF 中断。默认是使能的。

DCONO: 设备控制寄存器 0

SFR 页 =仅 **P** 页

SFR 地址 = 0x4C

POR = 1000-x011

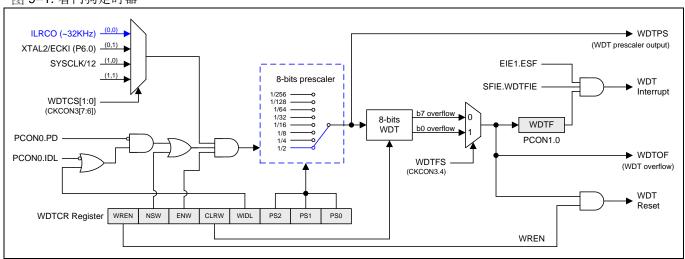
7	6	5	4	3	2	1	0
HSE	IAPO				IORCTL	RSTIO	OCDE
R/W	R/W	W	W	W	R/W	R/W	R/W

Bit 7: HSE, 高速工作使能。

- 0: 选择 MCU 运行在低速模式($F_{CPUCLK} \leq 6MHz$),减慢内部电路速度,从而降低功耗。
- 1: 如果 $F_{SYSCLK} > 6MHz$.,使能 MCU 全速运行。在 SYSCLK 选择高频时钟(>6MHz)之前,软件必须置位 HSE 切换高速运行的内部电路。

9. 看门狗定时器(WDT)

9.1. WDT 结构


看门狗定时器 (WDT) 用来使程序从跑飞或死机状态恢复的一个手段。WDT 由一个 8 位独立定时器、一个 8 分频器和一个控制寄存器(WDTCR)组成。图 9-1 显示 MA82G5DXX 的 WDT 结构框图。

WDT 时钟源有 4/3 选择。在 WDT 使能之前必须配置好时钟源。默认的时钟源来自 32KHz ILRCO。WDT 溢出会设置位 WDTF PCON1.0,也能产生中断通过使能位 WDTFIE (SFIE.0) 和 ESF (EIE1.3)。溢出也能触发系统复位通过设置位 WREN (WDTCR.7)。软件可以在溢出之前在 CLRW 位 (WDTCR.4)上写"1"来清除它,可以阻止 WDT溢出。

一旦 WDT 使能通过设置位 ENW, 将没有办法使之失效除非上电复位或在 page-p SFR 覆盖 ENW,能清除位 ENW。 WDTCR 会保持以前的值不会改变在硬件(RST-pin)复位、软件复位和 WDT 复位后。

WREN, NSW 和 ENW 具有一次使能生效功能,只要在通用 SFR 页写"1"则生效。P 页下的 SFR 访问 WDTCR 可以通过写"0"到 WDTCR.7~5 禁止 WREN, NSW 和 ENW。详情请参考章节"9.3 WDT"和"27 P 页 SFR 访问"。

图 9-1. 看门狗定时器

9.2. WDT 在掉电模式和空闲模式期间

空闲模式, 位标志 WIDL (WDTCR.3) 决定 WDT 是否计数。 设置这个位能让 WDT 在空闲模式一直计数。如果硬件选项 NSWDT 使能, WDT 会一直保持计数不管位 WIDL 设置情况 。

掉电模式,ILRCO 不会停如果 NSW (WDTCR.6) 使能。 MCU 进入 Watch 模式 WDT 将是一个自动唤醒功能。这会让 WDT 保持计数即使掉电模式下(Watch Mode)。WDT 溢出后,软件能设置进入中断或复位 唤醒 CPU。此功能当 WDT 时钟源来自 ILRCO,P6.0 外部时钟输入或晶振震荡电路(XTAL1/XTAL2)使能时有效。

9.3. WDT 寄存器

WDTCR: 看门狗定时器控制寄存器

SFR 页 = 0~F & P

SFR 地址 = 0xE1

POR = XXX0-XXXX (0000-0111)

7	6	5	4	3	2	1	0
WREN	NSW	ENW	CLRW	WIDL	PS2	PS1	PS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: WREN, WDT 复位使能标志, 初始值随硬件选项 WRENO。

- 0: WDT 溢出不产生复位。 WDT 溢出标志 WDTF 可以供软件检测或触发中断。
- 1: WDT 溢出产生系统复位。 一旦 WREN 已经设置, 不能用软件在页 0~F 中清除,**但在 page P 中, 软件能修改** 其值 "0" 或 "1"。

Bit 6: NSW,不停止的 WDT 标志。 初始值随硬件选项 NSWDT。

- 0: WDT 在掉电模式停止计数 MCU。
- 1: WDT 在掉电模式(Watch Mode)或空闲模式下永远不会停止计数 MCU。 一旦 NSW 已经设置,不能用软件在 页 0~F 中清除, **但在 page P 中, 软件能修改其值 "0" 或 "1"。**

Bit 5: ENW, 使能 WDT 标志。

- 0: 禁止 WDT 运行。此位仅仅能被 POR 清除。
- 1: 使能 WDT。一旦 ENW 位被设置,不能用软件在页 0~F 中清除, **但在 page P 中, 软件能修改其值 "0" 或 "1"。**

Bit 4: CLRW, WDT 清零位。

- 0: 写 "0"到此位 WDT 没有任何操作。
- 1: 写 "1"到此位会清除 8 位 WDT 计数器到 000H. 注意此位没有必须写"0"清除.当此位设置"1"时清除 WDT 重新计数。

Bit 3: WIDL, WDT 空闲模式控制位。

- 0: MCU 在空闲模式下 WDT 停止计数。
- 1: MCU 在空闲模式下 WDT 保持计数。

Bit 2~0: PS2 ~ PS0,选择分频器输出作 WDT 基础时钟输入。

当 WDTFS (CKCON3.4) = 0. WDT 时钟源= ILRCO 或 SYSCLK/12

<u></u>	0.0110.1) = 0,7701 + 17	TIME ILITOUS STOULIVIL	
PS[2:0]	分频值	WDT 时间	WDT时间
		(WDT 时钟= ILRCO)	(WDT 时钟= SYSCLK/12)
			(SYSCLK = IHRCO, 12MHz)
0 0 0	2	16 ms	0.512 us
0 0 1	4	32 ms	1.024 ms
0 1 0	8	64 ms	2.048 ms
0 1 1	16	128 ms	4.096 ms
1 0 0	32	256 ms	8.192 ms
1 0 1	64	512 ms	16.384 ms
1 1 0	128	1024 ms	32.768 ms
1 1 1	256	2048 ms	65.536 ms

当 WDTFS (CKCON3.4) = 1, WDT 时钟源= ILRCO

	= 11211 3 (SROSHO: 1) = 1, WE1 +1 1/ M= 12103					
PS[2:0]	分频值	WDT 时间				
		(WDT 时钟= ILRCO)				
0 0 0	2	0.125 ms + 120us				
0 0 1	4	0.25 ms + 120us				
0 1 0	8	0.5 ms + 120us				
0 1 1	16	1 ms + 120us				
1 0 0	32	2 ms + 120us				

1 0 1	64	4 ms + 120us
1 1 0	128	8 ms + 120us
1 1 1	256	16 ms + 120us

CKCON3: 时钟控制寄存器 3

SFR 页 = QP页

SFR 地址 = 0x41

POR	= 00	റററ-	001	O
	- 0	,,,,	oo i	v

7	6	5	4	3	2	1	0
WDTCS1	WDTCS0	0	WDTFS	MCKD1	MCKD0	1	0
R/W	R/W	W	R/W	R/W	R/W	W	W

Bit 7~6: WDTCS1~0, WDT 时钟源选择位[1:0]。

WDTCS1~0	WDT 时钟源
00	ILRCO
01	XTAL2/ECKI(P6.0)
10	SYSCLK/12
11	保留

Bit 4: WDTFS, WDT 溢出源选择位。

0: 选择 WDT 位 8 溢出作为 WDT 事件源。

1: 选择 WDT 位 0 溢出作为 WDT 事件源。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97

POR = 0000-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 1: WDTF, WDT 溢出标志。

0: 必须由软件写"1"清除, 软件写":0"不操作。

1: 当 WDT 溢出时硬件置位此位,写 "1"清除 WDTF。

SFIE: 系统标志中断使能寄存器

SFR 页 = 0~F

SFR 地址 = 0x8E

POR = 0110-x000

7	6	5	4	3	2	1	0
SIDFIE	MCDRE	MCDFIE	RTCFIE		BOF1IE	BOF0IE	WDTFIE
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 0: WDTFIE, 使能 WDTF (PCON1.0) 中断。

0: 禁止 WDTF 中断。

1: 使能 WDTF 中断。

9.4. WDT 硬件选项

除了由软件初始化外,WDTCR 寄存器还能在上电的时候由硬件选项 WRENO,NSWDT,HWENW,HWWIDL 和HWPS[2:0]来自动初始化,这些选项通过通用编程器来编程,如下所叙。

如果 HWENW 编程为"使能",则硬件在上电时为 WDTCR 寄存器作如下的初始化工作: (1) 位 ENW 置 1。(2) 载入 WRENO 的值到 WREN 位。(3)载入 NSWDT 的值到 NSW 位。(4)载入 HWWIDL 的值到 WIDL 位。(5) 载入 HWPS[2:0]的值到 PS[2:0]位。

如果 HWENW 和 WDSFWP 都被编程为"使能",则硬件仍然会在上电时由 WDT 硬件选项初始化 WDTCR 寄存器的内容。之后,任何对 WDTCR 的位的写动作都会被忽略,除了写"1"到 WDTCR.4(CLRW)位来清 WDT 之外,即使通过对 P页 SFR 的操作机制也不行。

WRENO:

- ☑: 使能。置位 WDTCR.WREN 以使能 WDTF 系统复位功能。
- 口:禁止。清除 WDTCR.WREN 以禁止 WDTF 系统复位功能。

NSWDT: WDT 不停止。

- ☑: 使能。置位 WDTCR.NSW 使能 WDT 在掉电模式(watch 模式)也保持运行。
- 口:禁止。清除位 WDTCR.NSW 禁止 WDT 在掉电模式下(watch 模式)运行。

HWENW: 硬件载入 WDTCR 的"ENW"。

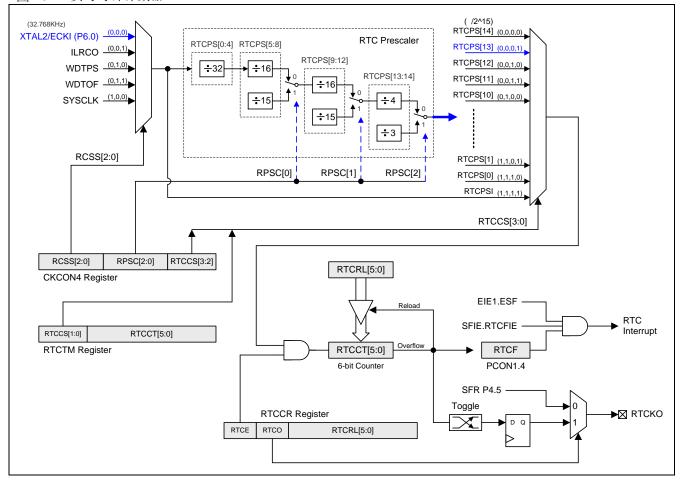
- ☑: 使能。上电时自动硬件使能看门狗定时器,并且自动加载 WRENO, NSWDT, HWWIDL 和 HWPS2~0 的值到 WDTCR 中。
- □: 禁止: 上电时看门狗定时器 (WDT) 不自动使能。

HWWIDL, HWPS2, HWPS1, HWPS0:

当 HWENW 被使能,上电复位时,这四个保险丝位将被载入到特殊功能寄存器 WDTCR 中。

WDSFWP:

- ☑: 使能。特殊功能寄存器 WDTCR 中的 WREN, NSW, WIDL, PS2, PS1 和 PS0 软件写保护。
- 口: 禁止。特殊功能寄存器 WDTCR 中的 WREN, NSW, WIDL, PS2, PS1 和 PS0 可被软件改写。


10. 实时时钟(RTC)/系统时钟

MA82G5DXX 有一个简单的实时时钟允许使用者不停的记一个准确的时间在其它设备在掉电模式下。实时时钟能用于唤醒或中断源。实时时钟是一个 21 位的计数器包含 0~15 位的一个预分频器和一个 6 位的重载计数器。当其溢出,这个 6 位计数器会被重新加载并且 RTCF 旗标被设置。预分频器的时钟源有 5 选择包括 XTAL 震荡器(默认),条件是 XTAL 震荡器不可以作为系统时钟。图 10–1 显示 MA82G5DXX 的 RTC 结构。

RTC 模组输入是 32.768KHz 震荡器可以程控提供时间段为 30uS 到 64S。这个计数器也可以提供一个定时功能为 SYSCLK或 SYSCLK/2^21 一个短的定时功能或一个长的系统定时功能。最大的系统溢出时间是 SYSCLK/2^21。 ILRCO 提供内部时钟源给 RTC 模块。WDT 分频器的 WDTPS 和 WDTOF 及 WDT 的溢出提供更长的分频源满足 更长的唤醒时间需要。在 RTCE 使能之前 RCT 时钟源必须配置好。

如果 XTAL 震荡器被用于系统时钟,P6.0 仍然作为 RTC 时钟输入源。RTCO 使能 RTC 溢出输出到端口引脚。只有上电复位会重置 RTC 和它相应的特殊功能寄存器为默认值

图 10-1. 实时时钟计数器

10.1. RTC 寄存器

RTCCR: 实时时钟控制寄存器

SFR 页 = 0~F & P 页

SFR 地址 = 0xBE POR = 0011-1111

	7	6	5	4	3	2	1	0
	RTCE	RTCO	RTCRL.5	RTCRL.4	RTCRL.3	RTCRL.2	RTCRL.1	RTCRL.0
_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: RTCE, RTC 使能。

0: 停止 RTC 计数器, RTCCT。

1: 使能 RTC 计数器并且当 RTCCT 溢出时置位 RTCF, 当 RTCE 被设置, CPU 不能访问 RTCTM, 只有当 RTCE 被清除后才能访问。

Bit 6: RTCO, RTC 输出使能。 RTCKO 输出频率是 (RTC 溢出率)/2。

0: 禁止 RTCKO 输出。

1: 使能 RTCKO 输出在 P4.5。

Bit 5~0: RTCRL[5:0], RTC 计数器重载值寄存器。当寄存器被 CPU 访问, 且 RTCCT 溢出时寄存器值会被重载 到 RTCCT。

RTCTM: 实时时钟定时器寄存器

SFR 页 = 0~F

SFR 地址 = 0xB6 POR = 0111-1111

7	6	5	4	3	2	1	0
RTCCS1	RTCCS0	RTCCT.5	RTCCT.4	RTCCT.3	RTCCT.2	RTCCT.1	RTCCT.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7~6: RTCCS3~0, RTC 时钟选择。缺省值是"01"。

RTCCS3~0	时钟源	RTC 中断周期	最小周期
0000	RTCPS[14] (/2^15)	1S ~ 64S when P6.0 = 32768Hz	1S
0001	RTCPS[13] (/2^14)	0.5S ~ 32S when P6.0 = 32768Hz	0.5S (默认)
0010	RTCPS[13] (/2^13)	0.25S ~ 16S when P6.0 = 32768Hz	0.25S
1010	RTCPS[4] (/2^5)	976us ~ 62.46ms when P6.0 = 32768Hz	976 us
1011	RTCPS[3] (/2^4)		488 us
1100	RTCPS[2] (/2^3)		244 us
1101	RTCPS[1] (/2^2)	122us ~ 3.9ms when P6.0 = 32768Hz	122 us
1110	RTCPS[0] (/2^1)	61us ~ 1.952ms when P6.0 = 32768Hz	61 us
1111	RTCPSI (/2^0)	30.5us ~ 976us when P6.0 = 32768Hz	30.5 us

Bit 5~0: RTCCT[5:0], RTC 计数器寄存器。 通过选择不同的时钟源 RTCCS[1:0]来选择 RTC 功能或系统定时功能。 当计数器溢出,置位 RTCF 旗标并且 RTCFIE 使能会产生系统旗标中断。 最大的 RTC 溢出时间为 64 秒。

CKCON4: 时钟控制寄存器 4

SFR 页 =仅P页

SFR 地址	= 0x42		P	POR = 0000-0	0000		
7	6	5	4	3	2	1	0

RCSS2	RCSS1	RCSS0	RPSC2	RPSC1	RPSC0	RTCCS3	RTCCS2
R/W	R/W						

Bit 7~5: RCSS2~0, RTC 模块时钟源选择位 2~0。

RCSS[2:0]	RTC 模块时钟源
0 0 0	XTAL2/ECKI (P6.0)
0 0 1	ILRCO
0 1 0	WDTPS
0 1 1	WDTOF
1 0 0	SYSCLK
其它	保留

Bit 4: RPSC2, RTC 分频器控制位 2。 Bit 3: RPSC1, RTC 分频器控制位 1。 Bit 2: RPSC0, RTC 分频器控制位 0。

Bit 1~0: RTCCS3~2, RTC 计数器时钟选择。与 RTCCS1~0 一起使用。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97

PO)R =	0000)-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 4: RTCF, RTC 溢出标志。

0: 这位必须通过软件写"1"清除,软件写"0"不操作。

1: 当 RTCCT 溢出此位仅仅被硬件置位,写"1"清除 RTCF。

SFIE: 系统标志中断使能寄存器

SFR 页 = 0~F

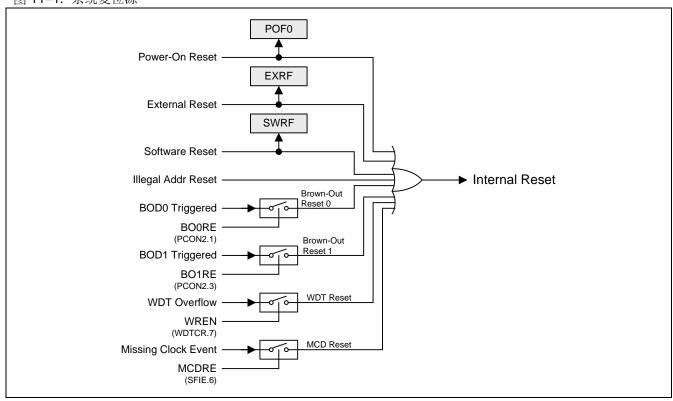
SFR 地址	= 0x8E		F	OR = 0110-	x000		
7	6	5	4	3	2	1	0
SIDFIE	MCDRE	MCDFIE	RTCFIE		BOF1IE	BOF0IE	WDTFIE
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 4: RTCFIE, 使能 RTCF (PCON1.4) 中断。

0: 禁止 RTCF 中断。

1: 使能 RTCF 中断。如果使能。RTCF 能唤醒 CPU 在空闲模式或掉电模式。

11. 系统复位


复位期间, 所有的 I/O 寄存器都设置为初始值,程序会根据 OR 设置选择从复位向量的 0000H 开始运行,或者从 ISP 地址开始运行。 MA82G5DXX 有 8 种复位源: 上电复位,外部复位,软件复位,非法地址复位,低电检测 0 复位,低电检测 1 复位, WDT 复位和丢失时钟侦测复位。如图 11–1 所示系统复位源(MA82G5DXX)。

下面的选项描述复位产生源及其相应的控制寄存器和指示标志。

11.1. 复位源

图 11-1 显示 MA82G5DXX 复位系统和所有的复位源

图 11-1. 系统复位源

11.2. 上电复位

上电复位 (POR)用于在电源上电过程中产生一个复位信号。微控制器在 VDD 电压上升到 V_{POR} (POR 开始电压)电压之前将保持复位状态。VDD 电压降到 V_{POR} 之下后微控制器将再次进入复位状态。在一个电源周期中,如果需要再产生一次上电复位 VDD 必须降到 V_{POR} 之下。

PCONO: 电源控制寄存器 0

SFR 页 = 0~F & P

SFR 地址 = 0x87 POR

POR = 0001-0000, 复位值= 000X-0000

					, , ,		
7	6	5	4	3	2	1	0
SMOD1	SMOD0	GF	POF0	GF1	GF0	PD	IDL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 4: POF0, 上电复位标志 0。

0: 这标志必须通过软件清零以便认出下一个复位类型。

1: 当VDD从0 伏上升到正常电压时硬件置位。POF0也能有软件置位。

上电标志 POF0 在上电过程中由硬件置"1" 或当 VDD 电压降到 VPOR 电压之下时由硬件置"1"。它能通过软件来清除但不受任何热复位(譬如:外部 RST 引脚复位、掉电检测器 Brown-Out 复位、软件(ISPCR.5)复位和 WDT 复位)的影响。它帮助用户检测 CPU 是否从上电开始运行。注意: POF0 必须由软件清除。

11.3. 外部复位

保持复位引脚 RST 至少 24 个振荡周期的高电平,将产生一个复位信号,为确保 MCU 正常工作,必须在 RET 引脚上连接可靠的硬件复位电路。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97

POR = 0000-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 6: EXRF, 外部复位标志。

- 0: 这位必须通过软件清零,写"1"清零,写"0"无效。
- 1: 若外部复位产生则被硬件置位,写"1"清零 EXRF。

11.4. 软件复位

软件通过对 SWRST(ISPCR.5) 位写"1"触发一个系统热复位, 软件复位后,硬件置位 SWRF 标志(PCON1.7)。 SWBS 标志决定 CPU 是从 ISP 还是 AP 区域开始运行程序。

ISPCR: ISP 控制寄存器

SFR 页 = 0~F

SFR 地址

= 0xE7

复位值= 0000-xxxx

7	6	5	4	3	2	1	0
ISPEN	SWBS	SWRST	CFAIL				
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 6: SWBS, 软件执行起始选择控制。

- 0: 复位软件从 AP 存储区开始执行。
- 1: 复位软件从 ISP 存储区开始执行。

Bit 5: SWRST, 软件复位触发控制。

- 0: 写"0"无操作。
- 1: 写"1"产生软件系统复位,它将被硬件自动清除。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97

POR = 0000-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7: SWRF, 软件复位标志。

- 0: 这位必须通过软件清零,写"1"清零,写"0"无操作。
- 1: 软件复位产生时硬件置位此位,写"1"清零 SWRF。

11.5. 低电压检测复位

MA82G5DXX 中,有两个低电检测器(BOD0& BOD1)检测电源电压(VDD),低电检测器(BOD0) 的检测固定点为 VDD=1.7V,低电检测器(BOD1)的检测固定点可以被软件选择为 VDD=4.2V, 3.7V, 2.4V 或 2.0V,如果 VDD 电压低于 BOD0 或 BOD1 检测点,则置位相关联的 BOF0 和 BOF1 标志,如果 BOORE (PCON2.1) 被使能, BOD0 事件将触发一个 CPU 复位并置位 BOF0 指示一个低电检测器(BOD0)复位发生;如果 BO1RE (PCON2.3) 被使能, BOD1 事件将触发一个 CPU 复位并置位 BOF1 指示一个低电检测器(BOD1)复位发生。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97

POR = 0000-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 2: BOF1, BOF1 (复位) 标志。

- 0: 这位必须通过软件写"1"清零,写"0"无操作。
- 1: 当 VDD 电压碰到 BOD1 检测点时,硬件置位此位,写"1" 清零。如果 BO1RE (PCON2.3) 被使能,BOD1 事件将触发一个 CPU 复位并置位 BOF1 指示一个掉点检测器(BOD1)复位发生。

Bit 1: BOF0, BOF0(复位)标志。

- 0: 这位必须通过软件写"1"清零,写"0"无操作。
- 1: 当 VDD 电压碰到 BOD0 检测点时,硬件置位此位,写"1" 清零。如果 BOORE (PCON2.1) 被使能,BOD0 事件 将触发一个 CPU 复位并置位 BOF0 指示一个掉点检测器 (BOD0) 复位发生。

11.6. WDT 复位

当 WDT 使能开始计数, WDT 溢出时置位 WDTF 标志 。 如果 WREN (WDTCR.7) 使能, WDT 溢出将引起一个 系统热复位, 软件可以读 WDTF 标志来确认 WDT 复位发生。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97

POR = 0000-x000

Ī	7	6	5	4	3	2	1	0
ĺ	SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
	R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 0: WDTF, WDT 溢出/复位标志。

- 0: 这位必须通过软件写"1"清零,写"0"无操作。
- 1: 当 WDT 溢出产生时硬件置位此位,写"1" 清零。如果 位 WREN (WDTCR.7) 被设置, WDTF 标志指示一个 WDT 复位产生。

11.7. MCD 复位

当 XTAL 被软件选择为 MCU 时钟源时,XTAL 输入信号丢失则 MCDF 置位并且触发系统复位。在丢失时钟侦测 (MCD)触发系统复位之后,MCU 的时钟源将被切换到 IHRCO。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97 POR = 0000-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 5: MCDF, 丢失时钟侦测标志。

- 0: 这位必须通过软件写"1"清零,写"0"无操作。
- 1: 侦测到一个丢失时钟侦测事件此位置位。写"1"清零 MCDF。丢失时钟侦测模块由 MCDFIE 使能。如果 MCDFIE 清零,丢失时钟侦测模块无效。一旦一个丢失时钟侦测事件发生,软件必须在从 OSCin 到 XTAL 切换之前清零 MCDF。

SFIE: 系统标志中断使能寄存器

SFR 页 = 0~F

SFR 地址 = 0x8E

POR = 0110-x000

7	6	5	4	3	2	1	0
SIDFIE	MCDRE	MCDFIE	RTCFIE		BOF1IE	BOF0IE	WDTFIE
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 6: MCDRE, 使能丢失时钟侦测事件产生系统复位。

- 0: 禁止丢失时钟侦测(MCD)事件触发系统复位。
- 1: 使能丢失时钟侦测 (MCD) 事件触发系统复位。默认是使能。

Bit 5: MCDFIE, Enable MCDF (PCON1.5) Interrupt.: MCDFIE, 使能 MCDF (PCON1.5)中断。

- 0: 禁止 MCDF 中断。
- 1: 使能 MCD 及使能 MCDF 中断。默认是使能。

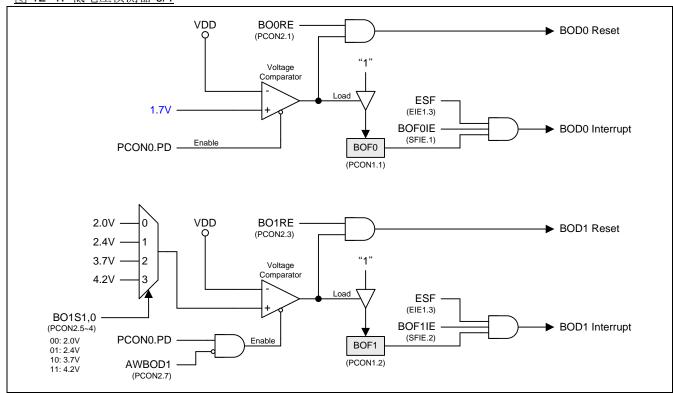
11.8. 非法地址复位

MA82G5DXX 如果软件程序运行到非法的地址比如超出程序空间(ROM)范围,将触发 CPU 复位。

12. 电源管理

MA82G5DXX 支持两个电源监测模块(低电压监测器(BOD0 和 BOD1)模块),和 7 种电源节能模式: 空闲模式 (IDLE)、掉电模式 (Power-Down)、慢频模式、副频模式、RTC 模式、Watch 模式和 Monitor 模式。

BOD0 和 BOD1 通过 BOF0 和 BOF1 标志位报告电源状态,软件可以通过这个状态产生中断或复位。7 种电源节能模式提供不同的节能应用, 通过对 CKCON0, CKCON2, CKCON3, CKCON4, PCON0, PCON1, PCON2, PCON3, RTCCR 和 WDTCR 寄存器的访问来操作这些电源事件。


12.1. 低电压侦测器

MA82G5DXX 有两个低电监测器 (BOD0& BOD1)通过比较固定的触发电压来检测芯片电压,图 12–1 是 BOD0 和 BOD1 功能逻辑图,BOD0 检测固定触发电压为 VDD=1.7V,BOD1 检测固定触发电压为 VDD=(4.2V/3.7V/2.4V/2.0V)。 当 VDD 降到触发电压以下时, BOF0 (PCON1.1)标志被置位, 如果 ESF (EIE1.3) 和 BOF0IE (SFIE.1) 被使能,不管是普通模式或空闲模式都能产生一个中断请求以响应(BOD0)事件,BOD1 有同样的标志 BOF1,也有同样的中断功能, 如果 AWBOD1 (PCON2.7)使能,这个中断(BOD1)也能唤醒掉电模式。

当 BOORE (PCON2.1) 被使能, BOD0 事件产生一个系统复位并硬件置位 BOF0 指示一个 BOD0 复位事件已经产生。在普通模式和空闲模式下 BOD0 事件能重新启动 CPU。BOD1 也有同样的复位功能设置相关的控制位 BO1RE (PCON2.3),如果 AWBOD1 (PCON2.7)位被使能,BOD1 也能重新启动掉电模式。

如果 BOD1 在应用中没有使用,为了节省功耗可以通过软件清除 EBOD1 (PCON2.2)来禁止 BOD1

图 12-1. 低电压侦测器 0/1

12.2. 省电模式

12.2.1. 慢频模式

程序设置位 SCKS2~SCKS0(CKCON0 寄存器, 参考章节"錯誤! 找不到参照來源。錯誤! 找不到参照來源。")为非 0/0/0 值,可以減慢 MCU 的工作速度达到节能的目的。使用者考量在特殊的程序段使用合适的慢速度。原则上不应该影响系统的其他功能。而且,应该在普通的程序段恢复到正常的速度。

12.2.2. 副频模式

设置 OSCS1~0 选择 ILRCO 作为系统时钟,MCU 的工作频率会慢下来。32KHz ILRCO 系统频率使 MCU 工作在特别慢的速度和功耗下。另外设置 SCKS2~SCKS0 位 (CKCON0 寄存器, 参考章节"錯誤! 找不到参照來源。 錯誤! 找不到参照來源。") 使用者可以使 MCU 的速度最低到 250HZ。

12.2.3. RTC 模式

MA82G5DXX 有一个简单的 RTC 模块允许用户在设备部分掉电时继续运行准确的定时器。在 RTC 模式,RTC 模块作为一个"时钟"功能并且能在 RTC 溢出时唤醒芯片的掉电模式。详细描述请参考章节"10 实时时钟(RTC)/系统时钟"。

12.2.4. Watch 模式

如果看门狗被使能并且位 NSW 被设置,看门狗在掉电模式保持运行支持自动唤醒功能,这个在 MA82G5DXX 应用中叫 Watch 模式。 当 WDT 溢出,软件选择中断或系统复位来唤醒 CPU 并硬件置位 WDTF。通过定义 WDT 预分频最大唤醒时间能到 2 秒, 更详细信息请参考章节"9 看门狗定时器(WDT)"和章节"錯誤! 找不到参照來源。 錯誤! 找不到參照來源。"。

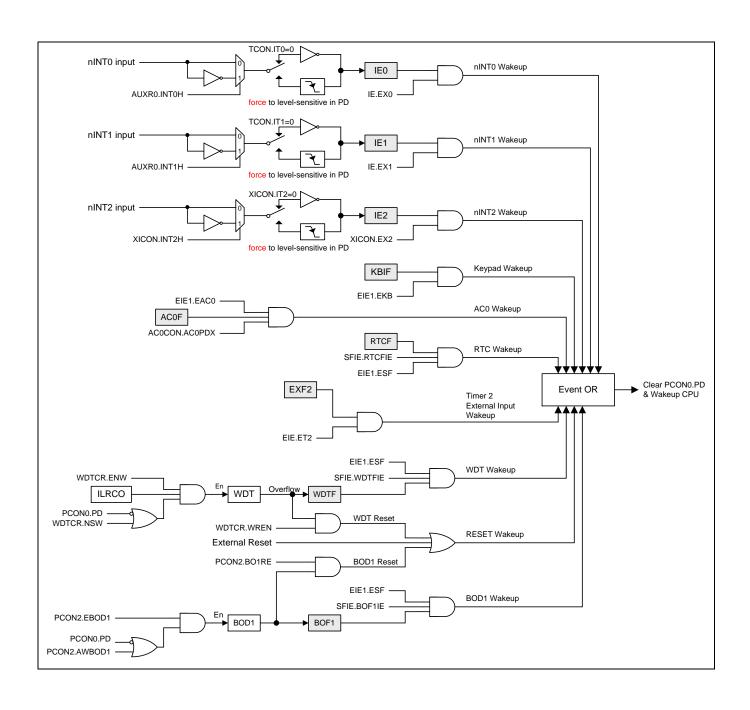
12.2.5. Monitor 模式

如果 AWBOD1(PCON2.3)被设置,BOD1 即使在掉电模式下,低电压检测功能 BOD1 会有效,这就是 MA82G5DXX 应用中的 Monitor 模式。当 BOD1 触发到检测电压,软件选择中断或系统复位来唤醒 CPU 并硬件置位 BOF1 ,更详细信息请参考章节"錯誤! 找不到参照來源。 錯誤! 找不到参照來源。"和章节"錯誤! 找不到参照來源。"。 錯誤! 找不到参照來源。"。

12.2.6. 空闲模式

可以通过软件的方式置 PCON.IDL 位,使设备进入空闲模式。在空闲模式下,系统不会给 CPU 提供时钟 CPU 状态、RAM、SP、PC、PSW、ACC 被保护起来。I/O 端口也保持当前的逻辑状态。空闲模式保持外部设置当有中断来时能唤醒 CPU,空闲模式下定时器 0、定时器 1、定时器 2、SPI、KBI、ADC、UARTO、TWIO、RTC、MCD、BODO 和 BOD1 仍然处于工作状态。在空闲模式下 PCA 和 WDT 唤醒 CPU 有条件制约。任何使能的中断源或复位都能终止空闲模式,一个中断会退出空闲模式,并同时进入中断服务程序,只有在中断返回后才会开始执行进入空闲模式指令之后的程序。

当 MCU 在空闲模式和掉电模式时 ADC 输入通道必须设置为"仅模拟输入"。


12.2.7. 掉电模式

可以通过软件的方法置位 PCON0.PD 使设备进入掉电模式。掉电模式下,震荡器停止震荡,Flash 存储器掉电以节约电能。只有上电电路继续刷新电源。在减少 VDD 的时候 RAM 的内容仍然会被保持;但如果电源电压低于芯片工作电压,特殊功能寄存器 SFR 的内容就不一定能保持住。外部复位、上电复位、使能的外部中断、使能的 KBI、使能的 RTC (RTC 模式)、使能的 BOD1(monitor 模式)或使能的不停止的 WDT 都能使系统退出掉电模式。

如果有下列情况发生,使用者至少要等 4 微秒后才能进入或再次进入掉电模式: 刚开始运行代码(任何形式的复位后面),或者刚刚退出掉电模式。 为了在掉电模式达到最小功耗, 软件必须设置所有的 I/O 为非悬浮状态。

图 12-2 展示了 MA82G5DXX 掉电模式唤醒结构

图 12-2. 掉电模式唤醒结构

12.2.8. 中断唤醒掉电模式

三个外部中断都能终止掉电模式,外部中断 nINT0、 nINT1 和 nINT2 能退出掉电模式。为了能唤醒掉电模式,中断 nINT0, nINT1 或 nINT2 必须使能并且设置为电平触发操作,如果外部中断使能且设置是边沿触发(上升或下降),他们会被硬件强置为电平触发(低电平或高电平)。

一个中断终止掉电模式,唤醒时间取决内部定时。 当中断口产生下降沿时 , 掉电模式被终止,震荡重新启动, 并且一个内部计数器开始计数 , 在内部计数器没有计满之前内部时钟不允许被应用 CPU 也不能运行指令。 计数溢出后, 中断服务程序开始工作, 为了避免中断被重复触发, 中断服务程序在返回前应该被禁止,中断口低电平应保持足够长的时间以等待系统问题。

12.2.9. 复位唤醒掉电模式

外部复位唤醒掉电模式有点类似于中断。复位脚有上升沿电平时系统退出掉电模式,震荡重新启动,且一个内部计数器开始计数。在内部计数器没有计满之前内部时钟不允许被应用 CPU 也不能运行指令。复位脚必须保持长时间的高电平以保证系统完全复位,复位脚变低电平时开始执行程序。

值得注意的是当空闲模式被硬件复位唤醒时,前两个机器周期(内部复位没有取得控制权),程序正常从进入IDLE模式的后一条指令执行,这时内部硬件是禁止访问内部 RAM 的,但访问 I/O端口没有被禁止,为了保证不可预料的写 I/O口,在进入IDLE指令后不要放置写 I/O口或外部存储器的指令。

12.2.10. KBI 键盘唤醒掉电模式

MA82G5DXX 中 KBI.7~0 具有键盘中断唤醒功能,通过使能 KBI 模块的控制寄存器。软件可以设置 AUXR6.7~3 选择端口引脚的 KBI 功能。更详细的 AUXR1 信息请参考章节"錯誤! 找不到参照來源。 錯誤! 找不到参照來源。"。

通过使能 KBI 唤醒掉电模式有点类似中断唤醒。在 KBI 模式下且已经使能 KBI 中断(EIE1.5, EKB),系统退出掉电模式, 震荡重新启动, 且一个内部计数器开始计数, 在内部计数器没有计满之前内部时钟不允许被应用 CPU 也不能运行指令。计数溢出后,CPU 会响应 KBI 中断并执行中断服务程序。

12.2.11. RTC 唤醒掉电模式

12.2.12. XTAL 模式下安全且快速唤醒

12.3. 电源控制寄存器

PCONO: 电源控制寄存器 0

SFR 页 = 0~F & P

SFR 地址 = 0x87

POR = 0001-0000, 复位值= 000X-0000

					, , , , , ,		
7	6	5	4	3	2	1	0
SMOD1	SMOD0	GF	POF0	GF1	GF0	PD	IDL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 4: POF0, 上电标志 0。

0: 这位必须由软件写"1"清零。

1: 当上电复位产生时硬件置位此位。

Bit 1: PD, 掉电控制位。

0: CPU 清零或任何一个退出掉电模式的事件发生时硬件清零。

1: 置位则激活掉电操作(即进入掉电模式)。

Bit 0: IDL, 空闲模式控制位。

0: CPU 清零或任何一个退出空闲模式的事件发生时硬件清零。

1: 置位则激活空闲操作(即进入空闲模式)。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址

= 0x97

POR = 0000-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7: SWRF, 软件复位标志。

0: 这位必须由软件写"1"清零。

1: 当软件复位产生时硬件置位此位。

Bit 6: EXRF, 外部复位标志。

0: 这位必须由软件写"1"清零。

1: 当外部复位产生时硬件置位此位。

Bit 5: MCDF, 丢失时钟侦测标志。

0: 这位必须由软件写"1"清零。写"0"无操作。

1: 当侦测到一个丢失时钟事件时硬件置位此位。写"1"清零 MCDF。丢失时钟侦测模块由 MCDFIE 使能。如果 MCDFIE 清零,丢失时钟侦测模块则是无效的。一旦一个丢失时钟事件发生,在 OSCin 切换到 XTAL 之前软件 必须清零 MCDF。

Bit 4: RTCF, RTC 溢出标志。

0: 这位必须由软件写"1"清零。写"0"无操作。

1: 当 RTCCT 溢出时此位仅由硬件置位。写"1"则清除 RTCF。

Bit 3: 保留位。当写 PCON1 寄存器时软件必须在这位写 "0"。

Bit 2: BOF1, 低电压侦测标志 1。

0: 这位必须由软件写"1"清零。

1: 当电源电压触及到低电压侦测器 1 电压(4.2V/3.7/2.4/2.0)时,硬件置位此位

Bit 1: BOF0, 低电压侦测标志 0。

0: 这位必须由软件写"1"清零。

1: 当电源电压触及到低电压侦测器 0 电压(1.7V)时,硬件置位此位。

Bit 0: WDTF, WDT 溢出标志。

0: 这位必须由软件写"1"清零。

1: 当 WDT 溢出产生时硬件置位此位。

PCON2: 电源控制寄存器 2

SFR 页 =仅 P 页

SFR 地址 = 0x44

POR = 0000-0101

7	6	5	4	3	2	1	0
AWBOD1	0	BO1S1	BO1S0	BO1RE	EBOD1	BO0RE	1
R/W	W	R/W	R/W	R/W	R/W	R/W	W

Bit 7: AWBOD1, 掉电模式(PD)下 BOD1 的唤醒。

0: 掉电模式(PD)下禁止 BOD1。

1: 掉电模式(PD)下保持 BOD1。

Bit 6: 保留位。当写 PCON2 寄存器时软件必须在这位写 "0"。

Bit 5~4: BO1S[1:0], 低电压侦测器 1 监测电压选择。

BO1S[1:0]	BOD1 监测电压
0 0	2.0V
0 1	2.4V
1 0	3.7V
1 1	4.2V

Bit 3: BO1RE, BOD1 复位使能。

0: 当 BOF1 已经设置,禁止低电压侦测 1 (BOD1) 系统复位。

1: 当 BOF1 已经设置, 使能低电压侦测 1 (BOD1) 系统复位。

Bit 2: EBOD1, 使能 BOD1 监测 VDD 下降到 BO1S1~0 设置的固定值。

0: 禁止 BOD1 监测电源电压降低芯片功耗。

1: 使能 BOD1 监测电源电压 VDD。

Bit 1: BOORE, BODO 复位使能。

0: 当 BOF0 已经设置,禁止低电压侦测 0 (BOD0) 系统复位。

1: 当 BOF0 已经设置, 使能低电压侦测 0 (BOD0) 系统复位 (VDD 触到 1.7V)。

Bit 0: 保留位。当写 PCON2 寄存器时软件必须在这位写 "1"。

PCON3: 电源控制寄存器 3

SFR 页 =仅 P 页

SFR 地址 = 0x45

POR = 0xxx-xxxx

7	6	5	4	3	2	1	0
IVREN							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: IVREN,内部参考电压使能。

0: 禁止片内 IVR (1.4V)。

1: 使能片内 IVR (1.4V)。

Bit 6~0: 保留位。当写 PCON3 寄存器时软件必须在这些位写 "0"。

13. I/O 口配置

MA82G5DXX 有下列 I/O 端口: P1.0~P1.7, P2.0~P2.2, P2.4, P2.6, P3.0, P3.1, P3.3~P3.5, P4.0, P4.1, P4.4, P4.5, P4.7 和 P6.0~P6.1。如果选择外部振荡做系统时钟输入或 RTC 时钟输入,则 P6.0 和 P 6.1 被配置为 XTAL2 和 XTAL1。如果禁止外部复位脚功能,**RST** 引脚可以设置为 **P4.7**。准确的可用 I/O 引脚数量由封装类型决定。见表 13—1。

表 13-1. 可用 I/O 引脚数量

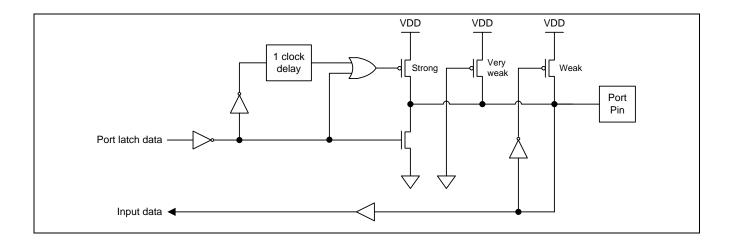
封装类型	I/O 引脚	引脚数量
28-引脚	P1.0~P1.7, P2.0~P2.2, P2.4, P2.6 P3.0, P3.1, P3.3~P3.5, P4.0, P4.1, P4.4, P4.5, P4.7(RST), P6.0 (ECKI/XTAL2), P6.1 (XTAL1)	25 或 24 (RST 选择) 或 23 (RST 和 ECKI 选择) 或 22 (RST 和 XTAL 选择)
20-引脚	P1.0, P1.1, P1.5~P1.7, P2.2, P2.4, P3.0, P3.1, P3.3~P3.5, P4.4, P4.5, P4.7(RST), P6.0 (ECKI/XTAL2), P6.1 (XTAL1)	17 或 16 (RST 选择) 或 15 (RST 和 ECKI 选择) 或 14 (RST 和 XTAL 选择)
16-引脚	P1.0, P1.1, P1.6, P2.2, P2.4, P3.0, P3.1, P3.3, P4.4, P4.5, P4.7(RST), P6.0 (ECKI/XTAL2), P6.1 (XTAL1)	13 或 12 (RST 选择) 或 11 (RST 和 ECKI 选择) 或 10 (RST 和 XTAL 选择)

13.1. IO 结构

MA82G5DXX 输入输出口分成两个配置类型。第一类仅仅是端口 3 有四种模式,这四种模式有:准双向口(标准8051 的 I/O 端口)、推挽输出、集电极开漏输出和输入(高阻抗输入)。 缺省值是弱上拉的准双向口模式。

其它口属于第二类,这些口有四种模式分别是仅模拟输入、上拉电阻的集电极开漏输出、集电极开漏输出和推挽输出。默认设置是仅模拟输入,也就意味着带有高阻状态的输入模式。

下面章节描述所有类型的 I/O 模式的配置。

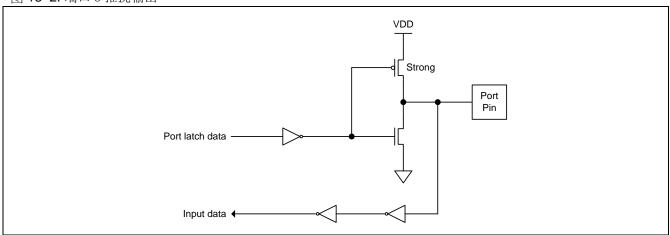

13.1.1. 端口 3 准双向口结构

端口3引脚工作在准双向模式时与标准8051端口引脚类似。一个准双向端口用作输入和输出时不需要对端口重新配置。这是因为端口输出逻辑高时,弱上拉,允许外部器件拉低引脚。当输出低时,强的驱动能力可吸收大电流。在准双向输出时有三个上拉晶体管用于不同的目的。

其中的一种上拉,称为微上拉,只要端口寄存器的引脚包含逻辑 1 则打开。如果引脚悬空,则这种非常弱上拉提供一个非常小的电流将引脚拉高。第二种上拉称为"弱上拉",端口寄存器的引脚包含逻辑 1 时且引脚自身也在逻辑电平时打开。这种上拉对准双向引脚提供主要的电流源输出为 1。如果引脚被外部器件拉低,这个弱上拉关闭,只剩一个微上拉。为了在这种条件下将引脚拉低,外部器件不得不吸收超过弱上拉功率的电流,且拉低引脚在输入的极限电压之下。第三种上拉称为"强"上拉。这种上拉用于加速准双向端口的上升沿跳变,当端口寄存器发生从逻辑 0 到逻辑 1 跳变时,强上拉打开一个 CPU 时钟,快速将端口引脚拉高。

端口 3 准双向口结构如图 13-1 所示。

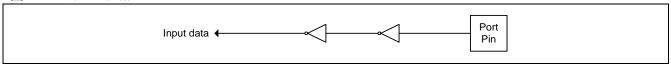
图 13-1. 端口 3 准双向口结构



13.1.2. 端口 3 推挽输出结构

端口3推挽输出配置与开漏输出、准双向输出模式有着相同的下拉结构,但是当端口寄存器包含逻辑1时提供一个连续的强上拉。当一个端口输出需要更大的电流时可配置为推挽输出模式。另外,在这种配置下端口的输入路径与准双向模式相同。

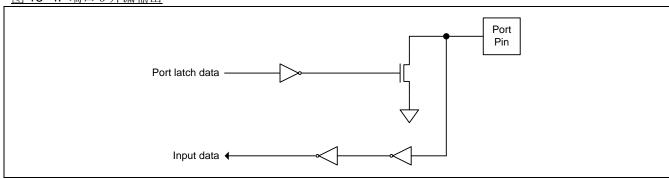
推挽输出结构见图 13-2。


图 13-2. 端口 3 推挽输出

13.1.3. 端口3仅输入(高阻抗输入)结构

仅输入配置在端口3引脚上没有任何上拉电阻,如下图13-3所示。

图 13-3. 端口 3 仅输入

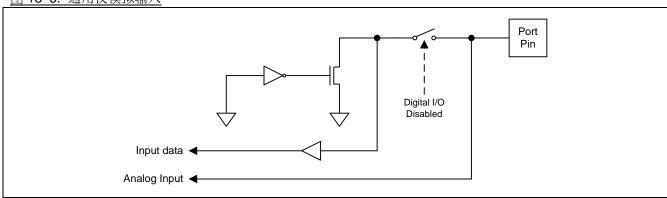


13.1.4. 端口 3 开漏输出结构

端口3配置为开漏输出时,当端口寄存器包含逻辑0时,关闭所有上拉,只有端口引脚的下拉晶体管。在应用中使用这个配置,端口引脚必须有外部上拉,典型的是将电阻接到VDD。这个模式的下拉和准双向端口的模式相同。 另外,在这种配置下端口的输入路径与准双向模式相同。

端口3开漏输出结构如图 13-4 所示

图 13-4. 端口 3 开漏输出

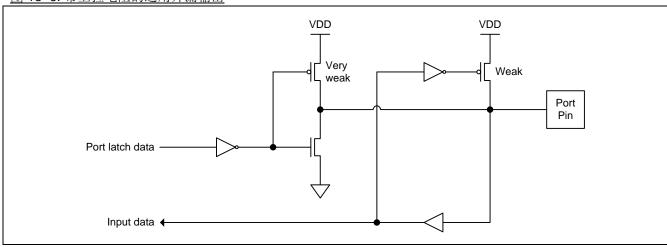


13.1.5. 通用仅模拟输入结构

在通用端口引脚上仅模拟输入结构是默认设置。作为 ADC 或模拟比较器输入应用,用户可以保持这种结构的端口设置。如果应用在数字功能的端口引脚,用户必须把端口引脚配置成相关联的结构。

仅模拟输入端口结构如图 13-7 所示。

图 13-5. 通用仅模拟输入

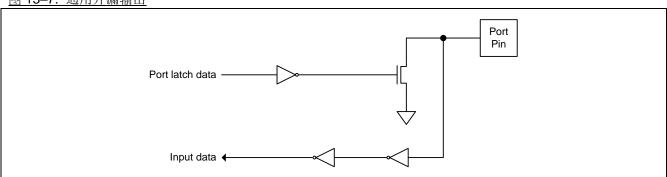


13.1.6. 带上拉电阻的通用开漏输出

带上拉电阻的开漏输出结构是在通用端口引脚上使能开漏输出模式的片内上拉电阻。

带上拉电阻的开漏输出端口结构如图 13-7 所示。

图 13-6. 带上拉电阻的通用开漏输出



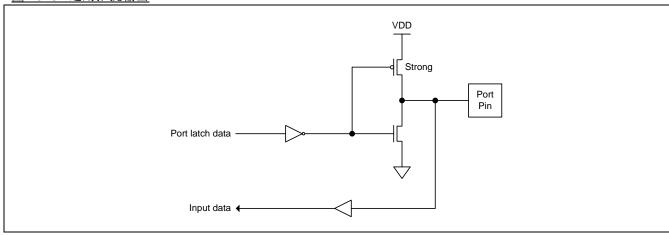
13.1.7. 通用开漏输出结构

通用端口引脚上的开漏输出结构跟端口3的开漏输出模式一样的功能。

通用端口集电极开漏结构如图 13-7 所示。

图 13-7. 通用开漏输出

13.1.8. 通用端口的数字输入结构


通过设置输出模式为"开漏"并且写逻辑"1"到端口数字寄存器的相应位来配置端口引脚为数字输入。例如,通过设置 P1M0.0=0、P1M1.0=0 并且 P1.0=1,这样 P1.0 配置为数字输入。

