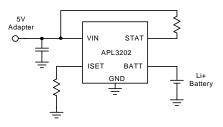


Li+ Battery Charger with Thermal Regulation

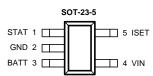

Features

- Programmable Charge Current Up to 500mA
- · Charge Status Output Pin
- · Soft-Start Limits Inrush Current
- 4.2V Charge Termination Voltage with ±1%
 Accuracy
- 45mA Pre-charge Current (R_{SET}=2K)
- · Thermal Regulation Simplifies Board Design
- · Enable/Disable Control
- · Available in a SOT-23-5 Package
- Lead Free Available (RoHS Compliant)

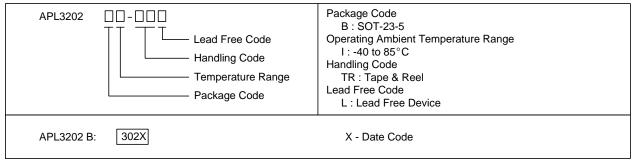
Applications

- · Bluetooth Applications
- MP3 Players
- · Cell Phones
- Wireless Appliances

Simplified Application Circuit



General Description


The APL3202 is a constant-current/constant-voltage linear charger for single cell Li+ batteries. The APL3202 needs no external MOSFETs or diodes, and accepts input voltages up to 6.5V. The small package and low external component counts make the APL3202 an idea part for portable applications.

On-chip thermal regulation protects the APL3202 from excessive temperature and optimizes the board design for compact size and typical thermal conditions. When the junction temperature reaches the thermal regulation threshold, the charger does not shut down but simply reduces the charge current. Charge current can be programmed by connecting an external resistor from ISET pin to GND. Using an external MOSFET to disconnect the resistor from ground shuts down the charger, and reduces the input supply current down to $25\mu A$. The APL3202 also has the STAT pin to indicate charge status. The APL3202 is available in a SOT-23-5 package, and operates over the -40°C to +85°C temperature range.

Pin Configuration

Ordering and Marking Information

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldering operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for MSL classification at lead-free peak reflow temperature.

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
V_{IN}	VIN to GND	-0.3 to 7	V
V _{SET} , V _{STAT} , V _{BATT}	ISET, STAT, BATT to GND	-0.3 to 7	V
I _{CHG}	Charge Current	0.8	А
T_J	Maximum Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-65 to 150	°C
T _{SDR}	Maximum Lead Soldering Temperature (10 Seconds)	260	°C

Note 1 : Stresses beyond the absolute maximum rating may damage the device and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics (Note 2)

Symbol	Parameter	Rating	Unit
$\theta_{\sf JA}$	SOT-23-5 Junction to Ambient Resistance	125	°C/W

Note 2 : θ_{A} is measured with the component mounted on a high effective thermal conductivity test board in free air.

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Range	Unit
V_{IN}	VIN to GND	4.35 to 6.5	V
I _{CHG}	Charge Current	0.1 to 0.5	Α
TJ	Junction Temperature	-40 to 125	°C
T _A	Ambient Temperature	-40 to 85	°C

Note 3 : Refer to the typical application circuit.

Electrical Characteristics (Note 3)

Refer to the typical application circuit. These specifications apply over V_{IN} =5V, T_A = -40~85°C, unless otherwise specified. Typical values are at T_A =25°C.

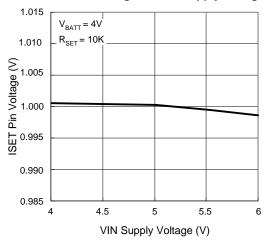
Cumple al	Danamatan.	Took Conditions	APL3202			l l m lit	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
SUPPLY C	URRENT						
		Charge mode, R _{SET} =10K	1	300	600	μА	
I _{IN}	VIN Supply Current (Note 4)	Standby mode (Charge terminated)		200	500		
TIN	,	Shutdown mode (R _{SET} not connected, V_{IN} < V_{BATT} , or V_{IN} < V_{UVLO})	-	25	50	por t	
BATT REVI	ERSE CURRENT						
	BATT Standby Input Current	Standby mode, V _{BATT} =4.2V	0	2.5	6		
I _{BATT}	BATT Shutdown Input Current Shutdown mode (R _{SET} not connected)		ı	-	1	μΑ	
	BATT Sleep Input Current	Sleep mode, V _{IN} =0V		-	1		
UNDER-VC	LTAGE LOCKOUT						
V _{UVLO}	VIN UVLO Threshold	V _{IN} rising	3.75	3.85	3.95	V	
	VIN UVLO Hysteresis		0.15	0.20	0.30	V	

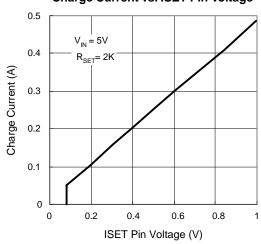
Copyright © ANPEC Electronics Corp. Rev. A.1 - Feb., 2008

Electrical Characteristics (Cont.)

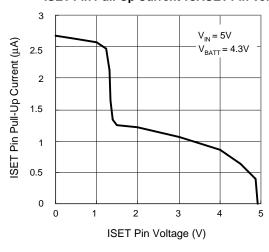
Refer to the typical application circuit. These specifications apply over V_{IN} =5V, T_A = -40~85°C, unless otherwise specified. Typical values are at T_A =25°C.