13.1.9. 通用推挽输出结构

通用端口引脚上的推挽输出结构跟端口3的推挽输出模式一样的功能。

通用端口推挽输出结构如图 13-8 所示。

图 13-8. 通用推挽输出

13.1.10. 端口输出驱动力选择

13.2.I/O 口寄存器

MA82G5DXX 所有的端口可通过软件个别的、独立的配置其工作模式。端口 3 有 4 种工作模式,如表 13-2。两个模式寄存器用于选择每个端口 3 引脚的输出类型。仅端口 3 支持准双向模式且系统复位之后它们为准双向模式。

表 13-2. 端口 3 配置设定

P3M0.y	P3M1.y	端口模式
0	0	准双向 (默认)
0	1	推挽输出
1	0	仅输入 (高阻抗输入)
1	1	集电极开漏输出

这里 y=0, 1, 3~5 (端口引脚号)。寄存器 P3M0 和 P3M1 列举了每个引脚的描述。

其它的通用口引脚有四种模式见表 **13–3**。二个模式寄存器位选择每个引脚的输出类型且系统复位之后这些端口引脚为仅输入。

表 13-3. 通用端口配置设定

PxM0.y	PxM1.y	端口模式
0	1	仅输入 (默认)
1	1	带上拉电阻的集电极开漏
0	0	集电极开漏输出
1	0	推挽输出

这里 x= 1, 2, 4, 6 (端口), y=0~7(端口引脚号)。寄存器 PxM0 和 PxM1 列举了每个引脚的描述。

13.2.1. 端口 1 寄存器

P1:端口1寄存器

SFR 页 = 0~F

SFR 地址 = 0x90

复位值= 1111-1111

7	6	5	4	3	2	1	0
P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W							

Bit 7~0: 端口 1 输出数据通过 CPU 置位/清零。

P1M0: 端口1模式寄存器0

SFR 页 = 0~F

SFR 地址 = 0x91

复位值= 0000-0000

				•			
7	6	5	4	3	2	1	0
P1M0.7	P1M0.6	P1M0.5	P1M0.4	P1M0.3	P1M0.2	P1M0.1	P1M0.0
R/W							

P1M1: 端口1模式寄存器1

SFR 页 = **仅 0 页**

SFR 地址 = **0x92**

复位值= 1111-1111

7	6	5	4	3	2	1	0
P1M1.7	P1M1.6	P1M1.5	P1M1.4	P1M1.3	P1M1.2	P1M1.1	P1M1.0
R/W							

13.2.2. 端口 2 寄存器

P2:端口2寄存器

SFR 页 = 0~F

SFR 地址 = 0xA0

复位值= x1x1-x111

	7	6	5	4	3	2	1	0
		P2.6		P2.4		P2.2	P2.1	P2.0
,	W	R/W	W	R/W	W	R/W	R/W	R/W

Bit 7~0: 端口 2 输出数据通过 CPU 置位/清零。

P2MO:端口2模式寄存器0

SFR 页 = **仅 0 页**

SFR 地址 = 0x95

复位值= x0x0-x000

	7	6	5	4	3	2	1	0
		P2M0.6		P2M0.4		P2M0.2	P2M0.1	P2M0.0
Ī	W	R/W	W	R/W	W	R/W	R/W	R/W

P2M1: 端口2模式寄存器1

SFR 页 = **仅1页**

SFR 地址 = **0x92**

复位值= x1x1-x111

7	6	5	4	3	2	1	0
	P2M1.6		P2M1.4		P2M1.2	P2M1.1	P2M1.0
W	R/W	W	R/W	W	R/W	R/W	R/W

13.2.3. 端口 3 寄存器

P3: 端口3寄存器

SFR 页 = 0~F

SFR 地址 = 0xB0

复位值= xx11-1x11

			_				
7	6	5	4	3	2	1	0
		P3.5	P3.4	P3.3		P3.1	P3.0
W	W	R/W	R/W	R/W	W	R/W	R/W

Bit 7~0: 端口 3 输出数据通过 CPU 置位/清零。

P3MO: 端口3模式寄存器0

SFR 页 = 0~F

SFR 地址 = 0xB1

复位值= xx00-0x00

7	6	5	4	3	2	1	0
		P3M0.5	P3M0.4	P3M0.3		P3M0.1	P3M0.0
W	W	R/W	R/W	R/W	W	R/W	R/W

P3M1:端口3模式寄存器1

SFR 页 = 0~F

SFR 地址 = 0xB2

复位值= xx00-0x00

			_				
7	6	5	4	3	2	1	0
		P3M1.5	P3M1.4	P3M1.3		P3M1.1	P3M1.0
W	W	DΛM	D/M	DΛM	W	P/W	P/W

13.2.4. 端口 4 寄存器

P4:端口4寄存器

SFR 页 = 0~F

SFR 地址 = 0xE8

复位值= 1x11-xx11

7	6	5	4	3	2	1	0	
P4.7		P4.5	P4.4			P4.1	P4.0	
R/W	W	R/W	R/W	W	W	R/W	R/W	

Bit 7~0: 端口 4 输出数据通过 CPU 置位/清零。

P4.5 和 P4.4 复用 OCD_SDA 和 OCD_SCL。

P4.7 复用 RST 输入。

P4MO: 端口4模式寄存器0

SFR 页 = 仅 0 页

SFR 地址 = 0xB3

复位值= 0x00-xx00

7	6	5	4	3	2	1	0
P4M0.7		P4M0.5	P4M0.4			P4M0.1	P4M0.0
W	W	R/W	R/W	W	W	R/W	R/W

P4M1: 端口4模式寄存器1

SFR 页 = **仅 2 页**

SFR 地址 = **0x92**

复位值= 1x11-xx11

7	6	5	4	3	2	1	0
P4M1.7		P4M1.5	P4M1.4			P4M1.1	P4M1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

13.2.5. 端口 6 寄存器

P6: 端口 6 寄存器

SFR 页 = **仅1页**

SFR 地址 = **0xF8**

复位值= xxxx-xx11

7	6	5	4	3	2	1	0
						P6.1	P6.0
W	W	W	W	W	W	R/W	R/W

Bit 7~0: 端口 6 输出数据通过 CPU 置位/清零。

P6.1 和 P6.0 复用晶体振荡电路功能, XTAL1 和 XTAL2。

P6MO: 端口6模式寄存器0

SFR 页 = **仅1页**

SFR 地址 = **0xB5**

复位值= xxxx-xx00

7	6	5	4	3	2	1	0
						P6M0.1	P6M0.0
W	W	W	W	W	W	W	R/W

P6M1: 端口6模式寄存器1

SFR 页 = **仅3页**

SFR 地址 = **0x92**

复位值= xxxx-xx11

				· .			
7	6	5	4	3	2	1	0
						P6M1.1	P6M1.0
W	W	W	W	W	W	R/W	R/W

13.2.6. 端口输出驱动力控制寄存器

MA82G5DXX 所有端口引脚(除了 P4.7、P6.1 和 P6.0 之外)都有二种软件可选的驱动力。请参考端口引脚的驱动力信息。

PDRVCO: 端口驱动控制寄存器 0

SFR 页 = **仅 2 页**

SFR 地址 = **0xB4**

复位值= 0000-00xx

7	6	5	4	3	2	1	0
P3DC1	P3DC0	P2DC1	P2DC0	P1DC1	P1DC0		
R/W	R/W	R/W	R/W	R/W	R/W	W	W

Bit 7: P3DC1,端口3高4位输出驱动力控制。

0: P3.7~P3.4输出选择为高驱动力。

1: P3.7~P3.4输出选择为低驱动力。

Bit 6: P3DC0,端口3低4位输出驱动力控制。

0: P3.3~P3.0输出选择为高驱动力。

1: P3.3~P3.0输出选择为低驱动力。

Bit 5: P2DC1, 端口 2 高 4 位输出驱动力控制。

0: P2.7~P2.4输出选择为高驱动力。

1: P2.7~P2.4输出选择为低驱动力。

Bit 4: P2DC0,端口2低4位输出驱动力控制。

0: P2.3~P2.0输出选择为高驱动力。

1: P2.3~P2.0输出选择为低驱动力。

Bit 3: P1DC1, 端口1高4位输出驱动力控制。

0: P1.7~P1.4输出选择为高驱动力。

1: P1.7~P1.4输出选择为低驱动力。

Bit 2: P1DC0,端口1低4位输出驱动力控制。

0: P1.3~P1.0输出选择为高驱动力。

1: P1.3~P1.0输出选择为低驱动力。

Bit 1~0: 保留位。当写 PDRVC0 寄存器时软件必须在这些位写 "0"。

PDRVC1: 端口驱动控制寄存器 1

SFR 页 = **仅3页**

SFR 地址 = **0xB4**

复位值= xxxx-xx00

	_		_				
7	6	5	4	3	2	1	0
						P4DC1	P4DC0
W	W	W	W	W	W	R/W	R/W

Bit 7~2: 保留位。当写 PDRVC1 寄存器时软件必须在这些位写 "0"。

Bit 1: P4DC1,端口4高4位输出驱动力控制。

0: P4.5~P4.4输出选择为高驱动力。

1: P4.5~P4.4输出选择为低驱动力。

Bit 0: P0DC0,端口0低4位输出驱动力控制。

0: P4.1~P4.0输出选择为高驱动力。

1: P4.1~P4.0输出选择为低驱动力。

14. 中断

MA82G5DXX 有 14 个带 4 级优先级的中断源。 这些中断源有几个特殊功能寄存器 SFR 与设定四个级别的中断优先级相关。这些特殊功能寄存器分别是 IE, IP0L, IP0H, EIE1, EIP1L, EIP1H 和 XICON。IP0H(中断优先级 0 高字节)和 EIP1H(扩展中断优先级 1 高字节)寄存器使四个级别的中断结构合理分配。四个级别的中断优先级在处理这些中断源时更加灵活。

14.1. 中断结构

表 14-1列出了所有的中断源。使能位被允许,中断请求时硬件会产生一个中断请求标志,当然,总中断使能位EA (IE寄存器)必须使能。中断请求位能由软件置位或清零,这和硬件置位或清零结果相同。同理,中断可以由软件产生或取消,中断优先级位决定每个中断产生的优先级,多个中断同时产生时依照中断优先级顺序处理。中断向量地址表示中断服务程序的入口地址。

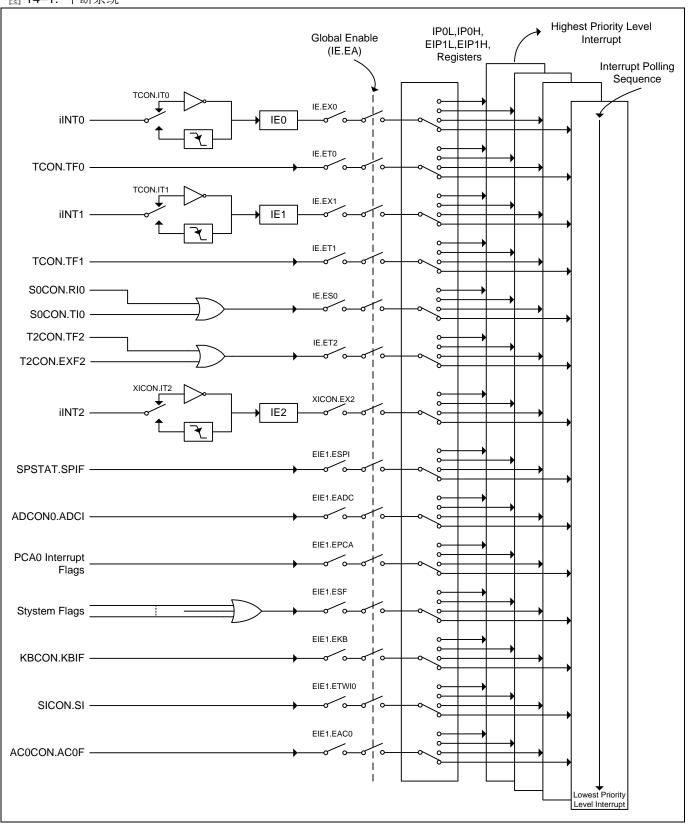

图 14-1 展示了整个中断系统。每一个中断将在下面部分做简单的描述。

表 14-1.中断源

	K · · · · · · · · · · · · · · · · · · ·								
序号	中断名称	使能位	请求位	优先级位	优先级	向量地址			
#1	外部中断 0, nINT0	EX0	IE0	[PX0H, PX0L]	(最高)	0003H			
#2	定时器 0	ET0	TF0	[PT0H, PT0L]		000Bh			
#3	外部中断 1, nINT1	EX1	IE1	[PX1H, PX1L]	•••	0013H			
#4	定时器 1	ET1	TF1	[PT1H, PT1L]		001BH			
#5	串口 0	ES0	RI0, TI0	[PS0H, PS0L]		0023H			
#6	定时器 2	ET2	TF2, EXF2	[PT2H, PT2L]		002Bh			
#7	外部中断 2, nINT2	EX2	IE2	[PX2H, PX2L]		0033H			
#8	SPI	ESPI	SPIF	[PSPIH, PSPIL]		003BH			
#9	ADC	EADC	ADCI	[PADCH, PADCL]		0043h			
#10	PCA0	EPCA	CF, CCFn (n=0~5)	[PPCAH, PPCAL]		004BH			
#11	系统标志	ESF	(Note 1)	[PSFH, PSFL]		0053H			
#12	键盘中断	EKB	KBIF	[PKBH, PKBL]		005BH			
#13	TWI0	ETWI0	SI	[PTWI0H, PTWI0L]		0063H			
#14	模拟比较器 0	EAC0	AC0F	[PAC0H, PAC0L]	(最低)	006BH			

注 1: 系统标志中断标志位包括: PCON1寄存器的WDTF, BOF0, BOF1, RTCF和MCDF; S0CON寄存器的TI0; AUXR2寄存器的STAF和STOF。

图 14-1. 中断系统

14.2. 中断源

表 14-2. 中断源标志

序号	中断名称	请求位	位的位置
#1	外部中断 0,nINT0	IE0	TCON.1
#2	定时器 0	TF0	TCON.5
#3	外部中断 1,nINT1	IE1	TCON.3
#4	定时器 1	TF1	TCON.7
#5	串行口 0	RI0, TI0	S0CON.0 S0CON.1
#6	定时器 2	TF2, EXF2	T2CON.7 T2CON.6
#7	外部中断 2,nINT2	IE2	XICON.1
#8	SPI	SPIF	SPSTAT.7
#9	ADC	ADCI	ADCON0.4
#10	BCA0	CF, CCFn	CCON.7
	PCA0	(n=0~5)	CCON.5~0
		WDTF,	PCON1.0
		BOF1,	PCON1.1
		BOF0,	PCON1.2
#11		RTCF,	PCON1.4
#11	大利和西	MCDF,	PCON1.5
		STAF,	AUXR2.7
		STOF,	AUXR2.6
		(TI0)	S0CON.1
#12	键盘中断	KBIF	KBCON.0
#13	TWI0	SI	SICON.3
#14	模拟比较器 0	AC0F	AC0CON.4

通过 TCON 寄存器的位 ITO 和 IT1 及 XICON 寄存器的位 IT2 可以设定外部中断 0(INT0)、外部中断 1(INT1)和外部中断 2(nINT2)为电平触发或边沿触发。实际产生这些中断的标志位是 TCON 的 IE0 和 IE1,XICON 的 IE2。外部中断发生后,*只有中断是边沿触发时*,进入中断服务程序硬件将清除这个产生的标志位,那么控制这些请求位的是外部请求源,而不是片内硬件。

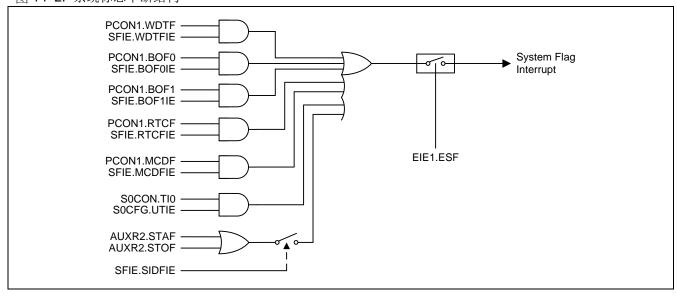
TF0 和 TF1 产生定时器 0 和定时器 1 中断,多数情况下这两个标志位由它们对应的定时/计数寄存器翻转事件置位。定时器中断发生后,进入中断服务程序,硬件将清除这个产生的标志位。

串口 0 中断由位 RIO 和位 TIO 的逻辑或产生。执行中断服务程序后不会被硬件清除须由软件清零,可以在中断服务程序中查询 RIO 和 TIO 判断是接收中断还是发送中断。

定时器/计数器 2 中断由两个标志位 TF2 或 EXF2 产生。跟串行口一样,执行中断服务程序后不会被硬件清除须由软件清零,可以在中断服务程序中查询 TF2 和 EXF2 判断执行哪个中断服务子程序。

SPI 中断由寄存器 SPSTAT 里的 SPIF 位产生,SPI 引擎完成一个 SPI 传送后置该标志位。该标志位在执行中断服 务程序后不会被硬件清除,须由软件清除。

ADC 中断由寄存器 ADCON0 里的 ADCI 位产生。该标志位在执行中断服务程序后不会被硬件清除,须由软件清除。


PCA0 中断由寄存器 CCON 里的 CF, CCF5, CCF4, CCF3, CCF2, CCF1 和 CCF0 位产生。这些标志位在执行中断服务程序后不会被硬件清除。中断服务程序应当轮询这些标志位去判断是哪一个请求服务,并且在软件里清除这些中断标志位。

系统标志中断由 MCDF, RTCF, BOF1, BOF0, WDTF, TIO, STAF 和 STOF 位产生。STAF 和 STOF 存在寄存器 AUXR2 里,由串行接口监测置位这两个标志位。串口 TI 标志可以通过置位 UTIE 选择与系统标志中断共享中断向量。复位标志存在于寄存器 PCON1 里。MCDF 由激活的时钟丢失监测置位。RTC 计数器溢出置位 RTCF。片内

低电压侦测器(BOD1 和 BOD0)监测到低电压时置位 BOF1 和 BOF0。看门狗溢出置位 WDTF。这些标志位在执行中断服务程序后不会被硬件清除。中断服务程序应当轮询这些标志位去判断是哪一个请求服务,并且在软件里清除这些中断标志位。

图 14-2 展示了系统标志中断结构

图 14-2. 系统标志中断结构

键盘中断由 KBCON 寄存器的位 KBIF 来产生,KBIF 由键盘模块遇到键输入来置位。执行中断服务程序后不会被硬件清除。

TWIO 中断由 SICON 寄存器的位 SIF 来产生,SIF 由 TWIO 引擎检测到一个新的总线状态来置位。执行中断服务程序后不会被硬件清除。

AC0 中断由 AC0CON 寄存器的位 AC0F 来产生,由检测到 AC0OUT 上升沿,下降沿或者电平变化而置标志位。该标志位在执行中断服务程序后不会被硬件清除。

所有这些中断标志都能被软件置位或清零,跟硬件置位或清零的结果是样的。也就是说,中断能通过软件来产生也可以软件来取消。

14.3. 中断使能

表 14-3. 中断使能

序号	中断名称	使能位	位的位置
#1	外部中断 0,nINT0	EX0	IE.0
#2	定时器 0	ET0	IE.1
#3	外部中断 1,nINT1	EX1	IE.2
#4	定时器 1	ET1	IE.3
#5	串行口 0	ES0	IE.4
#6	定时器 2	ET2	IE.5
#7	外部中断 2,nINT2	EX2	XICON.2
#8	SPI	ESPI	EIE1.0
#9	ADC	EADC	EIE1.1
#10	PCA	EPCA	EIE1.2
#11	系统标志	ESF	EIE1.3
#12	键盘中断	EKB	EIE1.5
#13	TWI0	ETWI0	EIE1.6
#14	模拟比较器 0	EAC0	EIE1.7

MA82G5DXX 有 14 个中断源可用。每个中断源可以通过 IE、EIE1 和 XICON 寄存器的中断使能位置位或清零各自中断使能或禁止。IE 也提供一个全局中断使能位(EA),此位清零可以立刻禁止所有中断。如果此位置位中断由相应的中断使能位各自使能或禁止。如果此位清零则所有中断被禁止。

14.4. 中断优先级

服务中断的优先级除了有 4 个级别比 80C51 多 2 个之外跟 80C51 一样。优先级位决定每个中断的优先级(见表14-1)。IP0L、IP0H、EIP1 和 EIP1H 跟 4 个级别优先级中断相关。表 14-4 显示位的值和优先级的关系。

表 14-4.中断优先级

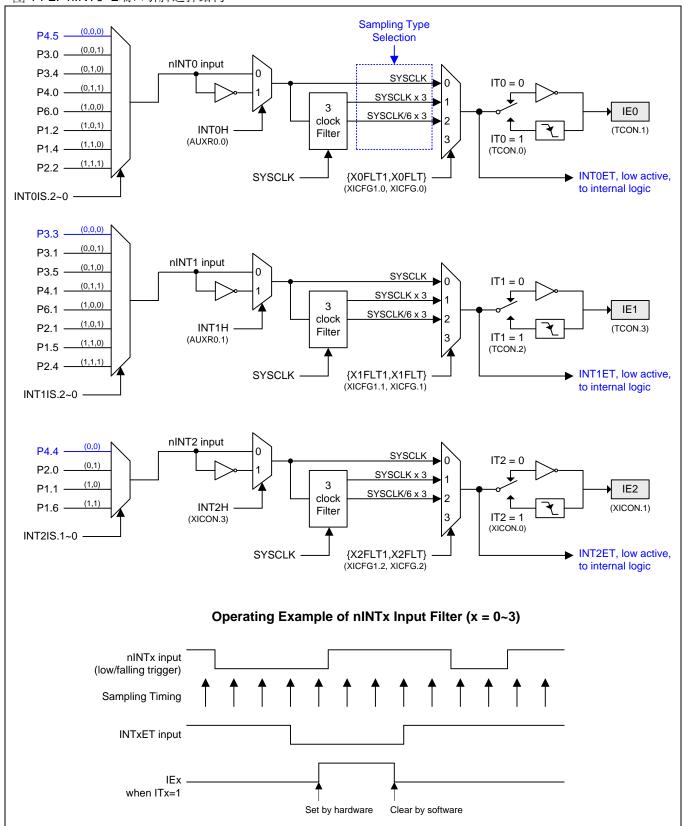
{IPnH.x , IPnL.x}	优先级
11	1 (最高)
10	2
01	3
00	4

每个中断源都有两个中断优先级相关位。一个位在 IPnH 寄存器另一个在 IPnL 寄存器。高优先级中断不会被低优先级中断打断。如果两个不同优先级的中断请求同时出现,较高优先级将被执行。如果相同优先级的中断请求同时出现,则按照内部优先级排序执行。表 14-2 显示了同一优先级的内部优先级排序和中断向量地址。

14.5. 中断处理

每一个系统时钟周期将采样每一个中断标志。在下一个系统时钟采样成功。如果其中一个标志在第一个周期置位,第二个周期找到并且只要没有被下列条件阻止则中断系统产生一个硬件调用(LCALL)相应的中断服务程序。

阻止条件:


- 进行中已经有一个同级或更高级优先级的中断。
- 进行中当前周期(中断获得周期)不是指令执行结束周期。
- 指令进行是 RETI 或 IE、IP0L、IP0H、EIE1、EIP1L、EIP1H 和 XICON 寄存器的写操作。

上述三个条件中的任意一个将阻止硬件中断调用(LCALL)去中断服务程序。条件 2 确保中断进入任意一个服务程序之前指令执行完毕。条件 3 确保如果在 RETI 执行或 IE 或 IP 的任何访问之后,进入中断服务程序之前至少一个或更多指令被执行。

14.6. nINTx 输入源选择和输入滤波器 (x=0~2)

MA82G5DXX 提供灵活的 nINT0、nINT1 和 nINT2 输入源选择去共享端口引脚输入。

图 14-2. nINT0~2端口引脚选择结构

14.7. 中断寄存器

TCON: 定时器/计数器控制寄存器

SFR 页 = 0~F

SFR 地址 = 0x88

复位值= 0000-0000

	2. –						
7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 3: IE1, 外部中断 1 请求标志。

0: 如果是边沿触发的中断则在进入中断向量后硬件清零。

1: 外部中断 1 由边沿或电平触发(由 IT1 设置)硬件置位。

Bit 2: IT1, 外部中断 1 (nINT1)类型控制位。

0: 软件清零选择低电平触发外部中断 1(nINT1)。如果 INT1H(AUXR0.1)置位,则高电平触发外部中断 1(nINT1)。

1: 软件置位选择下降沿触发外部中断 1(nINT1)。如果 INT1H(AUXR0.1)置位,则上升沿触发外部中断 1(nINT1)。

Bit 1: IE0, 外部中断 0(nINT0)请求标志。

0: 如果是边沿触发的中断则在进入中断向量后硬件清零。

1: 外部中断 0 (nINTO)由边沿或电平触发(由 ITO 设置)硬件置位。

Bit 0: IT0, 外部中断 0 (nINT0)类型控制位。

0: 软件清零选择低电平触发外部中断 0(nINT0)。如果 INT0H(AUXR0.0)置位,则高电平触发外部中断 0(nINT0)。

1: 软件置位选择下降沿触发外部中断 O(nINT0)。如果 INT0H(AUXR0.0)置位,则上升沿触发外部中断 O(nINT0)。

IE: 中断使能寄存器

SFR 页 = 0~F

SFR 地址

= 0xA8

复位值= 0x00-0000

				<u> </u>			
7	6	5	4	3	2	1	0
EA		ET2	ES0	ET1	EX1	ET0	EX0
R/W	W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: EA, 总中断使能位。

0: 禁止所有中断。

1: 使能所有中断。

Bit 6: 保留位。当 IE 写入时,此位软件必须写"0"。

Bit 5: ET2, 定时器 2 中断使能。

0: 禁止定时器 2 中断。

1: 使能定时器 2 中断。

Bit 4: ES, 串行口 0 中断(UART0)使能。

0: 禁止串行口 0 中断。

1: 使能串行口 0 中断。

Bit 3: ET1, 定时器 1 中断使能。

0: 禁止定时器 1 中断。

1: 使能定时器 1 中断。

Bit 2: EX1, 外部中断 1(nINT1)使能。

0: 禁止外部中断 1。

1: 使能外部中断 1。

Bit 1: ET0, 定时器 0 中断使能。.

- 0: 禁止定时器 0 中断。
- 1: 使能定时器 0 中断。

Bit 0: EX0, 外部中断 0(nINT0)使能。

- 0: 禁止外部中断 0。
- 1: 使能外部中断 0。

AUXRO: 辅助寄存器 0

SFR 页 = 0~F

SFR 地址

= 0xA1

复位值= 000x-xx00

OI IC PORE	- 07/11	支证值— 000% XX00					
7	6	5	4	3	2	1	0
P600C1	P600C0	P60FD				INT1H	INT0H
R/W	R/W	R/W	W	W	W	R/W	R/W

Bit 1: INT1H, INT1 高电平/上升沿触发使能。

- 0: 保留 INT1 在选择的端口引脚上低电平或下降沿触发。
- 1: 设置 INT1 在选择的端口引脚上高电平或上升沿触发。

Bit 0: INT0H, INT0 高电平/上升沿触发使能。

- 0: 保留 INT0 在选择的端口引脚上低电平或下降沿触发。
- 1: 设置 INT0 在选择的端口引脚上高电平或上升沿触发。

XICON: 扩展中断控制寄存器

SFR 页 = 0~F

SFR 地址

= 0xC0

复位值= xxxx-0000

7	6	5	4	3	2	1	0
				INT2H	EX2	IE2	IT2
W	W	W	W	R/W	R/W	R/W	R/W

Bit 7~4: 保留位。当 XICON 写入时,这些位软件必须写"0"。

Bit 3: INT2H, INT2 高电平/上升沿触发使能。

- 0: 保留 INT2 在选择的端口引脚上低电平或下降沿触发。
- 1: 设置 INT2 在选择的端口引脚上高电平或上升沿触发。

Bit 2: EX2, 外部中断 2(nINT2)使能。

- 0:禁止外部中断 2。
- 1: 使能外部中断 2。

当 CPU 在空闲或掉电模式,如果 EX2 使能 nINT2 事件触发 IE2 则可以唤醒 CPU;如果 EX2 禁止,nINT2 事件触发 IE2 则不能唤醒 CPU。

Bit 1: IE2, 外部中断 2(nINT2)请求标志。

- 0: 如果是边沿触发的中断则在进入中断向量后硬件清零。也可以软件清零。
- 1: 侦测到外部中断边沿硬件置位。也可以软件置位。

Bit 0: IT2, 外部中断 2 (nINT2)类型控制位。

- 0: 软件清零选择低电平触发外部中断 2。如果 INT2H 置位,则高电平触发外部中断 2。
- 1: 软件置位选择下降沿触发外部中断 2。如果 INT2H 置位,则上升沿触发外部中断 2。

IPOL: 中断优先级 0 低字节寄存器

SFR 页 = 0~F

SFR 地址 = 0xB8

复位值= x000-0000

			Z-E Mills				
7	6	5	4	3	2	1	0
	PX2L	PT2L	PSL	PT1L	PX1L	PT0L	PX0L

W R/W R/W R/W R/W R/W R/W

Bit 7: 保留位。当 IPOL 写入时,这位软件必须写"0"。

Bit 6: PX2L,外部中断 2 中断优先级低位。

Bit 5: PT2L, 定时器 2 中断优先级低位。

Bit 4: PSL, 串行口 0 (UARTO)中断优先级低位。

Bit 3: PT1L, 定时器 1 中断优先级低位。

Bit 2: PX1L,外部中断 1 中断优先级低位。

Bit 1: PT0L, 定时器 0 中断优先级低位。

Bit 0: PX0L,外部中断 0 中断优先级低位。

IPOH: 中断优先级 0 高字节寄存器

SFR 页 = 0~F

SFR 地址 = 0xB7

复位值= x000-0000

7	6	5	4	3	2	1	0
	PX2H	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: 保留位。当 IPOH 写入时,这位软件必须写"0"。

Bit 6: PX2H, 外部中断 2 中断优先级高位。

Bit 5: PT2H, 定时器 2 中断优先级高位。

Bit 4: PSH, 串行口 0(UART0)中断优先级高位。

Bit 3: PT1H, 定时器 1 中断优先级高位。

Bit 2: PX1H,外部中断 1 中断优先级高位。

Bit 1: PT0H, 定时器 0 中断优先级高位。

Bit 0: PX0H,外部中断 0 中断优先级高位。

EIE1: 扩展中断使能 1 寄存器

SFR 页 = 0~F

SFR 地址

= 0xAD

复位值= 000x-0000

7	6	5	4	3	2	1	0
EAC0	ETWI0	EKB		ESF	EPCA	EADC	ESPI
R/W	R/W	R/W	W	R/W	R/W	R/W	R/W

Bit 7: EACO, 模拟比较器 0 (ACO)中断使能。

0: 禁止 AC0 中断。

1: 使能 AC0 中断

Bit 6: ETWIO, TWIO 中断使能。

0: 禁止 TWI0 中断。

1: 使能 TWI0 中断。

Bit 5: EKBI, 键盘中断使能。

0: 当键盘控制模块的 KBCON.KBIF 置位时禁止中断。

1: 当键盘控制模块的 KBCON.KBIF 置位时使能中断。

Bit 4: 保留位。当 EIE1 写入时,这位软件必须写"0"。

Bit 3: ESF, 系统标志中断使能。

0: 当 PCON1 的位{ MCDF, RTCF,BOF1,BOF0,WDTF }置位,或 AUXR3 的位{STAF,STOF}置位,或 TI0 与 UTIE 一起置位时禁止中断。

1: 当 PCON1 的位{ MCDF, RTCF,BOF1,BOF0,WDTF }置位,或 AUXR3 的位{STAF,STOF}置位,或 TI0 与 UTIE 一起相关联的系统标志置位时使能中断。

Bit 2: EPCA, PCA0 中断使能。

0: 禁止 PCA0 中断。

1: 使能 PCA0 中断。

Bit 1: EADC, ADC 中断使能。

0: 当 ADC 模块的 ADCON0.ADCI 置位禁止中断。

1: 当 ADC 模块的 ADCON0.ADCI 置位使能中断。

Bit 0: ESPI, SPI 中断使能。

0: 当 SPI 模块的 SPSTAT.SPIF 置位禁止中断。

1: 当 SPI 模块的 SPSTAT.SPIF 置位使能中断。

EIP1L:扩展中断优先级 1 低字节寄存器

SFR 页 = 0~F

SFR 地址 = 0xAE

复位值=000x-0000

7	6	5	4	3	2	1	0
PAC0L	PTWI0L	PKBL		PSFL	PPCAL	PADCL	PSPIL
R/W	R/W	R/W	W	R/W	R/W	R/W	R/W

Bit 7: PACOL, ACO 中断优先级低位。

Bit 6: PTWIOL, TWIO 中断优先级低位。

Bit 5: PKBL, 键盘中断优先级低位。

Bit 4: 保留位。当 EIP1L 写入时,这位软件必须写"0"。

Bit 3: PSFL,系统标志中断优先级低位。

Bit 2: PPCAL, PCA0 中断优先级低位。

Bit 1: PADCL, ADC 中断优先级低位。

Bit 0: PSPIL, SPI 中断优先级低位。

EIP1H: 扩展中断优先级 1 高字节寄存器

SFR 页 = 0~F

SFR 地址 = 0xAF

复位值= 000x-0000

7	6	5	4	3	2	1	0
PAC0H	PTWI0H	PKBH		PSFH	PPCAH	PADCH	PSPIH
R/W	R/W	R/W	W	R/W	R/W	R/W	R/W

Bit 7: PAC0H, AC0 中断优先级高位。

Bit 6: PTWI0H, TWI0 中断优先级高位。

Bit 5: PKBH, 键盘中断优先级高位。

Bit 7: 保留位。当 EIP1H 写入时,这位软件必须写"0"。

Bit 3: PSFH,系统标志中断优先级高位。

Bit 2: PPCAH, PCAO 中断优先级高位。

Bit 1: PADCH, ADC 中断优先级高位。

Bit 0: PSPIH, SPI 中断优先级高位。

XICFG: 扩展中断配置寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0xC1 复位值= 0000-x000

7	6	5	4	3	2	1	0
INT1IS.1	INT1IS.0	INT0IS.1	INT0IS.0		X2FLT	X1FLT	X0FLT
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7~6: INT1IS.1~0, 由 INT1IS.2 决定的 nINT1 输入引脚选择位。如下表。

от птинон од ш	111111111111111111111111111111111111111
INT1IS.2~0	nINT1 输入引脚选择
000	P3.3
001	P3.1

010	P3.5
011	P4.1
100	P6.1
101	P2.1
110	P1.5
111	P2.4

Bit 5~4: INTOIS.1~0,由 INTOIS.2 决定的 nINTO 输入引脚选择位。如下表。

INT0IS.2~0	nINTO 输入引脚选择
000	P4.5
001	P3.0
010	P3.4
011	P4.0
100	P6.0
101	P1.2
110	P1.4
111	P2.2

Bit 3: 保留位。当 XICFG 写入时,这位软件必须写"0"。

Bit 2: X2FLT, nINT2 滤波模式控制。和 X2FLT1 (XICFG1.2)一起选择 nINT2 的输入滤波模式。

X2FLT1, X2FLT	nINT2 输入滤波模式
00	禁止
01	SYSCLK x 3
10	SYSCLK/6 x 3
11	Reserved

Bit 1: X1FLT, nINT1 滤波模式控制。和 X1FLT1 (XICFG1.1)一起选择 nINT1 的输入滤波模式。

X1FLT1, X1FLT	nINT1 输入滤波模式
00	禁止
01	SYSCLK x 3
10	SYSCLK/6 x 3
11	Reserved

Bit 0: X0FLT, nINT0 滤波模式控制。和 X0FLT1 (XICFG1.0)一起选择 nINT0 的输入滤波模式。

X0FLT1, X0FLT	nINTO 输入滤波模式
00	禁止
01	SYSCLK x 3
10	SYSCLK/6 x 3
11	Reserved

XICFG1: 扩展中断配置 1 寄存器

SFR 页 = **仅1页**

SFR 地址 = 0xC1

复位值= 0000-x000

7	6	5	4	3	2	1	0
INT1IS.2	INT0IS.2	INT2IS.1	INT2IS.0		X2FLT1	X1FLT1	X0FLT1
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7: INT1IS2, 与 INT1IS.1~0 一起构成 nINT1 输入端口引脚选择位。

Bit 6: INT0IS2,与 INT0IS.1~0 一起构成 nINT0 输入端口引脚选择位。

Bit 5~4: INT2IS1~0, nINT2 的输入引脚选择位。如下表。

INT2IS.1~0	nINT2 输入引脚选择
00	P4.4
01	P2.0

10	P1.1
11	P1.6

- Bit 3: 保留位。当 XICFG1 写入时,这位软件必须写"0"。
- Bit 2: X2FLT1, nINT2 滤波模式控制。和 X2FLT (XICFG.2)一起选择 nINT2 的输入滤波模式。参考寄存器 XICFG 有关 nINT2 输入滤波模式定义的描述。
- Bit 1: X1FLT1, nINT1 滤波模式控制。和 X1FLT (XICFG.1)一起选择 nINT1 的输入滤波模式。参考寄存器 XICFG 有关 nINT1 输入滤波模式定义的描述。
- Bit 0: X0FLT1, nINT0 滤波模式控制。和 X0FLT (XICFG.0)一起选择 nINT0 的输入滤波模式。参考寄存器 XICFG 有关 nINT0 输入滤波模式定义的描述。

SFIE: 系统标志中断使能寄存器

SFR 页 = 0~F

SFR 地址 = 0x8E

复位值= 0110-x000

7	6	5	4	3	2	1	0
SIDFIE	MCDRE	MCDFIE	RTCFIE		BOF1IE	BOF0IE	WDTFIE
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7: SIDFIE, 串行接口侦测标志中断使能。

0: 禁止 SIDF(STAF 或 STOF) 中断。

1: 使能 SIDF(STAF 或 STOF) 中断共享系统标志中断。

Bit 6: MCDRE, 使能丢失时钟侦测事件触发系统复位。

0: 禁止 MCD 事件触发系统复位。

1: 使能 MCD 事件触发系统复位。

Bit 5: MCDFIE, 使能 MCDF (PCON1.5) 中断。

0: 禁止 MCDF 中断。

1: 使能 MCD 模块并且使能 MCDF 中断。

Bit 4: RTCFIE, 使能 RTCF (PCON1.4) 中断。

0: 禁止 RTCF 中断。

1: 使能 RTCF 中断。

Bit 3: 保留位。当 SFIE 写入时,这位软件必须写"0"。

Bit 2: BOF1IE, 使能 BOF1 (PCON1.2)中断。

0: 禁止 BOF1 中断。

1: 使能 BOF1 中断。

Bit 1: BOF0IE, 使能 BOF0 (PCON1.1)中断。

0: 禁止 BOF0 中断。

1: 使能 BOF0 中断。

Bit 0: WDTFIE, 使能 WDTF (PCON1.0)中断。

0: 禁止 WDTF 中断。

1: 使能 WDTF 中断。

PCON1: 电源控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0x97

POR = 0010-x000

7	6	5	4	3	2	1	0
SWRF	EXRF	MCDF	RTCF		BOF1	BOF0	WDTF
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7: SWRF, 软件复位标志。

0: 必须由软件写"1"才能清零。

1: 如果一个软件复位发生,则此位硬件置位。

Bit 6: EXRF, 外部复位标志。

0: 必须由软件写"1" 才能清零。

1: 如果一个外部复位发生,则此位硬件置位。

Bit 5: MCDF, 丢失始终侦测标志。

0: 必须由软件写"1" 才能清零。软件写"0"无操作。

1: 这位仅在硬件侦测到一个丢失时钟事件置位。写"1" 将清零 MCDF。丢失时钟侦测模块由 MCDFIE 使能。如果 MCDFIE 清零,丢失时钟侦测模块无效。一旦一个丢失时钟事件发生,在再次从 OSCin 切换到 XTAL 之前,软件必须清零 MCDF。

Bit 4: RTCF, RTC 溢出标志。

0: 必须由软件写"1"才能清零。软件写"0"无操作。

1: 当 RTCCT 溢出时,硬件置位。写"1" 将清零。

Bit 3: 保留位。当 PCON1 写入时,这位软件必须写"0"。

Bit 2: BOF1, 低电压侦测标志 1。

0: 必须由软件写"1"才能清零。

1: 如果低电压侦测 1 侦测到工作电压匹配侦测电平(4.2V/3.7/2.4/2.0),则此位硬件置位。

Bit 1: BOF1, 低电压侦测标志 0。

0: 必须由软件写"1" 才能清零。

1: 如果低电压侦测 0 侦测到工作电压匹配侦测电平(2.2V),则此位硬件置位。

Bit 0: WDTF, WDT 溢出标志。

0: 必须由软件写"1"才能清零。

1: 如果一个 WDT 溢出发生,则此位硬件置位。

AUXR2: 辅助寄存器 2

SFR 页 = 仅 0 页

SFR 地址 = 0xA3

复位值= 0000-0000

7	6	5	4	3	2	1	0
STAF	STOF			T1X12	T0X12	T1CKOE	T0CKOE
R/W	R/W	W	W	R/W	R/W	R/W	R/W

Bit 7: STAF, STWI (SID)的起始标志侦测。

0: 软件写"0"清零。

1: 硬件置位,表示在 STWI 总线上发生了一个**起始**动作。

Bit 6: STOF, STWI (SID)的停止标志侦测。

0: 软件写"0"清零。

1: 硬件置位,表示在 STWI 总线上发生了一个**停止**动作。

15. 定时器/计数器

MA82G5DXX 有 3 个 16 位定时器/计数器: 定时器 0, 定时器 1 和定时器 2。所有这些操作既可配置为定时器或事件记数器。

定时器功能,定时器预分频是每 12个时钟周期加 1。换句话说,定时器是标准 C51 机器周期计数一次。AUXR2.T0X12, AUXR2.T1X12 和 T2MOD.T2X12 可以设置定时器 0/1/2 每个时钟周期计数一次。这样就是标准 C51 定时器 12 倍的速度。结合 T0C/T、T0XL 和 T0X12 定时器 0 时钟输入可选择其它的预分频。

计数器功能,负跳变时寄存器加1,根据相应的外部输入引脚T0,T1或T2。在这些功能中,每个定时器时钟周期对外部输入信号进行采样。当采样信号出现一个高电平接着一个低电平,计数加1。当检测到跳变时,新计数值在这一时钟周期后的下一周期结束时出现在寄存器中。

15.1. 定时器 0 和定时器 1

15.1.1. 定时器 0/1 模式 0

在模式 0,定时器寄存器配置为一个 PWM 产生器。计数器所有位从全 1 翻转到全 0,置位定时器中断标志位 TFx。当 TRx=1 且 GATE=0 或 INTx=1,定时器使能输入计数。定时器 0 和 1 的模式 0 操作是一样的。定时器 0/1 的 PWM 功能结构图见图 15–1 和图 15–2。

图 15-1. 定时器 0 模式 0 结构

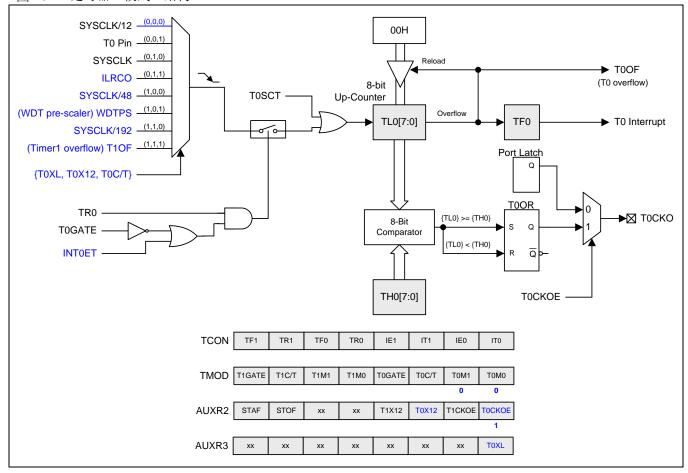
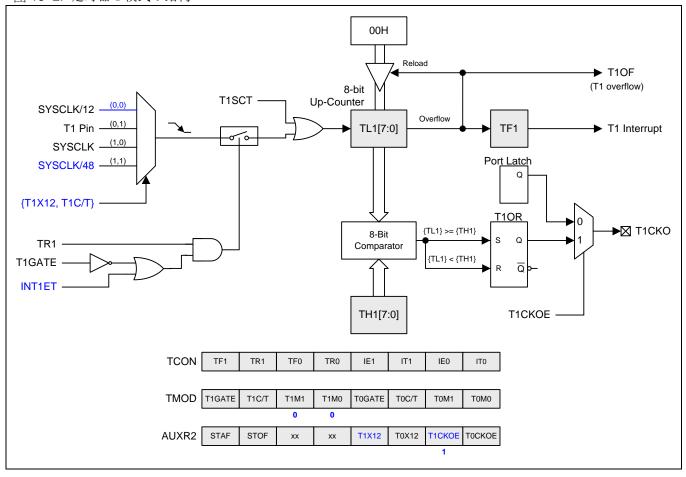



图 15-2. 定时器 1 模式 0 结构

15.1.2. 定时器 0/1 模式 1

在模式 1 定时器 0/1 配置成一个 16 位定时器或计数器。GATE,INTx 和 TRx 的功能和模式 0 一样。定时器 0/1 模式 1的结构图见图 15-3 和图 15-4。

图 15-3. 定时器 0 模式 1 结构

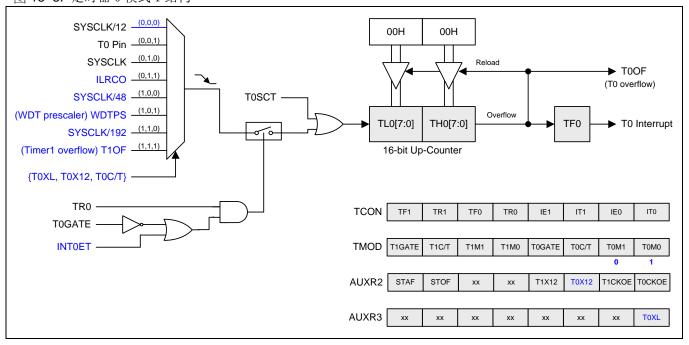
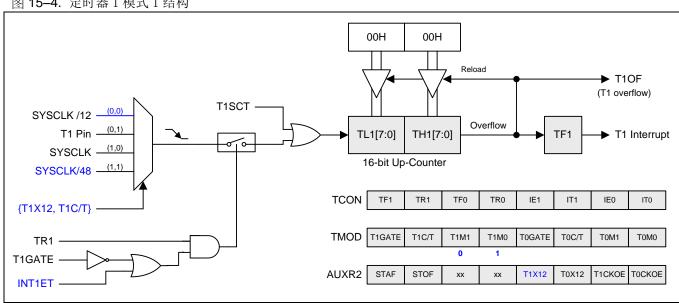
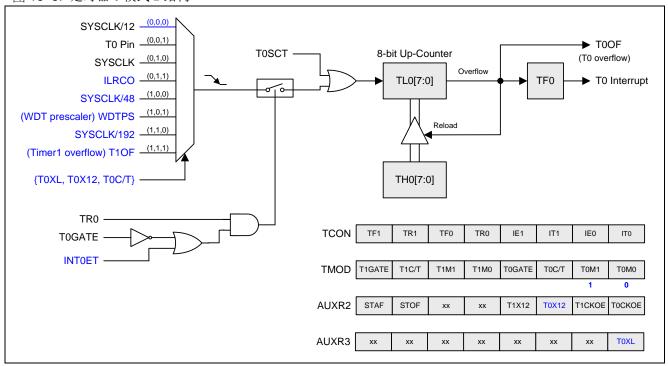
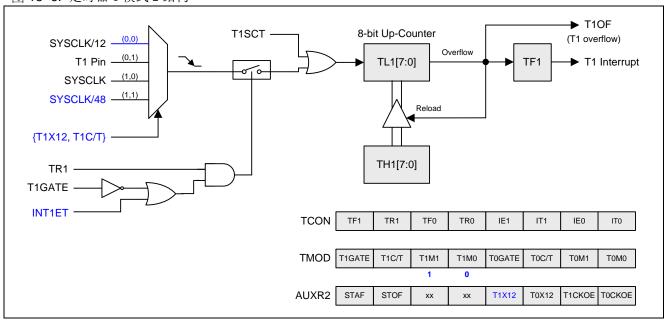



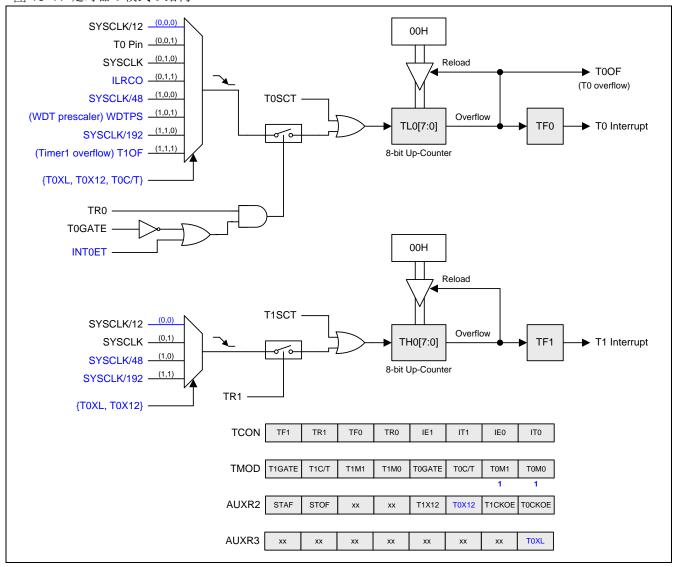
图 15-4. 定时器 1 模式 1 结构

15.1.3. 定时器 0/1 模式 2

模式 2 配置定时器寄存器为一个自动加载的 8 位计数器(TLx)。TLx 溢出不仅置位 TFx,而且也将 THx 的内容加载到 TLx,THx 内容由软件预置,加载不会改变 THx 的值。定时器 0 和 1 的模式 2 操作是一样的。定时器 0/1 模式 2 的结构图见图 15-5 和图 15-6。

图 15-5. 定时器 0 模式 2 结构


图 15-6. 定时器 1 模式 2 结构

15.1.4. 定时器 0/1 模式 3

定时器 1 在模式 3 保持计数值,效果和设置 TR1=1 一样。定时器 0 在模式 3 建立 TL0 和 TH0 两个独立的计数器。 TL0 使用定时器 0 控制位: C/T、GATE、TR0、/INT0 和 TF0。TH0 锁定为定时器功能(每个机器周期计数)且接替定时器 1 来使用 TR1 和 TF1,因从 TH0 控制定时器 1 中断。定时器 0 模式 3 的结构图见图 15-7。

图 15-7. 定时器 0 模式 3 结构

15.1.5. 定时器 0/1 可编程时钟输出

定时器 0 和 1 有一个时钟输出模式(当 TxCKOE=1)。此模式下,定时器 0 或 1 操作在 8 位自动重载占空比为 1:1 的可编程时钟发生器。产生的时钟在 P3.4 (T0CKO)和 P3.5 (T1CKO)独立输出。8 位定时器(TL0)每个输入时钟加一,在定时器 0 模块。8 位定时器(TL1)每个输入时钟加一,在定时器 1 模块。定时器从载入值到溢出重复计数。一旦溢出,(TH0,TH1)的值被载入到(TL0, TL1)同时计数。图 15-8 和图 15-9 给出了定时器 0/1 时钟输出频率公式。图 15-10 和图 15-11 给出了定时器 0/1 时钟输出结构。

图 15-8. 定时器 0 时钟输出公式

图 15-9. 定时器 1 时钟输出公式

注意:

- (1)定时器 0/1 溢出标志 TF0/1, 在定时器 0/1 溢出时置位。
- (2)当 SYSCLK=12MHz 及选择 SYSCLK/12 为定时器 0/1 的时钟源,定时器 0/1 可编程输出频率范围从 1.95KHz 到 500KHz。
- (3)当 SYSCLK=12MHz 及选择 SYSCLK 为定时器 0/1 的时钟源,定时器 0/1 可编程输出频率范围从 23.44KHz 到 6MHz。

图 15-10. 定时器 0 时钟输出模式

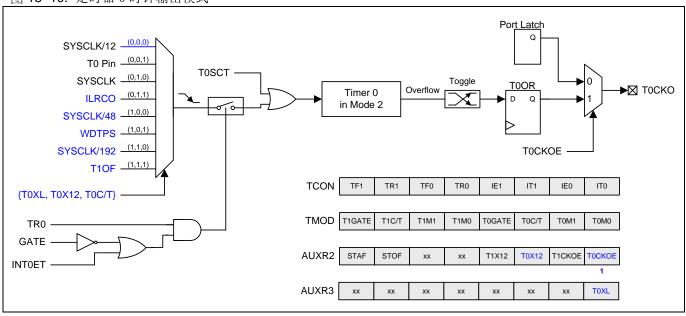



图 15-11. 定时器 1 时钟输出模式

定时器 0/1 时钟输出模式如何编程

- 选择定时器 0/1 的时钟源。
- ·从公式计算出8位自动加载值并输入到TH0/TH1寄存器。
- ·在 TL0/TL1 寄存器输入一个跟自动加载值相同 8 位初始值。
- AUXR2 寄存器的 TOCKOE/T1CKOE 置位。
- 通过设置 TCON 寄存器的 TR0/TR1 位启动定时器 0/1。

时钟输出模式,定时器 0/1 溢出不会中断。这跟定时器 1 被用作波特率发生器相似。定时器 1 即可用作波特率发生器也可同时用作时钟发生器。注意,波特率和时钟输出频率都是相同的定时器 1 溢出率。因此在这类应用中软件通常禁止定时器 0/1 中断。

15.1.6. 定时器 0/1 寄存器

TCON: 定时器/计数器控制寄存器

SFR 页 = 0~F

SFR 地址 = 0x88

复位值=0000-0000

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W							

Bit 7: TF1, 定时器 1 溢出标志。

0: 处理器进入中断向量程序由硬件清零,或软件清零。

1: 定时器/计数器 1 溢出时由硬件置位,或软件置位。

Bit 6: TR1, 定时器 1 运行控制位。

0: 关闭定时器/计数器 1。

1: 开启定时器/计数器 1。

Bit 5: TF0, 定时器 0 溢出标志。

0: 处理器进入中断向量程序由硬件清零,或软件清零。

1: 定时器/计数器 0 溢出时由硬件置位,或软件置位。

Bit 4: TR0, 定时器 0 运行控制位。

0: 关闭定时器/计数器 0。

1: 开启定时器/计数器 0。

TMOD: 定时器/计数器模式控制寄存器

SFR 页 = 0~F

SFR 地址

= 0x89

复位值=0000-0000

7	6	5	4	3	2	1	0
T1GATE	T1C/T	T1M1	T1M0	T0GATE	T0C/T	T0M1	T0M0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
←	Time	er1		←	Tim	ner0	

Bit 7: T1Gate, 定时器 1 门控制位。

0: 禁止定时器 1 门控制。

1: 使能定时器 1 门控制。当门控制位置位时,只有在/INT1 引脚是高电平且 TR1 控制位置位时,定时器/计数器 1 使能。

Bit 6: T1C/T, 定时器 1 时钟源选择位。控制着 4 种时钟源的定时器 1 作为定时器或计数器。详情参见 *AUXR2.T1X12* 的描述。

Bit 5~4: 定时 1 操作模式选择。

T1M1~0	定时 1 操作模式
00	定时器 1 的 8 位 PWM 产生器
01	定时器 1 工作在 16 位定时器/计数器模式
10	定时器 1 工作在 8 位自动装载定时器/计数器模式
11	(定时器 1) 定时器/计数器停止

Bit 3: T0Gate, 定时器 0 门控制位。

0: 禁止定时器 0 门控制。

1: 使能定时器 0 门控制。当门控制位置位时,只有在/INT0 引脚是高电平且 TR0 控制位置位时,定时器/计数器 0 使能。

Bit 6: TOC/T, 定时器 0 时钟源选择位。控制着 8 种时钟源的定时器 1 作为定时器或计数器。详情参见 *AUXR2.TOX12* 的描述。

Bit 1~0: 定时 0 操作模式选择。

T0M1~0	定时 0 操作模式
00	定时器 0 的 8 位 PWM 产生器
01	定时器 0 工作在 16 位定时器/计数器模式
10	定时器 0 工作在 8 位自动装载定时器/计数器模式
11	TL0 是 8 位定时器/计数器, TH0 锁定 8 位定时器

TLO: 定时器 0 低字节寄存器

SFR 页 = 0~F

SFR 地址 = 0x8A

复位值= 0000-0000

			-	~ III			
7	6	5	4	3	2	1	0
TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0
R/W							

THO: 定时器 0 高字节寄存器

SFR 页 = 0~F

SFR 地址 = 0x8C

复位值= 0000-0000

7	6	5	4	3	2	1	0
TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0
R/W							

TL1: 定时器 1 低字节寄存器

SFR 页 = 0~F

SFR 地址 = 0x8B

复位值= 0000-0000

				<u> </u>			
7	6	5	4	3	2	1	0
TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TH1: 定时器 1 高字节寄存器

SFR 页 = 0~F

SFR 地址 = 0x8D

复位值= 0000-0000

				•			
7	6	5	4	3	2	1	0
TH1.7	TH1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.0
R/W							

AUXR2: 辅助寄存器 2

SFR 页

= 0~F

SFR 地址 = 0xA3

复位值= 00xx-0000

7	6	5	4	3	2	1	0
STAF	STOF			T1X12	T0X12	T1CKOE	T0CKOE
R/W	R/W	W	W	R/W	R/W	R/W	R/W

Bit 3: T1X12, 和 T1C/T 一起控制定时器 1 时钟源。

T1X12, T1C/T	定时器 1 时钟选择
0 0	SYSCLK/12
0 1	T1 引脚输入
1 0	SYSCLK
1 1	SYSCLK/48

Bit 2: T0X12, T0XL 和 T0C/T 一起控制定时器 0 时钟源选择。输入源等待中.....

T0XL, T0X12, T0C/T	定时器 0 时钟选择
0 0 0	SYSCLK/12
0 0 1	T0 引脚输入
0 1 0	SYSCLK
0 1 1	ILRCO
1 0 0	SYSCLK/48
1 0 1	WDTPS
1 1 0	SYSCLK/192
1 1 1	T1OF

Bit 1: T1CKOE,定时器 1 时钟输出使能。

0: 禁止定时器 1 时钟输出。

1: 使能定时器 1 时钟输出在 T1CKO 端口引脚。

Bit 0: T0CKOE, 定时器 0 时钟输出使能。

0: 禁止定时器 0 时钟输出。

1: 使能定时器 0 时钟输出在 T0CKO 端口引脚。

AUXR3: 辅助寄存器 3

SFR 页 = **仅 0 页**

SFR 地址 = 0xA4

复位值= 0000-0000

7	6	5	4	3	2	1	0
T0PS1	T0PS0	BPOC1	BPOC0	S0PS0	TWIPS1	TWIPS0	T0XL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7~6: T0PS1~0, 定时器 0端口引脚选择位[1:0]。

T0PS1~0	T0/T0CKO
00	P3.4
01	P4.4
10	P2.2
11	P2.6

Bit 0: TOXL 是定时器 0 预分频控制位。TOXL 功能定义请参考 TOX12 (AUXR2.2)。

AUXR4: 辅助寄存器 4

SFR 页 = **仅 1 页**

SFR 地址 = 0xA4

复位值=0000-0x00

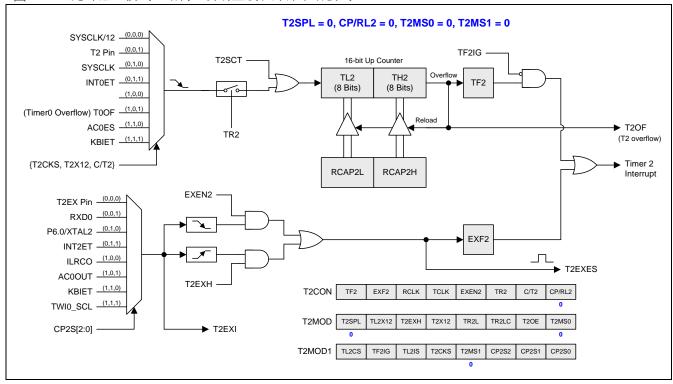
7	6	5	4	3	2	1	0
T2PS1	T2PS0	T1PS1	T1PS0	SPIPS0		AC00E	AC0FLT1
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 5~4: T1PS1~0, 定时器 1 端口引脚选择位[1:0]。

T1PS1~0	T1/T1CKO
00	P3.5
01	P4.5
10	P1.7
11	P2.6

15.2. 定时器 2

定时器 2 是一个 16 位定时器/计数器,既可作为一个定时器也可以作为一个事件计数器,具有 8 种由 T2CON、T2MOD 和 T2MOD1 寄存器相关位选择的时钟源。定时器 2 有 5 种通过操作模式定义的主要功能: 捕获、自动加载定时器、PWM、波特率发生器和可编程时钟输出。也提供捕捉事件的 8 个外部信号或定时器 2 外部中断源(EXF2)的选择。定时器 2 有 2 个中断源 TF2 和 EXF2。TF2 是 TH2 溢出标志且中断功能由 TF2IG 阻断。


15.2.1. 定时器 2 模式 0 (自动重载和外部中断)

在这个模式中,定时器 2 提供一个 16 位的自动重载定时器/计数器。TF2 是定时器 2 的溢出标志,是一个中断会被TF2IG 阻断的定时器 2 中断源。EXEN2 使能 T2EXI 引脚的下跳沿置位 EXF2,EXF2 作为一个外部中断与 TF2 共享定时器 2 中断。T2EXI 有 8 种定时器 2 的外部输入选择。T2EXH 的功能与 EXEN2 一样,只是 T2EXH 使能T2EXI 引脚的上升沿置位 EXF2。

本模块中的定时器 2 溢出事件(T2OF)可以作为时钟输入或事件源输出到其它外设。

定时器 2 模式 0 如图 15-12 所示。

图 15-12.定时器 2 模式 0 结构(自动重载和外部中断模式)

15.2.2. 定时器 2 模式 1 (带外部中断的自动重载)

如錯誤! 書籤的自我參照不正確。所示,定时器 2 模式 1,使能定时器 2 自动向上计数。本模式有 T2CON 寄存器 的 EXEN2 决定的两种选择。如果 EXEN2=0,定时器 2 向上计数到 0xFFFFH 且直到溢出而置位 TF2(溢出标 志)。这时定时器 2 寄存器被重载入 RCAP2L 和 RCAP2H 的 16 位数据。RCAP2L 和 RCAP2H 的值由软件预设。 如果 EXEN2=1, 16 位重载会被一个溢出或一个 T2EXI (8 个定时器 2 外部输入的 1 个) 引脚的下跳沿触发。跳变 同样置位 EXF2。如果定时器 2 中断使能,无论 TF2 或 EXF2 置位则产生中断。T2EXH 的功能与 EXEN2 一样, 只是 T2EXH 使能 T2EXI 引脚的上升沿置位 EXF2。

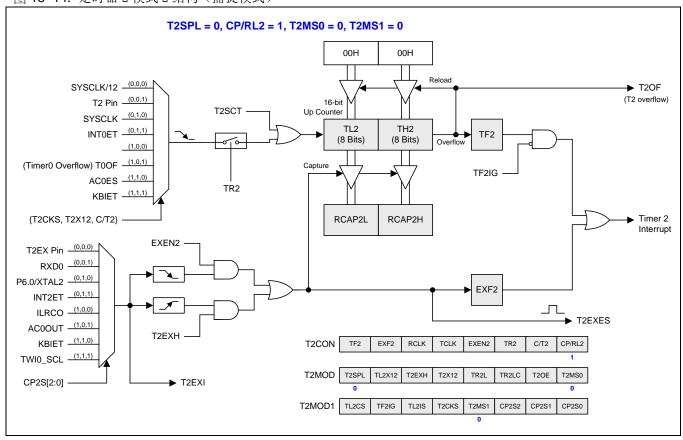
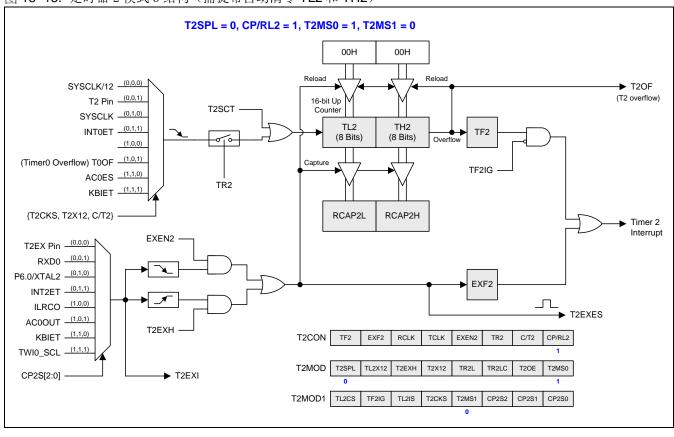

T2SPL = 0, CP/RL2 = 0, T2MS0 = 1, T2MS1 = 0 SYSCLK/12 (0,0,0) T2 Pin (0,0,1) TF2IG T2SCT -16-bit Up Counter SYSCLK (0,1,0) Overflow TL2 INT0ET (0,1,1) TF2 (8 Bits) (8 Bits) 010 (1,0,0) (Timer0 Overflow) T0OF (1,0,1) Reload AC0ES (1,1,0) ▶ T2OF TR2 (T2 overflow) {T2CKS, T2X12, C/T2} -RCAP2L RCAP2H ► Timer 2 Interrupt EXEN2 T2EX Pin (0,0,0) RXD0 ____(0,0,1) P6.0/XTAL2 (0,1,0) EXF2 INT2ET (0,1,1) ILRCO (1,0,0) ► T2EXES AC0OUT __(1,0,1) T2EXH KBIET (1,1,0) T2CON TF2 EXF2 RCLK TCLK EXEN2 C/T2 CP/RL2 TWI0_SCL __(1,1,1) T2MOD T2SPL TL2X12 T2EXH T2X12 TR2L TR2LC T2MS0 T2OE CP2S[2:0] -→ T2EXI T2MOD1 TL2CS TF2IG TL2IS T2CKS T2MS1 CP2S2 CP2S1 CP2S0

图 15-13. 定时器 2 模式 1 结构 (带外部中断的自动重载模式)

15.2.3. 定时器 2 模式 2 (捕捉)

图 15-14 展示了由 T2CON 寄存器的位 EXEN2 做二种选择的捕捉模式。如果 EXEN2=0,定时器 2 是一个 16 位定时器或计数器,向上溢出而置位 TF2(定时器 2 溢出标志)。TF2 常用来产生中断(IE 寄存器使能定时器 2 中断相关位)。如果 EXEN2=1,定时器 2 仍然具有前面的功能,增加了 T2EXI 引脚下跳沿(8 个定时器 2 外部输入的1 个)把定时器 2 寄存器(TH2 和 TL2)各自捕捉到寄存器(RCAP2H 和 RCAP2L)。另外,T2EXI 引脚跳变使T2CON 寄存器的 EXF2 置位,且 EXF2(像 TF2)会产生一个跟定时器 2 溢出一样位置的中断。T2EXH 的功能与EXEN2 一样,只是 T2EXH 使能 T2EXI 引脚的上升沿置位 EXF2。

图 15-14. 定时器 2 模式 2 结构 (捕捉模式)



15.2.4. 定时器 2 模式 3 (捕捉带自动清零)

定时器 2 模式 3 与定时器 2 模式 2 的功能相似。有一点不同的就是 T2EXES、EXF2 置位,不但定时器 2 会被捕捉而且 TL2 和 TH2 也会被清零。

定时器 2 模式 3 如图 15-15 所示。

图 15-15. 定时器 2 模式 3 结构 (捕捉带自动清零 TL2 和 TH2)

15.2.5. 分割定时器 2 模式 0 (自动重载和外部中断)

本模式中 T2SPLIT 置位, 定时器 2 变为两个 8 位定时器 (TH2 和 TL2)。两个 8 位定时器都是向上计数如图 15-16 所示。TH2 保存 RCAP2H 的重载值和保持 16 位模式一样的 8 个时钟输入选择。8 位定时器功能跟 16 位模式的 定时器 2 模式 0 相似。TL2 保存 4 个时钟输入选择的 RCAP2L 重载值。T2CON 的位 TR2 控制着 TH2 的运行。 T2MOD 的位 TR2L 控制着 TL2 的运行。当 TR2LC 置位时 TH2 溢出会停止 TR2L 的运行。

分割模式有 3 个中断标志 EXF2、TF2 和 TF2L。EXF2 与 16 位模式一样的功能用来侦测 T2EXI 引脚的跳变。 TF2IG 控制 TF2 在 TH2 从 0xFF 到 0x00 溢出时是否置位。TL2 从 0xFF 到 0x00 溢出时 TF2L 置位,TL2IE 使能中 断。EXF2、TF2和TF2L中断标志硬件不会清零且必须软件清零。

顺便说, 16 位模式中的定时器 2 溢出事件(T2OF)将被分割模式中的 TL2 溢出事件(TL2OF)取代。

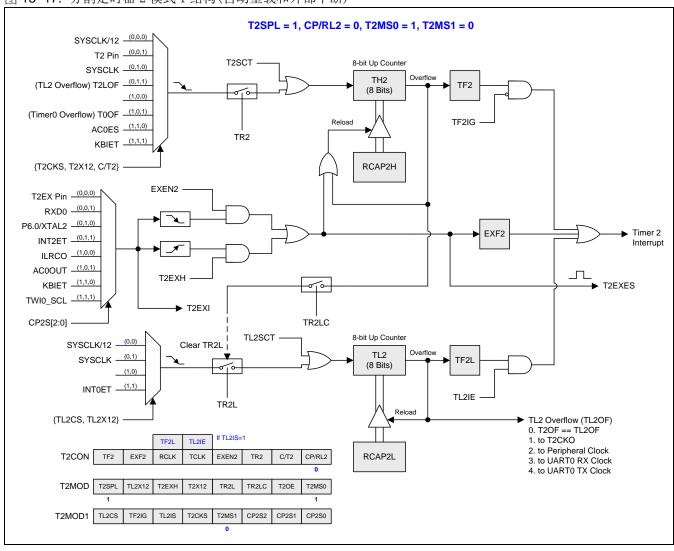
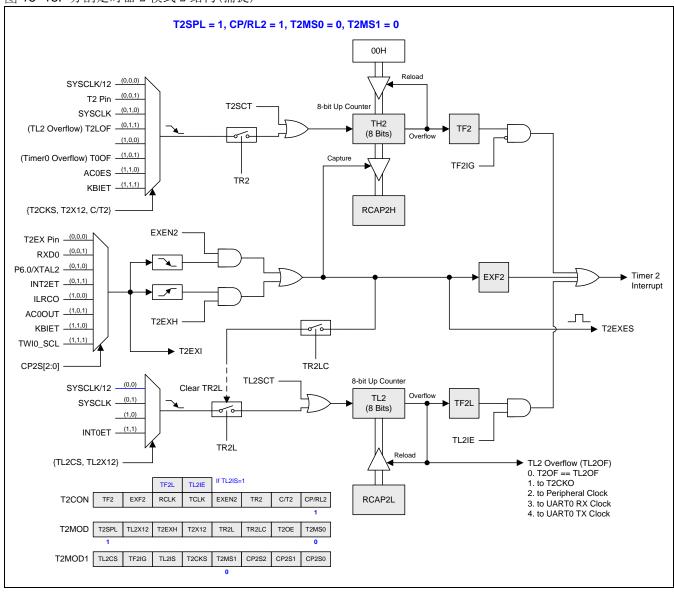

如果 T2MOD1 的位 TL2IS=0,位 T2CON.5~4 是 RCLK 和 TCLK 的功能。如果 TL2IS=1,位 T2CON.5~4 是 TF2L 和 TL2IE 的功能。

图 15-16. 分割定时器 2 模式 0 结构(自动重载和外部中断) T2SPL = 1, CP/RL2 = 0, T2MS0 = 0, T2MS1 = 0 SYSCLK/12 (0,0,0) T2 Pin (0,0,1) T2SCT 8-bit Up Counter SYSCLK (0,1,0) (TL2 Overflow) T2LOF __(0,1,1) TF2 (8 Bits) (Timer0 Overflow) T0OF (1,0,1) Reload TF2IG AC0ES (1,1,0) TR2 {T2CKS, T2X12, C/T2} RCAP2H EXEN2 T2EX Pin (0,0,0) RXD0 (0,0,1) ¥ P6.0/XTAL2 (0,1,0) EXF2 INT2ET (0,1,1) Interrupt ILRCO (1,0,0) AC0OUT (1,0,1) T2EXH KBIET (1,1,0) T2EXES TWI0_SCL __(1,1,1) ► T2EXI CP2S[2:0] TR2LC TL2SCT -8-bit Up Counter SYSCLK/12 (0,0) Clear TR2L TL2 SYSCLK -(0,1) TF2L (8 Bits) (S0BRG Overflow) S0TOF (1,0) INTOFT -TL2IE -TR2L Reload {TL2CS, TL2X12} TL2 Overflow (TL2OF) 0. T2OF == TL2OF If TL2IS=1 1. to T2CKO TF2L TL2IE 2. to Peripheral Clock T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 RCAP2L 3 to UARTO RX Clock 4. to UARTO TX Clock T2MOD T2SPL TL2X12 T2EXH T2X12 TR2L TR2LC T2OE T2MS0 T2MOD1 TL2CS T2MS1 CP2S0 TF2IG TL2IS T2CKS CP2S2 CP2S1

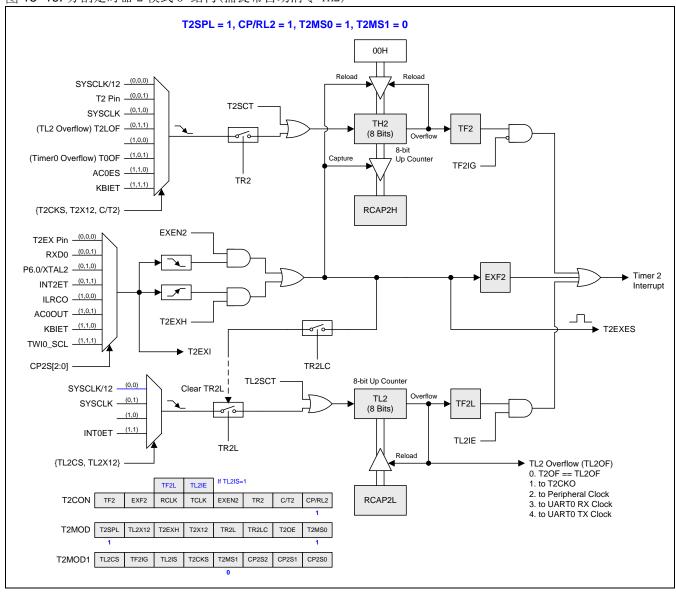
15.2.6. 分割定时器 2 模式 1 (自动重载和外部中断)

本模式中 T2SPLIT 置位,定时器 2 变为两个 8 位定时器如图 15-17 所示。跟定时器 2 模式 1 相似的功能且保持与分割定时器 2 模式 0 一样的中断方式。


图 15-17. 分割定时器 2 模式 1 结构(自动重载和外部中断)

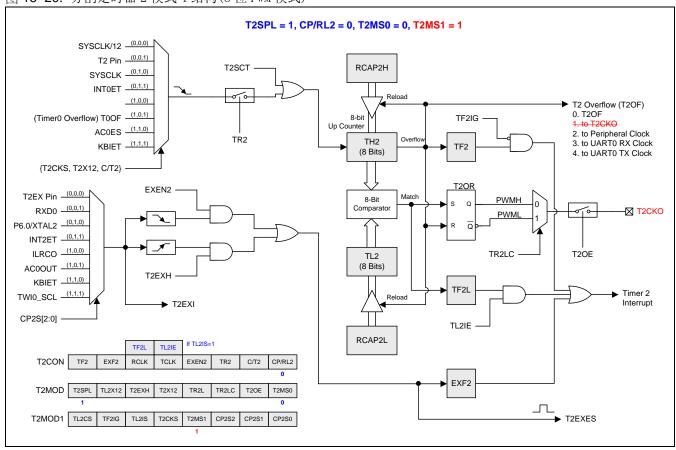
15.2.7. 分割定时器 2 模式 2 (捕捉)

本模式中 T2SPLIT 置位,定时器 2 变为两个 8 位定时器如图 15-18 所示。跟定时器 2 模式 2 相似的功能且保持与分割定时器 2 模式 0 一样的中断方式。


图 15-18. 分割定时器 2 模式 2 结构(捕捉)

15.2.8. 分割定时器 2 模式 3 (捕捉带自动清零)

本模式中 T2SPLIT 置位,定时器 2 变为两个 8 位定时器如图 15–19 所示。跟定时器 2 模式 3 相似的功能且保持与分割定时器 2 模式 0 一样的中断方式。


图 15-19. 分割定时器 2 模式 3 结构(捕捉带自动清零 TH2)

15.2.9. 分割定时器 2 模式 4 (8 位 PWM 模式)

本模式,定时器 2 是一个 8 位的 PWM 模式如图 15–20 所示。TH2 和 RCAP2H 相结合为一个 8 位的自动重载计数器。这二个寄存器的软件配置决定 PWM 周期。TL2 是 PWM 比较寄存器用来生成 PWM 波形。RCAP2L 是 PWM 缓冲寄存器且在此寄存器中软件更新 PWM 数据。每次 TH2 溢出事件置位 TF2 且 RCAP2L 值载入到 TL2。PWM 信号输出到 T2CKO 功能引脚且输出的开关由 T2MOD 寄存器的位 T2OE 决定。

图 15-20. 分割定时器 2 模式 4 结构 (8 位 PWM 模式)

15.2.10. 波特率发生器模式(BRG)

如果定时器 2 工作在模式 0, T2CON 寄存器的 RCLK 和 TCLK 位允许串行口发送和接收波特率源可选择定时器 1 或定时器 2。当 TCLK=0 时,定时器 1 作为串行口传送波特率发生器。当 TCLK=1,定时器 2 作为串行口传送波特率发生器。RCLK 对串行口接收波特率有相同的功能。有了这两位,串行口可以有不同的接收和发送波特率,一个通过定时器 1 来产生,另一个通过定时器 2 来产生。

图 15–21 所示定时器 2 在波特率发生器模式 UART 引擎产生 RX 和 TX 时钟(见图 17–6.)。波特率发生器模式像自动加载模式,翻转时将把寄存器 RCAP2H 和 RCAP2L 的值加载到定时器 2 的寄存器,RCAP2H 和 RCAP2L 的值由软件预置。

定时器 2 作为波特率发生器只有在 T2CON 寄存器的位 RCLK=1 和/或 TCLK=1 时有效。注意 TH2 翻转不会置位 TF2,也不会产生中断。因而,当定进器 2 在波特率发生器模式时定时器中断不需要禁止。如果 EXEN2(T2 外部中断使能位)置位,T2EX(8 个定时器 2 触发输入中的一个)的负跳变将置位 EXF2(T2 外部标志位),但是不会引起从(RCAP2H,RCAP2L)到(TH2,TL2 的)重载。因此,当定时器 2 作为波特率发生器时,如果需要的话,T2EX 也可以作为传统的外部中断。T2EXH 的功能与 EXEN2 一样,只是 T2EXH 使能 T2EXI 引脚的正跳变侦测。

当定时器 2 在波特率发生器模式时,不能试着去读或写 TH2 和 TL2。作为一个波特率发生器,定时器 2 在 1/2 的 系统时钟频率或从 T2 引脚的异步时增 1;在这些条件下,读或写操作将会不正确。寄存器 RCAP2 可以读,但是 不可以写,因为写和重载重叠并引起写和/或加载错误。在访问定时器 2 或 RCAP2 寄存器之前定时器必须关闭(清零 TR2)。

注意:

当定时器 2 用作波特率发生器时,参考章节"17.7.4 模式 1 和 3"波特率模式 1 和 3 获取波特率设定值。

如果定时器 2 在分割模式 0, TL2 和 RCAP2L 相结合为一个 8 位的波特率发生器如图 15–22 所示。TL2 溢出置位 TF2L, TL2IE 使能中断。TH2 和 RCAP2H 充当一个具有定时器 2 中断能力的自动重载定时器/计数器。

图 15-21. 定时器 2 波特率发生器模式

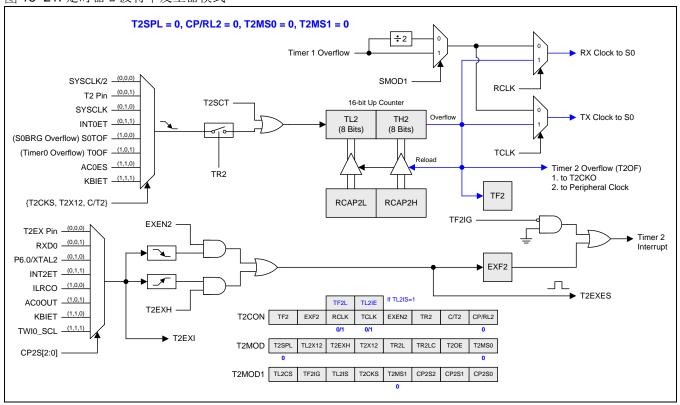
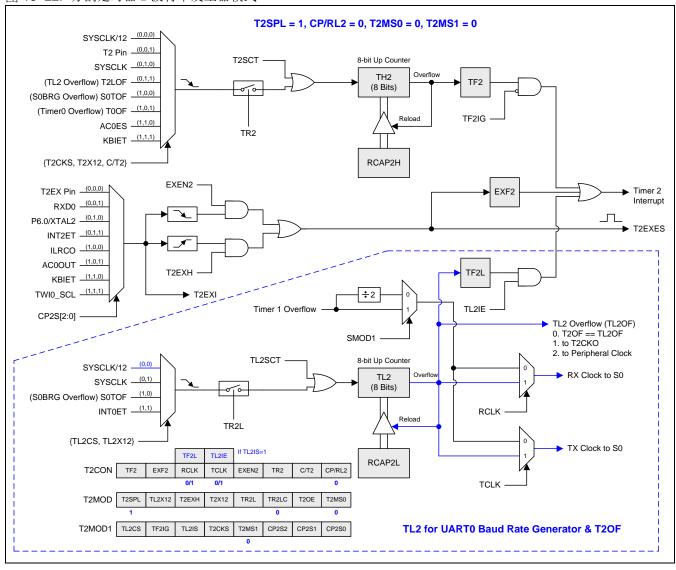



图 15-22. 分割定时器 2 波特率发生器模式

15.2.11. 定时器 2 可编程时钟输出

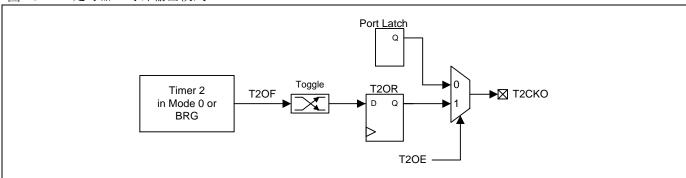

定时器 2 有一个时钟输出模式(当模式 0 并且 T2OE=1)。在这个模式,定时器 2 运行为一个占空比为 50%的可编程时钟输出。产生的时钟从 P1.0 输出。输入时钟使 16 位定时器(TH2, TL2)加一。定时器从载入值到溢出重复计数。一旦溢出,(RCAP2H, RCAP2L))的值被载入到(TH2, TL2)同时计数。图 15-23 给出了定时器 2 时钟输出频率计算公式。图 15-24 展示了定时器 2 的时钟输出结构。

图 15-23. 定时器 2 时钟输出频率计算公式

注意:

- (2) 当 SYSCLK=12MHz 及 SYSCLK/12 作为定时器 2 时钟源, 定时器 2 可编程输出频率范围从 45.7Hz 到 3MHz。
- (3)当 SYSCLK=12MHz 及 SYSCLK 作为定时器 2 时钟源, 定时器 2 可编程输出频率范围从 91.5Hz 到 6MHz。

图 15-24. 定时器 2 时钟输出模式

定时器 2 时钟输出模式如何编程

- 选择定时器 2 时钟源。
- ·从公式计算出 16 位自动加载值并输入到 RCAP2H 和 RCAP2L 寄存器。
- 在 TH2 和 TL2 寄存器输入一个跟自动加载值相同的初始值。
- · T2MOD 寄存器的 T2OE 置位。
- T2CON 寄存器的 TR2 置位启动定时器 2。

在时钟输出模式,定时器 2 翻转产生中断。这和用作波特率发生器时不同。可同时使用定时器 2 作为一个波特率发生器和时钟发生器。注意,波特率和时钟输出都由定时器 2 的溢出速率来决定且不产生中断。

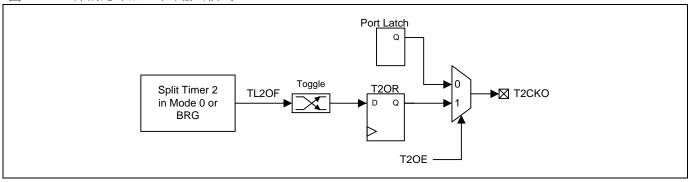

如果定时器 2 在分割模式,时钟输出功能由 TL2 溢出产生且输出时钟频率为 TL2 溢出率的二分之一。当 TL2 溢出时 RCAP2L 是 TL2 重载值。TL2 有 4 种时钟源选择。在使能分割定时器 2 时钟输出功能之前,软件必须结束 TL2时钟源配置。图 15–25 给出了 TL2 时钟输出频率公式。图 15–26 展示了分割定时器 2 的时钟结构。

图 15-25. 分割定时器 2 时钟输出公式

注意:

- (1) TL2 溢出标志 TF2L,在 TL2 溢出时置位产生中断。但是 TF2L 中断由 T2CON 寄存器的位 TL2IE 使能。
- (2)当 SYSCLK=12MHz 及 SYSCLK/12 作为 TL2 时钟源, TL2 可编程输出频率范围从 1.95KHz 到 500KHz。
- (3)当 SYSCLK=12MHz 及 SYSCLK 作为 TL2 时钟源, TL2 可编程输出频率范围从 23.44KHz 到 6MHz。

图 15-26. 分割定时器 2 时钟输出模式

分割定时器 2 时钟输出模式如何编程

- · 选择 TL2 时钟源。
- ·从公式计算出8位自动加载值并输入到RCAP2L寄存器。
- ·在 TL2 寄存器输入一个跟自动加载值相同的初始值。
- T2MOD 寄存器的 T2OE 置位。
- T2MOD 寄存器的 TR2L 置位启动定时器 2。

在时钟输出模式,TL2 翻转产生中断。这和 TL2 用作波特率发生器时相似。可同时使用 TL2 作为一个波特率发生器和时钟发生器。注意,在分割定时器 2 模式下波特率和时钟输出都由 TL2 的溢出速率来决定。TF2L 中断由 T2CON 寄存器的 TL2IE 位使能。

15.2.12. 定时器 2 寄存器

T2CON: 定时器 2 控制寄存器

SFR 页 = **仅0**页

SFR 地址 = 0xC8

复位值=0000-0000

7	6	5	4	3	2	1	0
TF2	EXF2	RCLK/ TF2L	TCLK/ TL2IE	EXEN2	TR2	C/T2	CP/RL2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: TF2定, 定时器2溢出标志。

0: TF2必须软件清零。

1: 定时器2溢出TF2置位。当RCLK=1或TCLK=1时,TF2不会被置位。

Bit 6: EXF2, 定时器2外部标志。

0: EXF2必须软件清零。

1: 当EXEN2=1且在T2EX上有负跳变导致重载或捕获,或者T2EXH=1并且在T2EX上有一个正跳变,将置位定时器外部标志。当定时器2中断使能时,EXF2=1时将引起CPU进入定时器2中断向量程序。

TL2IS (T2MOD1.5)必须清零而使能位 RCLK 的访问。

Bit 5: RCLK,接收时钟控制位

0: 定时器1溢出用于接收时钟。

1: 定时器2溢出用于串行口模式1和3的接收时钟。

TL2IS (T2MOD1.5)必须清零而使能位 TF2L 的访问。

Bit 5: TF2L, 在定时器 2 分割模式中 TL2 溢出标志。

0: TF2L 必须软件清零。

1: 在定时器 2 分割模式中 TL2 溢出 TF2L 置位。

TL2IS (T2MOD1.5)必须清零而使能位 TCLK 的访问。

Bit 4: TCLK,发送时钟控制位。

0: 定时器1溢出用于发送时钟。

1: 定时器2溢出用于串行口模式1和3的发送时钟。

TL2IS (T2MOD1.5) 必须清零而使能位 TL2IE 的访问。

Bit 4: TL2IE, TF2L 中断使能。

0: 禁止 TF2L 中断。

1: 使能共享定时器 2 中断入口的 TF2L 中断。

Bit 3: EXEN2, 定时器2外部使能位在T2EX引脚的负跳变。

0: 定时器2忽略T2EX引脚的负跳变事件。

1: 如果定时器2没有用作串行口时钟,在T2EX的负跳变时捕获或加载并作为结果。如果定时器2配置为串行口0的时钟,T2EX保持外部信号侦测并产生 EXF2 标志响应中断。

Bit 2: TR2, 定时器2运行控制位。如果在定时器2分割模式中, 仅控制TH2。

0: 定时器2停止运行。

1: 定时器2开启运行。

Bit 1: C/T2, 定时器或计数器输入源选择位。和T2X12与T2CKS一起决定定时器2的输入来源。如下定义:

T2CKS, T2X12, C/T2	定时器 2 时钟源	分割模式下 TH2 时钟选择
0 0 0	SYSCLK/12	SYSCLK/12
0 0 1	T2 引脚	T2 引脚
0 1 0	SYSCLK	SYSCLK
0 1 1	INT0ET	TL2OF
1 0 0	1	

1 0 1	T0OF	T0OF
1 1 0	AC0ES	AC0ES
1 1 1	KBIET	KBIET

Bit 0: CP/RL2, 定时器 2 模式控制位。参考 T2MOD.T2MS0 的功能定义描述。

T2MOD: 定时器 2 模式寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0xC9

复位值= 0000-0000

7	6	5	4	3	2	1	0
T2SPL	TL2X12	T2EXH	T2X12	TR2L	TR2LC	T2OE	T2MS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: T2SPL, 定时器 2 分割模式控制。

0: 禁止定时器 2 的分割模式。

1: 使能定时器 2 的分割模式。

Bit 6: TL2X12, 定时器 2 分割模式下 TL2 时钟控制位。

TL2CS, TL2X12	TL2 时钟选择
0 0	SYSCLK/12
0 1	SYSCLK
1 0	S0TOF
1 1	INT0ET

Bit 5: T2EXH, 定时器2外部T2EX 引脚的正跳变使能标志。

0: 定时器2忽略T2EX引脚的正跳变事件。

1: 如果定时器2没有用作串行口0时钟,在T2EX的正跳变时捕获或加载并作为结果。如果定时器2配置为串行口0的时钟,T2EX保持外部信号侦测并产生 EXF2 旗标响应中断。

Bit 4: T2X12, 定时器 2 时钟源选择。参考 C/T2 的功能定义描述。

Bit 3: TR2L,在定时器 2 分割模式中,TL2 运行控制位。

0: 停止TL2。

1: 使能TL2。

Bit 2: TR2LC, TR2L 清除控制位。

0: 禁止硬件事件清零TR2L。

1: 使能TH2溢出(定时器2在模式0/1)或者捕获输入(定时器2在模式2/3)时自动清零TR2L。

Bit 1: T2OE, 定时器 2 时钟输出使能位。

0: 禁止定时器2时钟输出。

1: 使能定时器 2 时钟输出。

Bit 0: T2MS0, 定时器 2 模式选择位 0。

T2SPL, T2MS1, CP/RL2, T2MS0	定时器 2 模式选择
0 0 0 0	模式 0: 自动重载和外部中断
0 0 0 1	模式 1: 自动重载带外部中断
0 0 1 0	模式 2: 捕捉模式
0 0 1 1	模式 3: 定时器 2 捕捉带自动清零
1 0 0 0	分割模式 0
1 0 0 1	分割模式 1
1 0 1 0	分割模式 2
1 0 1 1	分割模式 3
1 1 0 0	8 位 PWM 模式
其它	保留

T2MOD1: 定时器 2 模式寄存器 1

SFR 页 = **仅1页**

SFR 地址 = 0x93

复位值=0000-0000

7	6	5	4	3	2	1	0
TL2CS	TF2IG	TL2IS	T2CK2	T2MS1	CP2S2	CP2S1	CP2S0
R/W							

Bit 7: TL2CS, 在定时器 2 分割模式下的 TL2 时钟选择选择。参考 T2MOD.TL2X12 的功能描述。

Bit 6: TF2IG, TF2中断忽略。

0: 使能 TF2 中断。默认是使能的。

1: 禁止 TF2 中断。

Bit 5: TL2IS, TF2L 和 TL2IE 访问控制。

0: 使能 RCLK 和 TCLK 的访问功能在位 T2CON.5~4。

1: 使能 TF2L 和 TL2IE 的访问功能在位 T2CON.5~4。

Bit 4: T2CKS, 定时器 2 时钟输入选择。参考 C/T2 的功能描述。

Bit 3: T2MS1, 定时器 2 模式选择位 1。参考 T2MOD. T2MS0 的功能描述。

Bit 2~0: CP2S.2~0,此 3 位定义定时器 2 的捕捉源选择。

CP2S.2~0	定时器 2 捕捉源选择
0 0 0	T2EX 引脚
0 0 1	RXD0
0 1 0	P6.0/XTAL2
0 1 1	INT2ET
1 0 0	ILRCO
1 0 1	AC0OUT
1 1 0	KBIET
1 1 1	TWI0_SCL

TL2: 定时器 2 低字节寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0xCC

复位值= 0000-0000

7	6	5	4	3	2	1	0
TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
R/W							

TH2: 定时器 2 高字节寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0xCD

复位值= 0000-0000

7	6	5	4	3	2	1	0
TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
R/W							

RCAP2L: 定时器 2 捕捉低字节寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0xCA

复位值= 0000-0000

7	6	5	4	3	2	1	0
RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.1

R/W R/W R/W R/W R/W R/W

RCAP2H: 定时器 2 捕捉高字节寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0xCB

POR+复位值= 0000-0000

7	6	5	4	3	2	1	0
RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
R/W							

AUXR4: 辅助寄存器 4

SFR 页 = **仅1页**

SFR 地址 = 0xA4

POR+复位值= 0000-0x00

7	6	5	4	3	2	1	0
T2PS1	T2PS0	T1PS1	T1PS0	SPIPS0		AC00E	AC0FLT1
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 7~6: T2PS1~0, 定时器 2 端口引脚选择[1:0]。

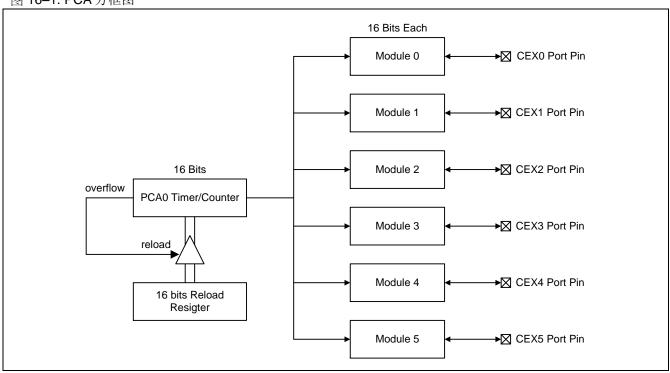
T2PS1~0	T2/T2CKO	T2EX
00	P1.0	P1.1
01	P3.0	P3.1
10	P4.0	P4.1
11	P4.5	P4.4

15.3. 定时器全局控制

16. 可编程计数器阵列(PCA0)

MA82G5DXX 带有一个可编程计数器阵列(PCA0),该功能与标准定时/计数器相比以更少的 CPU 占用提供了更多的定时能力。它的优点包括减少了软件复杂度并提高了精度。

16.1. PCA 概述


PCA 由一个专用定时/计数器作为一个 6 组比较/捕获模块的时间基础,图 16–1 显示了 PCA 的功能方框图。需要注意的是 PCA 定时器和模块都是 16 位的。如果一个外部事件同一个模块关联,那么该功能就和相应的端口引脚共享。若某模块没有使用端口引脚,这个引脚还可以用作标准 I/O。

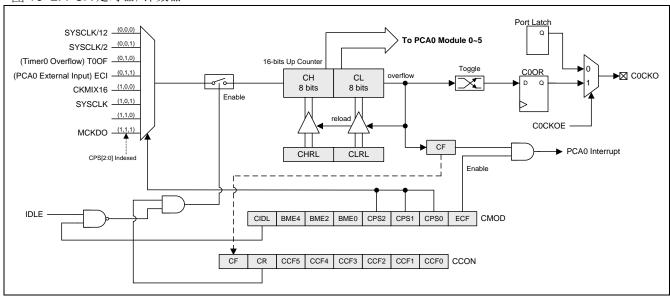
模块 0~5 中的任一组都可以编程为如下任意模式:

- -上升和/或下降沿捕获
- -软件定时器(比较)
- -高速输出(比较输出)
- -脉宽调制 (PWM) 输出
- -脉宽调制匹配的比较输出(COPM)

所有这些模式将在后面的章节进行详细讨论。这里,让我们先看看如何设置 PCA 定时器和模块。

图 16-1. PCA 方框图

16.2. PCA 定时器/计数器


PCA 的定时器/计数器由一个可以自动重载的 16 位定时器由寄存器 CH 和 CL (计数值的高低字节)及 CHRL 和 CLRL (重载寄存器的高低字节)组成,如图 16–2 所示。每次{CH+CL}溢出时 CHRL 和 CLRL 的值将会重载到 CH和 CL.,这样就可以改变 PCA 的周期,用于可变 PWM 分辨率,例如 7 位或 9 位 PWM。

{CH + CL}是所有模块的共有时间基础,它的时钟输入可以从以下来源选择:

- 1/12 系统时钟频率
- 1/2 系统时钟频率
- -定时器 0 溢出,允许一些低频时钟源输入到定时器
- -外部时钟输入, ECI 引脚的负跳变
- CKMIX16,参考章节"錯誤! 找不到參照來源。 錯誤! 找不到參照來源。"
- 直接从系统时钟
- SIBRG 溢出, S1TOF
- MCKDO, 参考章节"錯誤! 找不到參照來源。 錯誤! 找不到參照來源。"。

特殊功能寄存器 CMOD 包含了计数脉冲选择位 (CPS2,CPS1 和 CPS0)来指定 PCA 定时器时钟源。这个寄存器也包括了 ECF 位来使能计数器{CH+CL}溢出中断。并且计数器溢出切换 C0COR,当 C0CKOE 使能将输出到端口引脚。此外,用户可以在空闲模式下设置计数器待机位(CIDL),来关闭 PCA 定时器。这样可以进一步降低空闲模式下的功耗。

图 16-2. PCA 定时器/计数器

CMOD: PCA 计数器模式寄存器

SFR 页 = 仅 0 页

Bit 7: CIDL, PCA 计数器空闲模式控制。

- 0: PCA 计数器在空闲模式下继续运行。
- 1: 空闲模式下关闭 PCA 计数器。

Bit 6: BME4, PCA 模块 4/5 缓冲模式使能。仅在捕捉模式, PWM 模式或 COPM 模式下的 PCA 模块 4 和 5 有效。

0: PCA 模块 4/5 禁止缓冲模式。

1: PCA 模块 4/5 使能缓冲模式。

Bit 5: BME2, PCA 模块 2/3 缓冲模式使能。仅在捕捉模式, PWM 模式或 COPM 模式下的 PCA 模块 2 和 3 有效。

- 0: PCA 模块 2/3 禁止缓冲模式。
- 1: PCA 模块 2/3 使能缓冲模式。

Bit 4: BME0, PCA 模块 0/1 缓冲模式使能。仅在捕捉模式, PWM 模式或 COPM 模式下的 PCA 模块 0 和 1 有效。

- 0: PCA 模块 0/1 禁止缓冲模式。
- 1: PCA 模块 0/1 使能缓冲模式。

Bit 3~1: CPS2~0, PCA 计数器时钟源选择位。

CPS2	CPS1	CPS0	PCA 时钟源
0	0	0	内部时钟,(system clock)/12
0	0	1	内部时钟,(system clock)/2
0	1	0	定时器 0 溢出
0	1	1	来自 ECI 引脚的外部时钟
1	0	0	CKMIX16 输出
1	0	1	内部时钟,(system clock)/1
1	1	0	保留.
1	1	1	MCK 分频器输出,MCKDO

Bit 0: ECF, 使能 PCA 计数器溢出中断。

0: 当 CF 位 (CCON 寄存器中)置位时禁止中断。

1: 当 CF 位 (CCON 寄存器中)置位时使能中断。

如下所示的CCON寄存器包含PCA运行控制位和PCA定时器与每个模块的标志。要运行PCA,CR为(CCON.6)必须软件置位。要关闭PCA,可以清除该位。PCA计数器溢出时,CF (CCON.7)置位,并且若CMOD寄存器的ECF置位,还会产生一个中断。CF位只能软件清零。CCF0到CCF5是模块0到模块5的各自中断标志位,当发生一个匹配或捕获事件时,硬件置位,这些位也必须软件清零。PCA中断系统如图 16–3所示。

复位值=0000-0000

CCON: PCA 计数器控制寄存器

= 0xD8

SFR 页 = 仅 0 页

SFR 地址

			~	C				
7	6	5	4	3	2	1	0	
CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit 7: CF, PCA 计数器溢出标志

- 0: 只能软件清零。
- 1: 计数器溢出时硬件置位。CF 标志在 CMOD 寄存器的 ECF 置位时会产生一个中断。CF 可以硬件或软件置位。

Bit 6: CR, PCA 计数器运行控制位。

- 0: 软件清零关闭 PCA 计数器。
- 1: 软件清零开启 PCA 计数器。

Bit 5: CCF5, PCA 模块 5 中断标志。

- 0: 只能软件清零。
- 1: 当发生一个匹配或捕获事件时,硬件置位。

Bit 4: CCF4, PCA 模块 4 中断标志。

- 0: 只能软件清零。
- 1: 当发生一个匹配或捕获事件时,硬件置位。

Bit 3: CCF3, PCA 模块 3 中断标志。

0: 只能软件清零。

1: 当发生一个匹配或捕获事件时,硬件置位。

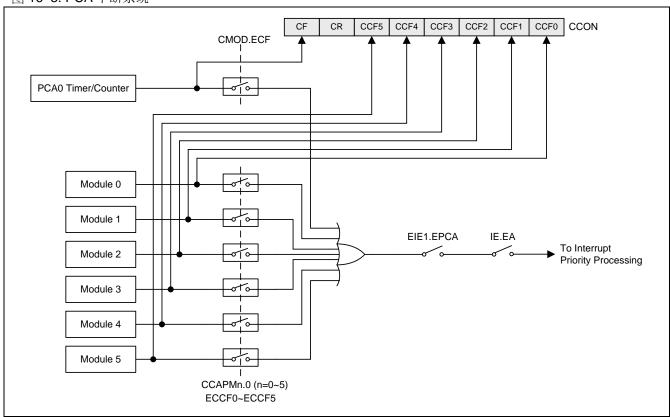
Bit 2: CCF2, PCA 模块 2 中断标志。

0: 只能软件清零。

1: 当发生一个匹配或捕获事件时,硬件置位。

Bit 1: CCF1, PCA 模块 1 中断标志。

0: 只能软件清零。


1: 当发生一个匹配或捕获事件时,硬件置位。

Bit 0: CCF0, PCA 模块 0 中断标志。

0: 只能软件清零。

1: 当发生一个匹配或捕获事件时,硬件置位。

图 16-3. PCA 中断系统

CH: PCA 基准时钟高字节

SFR 页 = 仅 0 页

SFR 地址 = 0xF9

复位值= 0000-0000

7	6	5	4	3	2	1	0
CH.7	CH.6	CH.5	CH.4	CH.3	CH.2	CH.1	CH.0
R/W							

CL: PCA 基准时钟低字节

SFR 页 = 仅 0 页

SFR 地址 = 0xE9

复位值= 0000-0000

7	6	5	4	3	2	1	0
CL.7	CL.6	CL.5	CL.4	CL.3	CL.2	CL.1	CL.0
R/W							

CHRL: PCA CH 重载寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0xCF

复位值= 0000-0000

7	6	5	4	3	2	1	0
CHRL.7	CHRL.6	CHRL.5	CHRL.4	CHRL.3	CHRL.2	CHRL.1	CHRL.0
R/W							

Bit 7~0: CHRL, CH 的重载值。

CLRL: PCA CL 重载寄存器

SFR 页 = 仅 0 页

SFR 地址 = 0xCE

复位值= 0000-0000

7	6	5	4	3	2	1	0
CLRL.7	CLRL.6	CLRL.5	CLRL.4	CLRL.3	CLRL.2	CLRL.1	CLRL.0
R/W							

Bit 7~0: CLRL, CL 的重载值。

16.3. 比较/捕捉模块

比较/捕获模块 0~5 中的每一组都有一个模式寄存器,叫做 CCAPMn (n = 0, 1, 2, 3, 4 或 5), 用来选择其工作模式。ECCFn 位控制当模块中断标志置位时每个模块的中断使能。

CCAPMn: PCA 模块比较/捕捉寄存器, n=0~5

SFR 页 = 仅 0 页

SFR 地址 = 0xDA~0xDF

复位值= x000-0000

7	6	5	4	3	2	1	0
	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn
W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: 保留位。当 CCAPMn 被写入时,这位必须软件写"0"。

Bit 6: ECOMn, 比较器使能。

0: 禁止数字比较器功能。

1: 使能数字比较器功能。

Bit 5: CAPPn,正跳变捕捉使能。

0: 禁止 PCA 捕捉功能在 CEXn 引脚上正跳变侦测。

1: 使能 PCA 捕捉功能在 CEXn 引脚上正跳变侦测。

Bit 4: CAPNn, 负跳变捕捉使能。

0: 禁止 PCA 捕捉功能在 CEXn 引脚上负跳变侦测。

1: 使能 PCA 捕捉功能在 CEXn 引脚上负跳变侦测。

Bit 3: MATn, 匹配控制。

0: 禁止数字比较器匹配事件去置位 CCFn。

1: PCA 计数器同相应模块的比较/捕获寄存器匹配时 CCON 寄存器的 CCFn 置位。

Bit 2: TOGn, 切换控制。

0: 禁止数字比较器匹配事件去切换 CEXn。

1: PCA 计数器同相应模块的比较/捕获寄存器匹配时使 CEXn 引脚切换。

Bit 1: PWMn, PWM 控制。

0: 禁止 PCA 模块中的 PWM 模式。

1: 使能 PWM 功能并使 CEXn 引脚用作脉宽调制输出。

Bit 0: ECCFn,使能 CCFn 中断。

0: 禁止 CCON 寄存器中的比较/捕获标志位 CCFn 产生中断。

1: 使能 CCON 寄存器中的比较/捕获标志位 CCFn 产生中断。

注意: CAPNn (CCAPMn.4)位和 CAPPn (CCAPMn.5)位决定了捕捉输入的信号脉冲沿,若这两位同时设置,则正 负跳变都会发生捕获。

每个模块都有一对 8 位比较/捕获寄存器(CCAPnH, CCAPnL)。这些寄存器用来存储一个捕捉事件发生的时间或者一个比较时间产生的时间。当模块用于 PWM 模式时,除这两个寄存器之外,一个扩展寄存器 PCAPWMn 用来扩展输出占空比的范围,扩展的范围从 0%到 100%,步距是 1/256。关于 10/12/16 bit PWM...

CCAPnH: PCA 模块 n 捕捉高寄存器 , n=0~5

SFR 页 = **仅 0 页**

SFR 地址 = 0xFA~0xFF

复位值= 0000-0000

7	6	5	4	3	2	1	0
CCAPnH.7	CCAPnH.6	CCAPnH.5	CCAPnH.4	CCAPnH.3	CCAPnH.2	CCAPnH.1	CCAPnH.0
R/W							

CCAPnL: PCA 模块 n 捕捉低寄存器 , n=0~5

SFR 页 = **仅 0 页**

SFR 地址 = 0xEA~0xEF

复位值= 0000-0000

7	6	5	4	3	2	1	0
CCAPnL.7	CCAPnL.6	CCAPnL.5	CCAPnL.4	CCAPnL.3	CCAPnL.2	CCAPnL.1	CCAPnL.0
R/W							

PCAPWMn: PWM 模式辅助寄存器, n=0~5

SFR 页 = **仅 0 页**

SFR 地址 = 0xF2~0xF7

复位值= 00xx-x000

7	6	5	4	3	2	1	0
PnRS1	PnRS0				PnINV	ECAPnH	ECAPnL
R/W	R/W	W	W	W	R/W	R/W	R/W

Bit 7~6: PnRS1~0, PWMn 分别率设置位 1~0。

00:8位 PWMn,当[CH, CL]计数从 XXXX-XXXX-1111-1111 到 XXXX-XXXX-0000-0000 时溢出激活。

01: 10 位 PWMn, 当[CH, CL]计数从 XXXX-XX11-1111-1111 到 XXXX-XX00-0000-0000 时溢出激活。

10: 12 位 PWMn, 当[CH, CL]计数从 XXXX-1111-1111 到 XXXX-0000-0000 时溢出激活。

11: 16 位 PWMn, 当[CH, CL]计数从 1111-1111-1111 到 0000-0000-0000-0000 时溢出激活。

Bit 5~3: 保留位。当 PCAPWMn 被写入时,这些位必须软件写"0"。

Bit 2: PnINV, 比较/PWM 输出(C0PnOR)在 CEXn 引脚上反转。

0: 比较/PWM输出(C0PnOR)不反转。

1: 比较/PWM输出(C0PnOR)反转。

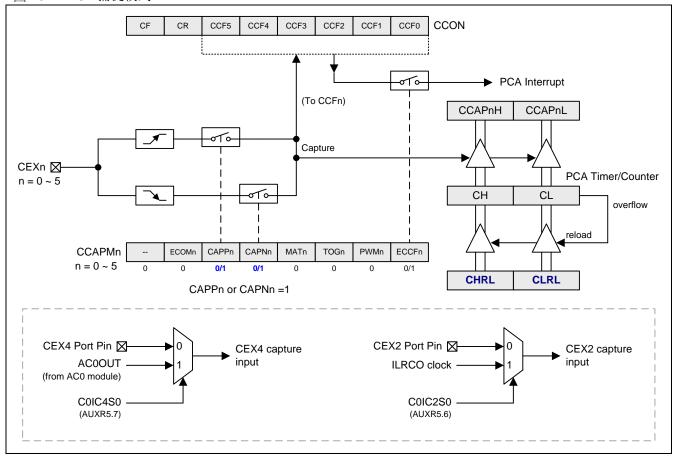
Bit 1: ECAPnH,扩展第9位(MSB),联合CCAPnH 形成9位寄存器用于PWM模式。

Bit 0: ECAPnL,扩展第 9位(MSB),联合 CCAPnL 形成 9位寄存器用于 PWM 模式。

16.4. PCA 操作模式

表 16-1 展示了不同 PCA 功能对应的 CCAPMn 寄存器设置。

表 16-1. PCA 模块模式


ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	模块功能
0	0	0	0	0	0	0	无操作
Х	1	0	0	0	0	Х	CEXn 引脚正跳变触发 16 位捕捉
Х	0	1	0	0	0	Х	CEXn 引脚负跳变触发 16 位捕捉
Х	1	1	0	0	0	Х	CEXn 引脚正负跳变触发 16 位捕捉
1	0	0	1	0	0	Х	16 位软件定时器 (比较)
1	0	0	1	1	0	Х	16 位高速输出(HSO)
1	0	0	0	0	1	Х	脉宽调制器 (PWM)
1	0	0	0	1	1	Х	PWM 配对的比较输出 (COPM)

16.4.1. 捕捉模式

要让某一PCA模块工作在捕获模式, CAPN和CAPP任何一位或两位必须置位。外部CEX输入会在每次跳变时采样。当有效跳变发生时,PCA硬件会将PCA计数器寄存器值(CH和CL)载入到模块的捕捉寄存器(CCAPnH和CCAPnL)。若模块的CCFn和ECCFn标志同时置位,会产生一个中断。

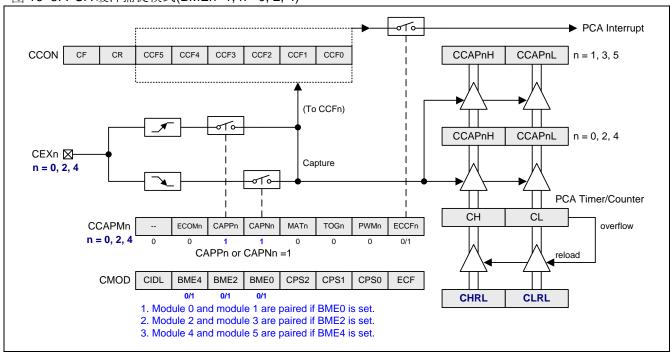
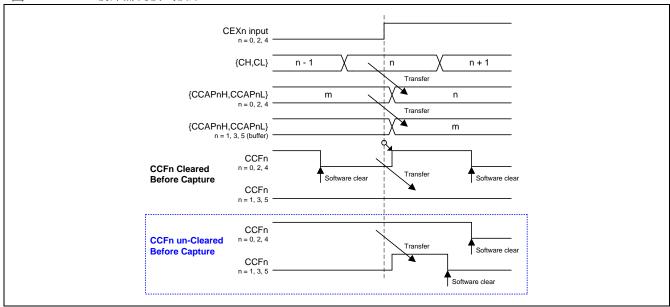
通道4的捕捉输入由软件在CEX4端口引脚和AC0输出的AC0OUT之间选择。同样,通道2输入可以交替选择到ILRCO时钟源。

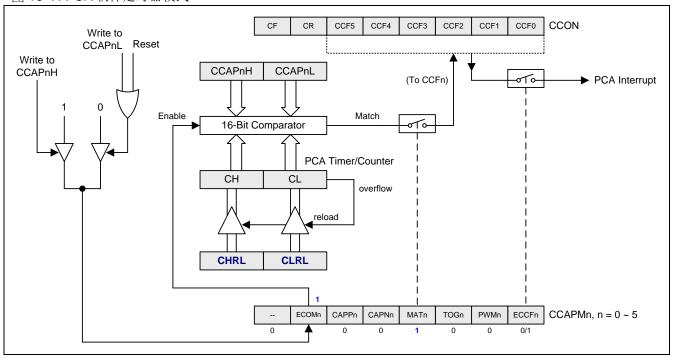
图 16-4. PCA 捕捉模式

16.4.2. 缓冲捕捉模式

为了捕捉窄的输入信号,缓冲捕捉模式是必要的。如果使能,将把奇数模块捕捉数据寄存器(CCAPnH,CCAPnL, n= 1, 3, 5)送到偶数模块捕捉数据寄存器(通道0, 2, 4)。这不影响模块0/2/4的捕捉操作。BME0使能通道0/1的缓冲操作。BME2和BME4控制模块2/3和模块4/5。

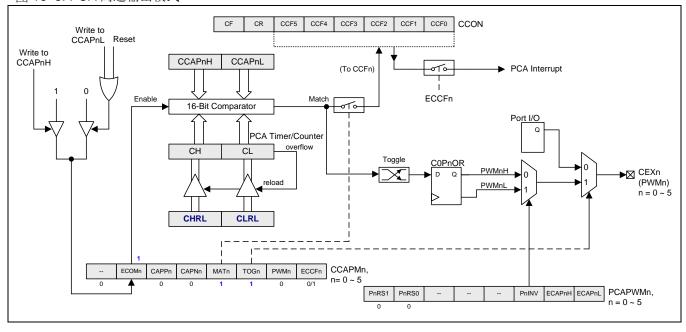
图 16-5. PCA 缓冲捕捉模式(BMEn=1, n= 0, 2, 4)


图 16-6. PCA 缓冲捕捉模式波形

16.4.3. 16 位软件定时器模式(比较模式)

PCA模块可以通过设置CCAPMn寄存器的ECOM位和MAT位来作为一个软件定时器使用。PCA定时器与模块的捕获寄存器值进行比较,若相等且当CCFn和ECCFn位同时设置时会产生一个中断信号。


图 16-7. PCA 软件定时器模式

16.4.4. 高速输出模式(比较输出模式)

这种模式下,每当PCA计数器与模块捕获寄存器值相等时,CEX的输出就翻转一次。为激活这种模式,CCAPMn 寄存器的TOG、MAT 和 ECOM 位必须都置为1。

图 16-8. PCA 高速输出模式

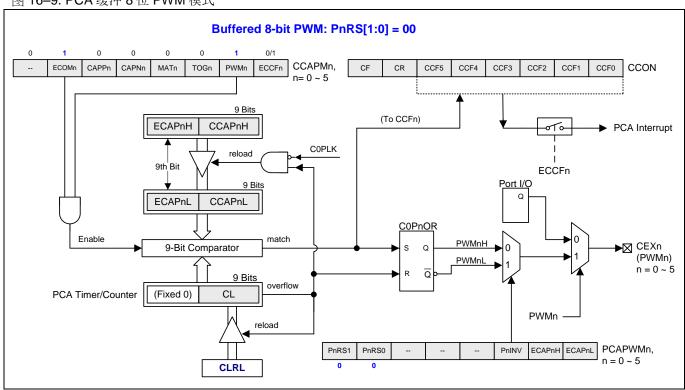
16.4.5. 缓冲 8 位 PWM 模式

所有PCA模块都可用作PWM输出。输出频率取决于PCA定时器的时钟源。所有的模块都有相同的输出频率,因为它们共享PCA定时器。

占空比取决于模块捕获寄存器CCAPnL 与扩展的第9位ECAPnL的值。当9位数据{0,[CL]}值小于{ ECAPnL, [CCAPnL]}组成的9位数据时,输出低电平,相等或大于时输出高电平。

当CL从0xFF到0x00溢出时,{ ECAPnL, [CCAPnL] } 的值使用{ ECAPnH,[CCAPnH] }的值重载,这样可以允许无异常的情况下更新PWM。模块的CCAPMn寄存器PWMn和 ECOMn位必须置位以使能PWM模式。

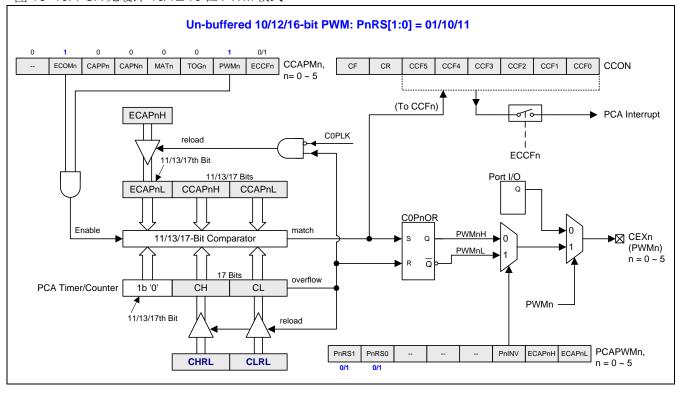
使用9位比较,输出的占空比可以真正实现从0%到100%可调。占空比计算公式如下:


占空比 = 1 - { ECAPnH, [CCAPnH] } / 256.

这里, [CCAPnH] 是CCAPnH 寄存器的8位值, ECAPnH (PCAPWMn 寄存器的第1位) 是1位值。所以,{ECAPnH, [CCAPnH]} 组成了9位比较器用的9位值。

例如,

- a. 若ECAPnH=0且CCAPnH=0x00 (即9位值, 0x000), 占空比为100%。
- b. 若ECAPnH=0且CCAPnH=0x40 (即9位值, 0x040), 占空比为75%。
- c. 若ECAPnH=0且CCAPnH=0xC0 (即9位值, 0x0C0), 占空比为25%。
- d. 若ECAPnH=1且CCAPnH=0x00 (即9位值, 0x100), 占空比为0%。


图 16-9. PCA 缓冲 8 位 PWM 模式

16.4.6. 无缓冲 10/12/16 位 PWM 模式

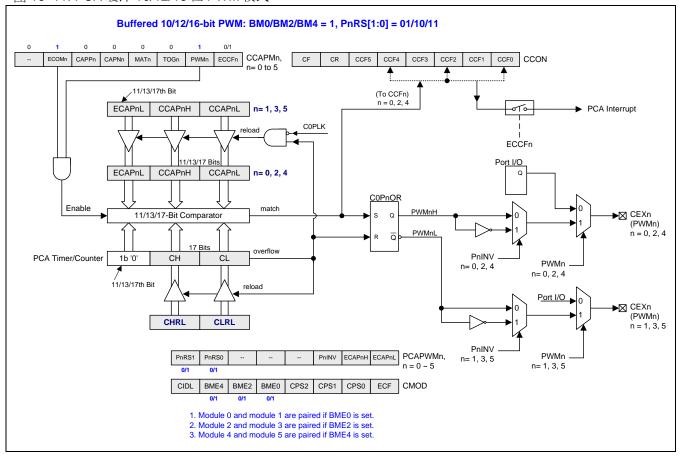

PCA 提供可变的 PWM 模式以增强控制能力。有额外的 10/12/16 位 PWM 被分配给每一路及每一路 PWM 有不同的分辨率操作能力。

图 16-10. PCA 无缓冲 10/12/16 位 PWM 模式

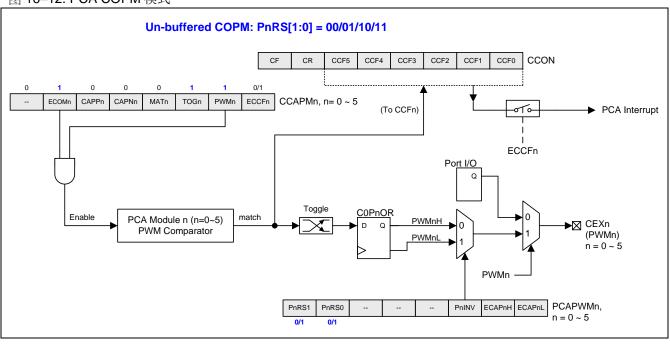

16.4.7. 缓冲 10/12/16 位 PWM 模式

图 16-11. PCA 缓冲 10/12/16 位 PWM 模式

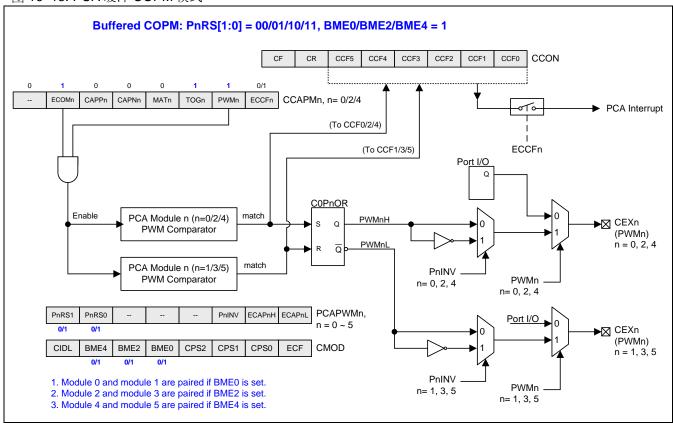

16.4.8. COPM 模式

图 16-12. PCA COPM 模式

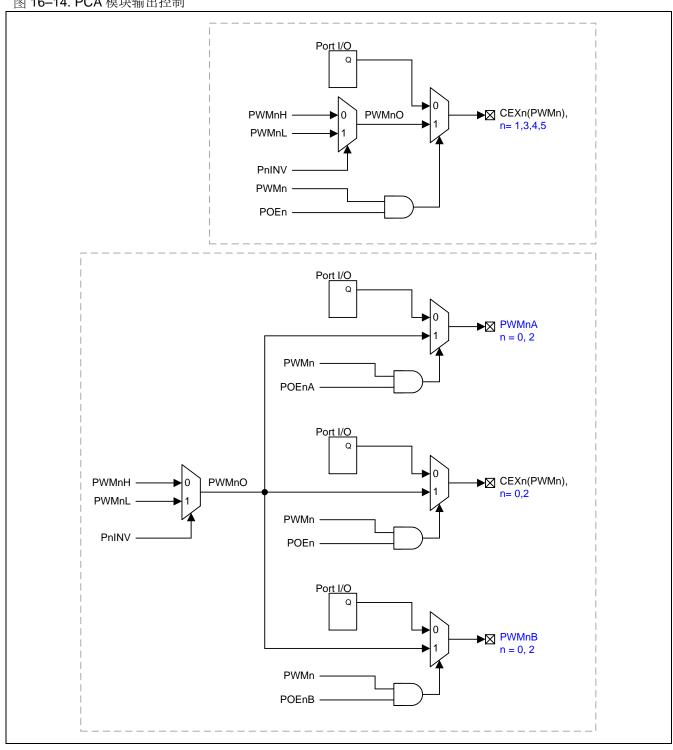

16.4.9. 缓冲 COPM 模式

图 16-13. PCA 缓冲 COPM 模式

16.4.10. PCA 模块输出控制

图 16-14. PCA 模块输出控制

PAOE: PWM 额外输出使能寄存器

SFR 页 = 0~F

SFR 地址 = 0xF1

复位值= 1001-1001

7	6	5	4	3	2	1	0
POE3	POE2B	POE2A	POE2	POE1	POE0B	POE0A	POE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: POE3, PCA0 PWM3 主通道(PWM3O)输出控制。

0: 禁止 PWM3O 在端口引脚输出。

1: 使能 PWM3O 在端口引脚输出。默认是使能。

Bit 6: POE2B, PCA0 PWM2 3rd 通道(PWM2B)输出控制。

0: 禁止 PWM2B 在端口引脚输出。默认是禁止。

1: 使能 PWM2B 在端口引脚输出。

Bit 5: POE2A, PCA0 PWM2 2nd 通道(PWM2A)输出控制。

0: 禁止 PWM2A 在端口引脚输出。默认是禁止。

1: 使能 PWM2A 在端口引脚输出。

Bit 4: POE2, PCA0 PWM2 主通道(PWM2O)输出控制。

0: 禁止 PWM2O 在端口引脚输出。

1: 使能 PWM2O 在端口引脚输出。默认是使能。

Bit 3: POE1, PCA0 PWM1 主通道(PWM1O)输出控制。

0: 禁止 PWM1O 在端口引脚输出。

1: 使能 PWM1O 在端口引脚输出。默认是使能。

Bit 2: POE0B, PCA0 PWM0 3rd 通道(PWM0B)输出控制。

0: 禁止 PWM0B 在端口引脚输出。默认是禁止。

1: 使能 PWM0B 在端口引脚输出。

Bit 1: POE0A, PCA0 PWM0 2nd 通道(PWM0A)输出控制。

0: 禁止 PWM0A 在端口引脚输出。默认是禁止。

1: 使能 PWM0A 在端口引脚输出。

Bit 0: POE0, PCA0 PWM0 主通道(PWM0O)输出控制。

0: 禁止 PWM0O 在端口引脚输出。

1: 使能 PWM0O 在端口引脚输出。默认是使能。

AUXR7: 辅助寄存器 7

SFR 页 = 仅 4 页

SFR 地址 = 0xA4

复位值= 1100-xxxx

7	6	5	4	3	2	1	0
POE5	POE4	C0CKOE	SPI0M0				
R/W	R/W	R/W	R/W	W	W	W	W

Bit 7: POE5, PCA0 PWM5 主通道(PWM5O)输出控制。

0: 禁止 PWM5O 在端口引脚输出。

1: 使能 PWM5O 在端口引脚输出。默认是使能。

Bit 6: POE4, PCA0 PWM4 主通道(PWM4O)输出控制。

0: 禁止 PWM4O 在端口引脚输出。

1: 使能 PWM4O 在端口引脚输出。默认是使能。

Bit 5: COCKOE, PCAO 时钟输出使能。

- 0: 禁止 PCA0 时钟输出。
- 1: 使能 PCAO 基本定时器溢出率二分之一的时钟输出。

AUXR5: 辅助寄存器 5

SFR 页 = **仅 2 页**

SFR 地址 = 0xA4

复位值= 0000-0000

7	6	5	4	3	2	1	0
C0IC4S0	C0IC2S0	C0PPS1	C0PPS0	C0PS1	C0PS0	ECIPS0	C0COPS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: C0IC4S0, PCA0 输入通道 4 输入端口引脚选择。

C0IC4S0	CEX4 输入
0	CEX4 端口引脚
1	AC0OUT

Bit 6: COIC2SO, PCAO输入通道2输入端口引脚选择。

C0IC2S0	CEX2 输入
0	CEX2 端口引脚
1	ILRCO

Bit 5: COPPS1, {PWM2A, PWM2B}端口引脚选择 0。

C0PPS1	PWM2A	PWM2B
0	P4.0	P4.1
1	P3.4	P3.5

Bit 4: COPPSO, { PWMOA, PWMOB }端口引脚选择 0。

C0PPS0	PWM0A	PWM0B
0	P2.0	P2.1
1	P6.0	P6.1

Bit 3: COPS1, PCA0 端口引脚选择 1。

C0PS1	CEX3	CEX5
0	P3.4	P3.5
1	P2.0	P2.1

Bit 2: COPSO, PCAO 端口引脚选择 0。

C0PS0	CEX0	CEX2	CEX4
0	P2.2	P2.4	P2.6
1	P3.0	P3.1	P3.3

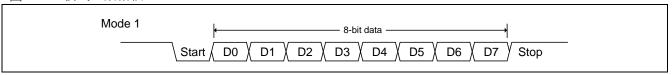
Bit 1: ECIPS0, PCA0 ECI 端口引脚选择 0。

ECIPS0	ECI
0	P1.3
1	P1.6

Bit 0: COCOPS, PCA0 时钟(COCKO)端口引脚选择。

		, .
C0COPS	C0CKO	
0	P4.7	
1	P3.3	

17. 串行口 0 (UARTO)


MA82G5DXX 支持一个全双工的串行口,意思是可以同时发送和接收数据。它有一个接收缓冲,意味着在前一个接收到的字节没有从寄存器读出前,就可以开始接收第二个字节。但是,如果第一个字节在第二个字节接收完成前仍然没有被读出,则其中的一个字节将会丢失。串行口的接收和发送寄存器都通过特殊寄存器 SOBUF 来访问。写到 SOBUF 加载到传送寄存器,当从 SOBUF 读时是一个物理上独立分离的接收寄存器。

串行口可以工作在 5 种模式:模式 0 提供同步通讯,同时模式 1、2 和模式 3 提供异步通讯。异步通讯作为一个全双工的通用异步收发器(UART),可以同时发送和接收,并使用不同的波特率。UART0 的模式 4 支持 SPI 主机工作,速率设置跟模式 0 一样。

模式 0:8 位数据(低位先出)通过 RXD0 传送和接收。TXD0 总是作为输出移位时钟。波特率可通过 S0CFG 寄存器的 URM0X3 位选择为系统时钟频率的 1/12 或 1/4。MA82G5DXX 串行口模式 0 的时钟极性也可以软件选择。在串行数据移入或移出之前它由 P3.1 的状态决定。图 17–4 和图 17–5 所示模式 0 的时钟极性波形。

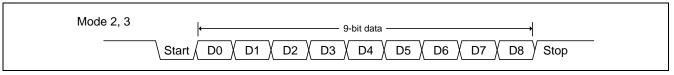

模式 1: 10 位通过 TXD0 传送或通过 RXD0 接收,数据帧包括一个起始位(0),8 个数据位(低位优先),和一个停止位(1)(如图 17-1 所示)。在接收时,停止位进入到专用寄存器(S0CON)的 RB80。波特率是可变的。

图 17-1. 模式 1 数据帧

模式 2: 11 位通过 TXD0 传送或通过 RXD0 接收,数据帧包括一个起始位(0),8 个数据位(低位优先),一个可编程的第九个数据位和一个停止位(1) (如图 17-2 所示)。在传送时,第 9 个数据位(TB80 在 S0CON 寄存器)可以分配为 0 或者 1。例如,奇偶检验位(P,在 PSW 寄存器)可以移到 TB80 中。在接收时,第九个数据位到 S0CON 寄存器中的 RB80,同时忽略停止位。波特率可以配置为 1/32 或 1/64 的系统时钟频率。

图 17-2.模式 2, 3 数据帧

Mode 3:除了波特率是可变之外,模式3与模式2一样。

在四种模式中,使用S0BUF作为一个目的寄存器,可以通过任何指令发起传输。在模式0,当 RI0=0且REN0=1 时 启动接收。在其它模式,在 REN0=1 时,收到起始位时启动接收。

除了标准操作外,UARTO 还能具有侦察丢失停止位的帧错误和自动地址识别的功能。

17.1. 串行口 0 模式 0

串行数据通过RXD0读入和输出,TXD0输出移位时钟。接收和发送 8 位数据: 8 个数据位(低位优先)。波特率可通过S0CFG寄存器中的URM0X3选择为系统时钟的 1/12或1/4。 图 17-3 显示了串口模式 0 的简化功能框图。

使用 S0BUF 作为一个目的寄存器可通过任何指令来启动传输。"写到 S0BUF"信号触发 UARTO 引擎开始发送。 S0BUF 里面的数据在 TXD0 (P3.1) 脚的每一个上升沿移出到 RXD0 (P3.0) 脚。八个上升沿移位时钟过后,硬件置 TIO 为 1 标志发送完成且中断向量可以由 BTI 和 UTIE 切换到系统标志中断。模式 0 发送时序见图 17-4。

当 REN0=1 和 RI0=0 时接收启动。在下一个指令周期,RX0 控制单元写 11111110 到接收移位寄存器,且在下一个时钟阶段激活接收。

接收使能移位时钟选择输出功能 TXD0(P3.1)引脚。当接收激活时,在移位时钟的下降沿采样 RXD0(P3.0)脚并移到寄存中。八个下降沿移位时钟过后,硬件置 RI0为 1标志接收完成。模式 0接收时序见图 17-5。

图 17-3.串行口 0 模式 0

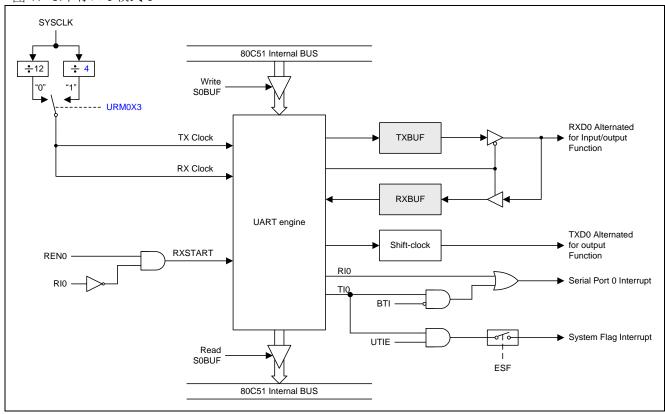
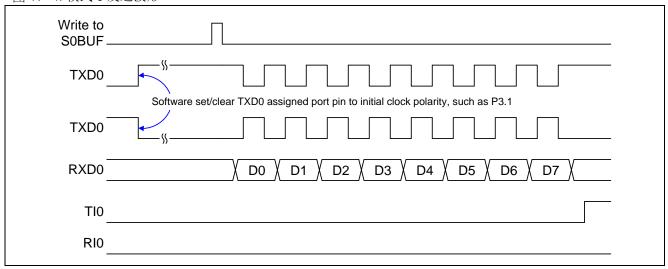
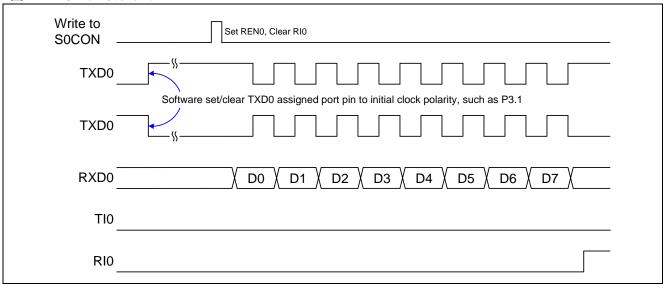
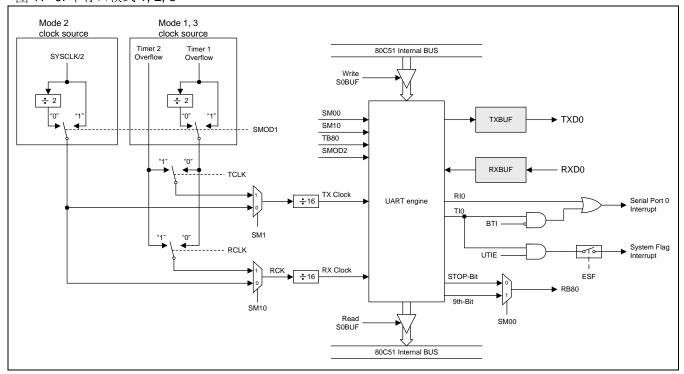




图 17-4. 模式 0 发送波形

图 17-5. 模式 0 接收波形


17.2. 串行口 0 模式 1

通过 TXD0 发送 10 位数据或通过 RXD0 接收 10 位数据: 一个起始位(0),8 个数据位(低位先出),和一个停止位(1)。在接收时,停止位进入 SOCON 的 RB80,波特率由定时器 1 或定时器 2 的溢出速率来决定。模式 1 数据帧时序如图 17-1 所示并且模式 1 的简化功能框图如图 17-6 所示。

使用 SOBUF 作为目的寄存器的任何指令来启动传输。"写到 SOBUF"的信号请求 UARTO 引擎开始发送,当收到一个发送请求后,UARTO 将在 TX 时钟的上升沿开始发送。SOBUF 中的数据从 TXDO 引脚串行输出,数据帧如图 17-1 所示及数据宽度根据 TX 时钟不同而不同。当 8 位数据发送完后,硬件将置位 TIO 表示发送结束,并且它的中断向量可以由 BTI 和 UTIE 切换到系统标志中断。

当串行口 0 控制器在 RCK 采样时钟下检测到在 RXD0 有负跳变的起始位时接收开始。在 RXD0 引脚上的数据将被串行口 0 的位侦测器采样。当收到停止位后,硬件置位 RI0 表示接收结束并把停止位加载到 S0CON 寄存器的 RB80。

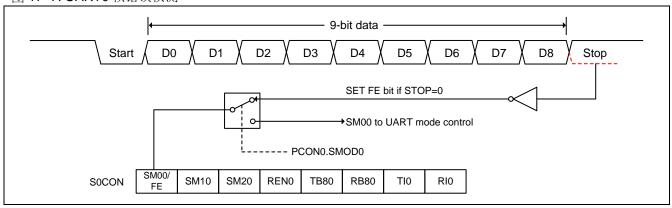
图 17-6. 串行口模式 1, 2, 3

17.3. 串行口 0 模式 2 和模式 3

通过 TXD0 传送 11 位或通过 RXD0 接收 11 位:一个起始位(0),8 个数据位(低位在先),一个可编程的第 9 个数据位和一个停止位(1)。在传送时,数据的第 9 位(TB80)可分配为 0 或 1。在接收时,数据的第 9 位将进入到 SOCON的 RB80。在模式 2 波特率可编程为 1/16,1/32 或 1/64 的系统时钟频率。模式 3 可以产生可以从定时器 1 或定时器 2 产生可变的波特率。

模式 2 和 3 数据帧如图 17-2 所示,模式 2 和模式 3 的串行口功能框图如图 17-5 所示。接收部分和模式 1 相同。与模式 1 传送部分不同的仅仅是传送移位寄存器的第 9 位。

写到 SOBUF 的信号请求 UARTO 引擎加载 TB8 到发送移位寄存器的第 9 位并开始发送,当收到一个发送请求后,UARTO 将在 TX 时钟的上升沿开始发送。SOBUF 中的数据从 TXDO 引脚串行输出,数据帧如图 17–2 所示及数据宽度根据 TX 时钟不同而不同。当 9 位数据发送完后,硬件将置位 TIO 表示发送结束,并且它的中断向量可以由 BTI和 UTIE 切换到系统标志中断。

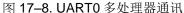

当串行口 0 控制器在 RCK 采样时钟下检测到在 RXD0 有负跳变的起始位时接收开始。在 RXD0 引脚上的数据将被串行口 0 的位侦测器采样。当收数据接收完后,硬件置位 RI0 表示接收结束并把第 9 位加载到 S0CON 寄存器的 RB80。

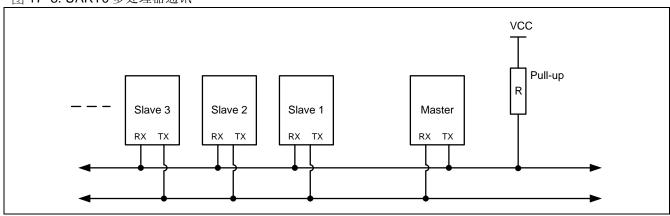
在四种模式中,使用 S0BUF 作为一个目的寄存器,可以通过任何指令发起传输。在模式 0,当 RI0=0 且 REN0=1 时启动接收。在其它模式,在 REN0=1 时,收到有负跳变的起始位时启动接收。

17.4. 帧错误侦测

开启帧错误检测功能后,UART0会在通讯中检测是否丢失停止位,如果丢失一个停止位,就设置SOCON寄存器的FE标志位。FE标志位和SM00标志位共享SCON0.7,SMOD0标志位(PCON.6)决定SOCON.7究竟代表哪个标志,如果SMOD0位(PCON0.6)置位则SOCON.7就是FE标志,SMOD0位清零则SOCON.7就是SM00标志。当SOCON.7代表FE时,只能软件清零。参考图 17-7。

图 17-7. UARTO 帧错误侦测




17.5. 多处理器通讯

模式 2 和 3 在用作多处理器通讯时有特殊的规定如图 17-8 所示。在这两种模式,接收 9 个数据位。第 9 个数据位存入 RB80,接着进来一个停止位。端口可以编程为:在 RB80=1 时,当收到停止位后,串口中断将激活。这种特征通过设置 SM20 位(在 S0CON 寄存器中)来使能。这种方式用于多处理器系统如下:

当主处理器想传送一个数据块到多个从机中的某一个时,首先传送想要传送的目标地址标识符的地址。地址字节与数据字节的区别在于,在地址字节中第9位为1,数据字节中为0。当 SM20=1 时,收到一个数据字节将不会产生中断。然而一个地址字节将引发所有从机中断。因而所有的从机可以检测收到的字节是否是自己的地址。从机地址将清除 SM20 位并准备好接收即将进来的所有数据。从机地址不匹配的将保持 SM20 置位,并继续他们的工作,忽略进来的数据字节。

SM20 在模式 0 和模式 1 没有影响,但是可以用来检测停止位的有效性。在接收模式 1 中,如果 SM20=1,除非收到一个有效的停止位否则接收中断不会被激活。

17.6. 自动地址识别

自动地址识别通过硬件比较可以让 UARTO 识别串行码流中的地址部分,该功能免去了使用软件识别时需要大量代码的麻烦。该功能通过设定 SOCON 的 SM20 位来开启。

在 9 位数据 UARTO 模式下,即模式 2 和模式 3,收到特定地址或广播地址时自动置位接收中断(RIO)标志,9 位模式的第 9 位信息为 1 表明接收的是一个地址而不是数据。自动地址识别功能请参考图 17-9。在 8 位模式,即模式 1 下,如果 SM20 置位并且在 8 位地址与给定地址或广播地址核对一致后收到有效停止位则 RIO 置位。 模式 0 是移位寄存器模式,SM20 被忽略。

使用自动地址识别功能可以让一个主机选择性的同一个或多个从机进行通讯,所有从机可以使用广播地址接收信息。两个特殊功能寄存器(SADDR 和 SADEN 地址掩码寄存器)用来定义从机地址。

SADEN 用来定义 SADDR 中的那些位是"无关紧要"的,SADEN 掩码和 SADDR 寄存器进行逻辑与来定义供主机寻址从机的"给定" 地址,该地址让多个从机进行排他性的识别。

下面的实例帮助理解这个方案的通用性:

从机 0 从机 1

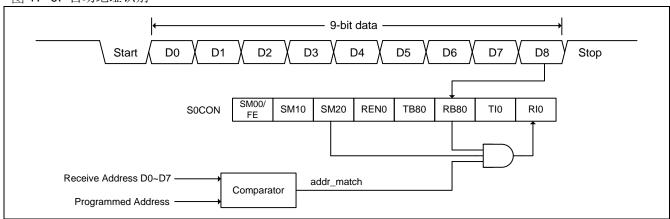
SADDR = 1100 0000 SADDR = 1100 0000 SADEN = 1111 1101 SADEN = 1111 1110 Given = 1100 00X0 Given = 1100 000X 上面的例子中 SADDR 是相同的值,而使用 SADEN 数据来区分两个从机。从机 0 要求第 0 位必须为 0,并忽略第 1 位的值;从机 1 要求第 1 位必须为 0,并忽略第 0 位的值。从机 0 的唯一地址是 1100 0010,而从机 1 的唯一地址是 1100 0001,地址 1100 0000 是可以同时寻找到从机 0 和从机 1 的。

下面一个更为复杂的系统可以寻址到从机1和从机2,而不会寻址到从机0:

从机 0 从机 1 从机 2

 SADDR = 1100 0000
 SADDR = 1110 0000
 SADDR = 1110 0000

 SADEN = 1111 1001
 SADEN = 1111 1010
 SADEN = 1111 1100


 Given = 1100 0XX0
 Given = 1110 0X0X
 Given = 1110 00XX

上面的例子中,3个从机的低 3 位地址不一样,从机 0 要求第 0 位必须为 0,1110 0110 可以唯一寻址从机 0;从 机 1 要求第 1 位必须为 0,1110 0101 可以唯一寻址从机 1;从机 2 要求第 2 位必须为 0,它的唯一地址是 1110 0011。为了寻址到从机 0 和从机 1 而不会寻址到从机 2,可以使用地址 1110 0100,因为这个地址第 2 位是 1。

每个从机的广播地址的创建都是通过SADDR和SADEN的逻辑或,0在结果中按不需关心处理。大部分情况下,体现不需关心处理是所有为1,使用十六进制的FF作为广播地址。

复位后,SADDR(SFR 地址 0xA9)和 SADEN(SFR 地址 0xB9)值均为 0。这样可以接收所有地址的信息,也就有效的禁用了自动地址识别模式,从而使该处理器运行于标准 80C51 的 UART 下。

图 17-9. 自动地址识别

注意:

- (1)收到匹配地址后(addr_match=1),清 SM20 以接收数据字节。
- (2) 收完全部数据字节后,置 SM20 为 1 以等待下一个地址。

17.7. 波特率设置

位T2X12 (T2MOD.4)、T1X12 (AUXR2.3)、URM0X3 (S0CFG.5)和SMOD2 (S0CFG.6)提供一个新的波特率选项设置,如下所列。

17.7.1. 串行口 0(S0)的波特率选择

UART0 运行在模式 1 和模式 3 时,清零 T2CON 寄存器的位 TCLK 和 RCLK 软件可选择定时器 1 作为波特率发生器。此刻,如果 URTS(S0CFG.7)置位,定时器 1 的益处信号将被 UART1 的波特率发生器(S1BRG)取代。换句话说,一旦 RCLK=0、TCLK=0 和 URTS=1 用户可采用 S1BRG 作为 UART0 模式 1 或模式 3 的波特率发生器。这样,定时器 1 可以自由地做其它操作。当然 UART1(模式 1 或模式 3)也是这样运行,这两个串行口(UART)将有同样的波特率。

图 17-10. UARTO 的额外波特率源

17.7.2. 模式 0 波特率

Mode 0 Baud Rate = -	F _{SYSCLK}	; n=12, if URM0X3=0
	n	; n=4, if URM0X3=1

注意:

如果 URMOX6=0,波特率公式跟标准 8051 一样。

17.7.3. 模式 2 波特率

注意:

如果 SMOD2=0,波特率公式跟标准 8051 一样。如果 SMOD2=1,波特率设置有增强功能。表 17–1 定义了模式 2 波特率发生器由 SMOD2 因数决定的波特率设置。

表 17-1. SMOD2 在模式 2 中的应用标准

SMOD2	SMOD1	波特率	备注	推荐的最大接收误差	
				(%)	
0	0	缺省波特率	标准功能	± 3%	
0	1	双倍波特率	标准功能	± 3%	
1	0	双倍波特率 X2	增强型功能	± 2%	
1	1	双倍波特率 X4	增强型功能	± 1%	

17.7.4. 模式 1 和 3 波特率

17.7.4.1 使用定时器 1 作为波特率发生器

Mode 1, 3 Baud Rate =
$$\frac{2^{\text{SMOD1}} \times 2^{(\text{SMOD2} \times 2)}}{32} \times \frac{F_{\text{SYSCLK}}}{12 \times (256 - \text{TH1})} ; \text{T1X12=0}$$

$$or = \frac{2^{\text{SMOD1}} \times 2^{(\text{SMOD2} \times 2)}}{32} \times \frac{F_{\text{SYSCLK}}}{12 \times (256 - \text{TH1})} ; \text{T1X12=1}$$

注意:

如果 SMOD2=0,T1X12=0,波特率公式跟标准 8051 一样。如果 SMOD2=1,波特率设置有增强功能。表 17-2 定义了定时器 1 波特率发生器由 SMOD2 因数决定的波特率设置。

表 17-2. SMOD2 在模式 1 和 3 使用定时器 1 的应用标准

SMOD2	SMOD1	波特率	备注	推荐的最大接收误差	
				(%)	
0	0	缺省波特率	标准功能	± 3%	
0	1	双倍波特率	标准功能	± 3%	
1	0	双倍波特率 X2	增强型功能	± 2%	
1	1	双倍波特率 X4	增强型功能	± 1%	

表 17-3~表 17-14 列出了 8 位自动加载模式的定时器 1 中各种常用的波特率和怎样获得。

表 17-3. 在 F_{SYSCLK}=11.0592MHz 时定时器 1 产生的常用波特率

17-5. 在 SYSCLK-11.0092WH2 时足的福 1 / 王的市用仮行平						
	TH1,重载值					
Baud Rate	T1X12=0 & SMOD2=0			T1X12=1 & SMOD2=0		
	SMOD1=0	SMOD1=1	Error	SMOD1=0	SMOD1=1	Error
1200	232	208	0.0%			
2400	244	232	0.0%	112		0.0%
4800	250	244	0.0%	184	112	0.0%
9600	253	250	0.0%	220	184	0.0%
14400	254	252	0.0%	232	208	0.0%
19200		253	0.0%	238	220	0.0%
28800	255	254	0.0%	244	232	0.0%
38400				247	238	0.0%
57600		255	0.0%	250	244	0.0%
115200				253	250	0.0%
230400					253	0.0%

表 17-4. 在 F_{SYSCI K}=11.0592MHz 时定时器 1 产生的常用波特率

11 11 E 1 515CER 1 1100021011 12 11 7 E 11 11/1 (A) 14						
	TH1,重载值					
Baud Rate	T1X12=0 & SMOD2=1			T1X12=1 & SMOD2=1		
	SMOD1=0	SMOD1=1	Error	SMOD=0	SMOD=1	Error
230.4K		255	0.0%	250	244	0.0%
460.8K				253	250	0.0%
691.2K				254	252	0.0%
921.6K					253	0.0%

1.3824M	 	 255	254	0.0%
2.7648M	 	 	255	0.0%

表 17-5. 在 F_{SYSCLK}=22.1184MHz 时定时器 1 产生的常用波特率

	TH1,重载值							
Baud Rate	T1X12=0 & SMOD2=0			T1X12=1 & SMOD2=0				
	SMOD1=0	SMOD1=1	Error	SMOD1=0	SMOD1=1	Error		
1200	208	160	0.0%					
2400	232	208	0.0%			0.0%		
4800	244	232	0.0%	112		0.0%		
9600	250	244	0.0%	184	112	0.0%		
14400	252	248	0.0%	208	160	0.0%		
19200	253	250	0.0%	220	184	0.0%		
28800	254	252	0.0%	232	208	0.0%		
38400		253	0.0%	238	220	0.0%		
57600	255	254	0.0%	244	232	0.0%		
115200		255	0.0%	250	244	0.0%		
230400				253	250	0.0%		
460800					253	0.0%		

表 17-6. 在 F_{SYSCLK}=22.1184MHz 时定时器 1 产生的常用波特率

	TH1,重载值							
Baud Rate	T1X12	2=0 & SMOD2=	T1X12		=1 & SMOD2=1			
	SMOD1=0	SMOD1=1	Error	SMOD=0	SMOD=1	Error		
460.8K		255	0.0%	250	244	0.0%		
691.2K				252	248	0.0%		
921.6K	-			253	250	0.0%		
1.3824M	-			254	252	0.0%		
1.8432M					253	0.0%		
2.7648M	-			255	254	0.0%		
5.5296M					255	0.0%		

表 17-7. 在 F_{sysclk}=12.0MHz 时定时器 1 产生的常用波特率

17-7. 在 1 SYSCEN-12.00012 的是的部 1 / 上的市用级的平								
	TH1,重载值							
Baud Rate	T1X12=0 & SMOD2=0			T1X12=1 & SMOD2=0				
	SMOD=0	SMOD=1	Error	SMOD=0	SMOD=1	Error		
1200	230	204	0.16%					
2400	243	230	0.16%	100		0.16%		
4800		243	0.16%	178	100	0.16%		
9600				217	178	0.16%		
14400				230	204	0.16%		
19200					217	0.16%		
28800		-		243	230	0.16%		
38400				246	236	2.34%		
57600					243	0.16%		
115200								

表 17–8. 在 F_{SYSCLK} =12.0MHz 时定时器 1 产生的常用波特率

Baud Rate	TH1,重载值							
	T1X12=0 & SMOD2=1			T1X12=1 & SMOD2=1				
	SMOD1=0	SMOD1=1	Error	SMOD=0	SMOD=1	Error		
115.2K				243	230	0.16%		
230.4K					243	0.16%		
460.8K								

表 17-9. 在 F_{SYSCLK}=24.0MHz 时定时器 1 产生的常用波特率

	TH1,重载值							
Baud Rate	T1X12	2=0 & SMOD2=	T1X12	T1X12=1 & SMOD2=0				
	SMOD=0	SMOD=1	Error	SMOD=0	SMOD=1	Error		
1200	204	152	0.16%					
2400	230	204	0.16%					
4800	243	230	0.16%	100		0.16%		
9600		243	0.16%	178	100	0.16%		
14400				204	152	0.16%		
19200				217	178	0.16%		
28800				230	204	0.16%		
38400					217	0.16%		
57600				243	230	0.16%		
115200					243	0.16%		

表 17-10. 在 F_{SYSCLK}=24.0MHz 时定时器 1 产生的常用波特率

11 10. 压 15/5CLK—2寸.0WII12 F1)									
Baud Rate		TH1,重载值							
	T1X12=0 & SMOD2=1			T1X12=1 & SMOD2=1					
	SMOD1=0	SMOD1=1	Error	SMOD=0	SMOD=1	Error			
230.4K				243	230	0.16%			
460.8K		-			243	0.16%			
691.2K		-							
921.6K		-							

表 17–11. 在 F_{SYSCLK} =29.4912MHz 时定时器 1 产生的常用波特率

表 17-12. 在 F_{SYSCLK}=44.2368MHz 时定时器 1 产生的常用波特率

表 17-13. 在 F_{SYSCLK}=32MHz 时定时器 1 产生的常用波特率

表 17–14. 在 F_{SYSCLK} =48.0MHz 时定时器 1 产生的常用波特率

使用定时器 2 作为波特率发生器

当定时器 2 作波特率发生器时(T2CON 寄存器中的 TCLK 或 RCLK 任一位为'1'),波特率如下:

Mode 1, 3 Baud Rate =
$$\frac{2^{\text{SMOD2 X (SMOD1 + 1)}} x F_{\text{SYSCLK}}}{32 x (65536 - (\text{RCAP2H, RCAP2L}))}; T2X12=0$$

$$or = \frac{2^{\text{SMOD2 X (SMOD1 + 1)}} x F_{\text{SYSCLK}}}{16 x (65536 - (\text{RCAP2H, RCAP2L}))}; T2X12=1$$

注意:

如果 SMOD2=0,波特率公式跟标准 8051 一样。如果 SMOD2=1,波特率设置有增强功能。表 17–15 定义了 定时器 2 波特率发生器由 SMOD2 因数决定的波特率设置。

表 17-15. SMOD2 在模式 1 和 3 使用定时器 2 的应用标准

SMOD2	SMOD1	波特率	备注	推荐的最大接收误差 (%)
0	Χ	缺省波特率	标准功能	± 3%
1	0	双倍波特率	增强型功能	± 3%
1	1	双倍波特率 X2	增强型功能	± 2%

表 17-16~表 17-27 列出了定时器 2 中各种常用的波特率和怎样获得。

表 17-16. 在 F_{SYSCLK}=11.0592MHz 时定时器 2 产生的常用波特率

17-10. 在 I SYSCLK-11.0332WH2 的 是的 研 2 / 工 的 市 的 放 的 字								
	[RCAP2H, RCAP2L] ,重载值							
Baud Rate	T2X12=0 & SMOD2=0			T2X12	T2X12=1 & SMOD2=0			
	SMOD1=0	SMOD1=1	Error	SMOD1=0	SMOD1=1	Error		
1200	65248	65248	0.0%	64960	64960	0.0%		
2400	65392	65392	0.0%	65248	65248	0.0%		
4800	65464	65464	0.0%	65392	65392	0.0%		
9600	65500	65500	0.0%	65464	65464	0.0%		
14400	65512	65512	0.0%	65488	65488	0.0%		
19200	65518	65518	0.0%	65500	65500	0.0%		
28800	65524	65524	0.0%	65512	65512	0.0%		
38400	65527	65527	0.0%	65518	65518	0.0%		
57600	65530	65530	0.0%	65524	65524	0.0%		
115200	65533	65533	0.0%	65530	65530	0.0%		
230400				65533	65533	0.0%		

表 17-17. 在 F_{SYSCLK}=11.0592MHz 时定时器 2 产生的高波特率

	TOTOLK TOTOLK TOTOLK							
	[RCAP2H, RCAP2L] ,重载值							
Baud Rate	T2X12=0 & SMOD2=1			T2X12=1 & SMOD2=1				
	SMOD1=0	SMOD1=1	Error	SMOD=0	SMOD=1	Error		
230.4K	65533	65530	0.0%	65530	65524	0.0%		
460.8K		65533	0.0%	65533	65530	0.0%		
691.2K	65535	65534	0.0%	65534	65532	0.0%		
921.6K					65533	0.0%		
1.3824M		65535	0.0%	65535	65534	0.0%		

2.7648M	 	 	65535	0.0%

表 17-18. 在 F_{SYSCLK}=22.1184MHz 时定时器 2 产生的常用波特率

	[RCAP2H, RCAP2L] , 重载值							
Baud Rate	T2X12=0 & SMOD2=0			T2X12=1 & SMOD2=0				
	SMOD1=0	SMOD1=1	Error	SMOD1=0	SMOD1=1	Error		
1200	64960	64960	0.0%	64384	64384	0.0%		
2400	65248	65248	0.0%	64960	64960	0.0%		
4800	65392	65392	0.0%	65248	65248	0.0%		
9600	65464	65464	0.0%	65392	65392	0.0%		
14400	65488	65488	0.0%	65440	65440	0.0%		
19200	65500	65500	0.0%	65464	65464	0.0%		
28800	65512	65512	0.0%	65488	65488	0.0%		
38400	65518	65518	0.0%	65500	65500	0.0%		
57600	65524	65524	0.0%	65512	65512	0.0%		
115200	65530	65530	0.0%	65524	65524	0.0%		
230400	65533	65533	0.0%	65530	65530	0.0%		
460800				65533	65533	0.0%		

表 17-19. 在 F_{SYSCLK}=22.1184MHz 时定时器 2 产生的高波特率

	[RCAP2H, RCAP2L] ,重载值								
Baud Rate	T2X1:	2=0 & SMOD2=	T2X12=1 & SMOD2=1						
	SMOD1=0	SMOD1=1	Error	SMOD=0	SMOD=1	Error			
460.8K	65533	65530	0.0%	65530	65524	0.0%			
691.2K	65534	65532	0.0%	65532	65528	0.0%			
921.6K		65533	0.0%	65533	65530	0.0%			
1.3824M	65535	65534	0.0%	65534	65532	0.0%			
1.8432M					65533	0.0%			
2.7648M		65535	0.0%	65535	65534	0.0%			
5.5296M					65535	0.0%			

表 17-20. 在 F_{SYSCLK}=12.0MHz 时定时器 2 产生的常用波特率

	[RCAP2H, RCAP2L] , 重载值									
Baud Rate	T2X12	2=0 & SMOD2=0	T2X12=1 & SMOD2=0							
	SMOD=0	SMOD=1	Error	SMOD=0	SMOD=1	Error				
1200	65224	65224	0.16%	64912	64912	0.16%				
2400	65380	65380	0.16%	65224	65224	0.16%				
4800	65458	65458	0.16%	65380	65380	0.16%				
9600	65497	65497	0.16%	65458	65458	0.16%				
14400	65510	65510	0.16%	65484	65484	0.16%				
19200	65516	65516	2.34%	65497	65497	0.16%				
28800	65523	65523	0.16%	65510	65510	0.16%				
38400				65516	65516	2.34%				
57600				65523	65523	0.16%				
115200										

表 17-21. 在 F_{SYSCLK}=12.0MHz 时定时器 2 产生的高波特率

Baud Rate	[RCAP2H, RCAP2L] ,重载值								
	T2X12	2=0 & SMOD2=	T2X12=1 & SMOD2=1						
	SMOD1=0	SMOD1=1	Error	SMOD=0	SMOD=1	Error			
115.2K		65523	0.16%	65523	65510	0.16%			
230.4K					65523	0.16%			
460.8K									

表 17-22. 在 F_{SYSCLK}=24.0MHz 时定时器 2 产生的常用波特率

	[RCAP2H, RCAP2L] , 重载值								
Baud Rate	T2X12	2=0 & SMOD2=	T2X12=1 & SMOD2=0						
	SMOD=0	SMOD=1	Error	SMOD=0	SMOD=1	Error			
1200	64912	64912	0.16%	64288	64288	0.16%			
2400	65224	65224	0.16%	64912	64912	0.16%			
4800	65380	65380	0.16%	65224	65224	0.16%			
9600	65458	65458	0.16%	65380	65380	0.16%			
14400	65484	65484	0.16%	65432	65432	0.16%			
19200	65497	65497	0.16%	65458	65458	0.16%			
28800	65510	65510	0.16%	65484	65484	0.16%			
38400	65516	65516	2.34%	65497	65497	0.16%			
57600	65523	65523	0.16%	65510	65510	0.16%			
115200				65523	65523	0.16%			

表 17-23. 在 F_{SYSCLK}=24.0MHz 时定时器 2 产生的高波特率

Baud Rate	[RCAP2H, RCAP2L] ,重载值								
	T2X12	2=0 & SMOD2=	T2X12=1 & SMOD2=1						
	SMOD1=0	SMOD1=1	Error	SMOD=0	SMOD=1	Error			
230.4K		65523	0.16%	65523	65510	0.16%			
460.8K		-			65523	0.16%			
691.2K									
921.6K		-							

表 17-24. 在 F_{SYSCLK}=29.4912MHz 时定时器 2 产生的常用波特率

表 17-25. 在 F_{SYSCLK}=44.2368MHz 时定时器 2 产生的常用波特率

表 17-26. 在 F_{SYSCLK}=32MHz 时定时器 2 产生的常用波特率

表 17-27. 在 F_{SYSCLK}=48.0MHz 时定时器 2 产生的常用波特率

17.8. 串行口 0 模式 4 (SPI 主机)

MA82G5DXX 串口嵌入了一个额外的模式 4 支持 SPI 主机引擎。模式 4 由 SM3、SM0 和 SM1 选择。表 17–28 展示了 MA82G5DXX 的串行口模式定义。

表 17-28. 串行口 0 模式选择

SM30	SM00	SM10	模式	描述	波特率
0	0	0	0	移位寄存器	SYSCLK/12 or SYSCLK/4
0	0	1	1	8-bit UART	可变
0	1	0	2	9-bit UART	SYSCLK/64, /32
0	1	1	3	9-bit UART	可变
1	0	0	4	SPI 机	SYSCLK/12 or SYSCLK/4
1	0	1	5	保留	保留
1	1	0	6	保留	保留
1	1	1	7	保留	保留

URM0X3 也可控制 SPI 的传输速度。如果 URM0X3 = 0,则 SPI 的时钟频率是 SYSCLK/12。如果 URM0X3 = 1,则 SPI 的时钟频率是 SYSCLK/4。

MA82G5DXX 的 SPI 主机使用 TXD 作为 SPICLK, RXD 作为 MOSI,以及 S0MI 作为 MISO。而 nSS 由 MCU 软件 选择在其它端口引脚。图 17–11 展示了 SPI 连接。他支持多从机通讯架构见图 17–12。

图 17-11. 串行口 0 模式 4, 单主机和单从机结构(n = 0)

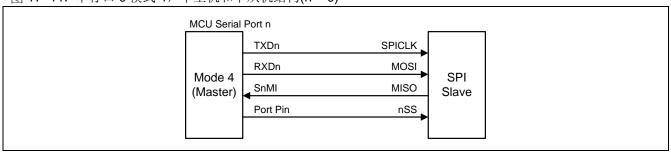
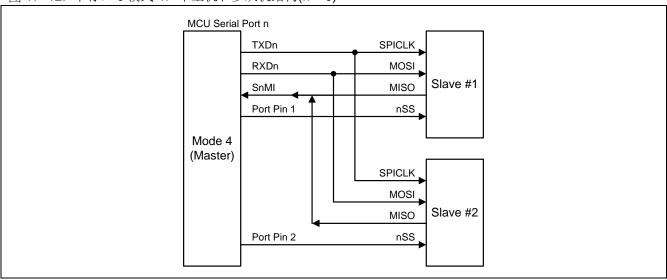
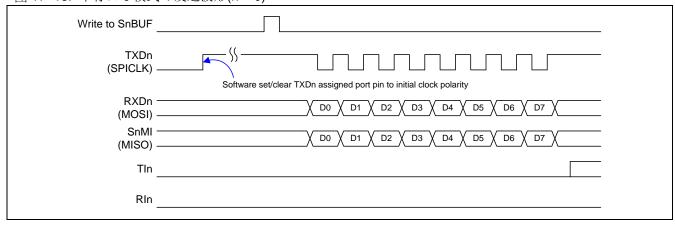



图 17-12. 串行口 0 模式 4, 单主机和多从机结构(n = 0)

SPI 主机能满足笙泉 MA82/84 系列 MCU(由 CPOL、CPHA 和 DORD 选择)的全功能 SPI 模块的传输。在 CPOL 和 CPHA 条件下, MA82G5DXX 很容易初始化 SPI 的时钟(TXD0, P3.1/P4.5)极性去适合他们使用。表 17–29 展示了串行口模式 4 的 4 个 SPI 工作模式。


表 17-29. 串行口 0 模式 4 的 SPI 模式配置

SPI Mode	CPOL	СРНА	当 TXD0 在 P3.1 引脚 MA82G5DXX 的配置
0	0	0	清除 P3.1 to "0"
1	0	1	清除 P3.1 to "0"
2	1	0	设置 P3.1 to "1"
3	1	1	设置 P3.1 to "1"

SPI 系列传输的位序控制(DORD),**MA82G5DXX** 提供了位序控制(S0CFG 寄存器的位 S0DOR)。S0DOR 的默认值是 1 且位序控制为低位在先(LSB)。S0DOR 在所有的 S0 操作模式中都是起作用的。

由任何指令把 SOBUF 作为目的寄存器的使用初始化发送。"写到 SOBUF"信号触发 UART 引擎开始发送。 SOBUF 的数据作为 MOSI 串行数据被移位到 RXDO 引脚。SPI 移位时钟在 TXDO 引脚上作为 SPICLK 输出。8 个移位时钟上升沿之后,硬件生效 TIO 表示发送结束。同时 SOMI 引脚也被采样且移位到移位寄存器。然后,"读取 SOBUF"会获得 SPI 的移入数据。图 17–13 展示了模式 0 的发送波形。模式 4 中 RIO 不会生效。

图 17-13. 串行口 0 模式 4 发送波形(n = 0)

17.9. 串行口 0 寄存器

串行口的四种操作模式除波特率的设定之外都与标准的 8051 相同。二个寄存器 PCON0 和 S0CFG 是与波特率的设定有关。

SOCON: 串行口 0 控制寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0x98

复位值= 0000-0000

7	6	5	4	3	2	1	0
SM00/FE	SM10	SM20	REN0	TB80	RB80	TI0	RI0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: FE, 帧错误位。SMOD0 必须置位才能访问 FE 位。

0: FE 位不会被有效的帧清零,它应当被软件清零。

1: 当检测到一个无效的停止位时,该位被接收器置位。

Bit 7: 串行口 0 模式位 0, (SMOD0 必须 = 0 才能访问位 SM00)。

Bit 6: 串行口 0 模式位 1。

SM30	SM00	SM10	模式	描述	波特率
0	0	0	0	移位寄存器	SYSCLK/12 or SYSCLK/4
0	0	1	1	8-bit UART	可变的
0	1	0	2	9-bit UART	SYSCLK/64, /32, /16 or /8
0	1	1	3	9-bit UART	可变的
1	0	0	4	SPI 主机	SYSCLK/12 or SYSCLK/4
1	0	1	5	保留	保留
1	1	0	6	保留	保留
1	1	1	7	保留	保留

Bit 5: 串行口 0 模式位 2。

0: 禁止 SM20 功能。

1: 在模式 2 和 3 时使能地址自动识别,如果 SM20=1 那么 RIO 将不能设置,除非接收到的第 9 位数据(RB80)为 1,指示是一个地址,并且接收到的字节是本机地址或者是一个广播地址;在模式 1,如果 SM20=1 那么 RIO 将 不能被激活除非收到一个有效的停止位,并且接收到的字节是本机地址或者是一个广播地址;在模式 0,SM20 可以为 0。

Bit 4: RENO, 使能串行接收。

0: 软件清零将禁止接收。

1: 软件置位使能接收。

Bit 3: TB80, 在模式 2 和 3 时第 9 位数据被传送, 根据需要通过软件置位或清零。

Bit 2: RB80,在模式 2 和 3 时收到的第 9 位数据。在模式 1,如果 SM20=0,RB80 是收到数据的停止位。在模式 0,RB80 没有使用。

Bit 1: TIO, 发送中断标志。

0: 必须由软件清零。

1: 在模式 0 时, 在第 8 位个数据位时序后由硬件置位。其它模式中, 在发送停止位之初由硬件置位。

Bit 0: RIO, 接收中断标志。

0: 必须由软件清零。

1: 在模式 0 时,在第 8 位个数据位时序后由硬件置位。其它模式中(除留意 SM20 外),在接收停止位的中间时刻由硬件置位。

SOBUF: 串行口 0 缓冲寄存器

SFR 页 = **仅 0 页**

SFR 地址 = 0x99

复位值= XXXX-XXXX

7	6	5	4	3	2	1	0
S0BUF.7	S0BUF.6	S0BUF.5	S0BUF.4	S0BUF.3	S0BUF.2	S0BUF.1	S0BUF.0
R/W							

Bit 7~0: 在发送和接收时作缓冲寄存器。

SADDR: 从机地址寄存器

SFR 页 = 0~F

SFR 地址 = 0xA9

复位值=0000-0000

0.11	070 10		交压區 3000 0000					
7	7 6 5		4	3	2	1	0	
SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

SADEN: 从机地址屏蔽寄存器

SFR 页 = 0~F

SFR 地址

= 0xB9

复位值= 0000-0000

7	6	5	4	3	2	1	0
SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
R/W							

SADDR 和 SADEN 组合来形成自动地址识别的要求/广播地址。事实上,SADEN 是 SADDR 的"屏蔽"寄存器。如下所示。

每个从机的广播地址为 SADDR 和 SADEN 进行逻辑"或"的结果。结果中为"0"被认为"不关心"。在系统复位后,SADDR 和 SADEN 都被初始化为 0。这样生成了所有的"不关心"要求地址和所有的"不关心"广播地址。这样禁止自动地址侦测特性。

PCONO: 电源控制寄存器 0

SFR 页 = 0~F

SFR 地址 = 0x87

POR = 0001-0000, 复位值= 0000-0000

7	6	5	4	3	2	1	0
SMOD1	SMOD0	GF	POF	GF1	GF0	PD	IDL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: SMOD1,双倍波特率控制位。

0: 禁止 UART 双倍波特率。

1: 使能 UART 双倍波特率(模式 1, 2,或 3)。

Bit 6: SMOD0, 帧错误选择。

0: S0CON.7作 SM0 功能。

1: SOCON.7 作 FE 功能。注: 当帧错误后不管 SMOD0 什么状态 FE 都将置位。

SOCFG: 串行口 0 配置寄存器

SFR 页 = 仅 0 页

 SFR 地址
 = 0x9C
 复位值= x000-100x

 7
 6
 5
 4
 3
 2
 1
 0

	SMOD2	URM0X3	SM30	S0DOR	BTI	UTIE	
W	R/W	R/W	R/W	R/W	R/W	R/W	W

Bit 7: 保留位。当 SOCFG 被写入时,这位必须软件写"0"。

Bit 6: SMOD2, UARTO 额外双倍波特率选择。

0: 禁止 UART0 额外双倍波特率。

1: 使能 UARTO 额外双倍波特率。

Bit 5: URM0X3, 串行口模式 0 和模式 4 波特率选择。

0: 清零选择 SYSCLK/12 作 UART 模式 0 和模式 4 波特率。

1: 置位选择 SYSCLK/4 作 UART 模式 0 和模式 4 波特率。

Bit 4: SM30, 串口模式控制位 3。此位的功能与 SM00 和 SM10 一起定义。

Bit 3: SODOR, 串行口 0 所有操作模式的数据位序控制。

0: 数据字节高位在先(MSB)传送。

1: 数据字节低位在先(LSB)传送。默认是 S0DOR 为"1"

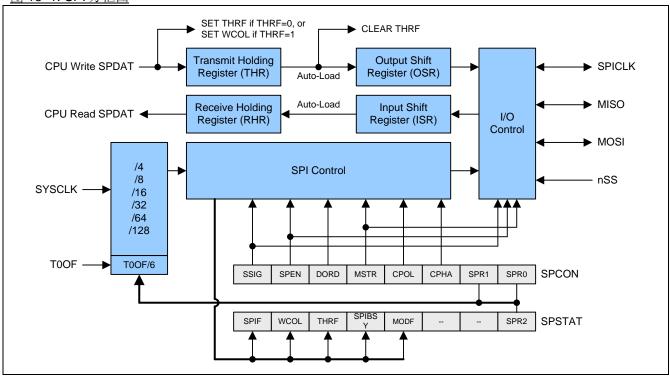
Bit 2: BTI,在串口 0 中断阻止 TIO。

0: 保留 TIO 作为一个串口 0 中断源。

1: 阻止 TIO 作为一个串口 0 中断源。

Bit 1: UTIE,在系统标志中断里使能 S0 TIO

0: 禁止在系统标志中断里中断向量共享给 TIO。


1: 设置 TIO 标志将与系统标志中断共享中断向量。

Bit 0: 保留位。当 SOCFG 被写入时,这位必须软件写"0"。

18. 串行外设接口(SPI)

MA82G5DXX 提供了一个高速串行外设接口(SPI)。SPI 接口是一种全双工、高速同步通讯总线,有两种操作模式: 主机模式和从机模式。在 12MHz 的系统时钟下主机模式支持高达 3MHz 速率。在 SPI 状态寄存器(SPSTAT) 里有三个标志传送完成标志(SPIF),写冲突标志(WCOL)和模式缺陷标志(MODF)。与传统的 SPI 相比较,一个经过特别设计的发送保持寄存器(THR)显著改善了传输效率且 THRF 标志表明 THR 是满或空。SPI 工作下忙状态由只读标志 SPIBSY 指示。

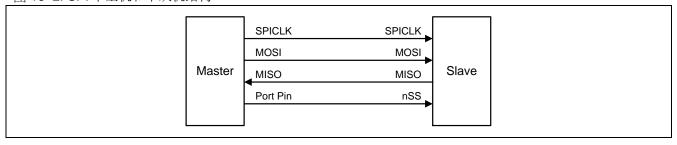
图 18-1. SPI 方框图

SPI接口有 4 个引脚: MISO、MOSI、SPICLK 和 nSS。

- · SPICLK、MOSI 和 MISO 通常将两个或多个 SPI 设备连接在一起。数据从主机到从机使用 MOSI 引脚 (主出/从入),从从机到主机使用 MISO 引脚 (主入/从出)。 SPICLK 信号在主机模式时输出,从机模式时输入。若 SPI 接口禁用,即 SPEN (SPCTL.6) = 0,这些引脚可以作为普通 I/O 口使用。
- · /SS 是从机选择端。典型配置中,SPI 主机可以使用其某个端口选择某一个 SPI 设备作为当前从机,一个 SPI 从 机设备使用它的/SS 引脚确定自己是否被选中。下面条件下/SS 被忽略:
- -若 SPI 系统被禁用,即 SPEN (SPCTL.6) = 0 (复位值)
- -若 SPI 作为主机运行,即 MSTR (SPCTL.4) = 1,且 P1.4 (nSS)被配置成输出
- -若/SS 被设置成忽略, 即 SSIG (SPCTL.7) = 1, 这个端口作为普通 I/O 使用

注意: 引脚输出选项见 AUXR4 参考章节"錯誤! 找不到參照來源。 錯誤! 找不到參照來源。"。

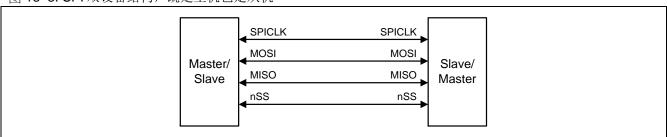
注意,即使 SPI 被配置成主机运行(MSTR=1), 它仍然可以被 nSS 引脚的低电平拉成从机(若 SSIG=0),一旦发生这种情况,SPIF 位(SPSTAT.7)置位并且 SPEN 会被清零。 (参考章节"錯誤! 找不到参照來源。 錯誤! 找不到参照來源。")。


18.1. 典型 SPI 配置

18.1.1. 单主机和单从机

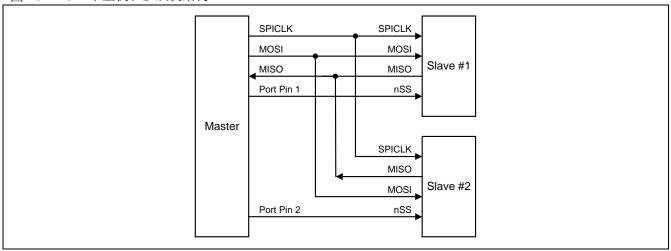
对于主机:任何端口,包括 P1.4 (nSS),都可以用来控制从机的 nSS 片选引脚。

对于从机: SSIG 为 '0',且 nSS 引脚决定该设备是否被选中。


图 18-2. SPI 单主机和单从机结构

18.1.2. 双设备, 既是主机也是从机

两个彼此连接的设备,均可成为主机或从机。没有 SPI 操作时,都可以被通过设置 MSTR=1、SSIG=0 和 P1.4 (nSS)双向口配置成主机。任何一方要发起传输,它可以配置 P1.4 位输出并强行拉低,使另一个设备发生"被改成从机模式"事件。(参考"錯誤! 找不到参照來源。 錯誤! 找不到参照來源。")。


图 18-3. SPI 双设备结构, 既是主机也是从机

18.1.3. 单主机和多从机

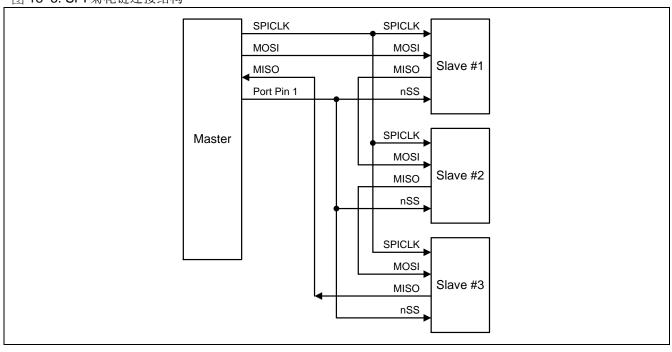

对于主机: 任何端口,包括 P1.4 (nSS),都可以用来控制从机的/SS 片选引脚。对于所有从机: SSIG 为 '0', nSS 引脚决定该设备是否被选中。

图 18-4. SPI 单主机和多从机结构

18.1.4. 菊花链连接(MCU 为 SPI 从机)

图 18-5. SPI 菊花链连接结构

18.2. SPI 配置

表 18-1 不但列出了主机/从机模式的配置,而且列出了这些模式的用法和引脚状态。

表 18-1. SPI 主机和从机选择

SPEN (SPCTL.6)	SSIG (SPCTL.7)	nSS -pin	MSTR (SPCTL.4)	模式	MISO -引脚	MOSI -引脚	SPICLK -引脚	注释
0	Х	Х	Х	禁止 SPI	输入	输入	输入	P1.4~P1.7 是通用端口引脚。
1	0	0	0	从机 (被选中)	输出	输入	输入	被选择为从机。
1	0	1	0	从机 (未被选中)	高阻	输入	输入	未被选中。
1	0	0	1 → 0	从机 (通过模式改 变)	输出	输入	输入	若 nSS 被拉低,MSTR 被硬件自动 清'0',且 SPEN 清零,MODF 置 位,模式被改为从机
1	0	1	1	主机 (空闲)	输入	高阻	高阻	MOSI 和 SPICLK 在主机待机时被 置为高阻,以防止总线冲突。
				主机 (激活)		输出	输出	MOSI 和 SPICLK 在主机活动时被 上拉。
1	1	Х	0	从机	输出	输入	输入	
1	1	Х	1	主机	输入	输出	输出	

[&]quot;X" 意味着"不关心"。

18.2.1. 一个从机的补充注意事项

当 CPHA = 0 时, SSIG 必须为 0 且 nSS 引脚必须在每次串行字节传输前负跳变,传输结束恢复正常高电平。 注意 SPDAT 寄存器不能在 nSS 引脚低电平时写入; CPHA = 0, SSIG=1 的操作是未定义的。

当 CPHA =1 时, SSIG 可以为 0 或 1。若 SSIG=0, nSS 引脚可以在每次成功传输之间保持低电平(可以一直拉低),这种格式有时非常适合单固定主从机配置应用。

18.2.2. 一个主机的补充注意事项

SPI 通讯中,传输总是由主机发起。若 SPI 使能(SPEN=1)并作为主机运行,写入 SPI 数据寄存器(SPDAT) 数据即可启动 SPI 时钟生成器和数据传输器。大约半个到 1 个 SPI 位时间后写入 SPDAT 的数据开始出现在 MOSI 线上。

在开始传输之前,主机通过拉低相应 nSS 引脚选择一个从机作为当前从机。写入 SPDAT 寄存器德数据从主机 MOSI 引脚移出,同时从从机 MISO 移入主机 MISO 的数据也写入到主机的 SPDAT 寄存器中。

移出 1 字节后, SPI 时钟发生器停止,置传输完成标志(SPIF),若 SPI 中断使能则生成一个中断。主机 CPU 和从机 CPU 中的两个移位寄存器可以看成一个分开的 16 位环形移位寄存器,数据从主机移到从机同时数据也从从机移到主机。这意味着,在一次传输过程中,主从机数据进行了交换。

18.2.3. 引脚的模式改变(打乱主机传送...)

若 SPEN=1, SSIG=0, MSTR=1 且 /SS 引脚=1, SPI 使能在主机模式。这种情况下,其他主机可以将/SS 引脚 拉低来选择该设备为从机并开始发送数据过来。为避免总线冲突,该 SPI 设备成为一个从机,MOSI 和 SPICLK 引脚被强制为输入端口,MISO 成为输出端口,SPSTAT 中 SPIF 标志置位,若此时 SPI 中断使能,则还会产生一个 SPI 中断。用户软件必须经常去检查 MSTR 位,若该位被从机选择清零而用户又想要继续保持该 SPI 主机模式,用户必须再次设置 MSTR 位,否则,将处于从机模式。

18.2.4. 发送保持寄存器满标志

为了提高 SPI 发送速度一个特殊设计保持寄存器(THR)可以减短 CPU 数据移动字节与字节传送的延迟时间。THRF 置位表明 THR 的数据是有效的并且等待发送。如果 THR 是空的(THRF=0),软件写一个字节数据到 SPDAT 数据 将存储在 THR 并且 THRF 置位。如果输出移位寄存器(OSR)是空的 ,硬件立刻将 THR 数据移到 OSR 并且 THRF 清零。在 SPI 主机模式,OSR 有效数据将触发 SPI 发送。在 SPI 从机模式,OSR 有效数据等待另一个 SPI 主机移出数据。如果 THR 是非空(THRF=1),软件写一个字节数据到写冲突标志 WCOL (SPSTAT.6)将置位。

18.2.5. 写冲突

MA82G5DX 的 SPI 在发送方向和接收方向是双缓冲数据器。发送新数据在 THR 空时才能写入到缓冲器 THR。只读标志 THRF 表示 THR 是空或非空。在 THRF 为"1"时数据寄存器被写入数据冲突标志 WCOL (SPSTAT.6)将置位。这种情况下,SPDAT 写入操作将被忽略。

主机或从机检测到写冲突时,主机异常是主机传输过程中有非空控制,从机是在主机初始化传输没有控制结束时出现冲突。

WCOL 软件写"1"清零。

18.2.6. SPI 忙标志

18.2.7. SPI 时钟率选择

SPI 时钟率选择(主机模式)使用 SPCON 寄存器的 SPR1 和 SPR0 位及 SPSTAT 寄存器的 SPR2 来设置,如表 18-2 所示。

表 18-2. SPI 串行时钟率

SPR2	SPR1	SPR0	SPI时钟选择	SPI 时钟率@ SYSCLK=12MHz	SPI 时钟率@ SYSCLK=48MHz
0	0	0	SYSCLK/4	3 MHz	12 MHz
0	0	1	SYSCLK/8	1.5 MHz	6 MHz
0	1	0	SYSCLK/16	750 KHz	3 MHz
0	1	1	SYSCLK/32	375 KHz	1.5 MHz
1	0	0	SYSCLK/64	187.5 KHz	750 KHz
1	0	1	SYSCLK/128	93.75 KHz	375 KHz
1	1	0	保留	1	1
1	1	1	T0OF/6	可变的	可变的

注意:

- 1. SYSCLK是系统时钟。
- 2. SOTOF 是 UARTO 波特率发生器溢出。
- 3. TOOF 是定时器 0 溢出。

18.3. 数据模式

时钟相位(CPHA) 位可以让用户设定数据采样和改变时的时钟沿。时钟极性位 CPOL 可以让用户设定时钟极性。下面图例显示了不同时钟相位(CPHA)。

图 18-6. SPI 在 CPHA=0 时从机传送格式

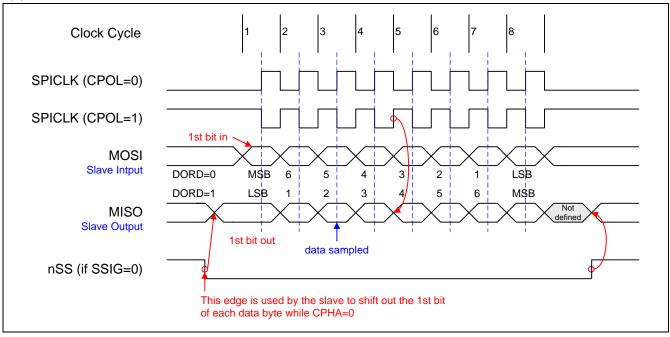


图 18-7. SPI 在 CPHA=1 时从机传送格式

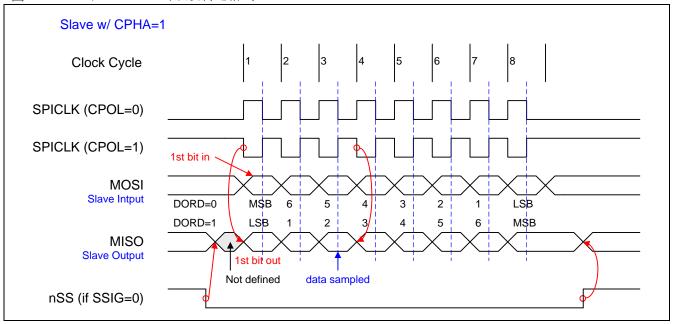


图 18-8. SPI 在 CPHA=0 时主机传送格式

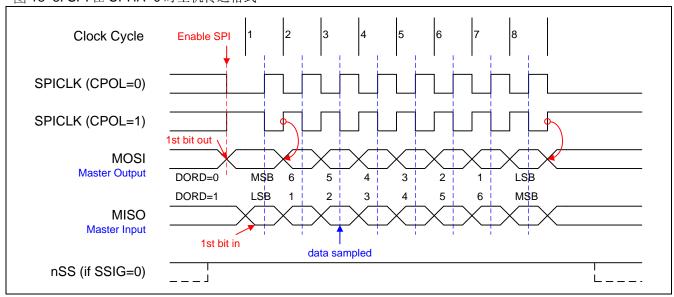
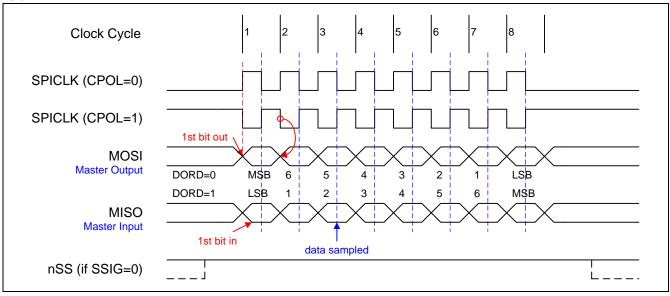



图 18-9. SPI 在 CPHA=1 时主机传送格式

18.4. SPI 寄存器

下面是 SPI 操作的相关特殊功能寄存器:

SPCON: SPI 控制寄存器

SFR 页 = 0~F

SFR 地址 = 0x85

复位值= 0000-0100

7	6	5	4	3	2	1	0
SSIG	SPEN	DORD	MSTR	CPOL	CPHA	SPR1	SPR0
R/W							

Bit 7: SSIG, 忽略 nSS。

0: nSS 引脚决定该设备是主机还是从机。

1: MSTR 位决定该设备是主机还是从机。

Bit 6: SPEN, SPI 使能。

0: SPI接口禁用,所有 SPI 引脚可作为通用 I/O 口使用。

1: SPI 使能。

Bit 5: DORD, SPI 数据位序。

0: 传送数据时高位在先(MSB)。

1: 传送数据时低位在先(LSB)。

Bit 4: MSTR, 主机/从机模式选择。

0: SPI 从机模式。

1: SPI 主机模式。

Bit 3: CPOL, SPI 时钟极性选择。

0: SPICLK 空闲是为低电平。SPICLK 时钟脉冲前沿是上升沿,而后沿是下降沿。

1: SPICLK 空闲是为高电平。SPICLK 时钟脉冲前沿是下降沿,而后沿是上升沿。

Bit 2: CPHA, SPI 时钟相位选择。

0: /SS 引脚低电平 (SSIG=0)开始放数据并在 SPICLK 后沿改变数据。 数据在 SPICLK 的前沿采样。

1: SPICLK 脉冲前沿放数据,后沿采样。

(注:如果 SSIG=1,CPHA 必须不为 1,否则这个功能是没有定义的。)

Bit 1~0: SPR1-SPR0, SPI 时钟率选择位 0 和 1 (主机模式, 与 SPR2 配合使用)

SPR2	SPR1	SPR0	SPI 时钟选择	SPI 时钟率@ SYSCLK=12MHz	SPI 时钟率@ SYSCLK=48MHz
0	0	0	SYSCLK/4	3 MHz	12 MHz
0	0	1	SYSCLK/8	1.5 MHz	6 MHz
0	1	0	SYSCLK/16	750 KHz	3 MHz
0	1	1	SYSCLK/32 375 KHz		1.5 MHz
1	0	0	SYSCLK/64	187.5 KHz	750 KHz
1	0	1	SYSCLK/128	93.75 KHz	375 KHz
1	1	0	保留		
1	1	1	T0OF/6	可变的	可变的

注意:

1. SYSCLK 是系统时钟。

2. TOOF 是定时器 0 溢出。

SPSTAT: SPI 状态寄存器

SFR 页 = 0~F

SFR 地址 = 0x84

复位值= 0000-xxx0

7	6	5	4	3	2	1	0
SPIF	WCOL	THRF	SPIBSY	MODF			SPR2
R/W	R/W	R	R	R/W	W	W	R/W

Bit 7: SPIF, SPI 传输完成标志。

0: 软件写"1" SPIF 清零。

1: 当一次串行传输完成时,SPIF 位置位,同时若 SPI 中断允许,会产生一个中断。若 nSS 引脚在主机模式下被 拉低且 SSIG=0,SPIF 位也会置位以表明"模式改变"。

Bit 6: WCOL, SPI 写冲突标志。

0: 软件写"1" WCOL 清零。

1: SPI 数据寄存器 (SPDAT) 在数据传输过程中被写入此位置位(见章节"錯誤! 找不到參照來源。 錯誤! 找不到參照來源。")。

Bit 5: THRF,发送保持寄存器(THR)非空标志。只读。

- 0: 表明 THR 是"空的"。当 THR 为空时此位被硬件清零,这意味着 THR 中的数据已经被装入移位输出寄存器进行 发送,而现在用户可以向 SPDAT 写下一个要发送的数据。
- 1: 表明 THR 是"非空"。当软件向 SPDAT 写数据时由硬件置位。

Bit 4: SPIBSY, SPI 忙标志。只读。.

- 0: 表示 SPI 是空闲状态并且所有的移位寄存器是空的。
- 1: 置位表示 SPI 传输进行中(主机或从机)。

Bit 3: 模式错误标志。当检测到主机模式冲突时(nSS 为低电平, MSTEN=1 并且 SSIG=0), 硬件置该位为 1。 如果中断使能,就会产生一个中断。该位不会由硬件自动清零,必须由软件写"1"清零。

Bit 1~0: 保留位。当 SPSTAT 被写入时,这些位必须软件写"0"。

Bit 0: SPR2, SPI 时钟率选择位 2(与 SPR1 和 SPR0 相配合)

SPDAT: SPI 数据寄存器

SFR 页 = 0~F

SFR 地址	= 0x86		复位值= 0000-0000							
7	6	5	4	3	2	1	0			
(MSB)							(LSB)			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			

SPDAT 有两个物理缓冲器供发送和接收过程中各自独立写入和读取。

AUXR7: 辅助寄存器 7

SFR 页 = **仅 4 页**

SFR 地址 = 0xA4

复位值= 1100-xxxx

				-			
7	6	5	4	3	2	1	0
POE5	POE4	C0CKOE	SPI0M0				
R/W	R/W	R/W	R/W	W	W	W	W

Bit 4: SPI0M0, SPI0 模式控制位 0。控制 SPI 的菊花链连接。

- 0: 禁止这个模式控制。
- 1: 使能这个模式控制。

AUXR4: 辅助寄存器 4

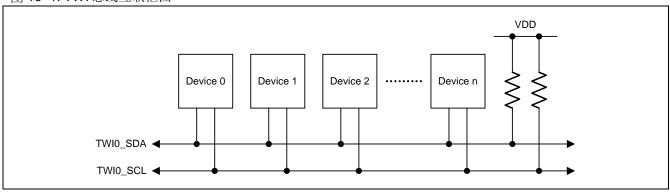
SFR 页 = **仅 1 页**

SFR 地址 = 0xA4

复位值= 0000-0000

7	6	5	4	3	2	1	0
T2PS1	T2PS0	T1PS1	T1PS0	SPIPS0		AC00E	AC0FLT1
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 3: SPIPS0, SPI 端口选择位 0。


SPIPS0	nSS	MOSI	MISO	SPICLK
0	P1.4	P1.5	P1.6	P1.7
1	P3.4	P3.5	P4.1	P4.0

19. 双线串行接口(TWI0)

双线串行接口是一个双线双向总线。双线串行接口(TWI)很适合于典型的处理器应用。

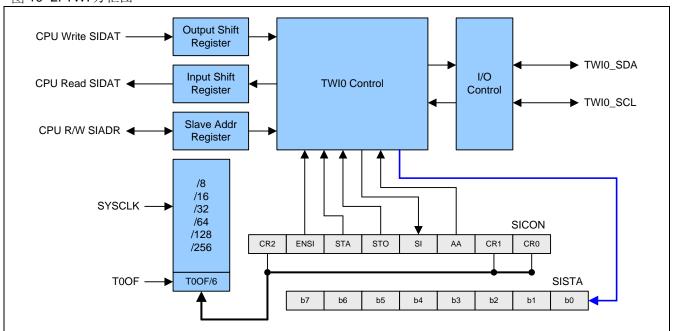

TWI 协议允许系统设计人员只用两根双向传输线来连接多达 128 个不同的设备,一根用于时钟(TWI0_SCL),一根用于数据(TWI0_SDA)。双线串行接口(TWI)由 TWI0_SDA(串行数据)、TWI0_SCL(串行时钟)控制产生和同步,仲裁逻辑以及起始/停止(START/STOP)。唯一需要的外部硬件就是在 TWI 的每根传输线上添加一个上拉电阻。所有连接到总线的设备都有各自的地址,而且 TWI 协议解决了总线仲裁的问题。

图 19-1. TWI 总线互联框图

TWI 总线可以操作在主机或从机也可以是多主机。CPU 通过 SICON(串行接口控制寄存器)、SISTA(串行接口状态寄存器)、SIDAT(串行接口数据寄存器,用于发送和接收 TWI 数据)、SIADR(串行接口从机地址寄存器)这四个特殊功能寄存器与 TWI 相连。TWI 硬件通过两根数据线与串行总线相连: SDA(串行数据线)和 SCL(串行时钟线)。

图 19-2. TWI 方框图

19.1. 操作模式

TWI 有 4 种操作模式: 1) 主机/发送模式, 2) 主机/接收模式, 3) 从机/发送模式 4) 从机/接收模式。SI 软件清零之后 SICON 寄存器的位 STA, STO 和 AA 决定 TWI 硬件下一个执行的是哪一个操作。当下一个操作完成, SISTA 寄存器将更新一个新状态同时 SI 也会硬件置位。现在,中断服务程序会被调用(如果 TWI 中断使能),软件可以通过新的状态区分需要调用哪一个子程序。

19.1.1. 主机发送模式

在主机发送模式,一定数量的字节数据可以发送到一个从机接收器。在进入主机发送模式前,SICON必须作如下设置:

SICON

7	6	5	4	3	2	1	0
CR2	ENSI	STA	STO	SI	AA	CR1	CR0
位速率	1	0	0	0	Х	位速率	

CR0、 CR1和CR2定义了串行位速率。ENSI必须设置为逻辑1来使能TWI。如果AA位复位,在其它设备成为总线的主机时,TWI将不会应答它自身的从机地址或广播地址。也就是说,如果AA复位,TWI不能进入从机模式。STA、STO与SI必须复位。

置位STA也许可以立即进入主机发送模式。TWI逻辑将检测串行总线并且在总线空闲时产生一个START信号。发送完START信号后,串行中断标志(SI)将被置位,并且状态寄存器(SISTA)中的状态编码将为08H。这个状态编码必须用于指示一个中断服务程序加载从机地址和数据方向位(SLA+W)到SIDAT。SICON的SI位必须清零,串行传输才能继续进行。

当从机地址与方向位发送完,并且接收到一个应答位后,串行中断标志(SI)会再次被置位。SISTA可能为以下的编码:在主机模式为18H,20H或38H,如果从机模式使能(AA=1),也可以为68H,78H或B0H。在这些状态编码下对应的操作将在随后的工作流程图中详细叙述。在一个重复的START信号后(状态编码10H),TWI可以通过向SIDAT写入SLA+R进入主机接收模式。

19.1.2. 主机接收模式

在主机接收模式,可以从从机发送器接收一定数量的字节数据。SICON也必须如主机发送模式一样初始化。开始信号发送后,中断服务程序必须向SIDAT写入7位从机地址与数据方向位(SLA+R)。SICON的SI位必须清零,串行传输才能继续进行。

在从机地址与数据方向位发送完并且接收到应答位后,串行中断标志(SI)重新置位。SISTA可能为以下的编码:在主机模式为40H,48H或38H,如果从机模式使能(AA=1),也可以为68H,78H或B0H。这些状态编码下对应的操作将在随后的工作流程图中详细叙述。在一个重复的START信号后(状态编码10H),TWI可以通过向SIDAT写入SLA+W进入主机接收模式。

19.1.3. 从机发送模式

在从机发送模式下,许多数据发送给主机接收。SIADR 和 SICON 必须如下初始化从机发送模式:

SIADR

7	6	5	4	3	2	1	0
Χ	Χ	Χ	Χ	Χ	Χ	Χ	GC

|<------|

高 7 位是响应被主机寻址的 TWI 地址。如果 LSB (GC)置位,TWI 将应答广播地址(00H);否则将忽略广播地址。

SICON

7	6	5	4	3	2	1	0
CR2	ENSI	STA	STO	SI	AA	CR1	CR0
Х	1	0	0	0	1	Х	Х

在从机模式下 CR0, CR1 和 CR2 不影响 TWI。ENSI 必须置位去使能 TWI。AA 必须置位去使能 TWI 应答自己的从机地址或广播地址。STA, STO 和 SI 必须清零。

当SIADR和SICON初始化之后,TWI会等待直到其从机地址被寻址并且数据方向为"1"(R),TWI将工作于从机发送模式。在接收到自身的从机地址以及"R"位后,串行中断标志(SI)置位,并且可以从SISTA读出一个可用的状态编码。这些状态编码可以用作指示一个中断服务程序,在这些状态编码下对应的操作将在随后的工作流程图详细叙述。当TWI处于主机模式时,如果仲裁失败也可能进入从机发送模式(参考BOH状态)。

如果在一次传输的过程中 AA 位复位,TWI 将发送完当前字节的数据后进入 C0H 或 C8H 状态。TWI 会转换到未被寻址从机模式,如果主机继续传输,TWI 将会忽略主机接收器,因此主机总是接收到"1"。当 AA 复位时,TWI 不会回应其从机地址或广播地址,但是会继续监测串行总线。在任何时候可以通过置位 AA 恢复,这意味着 AA 位可用于暂时从总线中隔离 TWI。

19.1.4. 从机接收模式

在从机接收模式,会从主机发送器接收一定数量的字节数据。数据传送的初始化与从机发送模式一样。

SIADR与SICON初始化后,TWI会等待直到其从机地址被寻址并且数据方向为"0"(W),TWI将工作于从机接收模式。在接收到其从机地址与"W"位后,串行中断标志(SI)置位,并且可以从SISTA读出一个可用的状态编码。这些状态编码可以用作指示一个中断服务程序,在这些状态编码下对应的操作将在随后的工作流程图详细叙述。当TWI处于主机模式时,如果仲裁失败可能进入从机接收模式(参考状态68H和78H)。

如果在一次传输的过程中AA位被复位,TWI会在接收到下一个字节后回复NACK(逻辑1)。当AA复位时,TWI不会响应自身的从机地址或广播地址,但是会继续监测串行总线。在任何时候可以通过置位AA恢复,这意味着AA位可用于暂时从总线中隔离TWI。

19.2. 混合状态

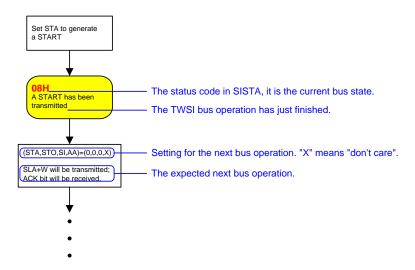
有两个SISTA编码没有与已经定义的TWI硬件状态对应,描述如下:

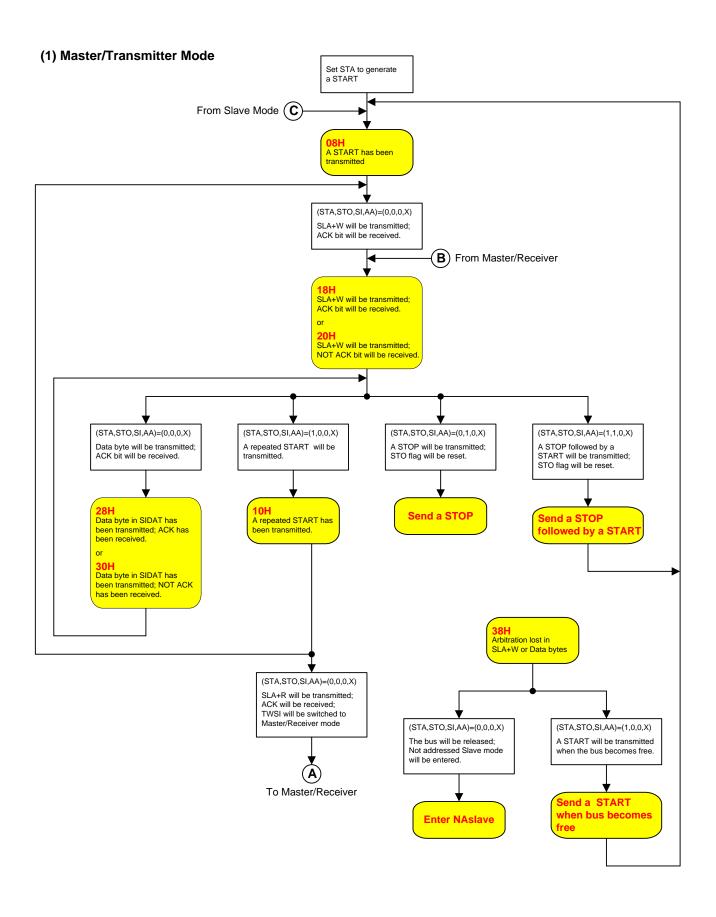
S1STA = F8H:

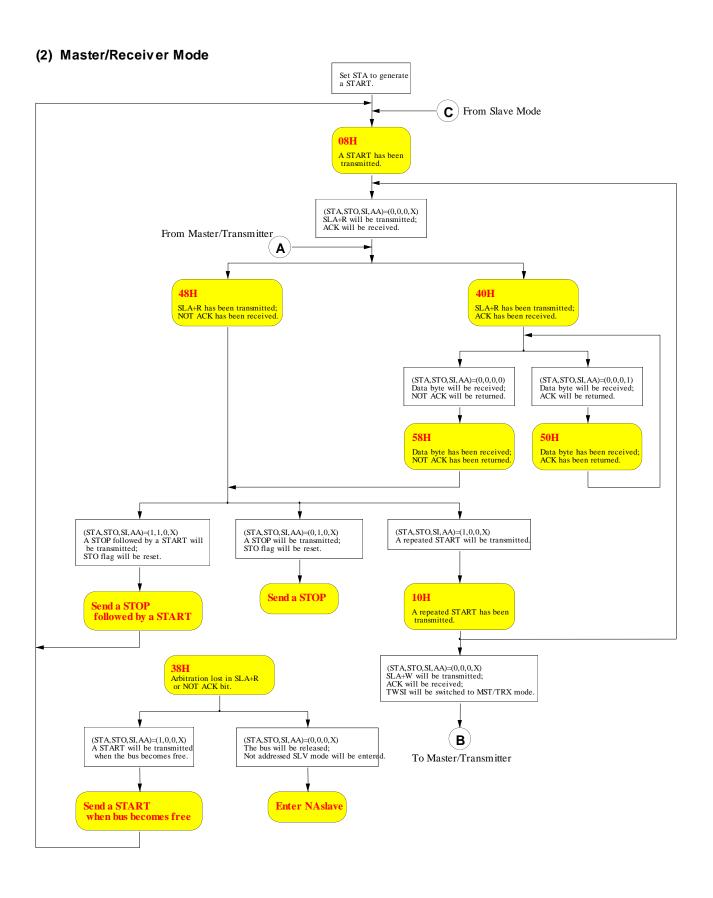
这个状态编码表明还没有相应的信息可用,因为串行中断标志(SI)还没有置位。这种情况发生在状态转换之间和 TWI未涉及串行传输时。

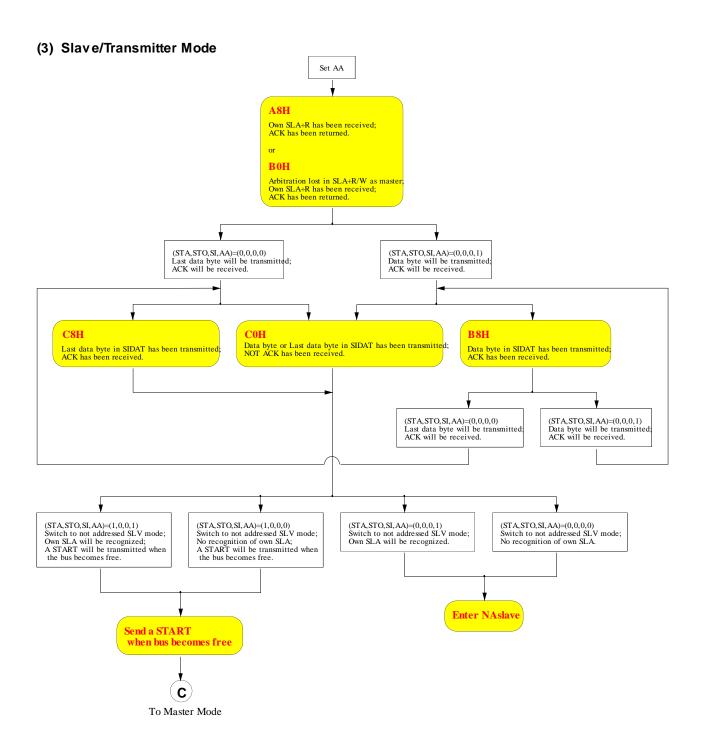
S1STA = 00H:

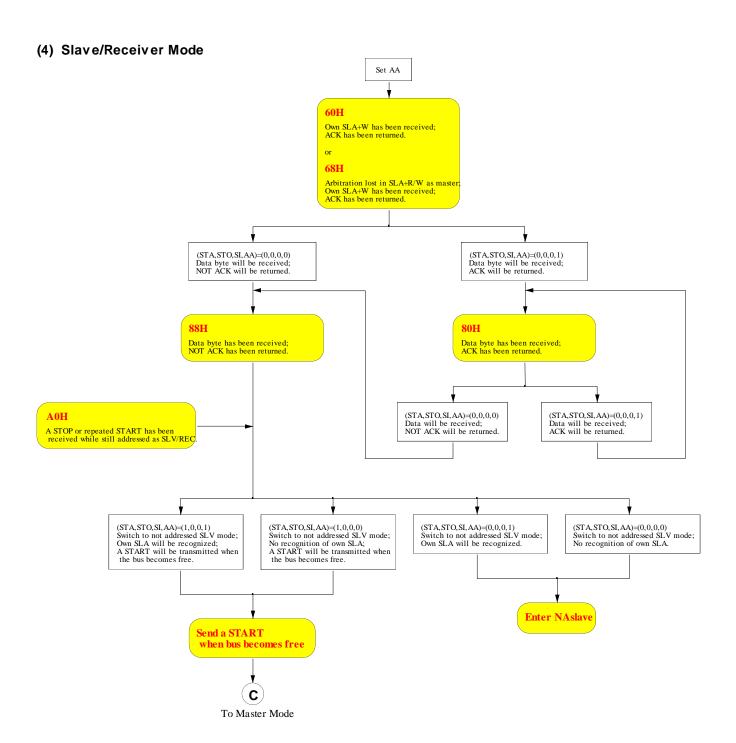
这个状态编码表明在一个TWI串行传输过程中发生总线错误。当一个START或STOP信号在一帧的非法位置发送时,总线错误就会发生。例如:在传输一个字节地址、数据时,或者在应答位。总线错误也会在外界干扰扰乱内部TWI信号时发生。当总线错误发生时,SI被置位,STO标志必须置位并且SI必须软件清零用来从总线错误中恢复。

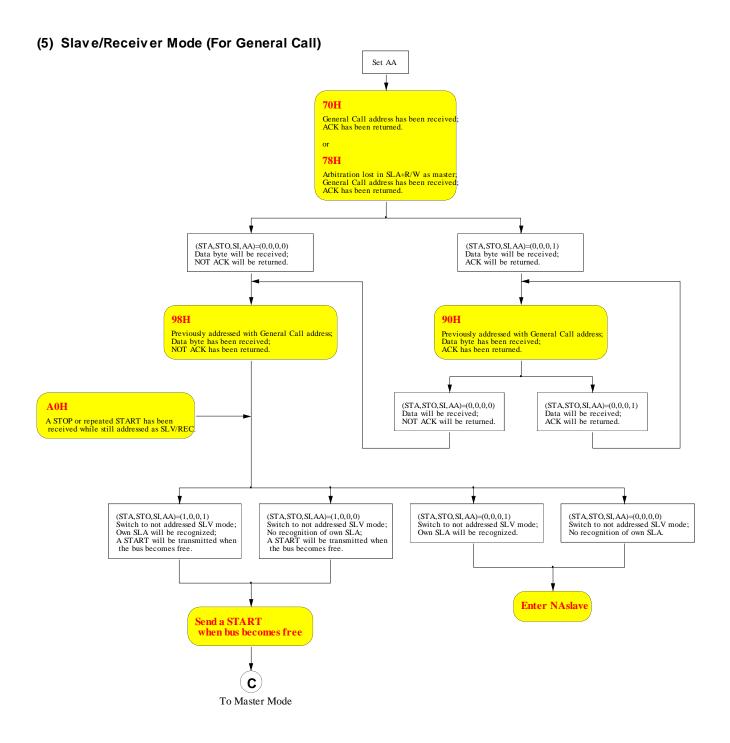

这会使TWI进入"未被寻址"的从机状态(已定义的状态)并且清除STO标志(SICON的其它位不受影响)。TWI0_SDA与TWI0_SCL线将被释放(不会发送STOP信号)。


19.3. 使用 TWI


TWI 是面向字节并且基于中断的。中断会在所有总线事件后发生,例如接收到一字节数据或发送 START 信号。因为 TWI 是基于中断的,应用软件可以自由的在一个 TWI 字节发送的过程中处理其它工作。注意,TWI0 中断标志位 ETWI0 (AUXIE.6)与 EA 位允许应用程序选择在 SI 标志出现时是否产生中断请求。当 SI 标志出现时,表明 TWI 已经完成一个操作并且等待程序响应。此时状态寄存器 SISTA 保存的状态编码表明 TWI 总线的当前状态。用户程序可以通过对 STA,STO 和 AA 位(在 SICON 中)进行适当的编程来决定接下来 TWI 总线将如何运行。


下面的操作流程图将指导用户通过"状态到状态"(state-by-state)的操作来使用 TWI。首先,用户应该向 SIADR 写入自身的从机地址(参考前面对 SIADR 的描述)。作为主机时,在初始 SICON 后,第一步为置位"STA"来向总线产生一个 START 信号。作为从机时,在初始化 SICON 后,TWI 等待直到被寻址。然后参考操作流程图对 SICON 的 STA,STO,SI,AA 位进行适当的编程来进行后续动作。当 SI 清零后 TWI 硬件就会进行下一步动作,因此推荐使用如下两个步骤: 先对 STA,STO 与 AA 编程,然后清零 SI 位(可以使用"CLR SI"指令)来进行可靠的操作。


下面的图指出如何阅读流程图。



19.4. TWIO 寄存器

SIADR: TWIO 地址寄存器

SFR 页 = 0~F

SFR 地址 = 0xD1 复位值= 0000-0000

7	6	5	4	3	2	1	0
A6	A5	A4	A3	A2	A1	A0	GC
R/W							

CPU 可以直接对此寄存器进行读写。SIADR 不受 TWIO 硬件的影响。当 TWIO 处于主机模式时此寄存器的值会被忽略。当处于从机模式时,寄存的高七位必须被用于本机的从机地址,并且当最低位(GC)置位时,广播地址(00H)会被识别,否则忽略。在 START 状态后,最高位与从 TWIO 总线上收到的首位相对应。

SIDAT: TWIO 数据寄存器

SFR 页 = 0~F

SFR 地址 复位值=0000-0000 = 0xD26 5 4 0 D6 D7 D5 D4D3 D2 D₁ D₀ R/W R/W R/W R/W R/W R/W R/W R/W

此寄存器保存着一字节将要发送或者刚接收到的数据。在没有进行移位工作时,CPU 可以直接对此寄存器进行读写。这种情况发生在 TWI0 正处于一个被定义的状态并且串行中断标志位(SI)置位。只要 SI 被置位,SIDAT 中的数据总是保持稳定的。在数据被移出时,总线上的数据同时移入,SIDAT 总保存着总线上出现的最后一个字节数据。因此在仲裁失败时,主机发送切换为从机接收的过程会在 SIDAT 中产生一个正确的数据。

SIDAT 与 ACK 标志位组成一个 9 位的移位寄存器,可以在移入或移出一个 8 位的数据后,跟随一个应答位。ACK 标志由 TWI0 硬件控制,CPU 访问不到。串行数据在 TWI0_SCL 的上升沿移入 SIDAT 寄存器。当一字节的数据完全移入 SIDAT 后,SIDAT 中的数据将是可以用的,并且控制逻辑会在第 9 个时钟周期返回一个应答位。串行数据在 TWI0_SCL 的下降沿从 SIDAT 寄存器移出。

CPU 向 SIDAT 写入数据后,SD7 位将首先出现在SDA 线上。9 个时钟周期后,SIDAT 中的 8 位数据将被发送完成,并且通过应答位返回 ACK 标志。注意发送出去的 8 位数据会移回 SIDAT。

SICON: TWIO 控制寄存器

SFR 页 = 0~F

SFR 地址	= 0xD4	复位值= 0000-0000					
7	6	5	4	3	2	1	0
CR2	ENSI	STA	STO	SI	AA	CR1	CR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CPU 可以直接读写此寄存器。其中两个位会受 TWI0 硬件的影响: SI 位会在串行中断请求时置位, STO 位会在总线出现 STOP 状态时清零。STO 位也会在 ENS1=0 时清零。

Bit 7: CR2, TWI0 时钟率选择位 2 (与 CR1 和 CR0 一起使用)。

Bit 6: ENSI, TWIO 硬件使能位。

ENSI 为 "0"时,TWI0_SDA 与 TWI0_SCL 输出为高阻态,TWI0_SDA 与 TWI0_SCL 输入信号被忽略,TWI 处于未寻址从机状态,SICON 的 STO 位被强制置为"0",但不影响其它位。TWI0_SDA 与 TWI0_SCL 可用作通用 I/O 引脚。ENSI 为 "1"时,TWI0 使能,TWI0_SDA 和 TWI0_SCL 端口锁存器(比如 P4.1 和 P4.0)必须设置为逻辑 1 并且 I/O 模式必须配置成开漏模式以用于接下来的串行通讯。

Bit 5: STA, 开始(START)标志。

当 STA 位被置位进入主机模式时,TWIO 硬件将检查串行总线的状态,若总线空闲将产生一个 START 信号。若总线忙,TWIO 将等待 STOP 信号出现并且在一个延迟后产生 START 信号。如果 STA 在 TWIO 已经是处于主机模式并且一个或多个字节已被发送或接收的情况下置位,TWIO 会发送一个重复的 START 信号。STA 可以在任何时候置位,也可以在 TWIO 是一个被寻址的从机时置位。当 STA 位复位时,无 START 或重复的 START 信号产生。

Bit 4: STO, 停止(STOP)标志。

当 TWI0 处于主机模式时,置位 STO 会向串行总线发送一个 STOP 信号。当在总线上侦测到 STOP 信号时,TWI0 硬件清除 STO 标志。在从机模式时,置位 STO 标志可从总线错误状态恢复。在这种情况下不会向总线发送 STOP 信号,但是 TWI0 硬件表现就像已经接收到一个 STOP 信号,并且转换到未被寻址的从机接收模式。STOP 标志自动被硬件清零。如果 STA 与 STO 位同时置位,若 TWI0 处于主机模式将产生一个 STOP 信号(当处于从机模式时将产生一个内部的 STOP 信号,但不发送),接着发送一个 START 信号。

Bit 3: SI, 串行中断标志。

当一个新的 TWIO 状态出现在 SISTA 寄存器时,SI 标志会被硬件置位。如果 TWIO 中断允许,中断服务程序将会运行。唯一不会使 SI 置位的状态是指出没有相关状态信息可以获得的 F8H。当 SI 置位时,TWIO _SCL 线上的低电平会延长,并且串行传输暂停。TWIO _SCL 线上的高电平不受串行中断 SI 标志影响。SI 必须由软件写"0"清零。SI 标志复位时不会产生中断请求,TWIO SCL 线上的时钟也不会延长。

Bit 2: AA, 确认应答标志。

如果 AA 标志设为 "1",一个应答 ACK(TWI0_SDA 低电平)将在 TWI0_SCL 的应答时钟周期内回复,当: 1)接收到本机的从机地址。

- 2) TWI0 处于主机/接收模式时,接收到一字节的数据。
- 3) TWIO 处于已被寻址的从机/接收模式时,接收到一字节的数据。

如果 AA 标志设为"0",一个无应答 NACK(TWI0_SDA)高电平)将在 TWI0_SCL的应答时钟周期内回复,当:

- 1) TWI0 处于主机/接收模式时,接收到一字节的数据
- 2) TWI0 处于已被寻址的从机/接收模式时,接收到一字节的数据

Bit 7, 1~0: CR2、CR1 和 CR0, 时钟率选择位

TWI0 处于主机模式时,这三个位决定串行时钟频率。当 TWI0 处于从机模式时,时钟频率并不重要,因为 TWI0 会自动同步任何主机的时钟频率,高达 100 KHz。表 19–1 给出不同的时钟速率设置:

表 19-1. TWIO 串行时钟率

CR2	CR1	CR0	TWI0 时钟选择	TWI0时钟率@ SYSCLK=12MHz
0	0	0	SYSCLK/8	1.5 MHz
0	0	1	SYSCLK/16	750 KHz
0	1	0	SYSCLK/32	375 KHz
0	1	1	SYSCLK/64	187.5 KHz
1	0	0	SYSCLK/128	93.75 KHz
1	0	1	SYSCLK/256	46.875 KHz
1	1	0	保留	
1	1	1	T0OF/6	可变的

注意:

- 1. SYSCLK 是系统时钟。
- 2. TOOF 是定时器 0 溢出。

SISTA: TWIO 状态寄存器

SFR \tilde{D} = 0~F

SFR 地址 = 0xD3 复位值= 1111-1000

7	6	5	4	3	2	1	0
SIS7	SIS6	SIS5	SIS4	SIS3	SIS2	SIS1	SIS0
R	R	R	R	R	R	R	R

SISTA 是一个 8 位的只读寄存器。低三位总是为 0,高五位保存状态编码,可以组成多个可能的状态编码。当 SISTA 为 F8H 时,没有串行中断请求。SISTA 的其它值用于定义相应的 TWI0 状态。当进入这些状态的一种时,会请求串行中断(SI=1)。在 SI 硬件置位时,一个有效的状态编码会存于 SISTA 中。

另外,状态 00H 表示总线错误。当一个 START 或 STOP 信号在不符合规定的位置发送时会产生总线错误,如一个地址/数据的内部或者刚好在应答位上。

AUXR3: 辅助寄存器 3

SFR 页 = **仅 0 页**

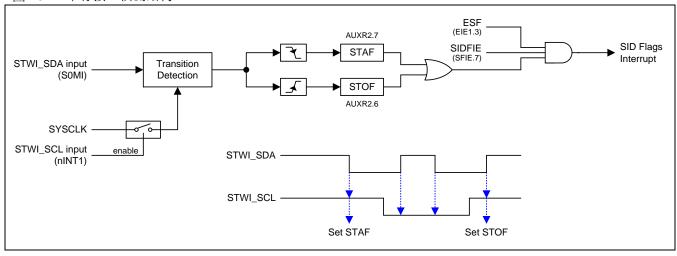
SFR 地址 = 0xA4

复位值= 0000-0000

7	6	5	4	3	2	1	0
T0PS1	T0PS0	BPOC1	BPOC0	S0PS0	TWIPS1	TWIPS0	TOXL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 2~1: TWIPS1~0, TWI0 端口选择[1:0]。

TWIPS1~0	TWI0_SCL	TWI0_SDA
00	P4.0	P4.1
01	P6.0	P6.1
10	P3.0	P3.1
11	P2.2	P2.4


20. 串行接口侦测(SID/STWI)

串行接口侦测模块总是监控软件双线串行接口(STWI)的"Start"和"Stop"状态。STWI_SCL 是串行时钟信号和 STWI_SDA 是串行数据信号。如果任何匹配条件被侦测到,硬件设置 STAF 和 STOF 标志位。软件可以决定这两个标志或设置 SIDFIE (SFIE.7) 与系统标志共享中断向量。并且 STWI_SCL 位于 nINT1 将帮助 MCU 通过 nINT1 中断来判断串行数据。软件可以说使用这些资源来实施一个可变的 TWI 从机设备。

20.1. SID (STWI) 结构

图 20-1 展示了 STAF 和 STOF 侦测的结构,中断结构和事件侦测波形。

图 20-1. 串行接口侦测结构

20.2. SID/STWI 寄存器

AUXR2: 辅助寄存器 2

SFR 页 = 0~F

SFR 地址 = 0xA3

复位值= 00xx-0000

				<u> </u>			
7	6	5	4	3	2	1	0
STAF	STOF			T1X12	T0X12	T1CKOE	T0CKOE
R/W	R/W	W	W	W	W	W	W

Bit 7: STAF, TWI2 启动(Start)标志侦测。

0: 软件写"0"清零。

1: 硬件置位表明启动(START)条件出现在 STWI 总线上。

Bit 6: STOF, TWI2 停止(Stop)标志侦测。

0: 软件写"0"清零。

1: 硬件置位表明停止(STOP)条件出现在 STWI 总线上。

SFIE: 系统标志中断使能寄存器

SFR \tilde{D} = 0~F

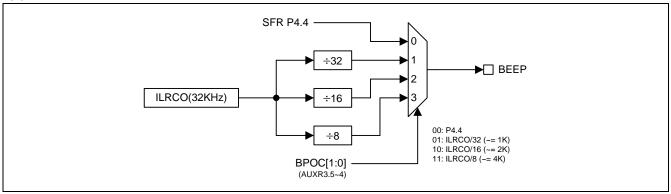
SFR 地址 = 0x8E

RESET = 0110-x000

7	6	5	4	3	2	1	0
SIDFIE	MCDRE	MCDFIE	RTCFIE		BOF1IE	BOF0IE	WDTFIE
R/W	R/W	R/W	R/W	W	R/W	R/W	R/W

Bit 7: SIDFIE, 串行接口(STWI)侦测标志中断使能。

0: 禁止 SID 标志(STAF 或 STOF)中断。


1: 使能 SID 标志(STAF 或 STOF)中断。

20.3. SID/STWI 范例代码

21. 蜂鸣器

蜂鸣器功能输出信号产生声音在 BEEP 引脚。信号来自 ILRCO 的分频,频率范围大约在 1, 2 或 4 kHz 。图 21-1 所示蜂鸣器发生器电路。但是 ILRCO 不是精确的时钟源。更详细的 ILRCO 频率偏差范围请参考章节"31.5 ILRCO"。

图 21-1. 蜂鸣器发生器

21.1. 蜂鸣器寄存器

AUXR3: 辅助寄存器 3

SFR 页 = **仅 0 页**

SFR 地址 = 0xA4

复位值= 0000-0000

7	6	5	4	3	2	1	0
T0PS1	T0PS0	BPOC1	BPOC0	S0PS0	TWIPS1	TWIPS0	TOXL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

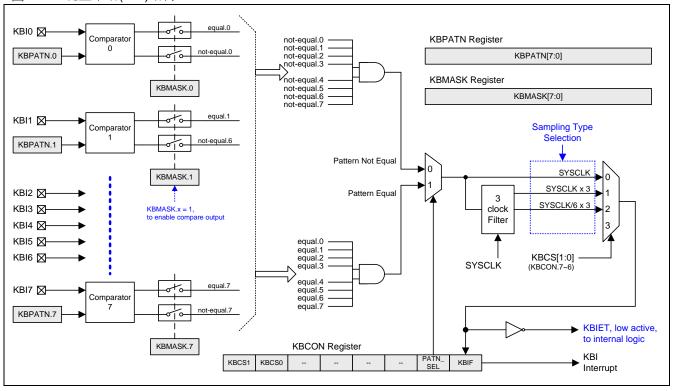
Bit 5~4: BPOC1~0, 蜂鸣器输出控制位。

BPOC[1:0]	P4.4 功能	I/O 模式
00	P4.4	By P4M0.4 & P4M1.4
01	ILRCO/32	By P4M0.4 & P4M1.4
10	ILRCO/16	By P4M0.4 & P4M1.4
11	ILRCO/8	By P4M0.4 & P4M1.4

蜂鸣器功能在 P4.4, 推荐设置 P4.4 工作在推挽输出模式。

21.2. 蜂鸣器范例代码

22. 键盘中断(KBI)


键盘中断功能主要用于当 KBI.7~0 等于或不等于某个值时产生一个中断,这个功能可以用作总线地址识别或键盘键码识别。

有3个特殊功能寄存器与此功能相关。键盘中断掩码寄存器(KBMASK) 用来定义 P2 口哪些引脚可以产生中断。键盘样式寄存器(KBPATN)用来定义与键盘输入值进行比较的值,比较匹配时硬件置键盘中断控制寄存器(KBCON)中的键盘中断标志(KBIF),若 EIE1 中的 EKBI 中断允许且 EA=1,则还会产生一个中断。键盘中断控制寄存器(KBCON)中的 PATN_SEL 位用来定义比较是"相等"还是"不等"匹配。键盘输入可以分配给不同的端口引脚,详情请参考章节"错误! 找不到参照来源。 錯誤! 找不到参照来源。"。

为了使用键盘中断作为"键盘"中断,用户需要设置 KBPATN=0xFF 和 PATN_SEL=0 (不相等),然后将任意按键连接到 KBMASK 寄存器定义的相应端口,按下时硬件就会置位中断标志 KBIF,并当中断使能时产生中断。这个中断可以将 CPU 从空闲模式或掉电模式下唤醒。这个功能在手持设备,电池供电系统等要求低功耗而且易用的设备上特别有用。

22.1. KBI 结构

图 22-1. 键盘中断(KBI)结构

22.2. KBI 寄存器

下面是键盘中断(KBI)操作相关的特殊功能寄存器:

KBPATN: 键盘样式寄存器

SFR 页 = 0~F

SFR 地址 = 0xD5

复位值= 1111-1111

7	6	5	4	3	2	1	0
KBPATN.7	KBPATN.6	KBPATN.5	KBPATN.4	KBPATN.3	KBPATN.2	KBPATN.1	KBPATN.0
R/W							

Bit 7~0: KBPATN.7~0: 键盘样式, 复位值是 0xFF。

KBCON: 键盘控制寄存器

SFR 页 = 0~F

SFR 地址 = 0xD6

复位值= XXXX-XX01

7	6	5	4	3	2	1	0
KBCS1	KBCS0					PATN_SEL	KBIF
R/W	R/W	W	W	W	W	R/W	R/W

Bit 7~6: KBCS1~0, KBI 滤波模式控制。

KBCS1~0	KBI 输入滤波模式
00	禁止
01	SYSCLK x 3
10	SYSCLK/6 x 3
11	保留

Bit 7~2: 保留位。当 KBCON 被写入时,这些位必须软件写"0"。

Bit 1: PATN_SEL,样式匹配极性选择。

- 0: 键盘输入不等于 KBPATN 中用户定义的样式时产生中断。
- 1: 键盘输入等于 KBPATN 中用户定义样式时产生中断。

Bit 0: KBIF, 键盘中断标志。KBIF 默认值是"1"。

- 0: 必须由软件写入'0'来清零。
- 1:键盘输入匹配用户定义的 KBPATN、KBMASK 和 PATN_SEL 设置条件时置位。

KBMASK: 键盘中断掩码寄存器

SFR 页 = 0~F

SFR 地址 = 0xD7

复位值= 0000-0000

7	6	5	4	3	2	1	0
KBMASK.7	KBMASK.6	KBMASK.5	KBMASK.4	KBMASK.3	KBMASK.2	KBMASK.1	KBMASK.0
R/W							

KBMASK.7:置位时,使能 KBI7 输入作为键盘中断源之一。

KBMASK.6: 置位时,使能 KBI6 输入作为键盘中断源之一。

KBMASK.5: 置位时, 使能 KBI5 输入作为键盘中断源之一。

KBMASK.4:置位时,使能 KBI4 输入作为键盘中断源之一。

KBMASK.3:置位时,使能 KBI3 输入作为键盘中断源之一。

KBMASK.2: 置位时,使能 KBI2 输入作为键盘中断源之一。

KBMASK.1: 置位时,使能 KBII 输入作为键盘中断源之一。

KBMASK.0: 置位时, 使能 KBIO 输入作为键盘中断源之一。

AUXR6: 辅助寄存器 6

SFR 页 = **仅3页**

SFR 地址 = 0xA4

复位值= 0000-0x00

7	6	5	4	3	2	1	0
KBI4PS1	KB4IPS0	KBI6PS0	KBI2PS0	KBI0PS0		SOMIPS	SOCOPS
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 7~6: KBI4PS1~0, KBI4~5端口引脚选择[1:0]。

KBI4PS1~0	KBI4	KBI5
00	P1.4	P1.5
01	P3.4	P3.5
10	P6.0	P6.1
11	P2.0	P2.1

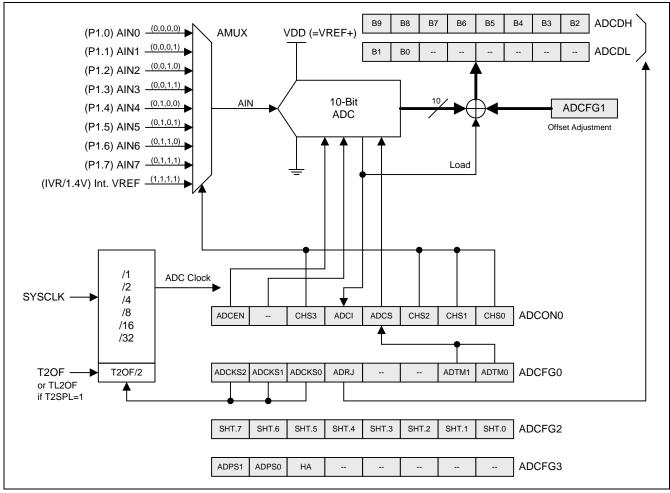
Bit 5: KBI6PS0, KBI6~7端口引脚选择 0。

KBI6PS0	KBI6	KBI7		
0	P1.6	P1.7		
1	P3.0	P3.1		

Bit 4: KBI2PS0, KBI2~3 端口引脚选择 0。

KBI2PS0	KBI2	KBI3		
0	P1.2	P1.3		
1	P2.2	P2.4		

Bit 3: KBI0PS0, KBI0~1 端口引脚选择 0。


KBI0PS	KBI0	KBI1
0	P1.0	P1.1
1	P4.0	P4.1

23. 10 位 ADC

MA82G5DXX 的 ADC 子系统由一个模拟多路器(AMUX)和一个 1M sps、10 位逐次逼近型模数转换器组成。多路器(AMUX)可以通过特殊功能寄存器进行配置通道,如图 23-1。 ADC 运行在单一节点模式,并且可以配置测量端口 1 输入引脚的任何一个口或内部参照。仅当 ADC 控制寄存器(ADCON0) 的 ADCEN 位被置逻辑 1 的时候 ADC 子系统被使能,ADCEN 设置为逻辑 0 的话 ADC 子系统低功耗关闭。

23.1. ADC 结构

图 23-1. ADC 方框图

23.2. ADC 操作

ADC 最大转换速度可以达到 **1M** sps。 ADC 转换时钟由 ADCFG0 寄存器的 ADCKS2~0 位决定是系统时钟分频或者定时器 **2** 的溢出。ADC 转换时钟不能超过 **24MHz**。

转换完成后(ADCI为 1),转换结果从 ADC 结果寄存(ADCH, ADCL)中得到。作为单节点 ADC, 转换结果是:

ADC Result =
$$\frac{V_{IN} * 1024}{VDD(or VREF+) Voltage}$$

23.2.1. ADC 输入通道

模拟多路器(AMUX)选择输入口给 ADC,允许任何一个端口 1 引脚成为被测量的单节点模式和一个内部电压参照 (IVR,1.4V)。通过 ADCON0 寄存器的 CHS3~0 位选择进入 ADC 测量的通道(见图 23-1)。对被选择的引脚测量的是对地(GND)电压。

23.2.2. ADC 内部电压参照

23.2.3. 开启一个转换

在使用 ACD 功能之前,用户应:

- 1) 置 ADCEN 位启动 ADC 硬件。
- 2) 通过 ADCKS2、ADCKS1 和 ADCKS0 位配置 ADC 输入时钟
- 3) 通过位 CHS3、CHS2、CHS1 和 CHS0 选择模拟输入通道
- 4) 将所选引脚(与端口 P1 共享)配置成仅模拟输入模式
- 5) 通过 ADRJ 位配置 ADC 转换结果输出形式

现在,用户就可以置位 ADCS 来启动 AD 转换了。转换时间取决于 HA、SHT[7:0]、ADCKS2、ADCKS1 和 ADCKS0 位。一旦转换结束,硬件自动清除 ADCS 位,设置中断标志 ADCI,并将 **10** 位的转换结果按照 ADRJ 的设置存入 ADCH 和 ADCL。如果用户设置 ADCS 并且选择 ADC 的触发模式是定时器 2 溢出或全速运行,这样 ADC 保持不断转换直到 ADCEN 清零或 ADC 配置成手动模式。

如上所述,中断标志 ADCI,由硬件设置以表明一次转换完成。因此,有两种方法检测 AD 转换是否完成: (1)软件检测 ADCI 中断标志; (2)设置 EIE1 寄存器 EADC 位和 IE 寄存器 EA 位使能 ADC 中断。这样,转换结束就会跳入中断服务进程。无论(1) 或 (2), ADCI 标志都必须在下次转换前用软件清零。

23.2.4. ADC 转换率

用户可以根据输入的模拟信号频率选择合适的转换速度。ADC 的最大输入时钟是 **24MHz** 并且操作在最少 **24** 个ADC 转换时钟的转换时间。用户可以通过 ADCFG0 寄存器的 ADCKS2~0、SHT (ADCFG2.7~0)和 HA (ADCFG3.5)来配置转换速率。下面公式是一个 ADC 转换的时钟个数:

ADC Conversion Rate =
$$\frac{\text{ADC Clock Freq.}}{(24 + X + Y^*6)}$$
; X = SHT, 0~255; Y= HA, 0~1

例如,若 Fosc =12MHz 并且 ADCKS = SYSCLK/2,SFT = 0,HA = 1,则输入的模拟信号频率应该不超过 **200**K Hz,这样可以保证转换精度。(转换速率= 12MHz/2/(24+0+6) = 200KHz)。

23.2.5. I/O 端口引脚用于 ADC 功能

用作 A/D 转换的模拟输入引脚也可以保持其数字 I/O 输入输出功能。为了获得恰当的模拟性能,用作 ADC 的引脚应当禁止其数字输出,将引脚设为仅输入模式。当 ADCI7~0 引脚作为模拟信号输入时并且数字信号输入不需要时,软件可以设置相应的引脚仅为模拟输入以便降低数字输入缓冲器的功耗。模拟输入功能的端口配置描述在表13-3. 和参考章节"錯誤! 找不到参照來源。 錯誤! 找不到参照來源。"。

23.2.6. 空闲和掉电模式

在空闲和掉电模式下,若 ADC 功能打开,它将消耗一部分的电流。因此,为了降低待机和掉电模式下的功耗,可以在进入掉电和空闲模式前关闭 ADC 硬件 (ADCEN =0)。

在掉电模式下,ADC 不工作。如果在空闲模式下软件触发 ADC 操作,ADC 将完成转换并置位 ADC 中断标志 ADCI。当 ADC 中断使能 (EADC, EIE1.1)置位时,ADC 中断将把 CPU 从空闲模式唤醒。

23.3. ADC 寄存器

ADCONO: ADC 控制寄存器 0

SFR $\tilde{D} = 0$ ~F

SFR 地址 = **0xC4** 复位值= 0x00-0000

7	6	5	4	3	2	1	0
ADCEN		CHS3	ADCI	ADCS	CHS2	CHS1	CHS0
R/W	W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: ADCEN, ADC 使能。

0: 清零而关闭 ADC 模块。

1: 开启 ADC 模块。在 ADCS 置位之前至少需要 5us 的 ADC 使能时间。

Bit 6: 保留位。当 ADCONO 被写入时,这位必须软件写"0"。

Bit 5: CHS3, 结合 CH2~0 选择 ADC 输入通道。

Bit 4: ADCI, ADC 中断标志。

0: 此标志必须软件清零。

1: 一次 A/D 转换完成时此标志置位, 若中断允许则还会产生一个中断。

Bit 3: ADCS, ADC 转换启动。

0: ADCS 不会被软件清零。

1: 软件置此位启动一次 A/D 转换。转换完成,ADC 硬件会自动清除 ADCS 并且 ADCI 置位。无论 ADCS 或 ADCI 为"1"时将不会开始新的 A/D 转换。

Bit 2~0: CHS2 ~ CHS1, ADC 模拟多路器输入通道选择位。

单节点模式:

CHS3~0	通道选择
0 0 0 0	AIN0 (P1.0)
0 0 0 1	AIN1 (P1.1)
0 0 1 0	AIN2 (P1.2)
0 0 1 1	AIN3 (P1.3)
0 1 0 0	AIN4 (P1.4)
0 1 0 1	AIN5 (P1.5)
0 1 1 0	AIN6 (P1.6)
0 1 1 1	AIN7 (P1.7)
1 1 1 1	内部 VREF (IVR/1.4V)
其它	保留

ADCFG0: ADC 配置寄存器 0

SFR 地址 = **0xC3** 复位值= 0000-xx00

7	6	5	4	3	2	1	0
ADCKS2	ADCKS1	ADCKS0	ADRJ			ADTM1	ADTM0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7~5: ADC 转换时钟选择位。

ADCKS[1:0]	ADC 时钟选择
0 0 0	SYSCLK
0 0 1	SYSCLK/2
0 1 0	SYSCLK/4
0 1 1	SYSCLK/8
1 0 0	SYSCLK/16

1 0 1	SYSCLK/32
1 1 0	保留
1 1 1	T2OF/2

注意:

- 1. SYSCLK 是系统时钟。
- 2. T2OF 是定时器 2 溢出。

Bit 4: ADRJ, ADC 结果向右对齐选择。

- 0: 高 8 位转换结果存在 ADCH[7:0], 低 2 位转换结果存在 ADCL[7:6]。
- 1: 高 2 位转换结果存在 ADCH[1:0], 低 8 位转换结果存在 ADCL[7:0]。

如果 ADRJ = 0

ADCDH: ADC 数据高字节寄存器

SFR 页 = 0~F

SFR 地址 = 0xC6

复位值= XXXX-XXXX

7	6	5	4	3	2	1	0
(B9)	(B8)	(B7)	(B6)	(B5)	(B4)	(B3)	(B2)
R	R	R	R	R	R	R	R

ADCL: ADC 数据低字节寄存器

SFR 页 = 0~F

SFR 地址 = **0xC5**

复位值= XXXX-XXXX

7	6	5	4	3	2	1	0
(B1)	(B0)						
R	R	R	R	R	R	R	R

如果 ADRJ = 1

ADCDH

ADODII							
7	6	5	4	3	2	1	0
						(B9)	(B8)
R	R	R	R	R	R	R	R

ADCDL

ADODE							
7	6	5	4	3	2	1	0
(B7)	(B6)	(B5)	(B4)	(B3)	(B2)	(B1)	(B0)
	В	В	Р	Ь	В	В	

在单节点模式下,转换结果是 10 位的无符号整数。输入的测量值从"0"到 VREF x 1023/1024。下表列举了向右对 齐和向左对齐数据。ADCDH 和 ADCDL 寄存器没有用到的位都是"0"。

输入电压 (单节点模式)	ADCDH:ADCDL (ADRJ = 0)	ADCDH:ADCDL (ADRJ = 1)
VDD(or VREF+) x 1023/1024	0xFFC0	0x03FF
VDD(or VREF+) x 512/1024	0x8000	0x0200
VDD(or VREF+) x 256/1024	0x4000	0x0100
VDD(or VREF+) x 128/1024	0x2000	0x0080
0	0x0000	0x0000

Bit 3~2: 保留位。当 ADCFG0 被写入时,这些位必须软件写"0"。

Bit 1~0: ADC 触发模式选择。

= 0 MADOCDE 4.C. 41 -	
ADTM[1:0]	ADC 转换开启选择
0 0	ADCS 置位
0 1	定时器 0 溢出
1 0	全速模式
11	保留

ADCFG1: ADC 配置寄存器 1

SFR 页 = **仅1页**

SFR 地址 = **0xC3** 复位值= xxx0-0000

7	6	5	4	3	2	1	0
			SIGN	AOS.3	AOS.2	AOS.1	AOS.0
W	W	W	R/W	R/W	R/W	R/W	R/W

Bit 7~5: 保留位。当 ADCFG1 被写入时,这些位必须软件写"0"。

Bit 4~0: SIGN 和 AOS.3~0。这个寄存器的值将校正保存在{ADCH, ADCL}上的 ADC 转换结果,用来消除偏移量。软件通过设置 ADCON0.AZEN 可以动态收集 ADC 的偏移值,并且用这个值更新 AD0ROC,用于 ADC 转换结果的自动修正。软件也可以将这个值存入到 MA82G5DXX 的 IAP 区域,用它作为一个 ADC 偏移量校正的常规参数。下表列举了 ADC 转换结果的 AD0ROC 校正值。

{Sign, AOS.[3:0]}	{ADCDH, ADCDL}值
0_1111	ADC 转换结果+ 15
0_1110	ADC 转换结果+ 14
0_0010	ADC 转换结果+ 2
0_0001	ADC 转换结果+ 1
0_0000	ADC 转换结果+ 0
1_1111	ADC 转换结果- 1
1_1110	ADC 转换结果-2
1_0001	ADC 转换结果- 15
1_0000	ADC 转换结果- 16

ADCFG2: ADC 配置寄存器 2

SFR 页 = **仅 2 页**

SFR 地址 = **0xC3**

复位值=0000-0000

7	6	5	4	3	2	1	0
SHT.7	SHT.6	SHT.5	SHT.4	SHT.3	SHT.2	SHT.1	SHT.0
R/W							

Bit 7~0: SHT[7:0], 扩展 ADC 采样时间。SHT 的值是 0~255 ADC 时钟。

ADCFG3: ADC 配置寄存器 3

SFR 页 = **仅3页**

SFR 地址 = **0xC3**

复位值= 010x-xxxx

_			_				
7	6	5	4	3	2	1	0
ADPS1	ADPS0	HA					
R/W	R/W	R/W	W	W	W	W	W

Bit 7~6: ADC 节能模式选择位 1~0。

ADPS[1:0]	ADC 节能控制
0 0	高功耗,高速度
0 1	中高功耗,中高速度(默认)
1 0	中低功耗,中低速度
1 1	低功耗,低速度

Bit 5: HA, ADC 转换的扩展 6 个 ADC 时钟。

Bit 4~0: 保留位。当 ADCFG3 被写入时,这些位必须软件写"0"。

PCON3: 电源控制寄存器 3

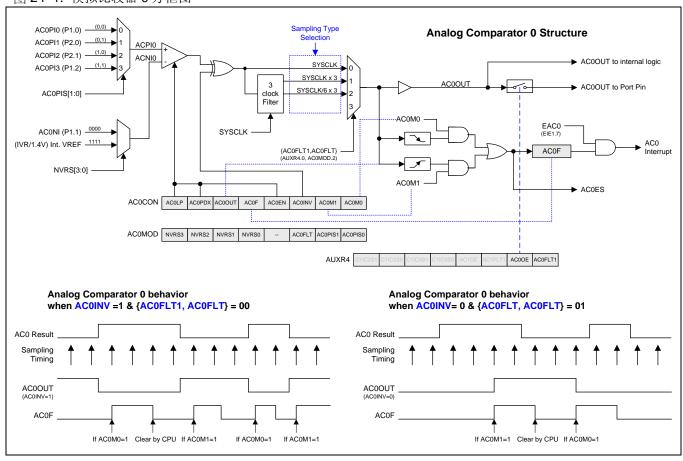
SFR 页 = 仅 **P** 页

SFR 地址 = 0x45

POR = 0000-0000

7	6	5	4	3	2	1	0
IVREN				LDOC1	LDOC0	FLDO	LDOL
R/W	W	W	W	R/W	R/W	R/W	R/W

Bit 7: IVREN,内部电压参照使能。


0: 禁止片内 IVR (1.4V)。

1: 使能片内 IVR (1.4V)。

24. 模拟比较器 0 (AC0)

24.1. AC0 结构

图 24-1. 模拟比较器 0 方框图

24.2. AC0 寄存器

ACOCON:模拟比较器 0 控制和状态寄存器

SFR 页 = 0~F

SFR 地址 = 0x9E 复位值= 00X0-0000

	7	6	5	4	3	2	1	0
	AC0LP	AC0PDX	AC0OUT	AC0F	AC0EN	AC0INV	AC0M1	AC0M0
•	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W

Bit 7: ACOLP,模拟比较器 0 低功耗使能。

0: 禁止 AC0 低功耗模式。

1: 使能 AC0 低功耗模式。

Bit 6: ACOPDX, 掉电模式下模拟比较器 0 控制。

0: 模拟比较器 0 在掉电模式下关闭。

1: 模拟比较器 0 在掉电模式下继续运行。

如果 ACOEN、ACOPDX 和 EACO 已经置位, 比较器仅能在电平输入(低电平或高电平)时把 CPU 从掉电模式中唤醒。

Bit 5: ACOOUT,这是一个从比较器输出的只读位。

AC0 输入	AC0INV = 0	AC0INV = 1
ACPI0(+) > ACNI0(-)	AC0OUT = 1	AC0OUT = 0
ACPI0(+) < ACNI0(-)	AC0OUT = 0	AC0OUT = 1

Bit 4: ACOF,模拟比较器 0 中断标志位。

0: 此标志必须软件清零。

1: 当比较器输出满足 AC0M[1:0]指定的条件并且 AC0EN 为 1,此位置位。通过 EIE1.7 的置位/清零可以使能/禁止 这个中断。

Bit 3: ACOEN,模拟比较器 0 使能。

0: 清零这位将强制比较器输出低,并且从设置 ACF0 阻止进一步的事件。

1: 置位使能比较器。

Bit 2: ACOINV,模拟比较器 0 输出反相位。

0: AC0 输出不反相。

1: AC0 输出反相。

Bit 1~0: ACOM[1:0], 模拟比较器 0 中断模式。

AC0M[1:0]	ACO 中断模式
0 0	保留
0 1	比较器 0 侦测输出下降沿
1 0	比较器 0 侦测输出上升沿
1 1	比较器 0 侦测输出跳变

4

NVRS(

R/W

ACOMOD: 模拟比较器 0 模式寄存器

6

NVRS2

SFR 页 = 0~F

7

NVRS3

SFR 地址 = 0x9F 复位值= 0000-x000

5

NVRS1

	2位位—0000	χουυ		
	3	2	1	0
)		AC0FLT	AC0PIS1	AC0PIS0

R/W

R/W

R/W

Bit 7~5: NVRS[3:0],模拟比较器 0 负端参考电压输入选择。这 4 个位决定了模拟比较器负端(V-)的输入源,如下所示:

NVRS[3:0]	(V-) 输入
0000	AC0NI(P1.1)
1111(1xxx)	内部 VREF (1.4V)

Bit 2: AC0FLT,模拟比较器 0输出滤波控制。和 AC0FLT1 (AUXR4.0)一起选择 AC0OUT 的滤波模式。

AC0FLT1, AC0FLT	AC0OUT 滤波模式
0 0	禁止
0 1	SYSCLK x 3
1 0	SYSCLK/6 x 3
1 1	保留

Bit 1~0: ACOPIS[1:0],模拟比较器 0 正端输入 I/O 口通道选择。这 2 个位决定了模拟比较器正端(V+)的输入源,如下所示:

AC0PIS[1:0]	(V+) 输入选择
0 0	AC0PI0(P1.0)
0 1	AC0PI1(P2.0)
1 0	AC0PI2(P2.1)
1 1	AC0PI3(P6.0)

AUXR4: 辅助寄存器 4

SFR 页 = 仅 1 页

SFR 地址 = 0xA4

复位值= 0000-0x00

7	6	5	4	3	2	1	0
T2PS1	T2PS0	T1PS1	T1PS0	SPIPS0		AC0OE	AC0FLT1
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 1: ACOOE, ACOOUT 输出在端口引脚的使能。

0: 禁止 ACOOUT 输出到端口引脚。

1: 使能 AC0OUT 输出到 P6.1。

PCON3: 电源控制寄存器 3

SFR 页 = QP页

SFR 地址 = 0x45

POR = 0xxx-xxxx

7	6	5	4	3	2	1	0
IVREN							
R/W	W	W	W	W	W	W	W

Bit 7: IVREN,内部电压参照使能。

0: 禁止片内 VREF (IVR/1.4V)。

1: 使能片内 VREF (IVR/1.4V)。

25. 内部电压参照(IVR, 1.4V)

25.1. IVR (1.4V) 结构

图 25-1. IVR 图解

25.2. IVR 寄存器

PCON3: 电源控制寄存器 3

SFR 页 =仅 P 页

SFR 地址 = 0x45

POR = 0xxx-xxxxx

7	6	5	4	3	2	1	0
IVREN							
R/W	W	W	W	W	W	W	W

Bit 7: IVREN,内部电压参照使能。

0: 禁止片内 VREF (IVR/1.4V)。

1: 使能片内 VREF (IVR/1.4V)。

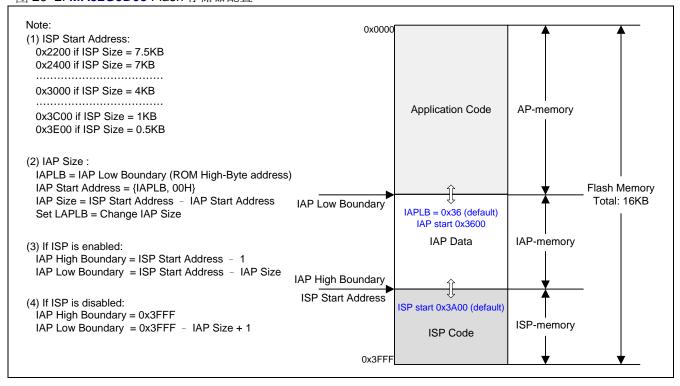
26. ISP 和 IAP

MA82G5DXX 的 Flash 存储器分区位 AP-存储器,IAP-存储器和 ISP-存储器。AP-存储器用于存放用户的应用程序。IAP 用于存放非易失性应用数据,ISP-存储器用于储存在系统编程的引导程序。当 MCU 运行在 ISP 区域时,MCU 可以修改 AP 和 IAP 存储器用于程序更新。如果 MCU 运行在 AP 区域,软件仅能修改 IAP 存储器用于更新应用数据。

26.1. MA82G5D16 Flash 存储器配置

MA82G5D16 总共有 16K 字节的 Flash,图 26-1 显示了 MA82G5D16 的 Flash 配置。ISP 存储空间可以被禁止或由硬件选项 0.5KB 步距配置最大 7.5K 字节。IAP 存储空间大小由 IAP 低边界和高边界决定。IAP 低边界由 IAPLB 寄存器的值决定。IAP 高边界与 ISP 的起始地址相关,ISP 存储空间由硬件选项决定。IAPLB 寄存器值由硬件选项配置或 AP 软件编程设定。所有 AP, IAP和 ISP 存储空间共享总 16K 字节的存储空间。

图 26-1. MA82G5D16 Flash 存储器配置


注意:

笙泉公司 MA82G5D16 的默认 flash 存储器配置是: 1.5K ISP、1.0K IAP 和加密。1.5K ISP 区域是锲入有笙泉 专利的 COMBO ISP 代码通过一条线就能在线下载的 1-线 ISP 协议及串口(COM)ISP 协议。1.0K IAP 大小可以 通过应用程序软件来重新配置。

26.2. MA82G5D08 Flash 存储器配置

MA82G5D08 总共有 8K 字节的 Flash,图 26-2 显示了 MA82G5D08 的 Flash 配置。ISP 存储空间可以被禁止或由硬件选项 0.5KB 步距配置最大 7.5K 字节。IAP 存储空间大小由 IAP 低边界和高边界决定。IAP 低边界由 IAPLB 寄存器的值决定。IAP 高边界与 ISP 的起始地址相关,ISP 存储空间由硬件选项决定。IAPLB 寄存器值由硬件选项配置或 AP 软件编程设定。所有 AP, IAP 和 ISP 存储空间共享总 8K 字节的存储空间。

图 26-2. MA82G5D08 Flash 存储器配置

注意:

笙泉公司 MA82G5D08 的默认 flash 存储器配置是: 1.5K ISP、1.0K IAP 和加密。1.5K ISP 区域是锲入有笙泉 专利的 COMBO ISP 代码通过一条线就能在线下载的 1-线 ISP 协议及串口(COM)ISP 协议。1.0K IAP 大小可以 通过应用程序软件来重新配置。

26.3. MA82G5DXX Flash 在 ISP/IAP 上的访问

MA82G5DXX 给 ISP 和 IAP 应用提供三种 flash 访问模式:页擦除模式,字节编程模式及读取模式。MCU 软件使用这三种模式去更新 Flash 的数据和获取 Flash 的数据。本章展示了不同 Flash 模式的流程图和范例代码。

在执行 ISP/IAP 操作之前,用户需要在 CKCON1 寄存器的 XCKS5~XCKS0 填入正确值。(参考章节"錯誤! 找不到参照來源。 錯誤! 找不到参照來源。")

页擦除(每页 512 字节)

步骤1: 在ISPCR 寄存器上设置MS[2:0]=[0,1,1]选择页擦除模式。

步骤2:填入页地址到IFADRH和IFADRL寄存器。

步骤3: 顺序地在SCMD 寄存器写入0x46h 然后0xB9h 触发一个ISP处理。

字节编程

步骤1: 在ISPCR 寄存器上设置MS[2:0]=[0,1,0]选择字节编程模式。

步骤2:填入字节地址到IFADRH和IFADRL寄存器。

步骤3:填入被编程数据到IFD寄存器。

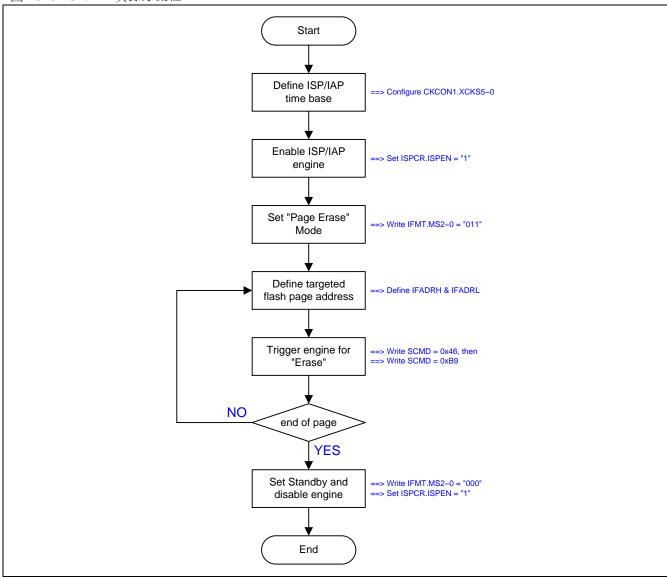
步骤4: 顺序地在SCMD 寄存器写入0x46h 然后0xB9h 触发一个ISP处理。

字节读取

步骤1:在ISPCR寄存器上设置MS[2:0]=[0,0,1]选择字节读取模式。

步骤2:填入字节地址到IFADRH和IFADRL寄存器。

步骤3: 顺序地在SCMD 寄存器写入0x46h 然后0xB9h 触发一个ISP处理。


步骤4:现在,Flash 数据在IFD 寄存器。

MA82G5DXX的页擦除,字节编程和读取的详细描述见下面章节:

26.3.1. ISP/IAP Flash 页擦除模式

MA82G5DXX 的 flash 数据任何一位只能编程为"0"。如果用户需要写"1"到 flash 数据,flash 需要擦除。但是在MA82G5DXX 的 ISP/IAP 操作中的 flash 擦除只支持"页擦除"模式,一页擦除将写"1"到一页的所有数据位。MA82G5DXX 的一页有 512 个字节并且页的起始地址排列到 A8~A0 = 0x000。目标 flash 地址由 IFADRH 和IFADRL 决定。这样,在 flash 页擦除模式, IFADRH.0(A8)和 IFADRL.7~0(A7~A0)必须写 "0"选择正确的页地址。图 26—3 展示了在 ISP/IAP 操作的 flash 页擦除流程。

图 26-3. ISP/IAP 页擦除流程

图 26-4 展示 ISP/IAP 页擦除操作的示例代码。

图 26-4. 页擦除操作的示例代码

MOV ISPCR,#00010111b; XCKS4~0 = 23(十进制) 当 OSCin = 24MHz 时

MOV ISPCR,#10000000b; ISPCR.7 = 1, 使能 ISP

MOV IFMT,#03h ;选择**页擦除**模式

MOV IFADRH,?? ; 页地址填到[IFADRH,IFADRL] MOV IFADRL,?? ;

MOV SCMD,#46h ; 触发 ISP/IAP 处理

MOV SCMD,#0B9h ;

;现在, MCU将停在这直 ISP/IAP 处理完成

MOV IFMT,#00h ; 选择 **待命** 模式

MOV ISPCR,#00000000b; ISPCR.7 = 0, 禁止 ISP

26.3.2. ISP/IAP Flash 字节编程模式

MA82G5DXX 编程模式提供 Flash 存储空间的字节写操作来更新数据。IFADRH 和 IFADRL 指向 Flash 的物理字节地址。IFD 存储编程到 Flash 的内容。图 26-5 展示了 ISP/IAP 操作的 Flash 字节编程流程。

图 26-5. ISP/IAP 字节编程流程

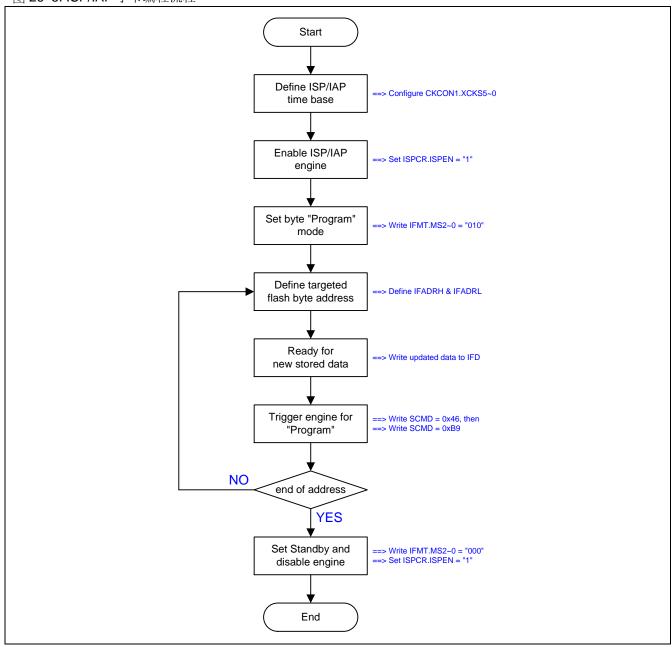


图 26-6 所示 ISP/IAP 字节编程操作的示例代码。

图 26-6. ISP/IAP 字节编程的示例代码

MOV ISPCR,#00010111b; XCKS4~0 = 23(十进制) 当 OSCin = 24MHz 时

MOV ISPCR,#10000011b; ISPCR.7=1, 使能 ISP

MOV IFMT,#02h ;选择**字节编程**模式

MOV IFADRH,?? ; 字节地址填到[IFADRH,IFADRL]

MOV IFADRL,?? ;

MOV IFD,?? ;编程数据填到 IFD

MOV SCMD,#46h ; 触发 ISP/IAP 处理

MOV SCMD,#0B9h ;

;现在, MCU 将停在这直 ISP/IAP 处理完成

MOV IFMT,#00h ;选择 待命 模式

MOV ISPCR,#00000000b; ISPCR.7 = 0, 禁止 ISP

26.3.3. ISP/IAP Flash 读模式

MA82G5DXX 读取模式提供从 Flash 存储空间获取已存储数据的字节读取操作。IFADRH 和 IFADRL 指向 Flash 的物理字节地址。IFD 存储从 Flash 读取到的内容。建议在数据编程或页擦除之后通过读取模式核对 Flash 数据。图 26-7 所示 ISP/IAP 操作下的 Flash 字节读取流程。

图 26-7. ISP/IAP 字节读流程

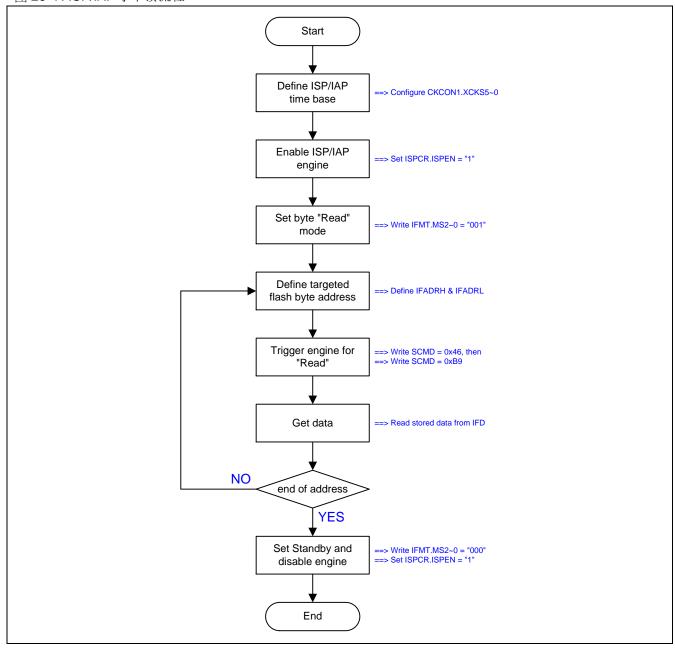


图 26-8 所示 ISP/IAP 字节读取操作的范例代码。

图 26-8. ISP/IAP 字节读取的范例代码

MOV ISPCR,#00010111b; XCKS4~0 = 23(十进制) 当 OSCin = 24MHz 时

MOV ISPCR,#10000011b; ISPCR.7=1, 使能 ISP

MOV IFMT,#01h ;选择字节读模式

MOV IFADRH,?? ; 字节地址填写到[IFADRH,IFADRL]

MOV IFADRL,?? ;

MOV SCMD,#46h ; 触发 ISP/IAP 处理

MOV SCMD,#0B9h ;

;现在, MCU将停在这直 ISP/IAP 处理完成

MOV A,IFD ; 现在,数据已经存在 IFD 里

MOV IFMT,#00h ;选择 待命 模式

MOV ISPCR,#00000000b; ISPCR.7 = 0, 禁止 ISP

205

26.4. ISP 操作

ISP 意指在系统可编程,不需要在实际的终端产品上移除 MCU 芯片就可以更新用户的应用程序(AP 存储空间)和非易失性应用数据(IAP 存储空间)。这个可使用性就有一个宽的现场应用范围。ISP 模式使用引导程序来编程 AP 存储空间和 IAP 存储空间。

注意:

- (1) 在用 ISP 功能之前,使用者必须先配置 ISP-存储器空间并用通用烧写器或笙泉的烧写器插入 ISP 代码(引导程序)到 ISP-存储器中。
- (2) ISP-存储器中的 ISP 代码只能编程 AP-存储器和 IAP-存储器。

在 ISP 操作完成之后,软件写 "001"到 ISPCR.7 ~ ISPCR.5 这样会触发一个软件复位(RESET)并且使 CPU 再启动到应用程序存储空间(AP)的 0x0000 地址。

如我们所知,ISP 代码的作用就是编程 AP 存储空间和 IAP 存储空间。因此,**MCU 为了执行 ISP 代码必须从 ISP 存储空间启动**。根据 MCU 如何从 ISP 存储空间启动,有两种方法执行在系统可编程。

26.4.1. 硬件启动 ISP 方法

在上电复位时为了使 MCU 直接从 ISP 存储空间启动,MCU 的硬件选项 HWBS 和 ISP 存储空间必须使能。硬件选项的 ISP 进入方法叫做硬件访问。一旦 HWBS 和 ISP 存储空间使能,当上电复位时 MCU 总是从 ISP 存储空间启动 去执行 ISP 代码(引导程序)。ISP 代码做的第一件事是核对是否有 ISP 请求。如果没有 ISP 请求,ISP 代码触发软件复位(设置 ISPCR.7~5 为"101")使 MCU 在启动到 AP 存储空间去运行用户应用程序。

如果额外的硬件选项 HWBS2 与 HWBS 及 ISP 存储空间一起使能, MCU 在上电复位或外部复位结束之后总从 ISP 存储空间启动。通过外部复位信号提供另外一个硬件访问进入 ISP 模式。第一上电复位之后,MA82G5DXX 通过外部复位触发而执行 ISP 操作并且不用等待下一次的上电复位,这适合不断电系统去应用硬件方法启动 ISP 功能。

26.4.2. 软件启动 ISP 方法

当 MCU 运行在 AP 存储空间时,软件访问 ISP 通过触发软件复位使 MCU 从 ISP 存储空间启动。这种情况,HWBS 或 HWBS2 不用使能。仅有的方法是当 MCU 运行在 AP 存储空间时同时设置 ISPCR.7~5 为"111"触发软件复位 MCU 从 ISP 存储空间启动。注意: ISP 存储空间必须通过硬件选项配置一个有效空间来保留 ISP 模式给软件方法启动 ISP 应用。

26.4.3. ISP 注意事项

ISP 代码开发

尽管 ISP 存储空间的 ISP 代码是可编程的,ISP 存储空间在 MCU 的 Flash 中有一个 *ISP 起始地址*(MA82G5D16 见图 26-1 或 MA82G5D08 见图 26-2), 但是并不意味着你需要在你的源代码中加入这个偏移量 (*ISP 起始地址*)。代码偏移量硬件自动处理。用户只需像在 AP 存储空间开发应用程序一样开发。

ISP 期间中断

在触发 ISP/IAP flash 处理之后,内部 ISP 处理时 MCU 将停止一会儿直到处理完成。此时,如果中断已使能则中断事件将排队等待服务。一旦 ISP/IAP flash 处理完成,MCU 继续运行并且如果中断标志仍然有效则排队中的中断将立即服务。不过用户需要意识到下列事项:

- (1) 当 MCU 停止在 ISP 处理时,中断不能实时服务。
- (2) 低/高电平触发外部中断 nINTx,必须保持到 ISP 处理完成,否则将被忽略。

ISP 和空闲模式

MA82G5DXX 不使用空闲模式执行 ISP 功能。反而 ISP/IAP 引擎操作 Flash 存储空间将冻结 CPU 的运行。一旦 ISP/IAP 运行结束,CPU 将继续并且推进紧跟着 ISP/AP 激活的指令。

ISP 的访问目标

如前所述, ISP 用来编程 AP 存储空间和 IAP 存储空间。一旦访问目标地址超出 IAP 存储空间的最后一个字节之外, 硬件将自动忽略 ISP 处理的触发。这样 ISP 触发是无效的并且硬件不做任何事情。

ISP 的 Flash 持久期

内置 Flash 的持久期是 20,000 写周期,换句话说写周期不能超过 20,000 次。这样用户必须注意应用中需要频繁更新 AP 存储空间和 IAP 存储空间这一点。

26.5. 在应用编程(IAP)

MA82G5DXX 内建一个在应用可编程(IAP)功能, 当应用程序运行时在 Flash 存储空间里允许一些区域被应用成非易失性数据存储区。这个有用特点能使用在断电后还需要保存数据的应用中。这样不需要使用外部的串行 **EEPROM** (比如 93C46, 24C01, ..., 等等)来保存非易失性的数据。

事实上,IAP的操作除了Flash存储空间被划分在不同的区域之外与ISP一样。ISP操作的可编程Flash范围在AP存储空间和IAP存储空间,而IAP操作的范围只在IAP存储空间。

注意:

- (1) MA82G5DXX的IAP 特点,软件通过写IFMT定义的IAPLB寄存器声明IAP 存储空间。IAP 存储空间也可以通过通用的烧入器/编程器或笙泉专利的烧入器/编程器来配置IAPLB 的初始值。
- (2)执行IAP 的程序代码是在AP存储空间并且仅能编程IAP存储空间而不能编程ISP存储空间

26.5.1. IAP-存储器边界/范围

If ISP-memory is specified, the range of the IAP-memory is determined by IAP and the ISP starts address as listed below.

如果ISP 存储空间被声明,IAP存储空间范围由IAP和ISP起始地址决定如下列表:

```
IAP高边界 = ISP起始地址 –1。
IAP低边界 = ISP起始地址 – IAP。
```

如果ISP 存储空间没有被声明,IAP存储空间范围由下列公式决定:

```
IAP高边界 = 0x3FFF。
IAP低边界 = 0x3FFF - IAP + 1。
```

例如,如果ISP 存储空间是**1.5K**字节,这样ISP 的起始地址是**0x3A00**,并且IAP 存储空间是**1K**字节,此时IAP 存储空间的范围就在**0x3600~0x39FF。MA82G5D16**的IAP 低边界由IAPLB 寄存器决定,IAPLB 寄存器可以在用户AP程序里用软件修改来调整IAP大小。

26.5.2. IAP-存储空间更新数据

ISP/IAP 相关的特殊功能寄存器见章节"26.6 ISP/IAP寄存器"。

由于 IAP 存储空间是 Flash 存储空间的一部分,Flash 擦除仅提供页擦除,没有字节擦除。为了在 IAP 存储空间更新"一个字节",用户不能直接编程一个新数据到那个字节。正确的步骤如下:

步骤 1: 保存整页 flash 数据(512 字节)到包含被更新数据的 XRAM 缓冲区。

步骤 2:擦除此页 *(使用 ISP/IAP Flash 页擦除模式)。*

步骤 3: 在 XRAM 缓冲区修改新数据字节。

步骤 4:编程 XRAM 缓冲区的被更新数据到此页(使用 ISP/IAP Flash 编程模式)。

为了读取 IAP 存储空间数据,用户可以使用 ISP/IAP Flash 读取模式获取目标数据。

26.5.3. IAP 注意事项

IAP 期间中断

在触发 ISP/IAP flash 处理之后,内部 IAP 处理时 MCU 将停止一会儿直到处理完成。此时,如果中断已使能则中断事件将排队等待服务。一旦 ISP/IAP flash 处理完成,MCU 继续运行并且如果中断标志仍然有效则排队中的中断将立即服务。不过用户需要意识到下列事项:

- (1) 当 MCU 停止在 IAP 处理时,中断不能实时服务。
- (2) 低/高电平触发外部中断 nINTx,必须保持到 IAP 处理完成,否则将被忽略。

IAP 和空闲模式

MA82G5DXX 不使用空闲模式执行 IAP 功能。反而 ISP/IAP 引擎操作 Flash 存储空间将冻结 CPU 的运行。一旦 ISP/IAP 运行结束,CPU 将继续并且推进紧跟着 ISP/AP 激活的指令。

IAP 的访问目标

如前所述, IAP 用来编程 IAP 存储空间。一旦访问目标地址不在 IAP 存储空间之内, 硬件将自动忽略 IAP 处理的触发。这样 IAP 触发是无效的并且硬件不做任何事情。

读取 IAP 数据的另一种方法

IAP 存储空间读取 Flash 数据,除了使用 Flash 的读取模式之外,另一个方法是使用"MOVC A,@A+DPTR"指令。这里,DPTR 和 ACC 各自填入想要的地址和偏移量。并且访问目标必须在 IAP 存储空间内,否则读取的数据将不确定。注意使用'MOVC'指令比使用 Flash 的读取模式更快。

IAP 的 Flash 持久期

内置 Flash 的持久期是 20,000 擦除/写周期,换句话说擦除再写周期不能超过 20,000 次。这样用户必须注意应用中需要频繁更新 IAP 存储空间这一点。

26.6. ISP/IAP 寄存器

下面专门描述ISP,IAP和P页相关的特殊功能寄存器:

IFD: ISP/IAP Flash 数据寄存器

SFR 页 = 0~F

 SFR 地址
 = 0xE2
 复位值= 1111-1111

 7
 6
 5
 4
 3
 2
 1
 0

 R/W
 R/W
 R/W
 R/W
 R/W
 R/W
 R/W
 R/W
 R/W

IFD 是 ISP/IAP/P 页操作的数据端口寄存器。在 ISP/IAP/P 页写操作时 IFD 的数据将被写入到期望的地址,在 ISP/IAP/P 页读操作时 IFD 的值是读到期望地址的数据。

IFADRH: ISP/IAP 高 8 位地址

SFR 页 = 0~F

SFR 地址 = 0xE3复位值=0000-0000 7 5 4 0 6 3 2 1 R/W R/W R/W R/W R/W R/W R/W

IFADRH 是所有 ISP/IAP 模式下的高 8 位地址。在 P 页模式下没有定义。

IFADRL: ISP/IAP 低 8 位地址

SFR 页 = 0~F

SFR 地址 = 0xE4复位值=0000-0000 7 6 5 4 3 2 0 R/W R/W R/W R/W R/W R/W R/W R/W

IFADRL 是所有 ISP/IAP/P 页模式下的低 8 位地址。在闪存页擦除时,IFADRL 可以不用理会。

IFMT: ISP/IAP Flash 模式表

SFR 页 = 0~F

SFR 地址 = 0xE5复位值= xxxx-x000 7 6 5 4 3 2 1 0 MS.6 MS.7 MS.5 MS.4 MS.3 MS.2 MS.1 MS.0 R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7~4: 保留位。当 IFMT 被写入时,这些位必须软件写"0000_0"。

Bit 3~0: ISP/IAP/P 页操作模式选择

MC[7,0]	44.4
MS[7:0]	模式
0 0 0 0-0 0 0 0	待机
0 0 0 0-0 0 0 1	AP/IAP-存储器字节读
0 0 0 0-0 0 1 0	AP/IAP-存储器字节编程
0 0 0 0-0 0 1 1	AP/IAP-存储器页擦除
0 0 0 0-0 1 0 0	P页 SFR 写
0 0 0 0-0 1 0 1	P 页 SFR 读
其它	保留

IFMT 是用来选择闪存是用执行众多的 ISP/IAP 功能还是选择 P 页寄存器的访问。

SCMD: 连续命令数据寄存器

SFR 页 = 0~F

SFR 地址 = 0xE6

复位值= XXXX-XXXX

7	6	5	4	3	2	1	0	
	SCMD							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

SCMD 是激活 ISP/IAP/P 页 的命令口。如果 SCMD 连续填入 0x46h, 0xB9h 并且 ISPCR.7 = 1, ISP/IAP/P 页被激活。

ISPCR: ISP 控制寄存器

SFR 页 = 0~F

SFR 地址 = 0xE7

复位值= 0000-xxxx

7	6	5	4	3	2	1	0
ISPEN	SWBS	SWRST	CFAIL				
R/W	R/W	R/W	R/W	W	W	W	W

Bit 7: ISPEN, ISP/IAP/P 页操作使能。

0: 所有的 ISP/IAP/P 页编程/擦除/读都是被禁止的。

1: 使能 ISP/IAP/P 页编程/擦除/读功能。

Bit 6: SWBS, 软件执行起始选择控制。

0: 复位软件从主存储区开始执行。

1: 复位软件从 ISP 存储区开始执行。

Bit 5: SWRST, 软件复位触发控制。

0: 无操作。

1: 产生软件系统复位,硬件自动清零。

Bit 4: CFAIL, ISP/IAP 操作命令失败指示。

0: 最后一次 ISP/IAP 命令成功。

1:最后一次 ISP/IAP 命令失败。失败的原因是闪存访问被阻止。

Bit 3~0: 保留位。当 ISPCR 被写入时,这些位必须软件写"0"。

CKCON1. 时钟控制寄存器 1

SFR 页 = 0~F & P

SFR 地址 = 0xBF

复位值= 0x00-1011

7	6	5	4	3	2	1	0
XTOR		XCKS5	XCKS4	XCKS3	XCKS2	XCKS1	XCKS0
R	W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 5~0: 这是设置 OSCin 频率值决定 ISP/IAP 编程的时间基准。根据 OSCin 填入正确的值,如下所示。

$[XCKS5 \sim XCKS0] = OSCin - 1$, $\stackrel{\text{def}}{=} OSCin = 1 \sim 40 \text{ (MHz)}$.

例如,

- (1) 如果 OSCin=12MHz,然后 11 填入[XCKS5~XCKS0],即 00-1011B。
- (2) 如果 OSCin=6MHz, 然后 5 填入[XCKS5~XCKS0], 即 00-0101B。

OSCin	XCKS[5:0]
1MHz	00-0000
2MHz	00-0001
3MHz	00-0010
4MHz	00-0011

38MHz	10-0101
39MHz	10-0110
40MHz	10-0111

默认值 XCKS= 00-1011 用于 OSCin= 12MHz.

IAPLB: IAP 低边界

SFR 页 =仅 **P** 页

SFR 地址	= 0x03		复位值= 0011-0110, 0001-0110				
7	6	5	4	3	2	1	0
			IAPLB				0
W	W	W	W	W	W	W	W

Bit 7~0: IAPLB 决定 IAP 存储区的最低边界。因为一个闪存页是 512 字节,所以 IAPLB 必须是偶数。为了读取 IAPLB,MCU 需要在 P 页里定义 IFADRL 地址,IMFT 模式选择 P 页读及 ISPCR.ISPEN 置位。并且 在 SCMD 依次写入 0x46h 和 0xB9h,这样 IAPLB 的值就会出现在 IFD。写 IAPLB,首先 MCU 把新的 IAPLB 设定值写入 IFD; 其次索引 IFADRL,选择 IMFT,使能 ISPCR.ISPEN; 然后设置 SCMD。这样 IAPLB 就会更新到最新的顺序。

由 IAPLB 及 ISP 起始地址决定的 IAP 存储区见下列表。

IAP 最低边界= IAPLB[7:0] x 256, 和 IAP 最高边界= ISP 起始地址- 1。

MA82G5DXX 的例子,如果 IAPLB=0x36 且 ISP 起始地址是 0x3A00,这样 IAP 存储区位于 0x3600 ~ 0x39FF。

另外要注意一点,IAP 的低边界地址不能大于 ISP 的起始地址。

26.7. ISP/IAP 示例代码

图 26-9 所示 ISP 操作的示例代码。

图 26-9. ISP 示例代码

```
; ISP 范例程序
IFD DATA 0E2h
IFADRH DATA 0E3h
IFADRL DATA 0E4h
IFMT DATA 0E5h
SCMD DATA 0E6h
ISPCR DATA 0E7h
   MOV ISPCR,#10000000b ;ISPCR.7=1, 使能 ISP
: 1. 页擦除模式 (512 字节每页)
   ORL IFMT,#03h ;MS[2:0]=[0,1,1], 选择页擦除模式
   MOV IFADRH,?? ; 页地址填写到 IFADRH 及 IFADRL
   MOV IFADRL,?? ;
MOV SCMD,#46h ;触发ISP处理
   MOV SCMD,#0B9h;
   ;处理中...(CPU 等待处理完成)
2. 字节编程模式
ORL IFMT,#02h ;MS[2:0]=[0,1,0], 选择字节编程模式
   ANL ISPCR,#0FAh;
   MOV IFADRH,?? ;字节地址填写到 IFADRH 及 IFADRL
   MOV IFADRL,?? ;
   MOV IFD,?? ;被编程数据填写到 IFD
   MOV SCMD,#46h ; 触发 ISP 处理
   MOV SCMD,#0B9h;
   ;处理中...(CPU 等待处理完成)
3. 使用读取模式校验
_____
   ANL IFMT,#0F9h ;MS1[2:0]=[0,0,1], 选择字节读取模式
   ORL IFMT,#01h
   ORL IFM1,#01h ;
MOV IFADRH,?? ;字节地址填写到 IFADRH 及 IFADRL
   MOV IFADRL,??
   MOV SCMD,#46h ; 触发 ISP 处理
   MOV SCMD,#0B9h;
   ;处理中...(CPU 等待处理完成)
   MOV A,IFD ;数据存在 IFD
   CJNE A,wanted,ISP_error;比较想要的数值
ISP_error:
```

27. P 页 SFR 访问

MA82G5DXX 内建一个特别的 P 页寄存器 (P 页) 用来存储 MCU 操作的控制寄存器。这些特殊功能寄存器在不同 IFMT 下通过 ISP/IAP 操作来访问。在 P 页访问时,IFADRH 必须设置为"00"及 IFADRL 索引 P 页内特殊功能寄存 器地址。如果 IFMT= 04H 则 P 页写操作,在 SCMD 激活之后 IFD 的数据会被载入到 IFADRL 索引的特殊功能寄 存器。如果 IFMT= 05H 则 P 页读操作,在 SCMD 激活之后 IFD 的数据将是 IFADRL 索引的特殊功能寄存器(SFR) 的值。

下面描述的是P页里的特殊功能寄存器(SFR):

IAPLB: IAP 低边界地址

SFR 页 = P 页

SFR 地址 = 0x03复位值=0011-0110,0001-0110 5 4 2 0 7 6 3 **IAPLB** 0 R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7~0: IAPLB决定IAP存储区的最低边界。因为一个闪存页是512字节,所以IAPLB必须是偶数。 为了读取 IAPLB, MCU 需要在 P 页里定义 IFADRL 地址, IMFT 模式选择 P 页读及 ISPCR.ISPEN 置位。并且 在 SCMD 依次写入 0x46h 和 0xB9h, 这样 IAPLB 的值就会出现在 IFD。写 IAPLB, 首先 MCU 把新的 IAPLB 设定值 写入 IFD; 其次索引 IFADRL,选择 IMFT,使能 ISPCR.ISPEN;然后设置 SCMD。这样 IAPLB 就会更新到最 新的顺序。

由 IAPLB 及 ISP 起始地址决定的 IAP 存储区见下列表。

IAP 最低边界= IAPLB[7:0] x 256, 和 IAP 最高边界= ISP 起始地址- 1。

MA82G5DXX 的例子,如果 IAPLB=0x36 且 ISP 起始地址是 0x3A00,这样 IAP 存储区位于 0x3600 ~ 0x39FF。

R/W

R/W

R/W

R/W

另外要注意一点, IAP 的低边界地址不能大于 ISP 的起始地址。

R/W

CKCON2: 时钟控制寄存器 2

R/W

SFR 页 = P 页

R/W

SFR 地址	= 0x40		复位值= 0101-0000				
7	6	5	4	3	2	1	0
XTGS1	XTGS0	XTALE	IHRCOE	MCKS1	MCKS0	OSCS1	OSCS0

R/W

Bit 7~6: XTGS1~XTGS0, OSC 驱动控制寄存器。

XTGS1, XTGS0	增益定义
0, 0	32.768K 的增益
0, 1	2MHz ~ 25MHz 的增益
其它	保留

Bit 5: XTALE, 外部晶振(XTAL)使能。

0: 禁止(XTAL)振荡电路。 此时 XTAL2 及 XTAL1 当做 P6.0 及 P6.1。

1: 使能(XTAL)振荡电路。如果此位是通过 CPU 软件来设置的话,硬件置 XTOR (CKCON1.7)为"1"时表明作为 OSCin 时钟选择的晶振振荡器准备好。

Bit 4: IHRCOE, 内部高频 RC 振荡使能。

0: 禁止内部高频 RC 振荡。

1: 使能内部高频 RC 振荡。如果此位是通过 CPU 软件来设置的话,则在 IHRCOE 使能之后需要 32 微秒才能稳定输出。

Bit 3~2: MCKS[1:0], MCK 时钟源选择。

MCKS[1:0]	MCK 时钟源选择	OSCin =12MHz CKMIS = [01]	OSCin =11.059MHz CKMIS = [01]
0 0	OSCin	12MHz	11.059MHz
0 1	CKMI x 4 (ENCKM =1)	24MHz	22.118MHz
1 0	CKMI x 5.33 (ENCKM =1)	32MHz	29.491MHz
1 1	CKMI x 8 (ENCKM =1)	48MHz	44.236MHz

Bit 1~0: OSCS[1:0], OSCin 时钟源选择。

OSCS[1:0]	OSCin 时钟源选择
0 0	IHRCO
0 1	XTAL
1 0	ILRCO
1 1	ECKI,外部时钟输入(P6.0)作为 OSCin。

CKCON3: 时钟控制寄存器 3

SFR 页 = **P 页**

SFR 地址 = 0x41

复位值= 0000-0010

7	6	5	4	3	2	1	0
WDTCS1	WDTCS0		WDTFS	MCKD1	MCKD0	1	0
R/W	R/W	W	R/W	R/W	R/W	W	W

Bit 7~6: WDTCS1~0, WDT 时钟源选择位[1:0]。

WDTCS1~0	WDT 时钟源
00	ILRCO
01	XTAL2/ECKI(P6.0)
10	SYSCLK/12
11	Reserved

Bit 5: 保留位。当 CKCON3 被写入时,这位必须软件写"0"。

Bit 4: WDTFS, WDT 溢出源选择位。

0: 选择 WDT 位 8 溢出作为 WDT 事件源。

1: 选择 WDT 位 0 溢出作为 WDT 事件源。

Bit 3~2: MCKD[1:0], MCK 驱动器输出选择。

MCKD[1:0]	MCKDO 频率	例如 MCK = 12MHz	例如 MCK = 48MHz
0 0	MCKDO = MCK	MCKDO = 12MHz	MCKDO = 48MHz
0 1	MCKDO = MCK/2	MCKDO = 6MHz	MCKDO = 24MHz
1 0	MCKDO = MCK/4	MCKDO = 3MHz	MCKDO = 12MHz
1 1	MCKDO = MCK/8	MCKDO = 1.5MHz	MCKDO = 6MHz

Bit 1~0: 保留位。当 CKCON3 被写入时,这二位必须软件写"10"。

CKCON4: 时钟控制寄存器 4

SFR 页 =仅 P 页

SFR 地址 = 0x42

POR = 0000-0000

7	6	5	4	3	2	1	0
RCSS2	RCSS1	RCSS0	RPSC2	RPSC1	RPSC0	RTCCS3	RTCCS2
R/W	R/W						

Bit 7~5: RCSS2~0, RTC 模块时钟源选择位 2~0。

RCSS[2:0]	RTC 模块时钟源
0 0 0	XTAL2/ECKI (P6.0)
0 0 1	ILRCO
0 1 0	WDTPS
0 1 1	WDTOF
1 0 0	SYSCLK
其它	保留

Bit 4: RPSC2, RTC 分频器控制位 2。 Bit 3: RPSC1, RTC 分频器控制位 1。 Bit 2: RPSC0, RTC 分频器控制位 0。

Bit 1~0: RTCCS3~2, RTC 计数器时钟选择。与 RTCCS1~0 一起使用。

PCON2: 电源控制寄存器 2

SFR 页 =仅 **P** 页

SFR 地址 = 0x44

POR = 0011-0101

7	6	5	4	3	2	1	0
AWBOD1	0	BO1S1	BO1S0	BO1RE	EBOD1	BO0RE	1
R/W	W	R/W	R/W	R/W	R/W	R/W	W

Bit 7: AWBOD1, 掉电模式(PD)下 BOD1 的唤醒。

0: 掉电模式(PD)下禁止 BOD1。

1: 掉电模式(PD)下保持 BOD1。

Bit 6: 保留位。当写 PCON2 寄存器时软件必须在这位写 "0"。

Bit 5~4: BO1S[1:0], 低电压侦测器 1 监测电压选择。这二位的初始值从 OR1.BO1S1O 和 OR1.BO1S0O 载入。

BO1S[1:0]	BOD1 监测电压
0 0	2.0V
0 1	2.4V
1 0	3.7V
1 1	4.2V

Bit 3: BO1RE, BOD1 复位使能。

0: 当 BOF1 已经设置,禁止低电压侦测 1(BOD1)系统复位。

1: 当 BOF1 已经设置, 使能低电压侦测 1 (BOD1) 系统复位。

Bit 2: EBOD1, 使能 BOD1 监测 VDD 下降到 BO1S1~0 设置的固定值。

0: 禁止 BOD1 监测电源电压降低芯片功耗。

1: 使能 BOD1 监测电源电压 VDD。

Bit 1: BOORE, BODO 复位使能。

0: 当 BOF0 已经设置,禁止低电压侦测 0 (BOD0) 系统复位。

1: 当 BOF0 已经设置, 使能低电压侦测 0 (BOD0) 系统复位 (VDD 触到 1.7V)。

Bit 0: 保留位。当写 PCON2 寄存器时软件必须在这位写 "1"。

PCON3: 电源控制寄存器 3

SFR 页 =仅 P 页

SFR 地址 = 0x45

POR = 0xxx-xxxx

7	6	5	4	3	2	1	0
IVREN							
R/W	W	W	W	W	W	W	W

Bit 7: IVREN,内部参考电压使能。

0: 禁止片内 IVR (1.4V)。

1: 使能片内 IVR (1.4V)。

Bit 6~0: 保留位。当写 PCON3 寄存器时软件必须在这些位写 "0"。

SPCONO: SFR 页控制 0

 $SFR 页 = \mathbf{QP}$ 页

SFR 地址 = 0x48

POR = 0000-0000

7	6	5	4	3	2	1	0
RTCCTL	P6CTL	P4CTL	WRCTL	CKCTL1	CKCTL0	PWCTL1	PWCTL0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: RTCCTL, RTCCR SFR 访问控制。

如果 RTCCTL 置位,将禁止在普通页修改 RTCCR SFR。RTCCR 在普通页仅保持 SFR 读取功能。但是在 SFR P 页软件拥有改写权利。

Bit 6: P6CTL, P6 SFR 访问控制。

如果 P6CTL 置位,则 P6 禁止在 0~F 页改写。P6 在 0~F 页保持读取。但是在 SFR P 页软件拥有改写权利。

Bit 5: P4CTL, P4 SFR 访问控制。

如果 P4CTL 置位,则 P4 禁止在 0~F 页改写。P4 在 0~F 页保持读取。但是在 SFR P 页软件拥有改写权利。

Bit 4: WRCTL, WDTCR SFR 访问控制。

如果 WRCTL 置位,则 WRCTL 禁止在 0~F 页改写。WRCTL 在 0~F 页保持读取。但是在 SFR P 页软件拥有改写 权利。

Bit 3: CKCTL1, CKCON1 SFR 访问控制。

如果 CKCTL1 置位,则 CKCON1 禁止在 0~F 页改写。CKCON1 在 0~F 页保持读取。但是在 SFR P 页软件拥有 改写权利。

Bit 2: CKCTL0, CKCON0 SFR 访问控制。

如果 CKCTL0 置位,则 CKCON0 禁止在 0~F 页改写。CKCON0 在 0~F 页保持读取。但是在 SFR P 页软件拥有 改写权利。

Bit 1: PWCTL1, PCON1 SFR 访问控制。

如果 PWCTL1 置位,则 PCON1 禁止在 0~F 页改写。PCON1 在 0~F 页保持读取。但是在 SFR P 页软件拥有改写权利。

Bit 0: PWCTL0, PCON0 SFR 访问控制。

如果 PWCTL0 置位,则 PCON0 禁止在 0~F 页改写。PCON0 在 0~F 页保持读取。但是在 SFR P 页软件拥有改写权利。

DCONO:设备控制 0

SFR 页 = 仅 P 页

SFR 地址 = 0x4C

复位值= 10x-x011

7	6	5	4	3	2	1	0
HSE	IAPO				IORCTL	RSTIO	OCDE
R/W	R/W	W	W	W	W	R/W	W

Bit 7: HSE, 高速运行使能。

0: 选择 CPU 运行在低速模式(F_{CPUCLK} ≤ 6MHz)这样减慢内部电路从而降低功耗。

1: 使能 MCU 高速运行(F_{CPUCLK} > 6MHz)。 在 SYSCLK 选择高频时钟(>6MHz)之前,软件必须置位 HSE 切换到用于高速运行的内部电路。

Bit 6: IAPO, 仅IAP功能。

- 0: 保留 IAP 区服务于 IAP 功能和程序代码执行。
- 1: IAP 区禁止程序代码执行并且仅服务于 IAP 功能

Bit 5: HSE1, 高速运行使能 1。

0: 无功能。

1: 使能 MCU 超高速运行。(F_{CPUCLK} > 25MHz)

Bit 4~3: 保留位。当写 DCON0 寄存器时软件必须在这些位写 "0"。

Bit 2: IORCTL, GPIO 复位控制。

- 0: 端口 6(Port 6)所有复位事件下保持复位。
- 1: 如果此位置位,端口 6(Port 6)仅通过 POR/LVR/Ext_Reset/BOR0/BOR1 (如果 BOR0/1 是使能的)复位。

Bit 1: RSTIO, RST 功能为 I/O。

- 0: 选择 I/O 引脚功能为 P47。
- 1: 选择 I/O 引脚功能为外部复位输入(RST)。

Bit 0: OCDE, OCD 使能。

- 0: 在 P4.4 和 P4.5 禁止 OCD 接口。
- 1: 在 P4.4 和 P4.5 使能 OCD 接口。

28. 辅助特殊功能寄存器

AUXRO: 辅助寄存器 0

SFR 页 = 0~F

SFR 地址 = 0xA1

复位值= 000x-xx00

7	6	5	4	3	2	1	0
P60OC1	P60OC0	P60FD				INT1H	INT0H
R/W	R/W	R/W	W	W	W	R/W	R/W

Bit 7~6: P6.0 功能配置控制位 1 和位 0,这两位仅仅当内部 RC 振荡(IHRCO 或 ILRCO)被选择为系统时钟源时有效。这种情况,XTAL2 和 XTAL1 改变功能作 P6.0 和 P6.1,当外部时钟输入模式,P6.0 专用于时钟输入。在内部振荡模式,P6.0 为普通 I/O 或时钟源发生器提供下列选项,当 P60OC[1:0] 索引为非 P6.0 GPIO 功能时,P6.0 将驱动内部 RC 振荡器输出为其它设备提供时钟源。

P60OC[1:0]	P60 功能	I/O 模式
00	P60	By P6M0.0
01	MCK	By P6M0.0
10	MCK/2	By P6M0.0
11	MCK/4	By P6M0.0

了解详情,请参考"錯誤! 找不到参照來源。錯誤! 找不到参照來源。"。P6.0 作为时钟输出功能时,建议设置P6M0.0 为"1" 来选择 P6.0 为推挽输出模式。

Bit 5: P60FD, P6.0 快速驱动。

0: P6.0 默认驱动输出.

1: P6.0 快速驱动输出使能。若 P6.0 被配置为时钟输出, 当 P6.0 输出频率大于 12MHz (5V) 或者大于 6MHz (3V) 时使能此位。

Bit 4~2: 保留位。当写 AUXR0 寄存器时软件必须在这些位写"0"。

Bit 1: INT1H, INT1高电平/上升沿触发使能。

0: 保留 INT1 在选择的端口引脚上低电平或下降沿触发。

1: 设置 INT1 在选择的端口引脚上高电平或上升沿触发。

Bit 0: INT0H, INT0 高电平/上升沿触发使能。

0: 保留 INT0 在选择的端口引脚上低电平或下降沿触发。

1: 设置 INT0 在选择的端口引脚上高电平或上升沿触发。

AUXR1: 辅助控制寄存器 1

SFR 页 = 0~F

SFR 地址 = 0xA2

复位值= 0000-0000

	-		_				
7	6	5	4	3	2	1	0
							DPS
W	w	W	W	W	W	W	R/W

Bit 7~1: 保留位。当写 AUXR1 寄存器时软件必须在这些位写 "O"。

Bit 0: DPS, DPTR选择位,用来在DPTR0和DPTR1之间切换。

0: 选择 DPTR0。

1: 选择 DPTR1。

<u>,, </u>	
DPS	DPTR 选择
0	DPTR0
1	DPTR1

AUXR2: 辅助寄存器 2

SFR 页 = 0~F

SFR 地址 = 0xA3

复位值= 00xx-0000

7	6	5	4	3	2	1	0
STAF	STOF			T1X12	T0X12	T1CKOE	T0CKOE
R/W	R/W	W	W	R/W	R/W	R/W	R/W

Bit 7: STAF, STWI (SID)的起始标志侦测。

0: 软件写"0"清零。

1: 硬件置位,表示在 STWI 总线上发生了一个**起始**动作。

Bit 6: STOF, STWI (SID)的停止标志侦测。

0: 软件写"0"清零。

1: 硬件置位,表示在 STWI 总线上发生了一个**停止**动作。

Bit 5~4: 保留位。当写 AUXR2 寄存器时软件必须在这些位写 "O"。

Bit 3: T1X12, 当 C/T=0 时定时器 1 时钟源选择。

0: 清零选择 SYSCLK/12 为定时器 1 时钟源。

1: 置位选择 SYSCLK 为定时器 1 时钟源。

Bit 2: T1X12, 当 C/T=0 时定时器 0 时钟源选择。

0: 清零选择 SYSCLK/12 为定时器 0 时钟源。

1: 置位选择 SYSCLK 为定时器 0 时钟源。

Bit 1: T1CKOE,定时器 1 时钟输出使能。

0: 禁止定时器 1 时钟输出。

1: 使能定时器 1 时钟输出在 T1CKO 端口引脚。

Bit 0: T0CKOE, 定时器 0 时钟输出使能。

0: 禁止定时器 0 时钟输出。

1: 使能定时器 0 时钟输出在 T0CKO 端口引脚。

AUXR3: 辅助寄存器 3

SFR 页 = **仅 0 页**

SFR 地址 = 0xA4

复位值= 0000-0000

_	_	2-2-111111					
7	6	5	4	3	2	1	0
T0PS1	T0PS0	BPOC1	BPOC0	S0PS0	TWIPS1	TWIPS0	T0XL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7~6: T0PS1~0, 定时器 0 端口引脚选择位[1:0]。

T0PS1~0	T0/T0CKO
00	P3.4
01	P4.4
10	P2.2
11	P2.6

Bit 5~4: BPOC1~0, 蜂鸣器输出控制位。

BPOC[1:0]	P4.4 功能	I/O 模式
00	P4.4	By P4M0.4 & P4M1.4
01	ILRCO/32	By P4M0.4 & P4M1.4
10	ILRCO/16	By P4M0.4 & P4M1.4

11	ILRCO/8	By P4M0.4 & P4M1.4

蜂鸣器功能在 P4.4, 推荐设置 P4.4 工作在推挽输出模式。

Bit 3: SOPSO, 串口 0 (UART0) 端口引脚选择位 0。

S0PS0	RXD0	TXD0
0	P3.0	P3.1
1	P4.4	P4.5

Bit 2~1: TWIPS1~0, TWI0 端口引脚选择位[1:0]。

TWIPS1~0	TWI0_SCL	TWI0_SDA
00	P4.0	P4.1
01	P6.0	P6.1
10	P3.0	P3.1
11	P2.2	P2.4

Bit 0: TOXL 是定时器 0 预分频控制位。TOXL 功能定义请参考 TOX12。

AUXR4: 辅助寄存器 4

SFR 页 = **仅1页**

SFR 地址 = 0xA4

复位值= 0000-0x00

7	6	5	4	3	2	1	0
T2PS1	T2PS0	T1PS1	T1PS0	SPIPS0		AC0OE	AC0FLT1
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 7~6: T2PS1~0, 定时器 2 端口引脚选择位[1:0]。

T2PS1~0	T2/T2CKO	T2EX
00	P1.0	P1.1
01	P3.0	P3.1
10	P4.0	P4.1
11	P4.5	P4.4

Bit 5~4: T1PS1~0, 定时器 1 端口引脚选择位[1:0]。

T1PS1~0	T1/T1CKO
00	P3.5
01	P4.5
10	P1.7
11	P2.6

Bit 3: SPIPS0, SPI 端口引脚选择位 0。

SPIPS0	nSS	MOSI	MISO	SPICLK
0	P1.4	P1.5	P1.6	P1.7
1	P3.4	P3.5	P4.1	P4.0

Bit 2: 保留位。当写 AUXR4 寄存器时软件必须在这位写 "O"。

Bit 1: ACOOE, ACOOUT 在端口引脚上使能输出。

0: 禁止 ACOOUT 在端口上输出

1: 使能 ACOOUT 在 P6.1 上输出.

Bit 0: AC0FLT1 是模拟比较器 0(AC0)输入滤波器控制位。请参考 AC0FLT1 功能定义。

AUXR5: 辅助寄存器 5

SFR 页 = **仅 2 页**

SFR 地址 = 0xA4 复位值= 0000-0000

7	6	5	4	3	2	1	0

C0IC4S0	C0IC2S0	C0PPS1	C0PPS0	C0PS1	C0PS0	ECIPS0	C0COPS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7: COIC4SO, PCAO 输入通道 4 输入选择。

	= =
C0IC4S0	CEX4 输入
0	CEX4 端口引脚
1	AC0OUT

Bit 6: COIC2SO, PCAO 输入通道 2 输入选择。

C0IC2S0	CEX2 输入	
0	CEX2 端口引脚	
1	ILRCO	

Bit 5: COPPS1, {PWM2A, PWM2B}端口引脚选择位。

C0PPS1	PWM2A	PWM2B
0	P4.0	P4.1
1	P3.4	P3.5

Bit 4: COPPSO, {PWMOA, PWMOB}端口引脚选择位。

C0PPS0	PWM0A	PWM0B
0	P2.0	P2.1
1	P6.0	P6.1

Bit 3: C0PS1, PCA0 端口引脚选择位 1。

C0PS1	CEX3	CEX5
0	P3.4	P3.5
1	P2.0	P2.1

Bit 2: COPSO, PCAO 端口引脚选择位 0。

C0PS0	CEX0	CEX2	CEX4	
0	P2.2	P2.4	P2.6	
1	P3.0	P3.1	P3.3	

Bit 1: ECIPSO, PCA0 ECI 端口引脚选择位。

ECIPS0	ECI
0	P1.3
1	P1.6

Bit 0: COCOPS, PCAO 时钟输出(COCKO)端口引脚选择位。

C0COPS	C0CKO
0	P4.7
1	P3.3

AUXR6: 辅助寄存器 6

SFR 页 = **仅3页**

SFR 地址 = 0xA4

复位值= 0000-0x00

7	6	5	4	3	2	1	0
KBI4PS1	KB4IPS0	KBI6PS0	KBI2PS0	KBI0PS0		S0MIPS	S0COPS
R/W	R/W	R/W	R/W	R/W	W	R/W	R/W

Bit 7~6: KBI4PS1~0, KBI4~5端口引脚选择位[1:0]。

<u></u>		
KBI4PS1~0	KBI4	KBI5
00	P1.4	P1.5
01	P3.4	P3.5

10	P6.0	P6.1
11	P2.0	P2.1

Bit 5: KBI6PS0, KBI6~7端口引脚选择位。

KBI6PS0	KBI6	KBI7
0	P1.6	P1.7
1	P3.0	P3.1

Bit 4: KBI2PS0, KBI2~3 端口引脚选择位。

KBI2PS0	KBI2	KBI3
0	P1.2	P1.3
1	P2.2	P2.4

Bit 3: KBI0PS0, KBI0~1 端口引脚选择位。

KBI0PS	KBI0	KBI1
0	P1.0	P1.1
1	P4.0	P4.1

Bit 2: 保留位。当写 AUXR6 寄存器时软件必须在这位写 "O"。

Bit 1: SOMIPS, SOMI 端口引脚选择位。

SOMIPS	SOMI
0	P1.6
1	P3.3

Bit 0: SOCOPS, SOBRG 时钟输出(SOCKO)端口引脚选择位。

S0COPS	S0CKO
0	P4.7
1	P3.3

AUXR7: 辅助寄存器 7

SFR 页 = **仅 4 页**

SFR 地址 = 0xA4

复位值= 1100-xxxx

7	6	5	4	3	2	1	0
POE5	POE4	C0CKOE	SPI0M0				
R/W	R/W	R/W	R/W	W	W	W	W

Bit 7: POE5, PCA0 PWM5 主通道(PWM5O)输出控制。

0: 禁止 PWM5O 在端口引脚上输出。

1: 使能 PWM5O 在端口引脚上输出。默认是使能的。

Bit 6: POE4, PCA0 PWM4 主通道(PWM4O)输出控制。

0: 禁止 PWM4O 在端口引脚上输出。

1: 使能 PWM4O 在端口引脚上输出。默认是使能的。

Bit 5: COCKOE, PCAO 时钟输出使能。

0: 禁止 PCA0 时钟输出。

1: PCA0 基本定时器溢出率的二分之一时钟输出使能。

Bit 4: SPIMO, SPI 模式控制 0。

0: 禁止 SPI 菊花链功能。

1: SPI 从机模式的 SPI 菊花链功能使能。

Bit 3~0: 保留位。当写 AUXR7 寄存器时软件必须在这些位写 "0"。

SFRPI: SFR 页索引寄存器

SFR 页 = 0~F

 SFR 地址
 = 0xAC
 复位值= xxxx-0000

7	6	5	4	3	2	1	0
				PIDX3	PIDX2	PIDX1	PIDX0
W	W	W	W	R/W	R/W	R/W	R/W

Bit 7~4: 保留位。当 SFRPI 被写入时,这些位必须软件写"0"。

Bit 3~0: SFR 页索引。可用页数仅页"0"和 "1"。

PIDX[3:0]	可选页
0000	页 0
0001	页 1
0010	页 2
0011	页 3
1111	页 F

29. 硬件选项

MCU 的硬件选项定义了器件的性能,它不能由软件编程和控制。硬件选项仅能由通用编程器,"Megawin 8051 Writer U1"或 "Megawin 8051 ICE Adapter"(这个 ICE 也支持 ICP 编程功能。参考章节"**錯誤!** 找不到參照來源。")来编程。整片擦除后,所有的硬件选项被设置成"禁止"状态,没有配置 ISP 空间和 IAP 空间。 MA82G5DXX 有下列的硬件选项:

LOCK:

☑: 使能。加密上锁,使得用通用编程器读取代码锁定为 0xFF。

□:禁止。没有上锁。

ISP-存储空间:

由其指定 ISP 空间的起始地址。它的高边界由 Flash 的结束地址限定,例如: **0x3FFF**。下表列举了 ISP 空间选项。默认设定, **MA82G5DXX** ISP 空间被配置为 **1.5K**, 并嵌入了 Megawin COMBO ISP 引导码,通过 Megawin **1**-线 ISP 协议 和 串口 ISP 协议,进行在线设备 FW 更新。

ISP-存储空间	MA82G5D16 ISP 起始地址	MA82G5D08 ISP 起始地址
7.5K bytes	2200	0200
7.0K bytes	2400	0400
6.5K bytes	2600	0600
6.0K bytes	2800	0800
5.5K bytes	2A00	0A00
5.0K bytes	2C00	0C00
4.5K bytes	2E00	0E00
4.0K bytes	3000	1000
3.5K bytes	3200	1200
3.0K bytes	3400	1400
2.5K bytes	3600	1600
2.0K bytes	3800	1800
1.5K bytes	3A00	1A00
1.0K bytes	3C00	1C00
0.5K bytes	3E00	1E00
无 ISP 空间		

HWBS:

☑:使能。上电时,如果 ISP 空间有配置,则 MCU 从 ISP 空间启动。

□:禁止。MCU 总是从 AP 空间启动。

HWBS2:

☑:使能。如果ISP空间有配置,不仅上电,而且所有复位都是从ISP空间启动。

口:禁止。由 HWBS 决定 MCU 从哪里启动。

IAP-存储空间:

AP 存储空间指定用户定义的 IAP 空间。IAP 存储空间可以由硬件选项或者 MCU 软件修改 IAPLB 来配置。默认,它被配置为 2.5K。

B01S10, B01S00:

☑, ☑: 选择 BOD1 检测电压 2.0V。 ☑, □: 选择 BOD1 检测电压 2.4V。 □, ☑: 选择 BOD1 检测电压 3.7V。

□,□: 选择 BOD1 检测电压 4.2V。

BOOREO:

- ☑: 使能。BOD0 将触发复位事件使得 CPU 从 AP 程序起始地址允许(2.2V)。
- 口:禁止。BOD0 不能触发 CPU 复位。

BO1REO:

- ☑: 使能。BOD1 (4.2V, 3.7V, 2.4V 或 2.0V)将触发复位事件使得 CPU 从 AP 程序起始地址允许。
- 口:禁止。BOD1 不能触发 CPU 复位。

WRENO:

- ☑: 使能。置位 WDTCR.WREN 使能 WDTF 产生一个系统复位。
- 口:禁止。清零 WDTCR.WREN 禁止 WDTF 产生一个系统复位。

NSWDT:不停止WDT

- ☑: 使能。置位 WDTCR.NSW 在掉电模式下使能 WDT 运行(watch 模式)。
- 口:禁止。清零 WDTCR.NSW 在掉电模式下禁止 WDT 运行(禁止 Watch 模式)。

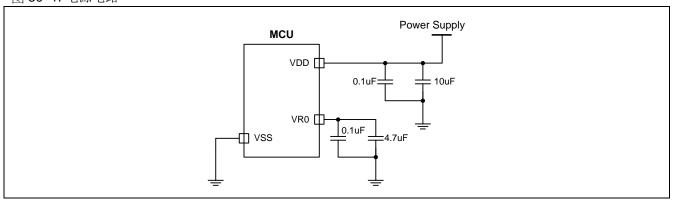
HWENW: 硬件加载"ENW"到WDTCR。

- ☑: 使能。上电后使能 WDT 并且加载 WRENO、NSWDT、HWWIDL 和 HWPS2~0 的内容到 WDTCR。
- □:禁止。上电后 WDT 不会自动使能。

HWWIDL, HWPS2, HWPS1, HWPS0:

当 HWENW 使能,上电后这 4 个熔丝位的内容将被加载到 WDTCR。

WDSFWP:

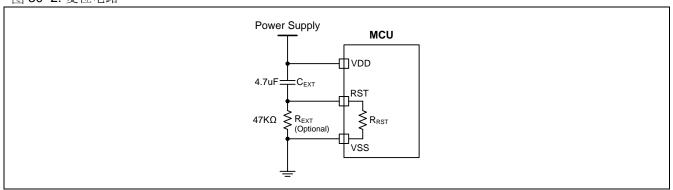

- ☑: 使能。WDT 特殊寄存器, WDTCR 的 WREN, NSW, WIDL, PS2, PS1 和 PS0 位,将被写保护。
- 口:禁止。WDT 特殊寄存器,WDTCR 的 WREN, NSW, WIDL, PS2, PS1 和 PS0 位,由软件自由写。

30. 应用说明

30.1. 电源电路

MA82G5DXX 的工作电源变化可以从 1.8V 到 5.5V 但是增加一些外部去耦和滤波电容是必须的,如图 30-1 所示。

图 30-1. 电源电路


30.2. 复位电路

通常,上电可以成功产生上电复位。然而,为了上电时 MCU 产生一个可靠的复位,有必要加外部复位。外部复位电路如图 30-2 所示,它由一个连接到 VDD(电源)的电容 C_{EXT} 和一个连接到 VSS(地)的电阻组成。

一般的, R_{EXT} 是可选的,因为 RST 引脚有一个内部下拉电阻(R_{RST})。这个对 VSS 的内部扩散电阻在仅使用一个外部对 VDD 的电容 C_{EXT} 时也可产生一个上电复位。

R_{RST} 的值见章节"錯誤! 找不到參照來源。 錯誤! 找不到參照來源。"。

图 30-2. 复位电路

30.3. XTAL 振荡电路

为了能成功起振 (最大到 24MHz), 电容 C1 和 C2 是必须的,如图 30–3 所示。 通常, C1 和 C2 使用相同的值。表 30–1 列举了 C1 & C2 在不同晶振下的值。

图 30-3. XTAL 振荡电路

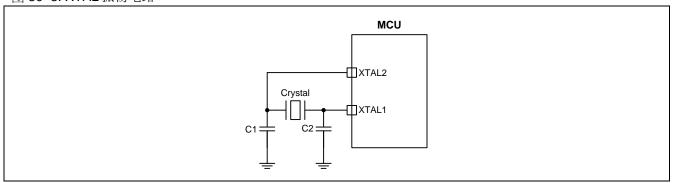
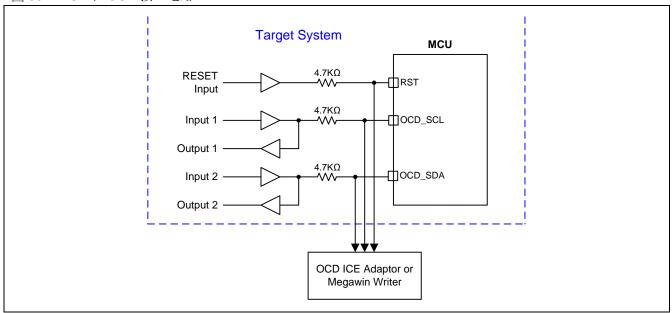


表 30-1. 振荡电路的电容 C1 及 C2 参照表

晶振	C1, C2 电容
16MHz ~ 25MHz	10pF
6MHz ~ 16MHz	15pF
2MHz ~ 6MHz	33pF

30.4. ICP 和 OCD 接口电路

MA82G5DXX 包含一个笙泉专有的在芯片调试接口,它允许在元器件已经安装在产品上在芯片编程(ICP)和在线调试(OCD)。ICP 和 OCD 共享同样的接口使用一个时钟线(ICP_SCL/OCD_SCL)和一个个双向数据线(ICP_SDA/OCD_SDA)完成主机与设备之间的数据传送。


ICP 接口允许的 ICP_SCL/ICP_SDA 引脚与用户应用共享,使得可以实现在芯片 FLASH 编程。这是可行的,因为当芯片在 Halt 状态时执行 ICP 通信,此时芯片上的外围设备和用户软件都是失效的。在 halt 状态,ICP 接口能够安全的"借用"ICP_SCL (P4.4)和 ICP_SDA (P4.5) 引脚。 在大多应用中,必须用外部电阻来隔开 ICP 电路和用户应用电路。图 30-4 展示了一种典型的隔离方法。

强烈建议在目标系统建立 ICP 接口电路。它保留了整个软件编程和硬件选项配置的能力。

上电后,MA82G5DXX 的 P4.4 和 P4.5 被配置成 OCD_SCL/OCD_SDA 用于在线调试功能。 这是可行的,因为 OCD 通信是在 CPU Halt 状态下执行,此时用户软件是无效的。 在 halt 状态,OCD 接口可以安全的使用 OCD_SCL(P4.4)和 OSC_SDA(P4.5)引脚。就像上面提到的隔离 ICP 接口,如图 30–4,用外部电阻来隔开 ICP 电路和用户应用电路。

如果用户放弃 OCD 功能,软件可以通过清零 PCON3 的位 0 (OCDE) 来配置 OCD_SCL 和 OCD_SDA 引脚作为 P4.4 和 P4.5。当用户想重新使用 OCD 功能, 用户可以置 OCDE 为 1 来切换 P4.4 和 P4.5 到 OCD_SCL 和 OCD_SDA。或者用 ICP"擦除"在芯片 FLASH 清除用户软件来停止端口的却换。

图 30-4. ICP 和 OCD 接口电路

30.5. 在芯片编程功能

ICP,就像传统的并行编程方式,可以编程 MCU 的任何区域,包括 FLASH 和 MCU 的硬件选项。并且,得益于它专用的串行接口(经由在线调试通道),使得 ICP 可以更新 MCU 而不用从用户的产品上卸下 MCU,就像 ISP 做的那样。

专用的 6 脚 "Megawin 8051 ICE Adapter" 可以支持 MA82G5DXX 在线路编程。 "Megawin 8051 ICE Adapter" 有在系统的存储器来存储用户的程序和器件选项。因此,该工具可以完成一个便携的,独立的编程,而不用连线主机,如连接该工具到 PC。下面列举了 ICP 功能的特点:

特点

- 不必在目标芯片上预编程一个引导程序。
- 专用串行接口;不占用 IO 口。
- 目标芯片不必在运行状态;仅需电源。
- 便携,独立的工作,而无需主机的干预。

The above valuable features make the ICP function very friendly to the user. Particularly, it is capable of standalone working after the programming data is downloaded. This is especially useful in the field without a PC. The system diagrams of the ICP function for the stand-alone programming are shown in 30–5. Only **five** pins are used for the ICP interface: the SDA line and SCL line function as serial data and serial clock, respectively, to transmit the programming data from the 6-pin "Megawin 8051 ICE Adapter" to the target MCU; the RST line to halt the MCU, and the VCC & GND are the power supply entry of the 6-pin "Megawin 8051 ICE Adapter" for portable programming application. The USB connector can be directly plugged into the PC's USB port to download the programming data from PC to the 6-pin "Megawin 8051 ICE Adapter".

以上特点使得 ICP 非常有利于用户。特别的,在编程数据下载后的便携独立工作,尤其有利于没有 PC 的地方使用。图 30-5 显示了 ICP 独立编程的系统框图。ICP 接口仅需 **5** 个引脚: SDA 线和 SCL 线是串行数据和串行时钟,用来从 6 脚 "Megawin 8051 ICE Adapter"传送编程数据到目标 MCU; RST 线用来暂停 MCU; VCC & GND 是 6 脚 "Megawin 8051 ICE Adapter" 用于便携编程应用的电源输入。 USB 连接器可以直接的插入 PC 的 USB 端口,用来从 PC 下载编程数据到 6-pin "Megawin 8051 ICE Adapter"。

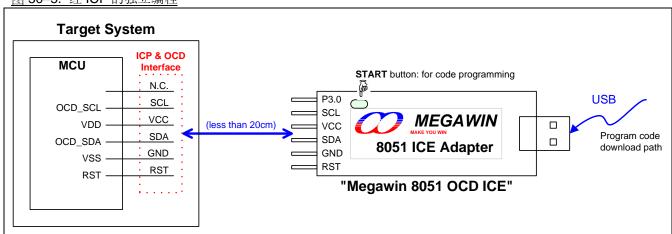
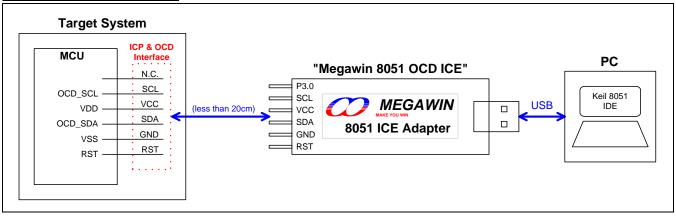


图 30-5. 经 ICP 的独立编程

30.6. 在线调试功能

MA82G5DXX 预备了一个用于在线仿真(ICE)的 Megawin 专用的在线调试(OCD)接口。这个 OCD 接口提供在芯片和系统不干扰的调试,且不占用任何的目标系统资源。支持 ICE 的几种必要操作,如复位,运行,停止,单步运行,运行到光标和断点设置。

使用 OCD 技术,Megawin 提供 "Megawin 8051 OCD ICE" 给用户,如图 30-6 所示. 用户在开发过程中不必准备任何的开发板,或者用在传统 ICE 探头的转换座。所有这些,用户仅需在系统上保留一个 6-脚的连接器用于专用的 OCD 接口: P3.0、RST、VCC、OCD SDA、OCD SCL 和 GND ,如图 30-6 所示


另外,最有力的功能是,它可以直接让用户的系统连接到 Keil 8051 IDE 软件进行仿真,它直接利用 Keil IDE's dScope-Debugger 功能。当然,所有的特点都基于你使用的 Keil 8051 IDE 软件。

注意: "Keil" 是 "Keil Elektronik GmbH and Keil Software, Inc."的注册商标。

特点

- 笙泉科技专用的 OCD (在芯片调试) 技术
- 在芯片和在系统实时调试
- 用于 OCD 的 5-引脚专用串行接口, 不占用目标资源
- 直接连接 Keil IDE 软件的调试功能
- USB 连接目标板与主机(PC)
- 有用的调试动作:复位,运行,停止,单步运行和运行到光标
- 可编程断点,可在仿真中插入4个断点
- 数个帮助调试串口:寄存器/反汇编/监视/存储区窗口
- 源代码级(汇编或 C 语言)调试能力

图 30-6. ICE 功能的系统框图

注意: 更多有关 OCD ICE 的详细信息, 请联系笙泉。

31. 电气特性

31.1. 最大绝对额定值

参数	范围	单位
环境温度	-40 ~ +125	°C
存储温度	-65 ~ + 150	°C
任意 GPIO 口或 RST 对地电压	-0.5 ~ VDD + 0.5	V
VDD 对地电压	-0.5 ~ +6.0	V
VDD 到地的最大电流	200	mA
任意引脚最大灌电流	40	mA

^{*}注意:实际参数超过上述各项"绝对最大额定值"可能会对设备造成永久性损坏。这些参数是一个设备进行正常功能操作的应力额定值,任何超过上述各项的条件都不被建议,否则可能会影响设备运行的稳定性。

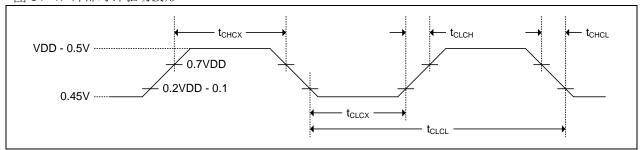
31.2. 直流特性

VDD = 5.0V±10%, VSS = 0V, T_A = 25 ℃并且 CPU 空运行, 除非另外说明

	.0V±10%,VSS = 0V,T _A = 25 ℃并			极限		单位
标号	参数	测试环境	最小	典型	最大	, ,
	· ·					
V _{IH1}	输入高电平(所有 I/O 口)	Except P6.0, P6.1	0.6			VDD
	输入高电平(RST, P6.0, P6.1)	·	0.75			VDD
V _{IL1}	输入低电平(所有 I/O 口)	Except P6.0, P6.1			0.15	VDD
V_{IL2}	输入低电平(RST, P6.0, P6.1)				0.2	VDD
I _{IH}	输入高漏电流 (所有 I/O 口)	$V_{PIN} = VDD$		0	10	uA
I _{IL1}	逻辑 0 输入电流(P3 在准双向口模式或片内上拉电阻的输入端口)	V _{PIN} = 0.4V		20	50	uA
I _{IL2}	逻辑 0 输入电流(所有仅输入或开漏输出口)	$V_{PIN} = 0.4V$		0	10	uA
I _{H2L}	逻辑 1 到 0 输入转变电流 (P3 在准双向口模式)	V _{PIN} =1.8V		320	500	uA
I _{OH1}	输出高电流(P3 在准双向口模式)	V _{PIN} =2.4V	150	200		uA
I _{OH2}	输出高电流(所有推挽输出口)	V _{PIN} =2.4V	12			mA
I _{OL1}	输出低电流(所有 I/O 口)	V _{PIN} =0.4V	12			mA
I _{OH2}	输出高电流(所有推挽输出端口的低 驱能力)	V _{PIN} =2.4V,除 P6.0, P6.1,P4.7 之外	2			mA
I_{OL2}	输出低电流(所有 I/O 口的低驱能力)	V _{PIN} =0.4V,除 P6.0, P6.1,P4.7 之外	2			mA
R _{RST}	内部复位下拉电阻			110		Kohm
		功耗				
I _{OP1}	正常模式工作电流	SYSCLK = 32MHz @ IHRCO with PLL		6.7		mA
I _{OP2}		SYSCLK = 24MHz @ IHRCO with PLL		5.5		mA
I _{OP3}		SYSCLK = 12MHz @ IHRCO		2.9		mA
I _{OP4}		SYSCLK = 12MHz @ IHRCO with ADC				mA
I _{OP5}		SYSCLK = 24MHz @ XTAL		6.2		mA
I _{OP6}		SYSCLK = 12MHz @ XTAL		3.9		mA
I _{OP7}		SYSCLK = 6MHz @ XTAL		2.7		mA
I _{OP8}		SYSCLK = 2MHz @ XTAL		1.7		mA
I _{OPS1}	低速模式工作电流	SYSCLK = 12MHz/128 @ IHRCO		1		mA
I _{OPS2}		SYSCLK = 12MHz/128 @ XTAL		1.6		mA
I _{IDLE1}	空闲模式工作电流	SYSCLK = 12MHz @ IHRCO		1.25		mA
I _{IDLE2}		SYSCLK = 12MHz @ XTAL		2.3		mA
I _{IDLE3}		SYSCLK = 12MHz/128 @ IHRCO		0.55		mA
I _{IDLE4}		SYSCLK = 12MHz/128 @ XTAL		1.6		mA

I _{IDLE5}		SYSCLK = 32KHz @		60		uA	
		ILRCO SYSCLK = 32KHz @					
I _{SUB1}	副频模式工作电流	ILRCO, BOD1 禁止		65		uA	
		SYSCLK = 32KHz/128 @					
I _{SUB2}		ILRCO, BOD1 禁止		60		uA	
_		WDT = 32KHz @		_		_	
I _{WAT}	Watch 模式工作电流	ILRCO 在掉电模式		5		uA	
I _{MON1}	Monitor 模式工作电流	BOD1 使能在掉电模式		10		uA	
		RTC 运行在掉电模式,					
١,	RTC 模式工作电流	VDD = 5.0V				uA	
I _{RTC1}		RTC 运行在掉电模式,				uA	
		VDD = 3.0V					
I_{PD1}	掉电模式电流			2.5		uA	
	BOD0/BOD1 特性						
V_{BOD0}	BOD0 侦测电平	$T_A = -40$ °C to +85°C		1.7		V	
	BOD1 侦测电平为 2.0V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		2.0		V	
V_{BOD10}	BOD1 侦测电平为 2.4V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		2.4		V	
V _{BOD11}	BOD1 侦测电平为 3.7V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3.7		V	
V _{BOD11}	BOD1 侦测电平为 4.2V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		4.2		V	
1	POD1 计影	$T_A = +25^{\circ}C, VDD=5.0V$				uA	
IBOD1	BOD1 功耗	$T_A = +25^{\circ}C, VDD=3.3V$				uA	
		工作环境					
V_{PSR}	上电边沿速率	$T_A = -40$ °C to $+85$ °C	0.05			V/ms	
	上电复位有效电压	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			0.1	V	
	XTAL 工作速度 0-24MHz	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.7		5.5	V	
V _{OP2}	XTAL 工作速度 0-12MHz	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.0		5.5	V	
V_{OP3}	CPU 工作速度 0-32MHz	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.7		5.5	V	
	CPU 工作速度 0-24MHz	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.2		5.5	V	
V _{OP5}	CPU 工作速度 0-12MHz	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.8		5.5	V	

(1)数据基于特性所得,非产品测试。


MEGAWIN

31.3. 外部时钟特性

 $VDD = 2.0V \sim 5.5V$,VSS = 0V, $T_A = -40$ °C to +85°C,除非其它说明

			振	荡		
标号	参数	晶振模式 ECKI		模式	单位	
		最小	最大	最小	最大	
1/t _{CLCL}	振荡频率 (VDD = 2.7V ~ 5.5V)	0.032	25	0	25	MHz
1/t _{CLCL}	振荡频率 (VDD = 2.0V ~ 5.5V)	0.032	12	0	12	MHz
t _{CLCL}	时钟周期	41.6		41.6		ns
t _{CHCX}	高电平时间	0.4T	0.6T	0.4T	0.6T	t _{CLCL}
t _{CLCX}	低电平时间	0.4T	0.6T	0.4T	0.6T	t _{CLCL}
t _{CLCH}	上升时间		5		5	ns
t _{CHCL}	下降时间		5		5	ns

图 31-1. 外部时钟驱动波形

31.4. IHRCO 特性

1,1,1						
参数	/ 測试环境		单位			
多 数	侧瓜小児	最小	典型	最大		
电源电压		1.8		5.5	V	
IHRCO 频率	$T_A = +25^{\circ}C$, AFS = 0		12		MHz	
IIRCO <u></u>	$T_A = +25^{\circ}C$, AFS = 1		11.059		MHz	
IHRCO 频率误差	$T_A = +25^{\circ}C$	-1.0		+1.0	%	
(工厂校对)	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-2.5 ⁽¹⁾		+2.5 ⁽¹⁾	%	
IHRCO 启动时间	$T_A = -40$ °C to +85°C			32 ⁽¹⁾	us	
IHRCO 功耗	$T_A = +25^{\circ}C, VDD=5.0V$		350 ¹⁾		uA	

⁽¹⁾ 数据基于特性所得, 非产品测试。

31.5. ILRCO 特性

会举	女 人工工 4-7 IIIC		单位		
参数	测试环境	最小	典型	最大	
电源电压		1.8		5.5	V
ILRCO 频率	$T_A = +25$ °C		32		KHz
ILRCO 频率误差	$T_A = +25$ °C	-15 ⁽¹⁾		+15 ⁽¹⁾	%
ILNOO 频平 庆左	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-40 ⁽¹⁾		+40 ⁽¹⁾	%

⁽¹⁾数据基于特性所得,非产品测试。

31.6. CKM 特性

会樂。	测试环境		极限		
参数	侧风小児	最小	典型	最大	
电源电压	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.4		5.5	V
时钟输入范围	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.5 ⁽¹⁾		6.5 ⁽¹⁾	MHz
CKM 启动时间	$T_A = -40$ °C to $+85$ °C	30 ⁽²⁾		100 ⁽²⁾	us
CKM 功耗	$T_A = +25^{\circ}C, VDD=5.0V$		480		uA

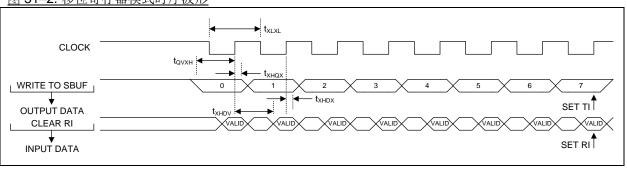
31.7. Flash 特性

参数	测试环境		极限		
多 数	侧风小児	最小	典型	最大	
电源电压	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.7		5.5	V
Flash 写 (擦除/编程)电压	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.8		5.5	V
Flash 擦除/编程 周期	$T_A = -40$ °C to +85°C	20,000			次
Flash 数据保留期	$T_A = +25$ °C	100			年

⁽¹⁾ 数据由设计保证,非产品测试。 (2) 数据基于特性所得,非产品测试。

31.8. ADC 特性

VDD=5.0V,VREF+=3.0,T_A = -40°C to +85°C,除非其他说明

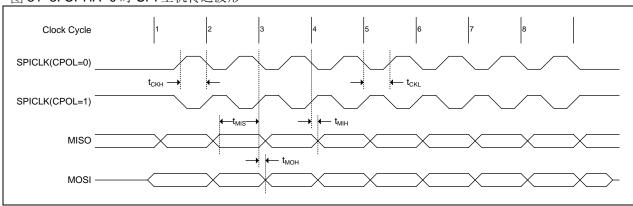

	20 0 to 100 0,例中54 图 66 9	极限			单位
参数	测试环境	最小	典型	最大	
	电源范围	•			
电源电压		2.4		5.5	V
	DC 精度				
分辨率					位
	VDD= VREF+= 5.0V				LSB
积分非线性	VDD= VREF+= 2.4V~5.5V				LSB
	VDD > VREF+ & VREF+= 3.0V ~VDD				LSB
	VDD= VREF+= 2.4V~5.5V				LSB
差分非线性	VDD > VREF+ & VREF+= 3.0V ~VDD				LSB
	VDD= VREF+= 2.4V~5.5V				
偏移错误	VDD > VREF+ & VREF+= 3.0V ~VDD				LSB
	转换率			•	
SAR 转换时钟				24	MHz
在 SAR 时钟里的转换时间			24		clocks
吞吐率				1000	ksps
	模拟输入				
ADC 输入电压范围	单端(AIN+ – GND)				V
バング 福力 (・G) 正社と国	Differential (AIN+ AIN)				¥
输入电容					pF
	功耗				
电源电流	工作模式,1M sps				mA

31.9. <u>串行口时序特性</u>

VDD = 5.0V±10%, VSS = 0V, T_A = -40°C to +85°C, 除非其它说明

标号	参数	URM0X3 = 0		URM0X3 = 1		单位
		最小	最大	最小	最大	半世
t _{XLXL}	串口时钟周期	12T		4T		T _{SYSCLK}
t _{QVXH}	设置输出数据到时钟上升沿	10T-20		T-20		ns
t _{XHQX}	上升沿后保持输出数据	T-10		T-10		ns
t _{XHDX}	上升沿后保持输入数据	0		0		ns
t _{XHDV}	时钟上升沿到输入数据有效		10T-20		2T-20	ns

图 31-2. 移位寄存器模式时序波形



31.10. 时序特性

 $VDD = 5.0V \pm 10\%$,VSS = 0V, $T_A = -40$ °C to +85°C,除非其它说明

标号	参数	最小	最大	单位			
主机模式时	主机模式时序						
t _{MCKH}	SPICLK 高时间	2T		T _{SYSCLK}			
t _{MCKL}	SPICLK 低时间	2T		T _{SYSCLK}			
t _{MIS}	MISO 有效到 SPICLK 转变边沿	2T+20		ns			
t _{MIH}	SPICLK 转变边沿到 MISO 变化	0		ns			
t _{MOH}	SPICLK 转变边沿到 MOSI 变化		10	ns			
从机模式时	序						
t _{SE}	nSS 下降沿到第一个 SPICLK 边沿	2T		T _{SYSCLK}			
t _{SD}	最后一个 SPICLK 边沿到 nSS 上升沿	2T		T _{SYSCLK}			
t _{SEZ}	nSS 下降沿到 MISO 有效		4T	T _{SYSCLK}			
t _{SDZ}	nSS 上升沿到 MISO 高阻		4T	T _{SYSCLK}			
t _{CKH}	SPICLK 高时间	4T		T _{SYSCLK}			
t _{CKL}	SPICLK 低时间	4T		T _{SYSCLK}			
t _{SIS}	MOSI 有效到 SPICLK 采样边沿	2T		T _{SYSCLK}			
t _{SIH}	SPICLK 采样边沿到 MOSI 变化	2T		T _{SYSCLK}			
t _{soh}	SPICLK 移位边沿到 MISO 变化		4T	T _{SYSCLK}			
t _{SLH}	最后的 SPICLK 边沿到 MISO 变化 (仅 CPHA = 1)	1T	2T	T _{SYSCLK}			

图 31-3. CPHA=0 时 SPI 主机传送波形

图 31-4. CPHA=1 时 SPI 主机传送波形

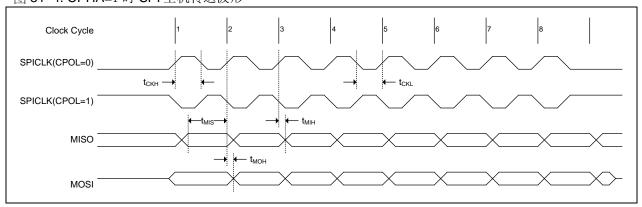


图 31-5. CPHA=0 时 SPI 从机传送波形

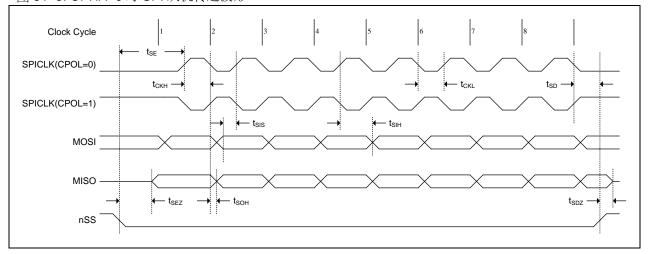
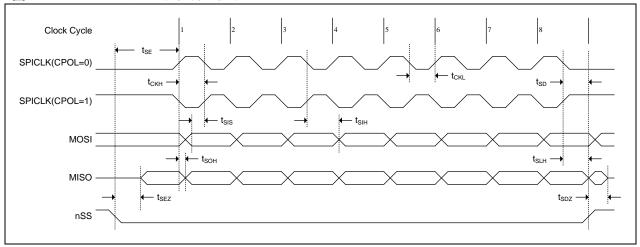



图 31-6. CPHA=1 时 SPI 从机传送波形

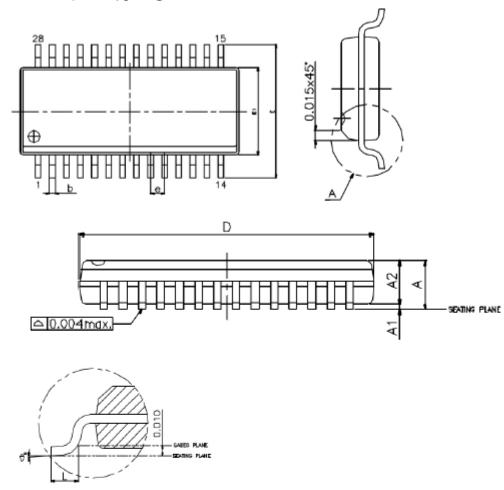
32. 指令集

表 32-1.指令集

助记符	描述	字节	执行周期
	, , , ,	,	4147.4774
<i>数据传送</i>	In the second of		
MOV A,Rn	寄存器 Rn 中的内容送到累加器中	1	1
MOV A,direct	直接地址单元中的内容送到累加器中	2	2
MOV A,@Ri	工作寄存器 Ri 指向的地址单元中的内容送到累加器中	1	2
MOV A,#data	立即数送到累加器中	2	2
MOV Rn,A	累加器中内容送到寄存器Rn中	1	2
MOV Rn,direct	直接寻址单元中的内容送到寄存器Rn中	2	4
MOV Rn,#data	立即数直接送到寄存器Rn中	2	2
MOV direct,A	累加器送到直接地址单元	2	3
MOV direct,Rn	寄存器Rn中的内容送到直接地址单元	2	3
MOV direct, direct	直接地址单元中的内容送到另一个直接地址单元	3	4
MOV direct,@Ri	工作寄存器Ri指向的地址单元中的内容送到直接地址单元	2	4
MOV direct,#data	立即数送到直接地址单元	3	3
MOV @Ri,A	累加器送到以工作寄存器Ri指向的地址单元中	1	3
MOV @Ri,direct	直接地址单元中内容送到以工作寄存器Ri指向的地址单元中	2	3
MOV @Ri,#data	立即数送到以工作寄存器Ri指向的地址单元中	2	3
MOV DPTR,#data16	16位常数的高8位送到DPH,低8位送到DPL	3	3
MOVC A,@A+DPTR	以DPTR为基地址变址寻址单元中的内容送到累加器中	1	4
MOVC A,@A+PC	以PC为基地址变址寻址单元中的内容送到累加器中	1	4
MOVX A,@Ri	内置RAM(8位地址)的数据送入累加器中	1	3
MOVX A,@DPTR	寄存器Ri指向扩展RAM地址(8位地址)中的内容送到ACC中	1	3
MOVX @Ri,A	数据指针指向扩展RAM地址(16位地址)中的内容送到ACC中	1	3
MOVX @DPTR,A	累加器中的内容送到寄存器Ri指向的扩展RAM地址(8位地址)	1	3
MOVX A,@Ri	累加器中的内容送到寄存器Ri指向的扩展RAM地址(16位地	1	不支持
MOVX A,@DPTR	外部RAM(16位地址)的数据送入累加器中	1	不支持
MOVX @Ri,A	寄存器Ri指向片外RAM地址中的内容送到ACC中	1	不支持
MOVX @DPTR,A	数据指针指向片外RAM地址(16位地址)中内容送到ACC中	1	不支持
PUSH direct	直接地址单元中的数据压入堆栈中	2	4
POP direct	出栈数据送到直接地址单元中	2	3
XCH A,Rn	累加器与寄存器Rn中的内容互换	1	3
XCH A,direct	累加器与直接地址单元中的内容互换	2	4
XCH A,@Ri	累加器与工作寄存器Ri指向的地址单元中内容互换	1	4
XCHD A,@Ri	累加器与工作寄存器Ri指向的地址单元中内容低半字节互换	1	4
算术运算			
ADD A,Rn	将寄存器Rn中的内容加到累加器中	1	2
ADD A,direct	直接地址单元中的内容加到累加器中	2	3
ADD A,@Ri	寄存器工作寄存器Ri指向的地址单元中的内容加到累加器中	1	3
ADD A,#data	立即数加到累加器中	2	2
ADDC A,Rn	累加器与工作寄存器Rn中的内容、连同进位位相加,结果存在	1	2
ADDC A,direct	累加器与直接地址单元的内容、连同进位位相加,结果存在累加	2	3
ADDC A,@Ri	累加器与工作寄存器Ri指向的地址单元中的内容、连同进位位相	1	3
ADDC A,#data	累加器与立即数、连同进位位相加,结果存在累加器中	2	2
SUBB A,Rn	累加器与工作寄存器中的内容、连同借位位相减,结果存在累加	1	2
SUBB A,direct	累加器与直接地址单元中的内容、连同借位位相减,结果存在累	2	3

SUBB A,@Ri	累加器与工作寄存器Ri指向的地址单元中内容、连同借位位相	1	3
SUBB A,#data	累加器与立即数、连同借位位相减,结果存在累加器中	2	2
INC A	累加器中的内容加1	1	2
INC Rn	寄存器Rn的内容加1	1	3
INC direct	直接地址单元中的内容加1	2	4
INC @Ri	工作寄存器Ri指向的地址单元中的内容加1	1	4
DEC A	数据指针DPTR的内容加1	1	2
DEC Rn	累加器中的内容减1	1	3
DEC direct	寄存器Rn中的内容减1	2	4
DEC @Ri	直接地址单元中的内容减1	1	4
INC DPTR	工作寄存器Ri指向的地址单元中的内容减1	1	1
MUL AB	ACC中内容与寄存器B中内容相乘,其结果低位存在ACC中、高	1	4
DIV AB	ACC中内容除以寄存器B中内容,商存在ACC,而余数存在寄存	<u>·</u> 1	5
DA A	ACC十进制调整	<u>·</u> 1	4
逻辑运算	ACC(近間側歪	•	'
ANL A,Rn	用加吸和安方吸 D 。由的由宏和"上"	1	2
ANL A,direct	累加器和寄存器Rn中的内容相"与" 累加器和直接地址单元中的内容相"与"	2	3
ANL A,@Ri	累加器和工作寄存器Ri指向的地址单元中的内容相"与"	1	3
ANL A,#data	累加器和立即数相"与"	2	2
ANL direct,A		2	4
ANL direct,#data	直接地址单元中的内容和累加器相"与" 直接地址单元中的内容和立即数相"与"	3	4
ORL A,Rn	累加器和寄存器Rn中的内容相"或"	1	2
ORL A,direct	累加器和直接地址单元中的内容相"或"	2	3
ORL A,@Ri	累加器和工作寄存器Ri指向的地址单元中的内容相"或"	1	3
ORL A,#data	累加器和立即数相"或"	2	2
ORL direct,A	直接地址单元中的内容和累加器相"或"	2	4
ORL direct,#data	直接地址单元中的内容和立即数相"或"	3	4
XRL A,Rn	累加器和寄存器Rn中的内容相"异或"	1	2
XRL A,direct	累加器和直接地址单元中的内容相"异或"	2	3
XRL A,@Ri	累加器和工作寄存器Ri指向的地址单元中的内容相"异或"		3
XRL A,#data	累加器和立即数相"异或"	2	2
XRL direct,A	直接地址单元中的内容和累加器相"异或"	2	4
XRL direct,#data	直接地址单元中的内容和立即数相"异或"	3	4
CLR A	累加器内容清"0"	1	1
CPL A	累加器按位取反	<u>·</u> 1	2
RL A	累加器循环左移一位	1	1
RLC A	累加器连同进位位CY循环左移一位	<u>·</u> 1	1
RR A	累加器循环右移一位	<u>·</u> 1	1
RRC A	累加器连同进位位CY循环右移一位	1	1
SWAP A	累加器高低半字节互换	<u>·</u> 1	1
位逻辑运算	When blind 1 1 by TW		-
CLR C	清"0"进位位	1	1
CLR bit	清"0"直接地址位	2	4
SETB C	置"1"进位位	 1	1
SETB bit	置"1"直接地址位	2	4
CPL C	进位位求反		1
CPL bit	直接地址位求反	2	4
ANL C,bit	进位位和直接地址位相"与"	2	3
ANL C,/bit	进位位和直接地址位的反码相"与"	2	3
ORL C,bit	进位位和直接地址位相"或"	2	3

	,		1
ORL C,/bit	进位位和直接地址位的反码相"或"	2	3
MOV C,bit	直接地址位数据送入进位位	2	3
MOV bit,C	进位位数据送入直接地址位	2	4
位逻辑跳转			
JC rel	进位位为"1"则转移	2	3
JNC rel	进位位为"0"则转移	2	3
JB bit,rel	直接地址位为"1"则转移	3	4
JNB bit,rel	直接地址位为"0"则转移	3	4
JBC bit,rel	直接地址位为"1"则转移,且清"0"该位	3	5
程序跳转			
ACALL addr11	绝对短调用子程序,2K字节(页内)空间限制	2	6
LCALL addr16	绝对长调用子程序,64K字节空间限制	3	6
RET	子程序返回	1	4
RETI	中断子程序返回	1	4
AJMP addr11	绝对短转移,2K字节(页内)空间限制	2	3
LJMP addr16	绝对长转移,64K字节空间限制	3	4
SJMP rel	相对转移	2	3
JMP @A+DPTR	转移到DPTR加ACC所指间接地址	1	3
JZ rel	累加器为"0"则转移	2	3
JNZ rel	累加器不为"0"则转移	2	3
CJNE A,direct,rel	累加器中的内容不等于直接地址单元的内容,则转移到偏移量	3	5
CJNE A,#data,rel	累加器中的内容不等于立即数,则转移到偏移量所指向的地	3	4
CJNE Rn,#data,rel	寄存器Rn中的内容不等于立即数,则转移到偏移量所指向的地	3	4
CJNE @Ri,#data,rel	工作寄存器Ri指向的地址单元中的内容不等于立即数,则转移	3	5
DJNZ Rn,rel	寄存器Rn中的内容减1,如不等于0,则转移到偏移量所指向的	2	4
DJNZ direct,rel	直接地址单元中的内容减1,如不等于0,则转移到偏移量所指	3	5
NOP	空操作指令	1	1

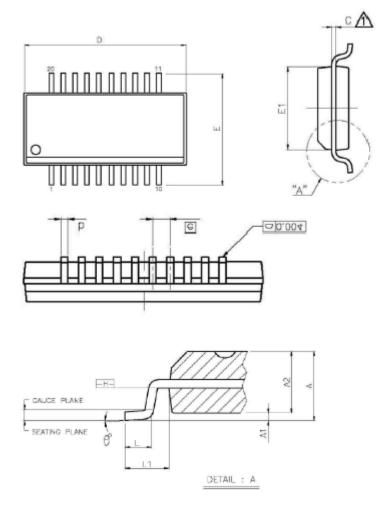

33. 封装形式

33.1. SSOP-28

图 33-1. SSOP-28

SSOP 28P (150 mil) package dimension

DETAIL A

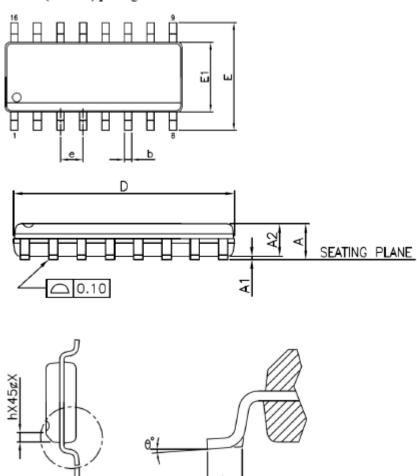


Symbol	Dimensions in inch		
	Min.	Max.	
A	0.053	0.069	
A1	0.004	0.010	
A2		0.059	
ъ	0.008	0.012	
D	0.386	0.394	
E1	0.150	0.157	
e	0.02	25 BASIC	
Е	0.228	0.244	
L	0.016	0.050	
θ	0°	8°	

33.2. SSOP-20

图 33-2. SSOP-20

SSOP 20 Ppackage dimension



Symbols	Dimensions in inch		
	Min.	Nom.	Max.
A	0.053	0.064	0.069
A1	0.004	0.006	0.010
A2			0.059
ъ	0.008		0.012
С	0.007		0.010
D	0.337	0.341	0.344
Е	0.228	0.236	0.244
E1	0.150	0.154	0.157
e		0.025 BASIC	
L	0.016	0.025	0.050
L1		0.041 BASIC	
θ	O°		8°

33.3. SOP-16

图 33-3. SOP-16

SOP16P (150 mil) package dimension

Symbols mm	Min.	Max.	
A		1.75	
A1	0.10	0.25	
A2	1.25		
b	0.31	0.51	
С	0.10	0.25	
D	9.90	BSC	
E	6.00	BSC	
E1	3.90	BSC	
e	1.27	BSC	
L	0.40	1.27	
h	0.25 0.50		
θ	0	8	

34. 版本历史

表 34-1. 版本历史

版本	描述	日期
v0.73	首次发布版本。	2017/04/20

35. 免责声明

在此,笙泉 (Megawin) 代表"Megawin Technology Co., Ltd."

生命支援—此产品并不是为医疗、救生或维持生命而设计的,并且当设备系统出现故障时,并不能合理地预示是否会对人身造成伤害。因此,当客户使用或出售用于上述应用的产品时,需要客户自己承担这样做的风险,笙泉公司并不会对不当地使用或出售我公司的产品而造成的任何损害进行赔偿.

<u>更改权</u>—笙泉保留产品的如下更改权,其中包括电路、标准单元、与/或软件 - 在此为提高设计的与/或性能的描述或内容。当产品在大批量生产时,有关变动将通过工程变更通知(ECN)进行通知.