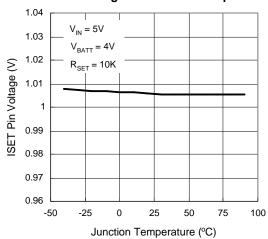
Cumbel	Parameter	Tast Canditions	APL3202			Unit
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
BATTERY	VOLTAGE AND THRESHOLD VOLTAGE	Ē				
V_{TERM}	BATT Charge Termination Voltage		-	4.20	-	٧
	BATT Charge Termination Voltage	T _A =25°C, V _{IN} =4.35~6.5V	-0.5	-	0.5	%
	Accuracy	T _A =-40~85°C	-1	-	1	%
	BATT Pre-charge Threshold Voltage	V _{BATT} rising	2.8	2.9	3.0	V
	BATT Pre-charge Hysteresis Voltage		60	80	110	mV
V	V V Lockey t Throubold Voltage	V _{IN} from low to high	80	120	160	m\/
V_{ASD}	V _{IN} -V _{BATT} Lockout Threshold Voltage	V _{IN} from high to low	40	80	120	mV
V_{RECHRG}	Recharge Threshold Voltage		3.9	4.05	4.2	V
V_{MSD}	Manual Shutdown Threshold Voltage	V _{SET} rising	1.15	1.21 1.3		V
V MSD	Wantan Shutdown Threshold Voltage	V _{SET} falling	0.9	1.0	1.1	٧
BATTERY (CHARGING AND PRE-CHARGE CURR	ENT				
I _{CHG}	Charging Current	R _{SET} =10K Without thermal regulation	91	100	109	- mA
		R _{SET} =2K Without thermal regulation	455	500	545	
V_{SET}	ISET Regulation Voltage	Without thermal regulation	-	1	-	V
	ISET Regulation Voltage Accuracy	T _J =-40~125°C, V _{IN} =4.35~6.5V	-0.7	-	0.7	%
	ISET Pull-Up Current	V _{SET} =1V, T _A =25°C	-	2.5	-	μΑ
K _{SET}	Charging Current Set Factor	0.1A≤ I _{CHG} ≤0.5A	940	1000	1060	-
	Pre-charging Current	V _{BATT} <2.8V, R _{SET} =2K	20	45	70	mA
I _{TERM}	C/10 Termination Current Threshold	R _{SET} =2K to 10K	8.5	10	11.5	%
ROPOUT	VOLTAGE	•				
	Power FET On Resistance		-	800	1200	mΩ
	V _{IN} to V _{BATT} Dropout Voltage	I _{CHG} =0.5A, V _{IN} =5V	-	400	600	mV
TAT PIN A	AND THERMAL REGULATION	•	•		•	
V _{STAT}	STAT Output Low Voltage	I _{STAT} = 5mA	-	0.35	0.6	V
	STAT Off-leakage Current	V _{STAT} =5V	-	-	1	μΑ
T _{LIM}	Thermal Regulation Threshold		-	120	-	°C
OFT-STA	RT AND TIMING	•	•	•	•	
T _{SS}	Soft-Start Interval	I _{CHG} =0A to full charging current T _A =25°C	-	100	-	μs
T _{RECHARGE}	Recharge Comparator Filter Time	V _{BATT} high to low, T _A =25°C	0.75	2	4.5	ms
T _{TERM}	Termination Comparator Filter Time	I _{CHG} falling below I _{TERM} , T _A =25°C	0.4	1	2.5	ms

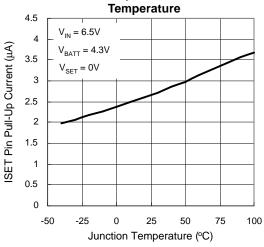

Note 4 : Supply current includes ISET pin current but does not include any current delivered to the battery through the BATT pin.


Typical Operating Characteristics

Refer to the typical application circuit, V_{IN} =5V, T_{A} = 25°C, unless otherwise specified.

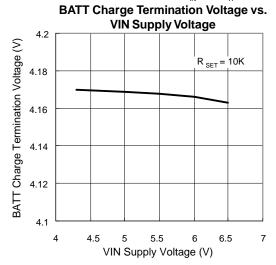

ISET Pin Voltage vs. VIN Supply Voltage

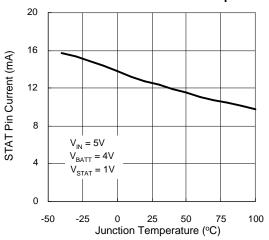

Charge Current vs. ISET Pin Voltage


ISET Pin Pull-Up Current vs. ISET Pin Voltage

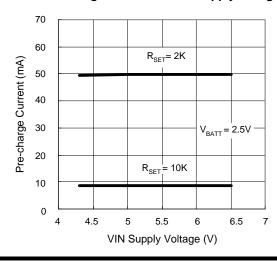
ISET Pin Voltage vs. Junction Temperature

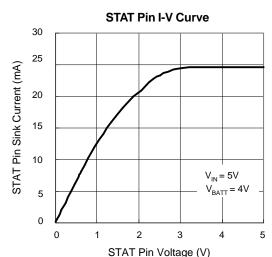
ISET Pin Pull-Up Current vs. Junction Temperature

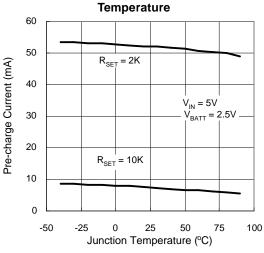

BATT Charge Termination Voltage vs.



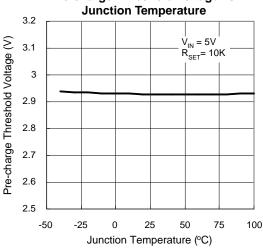
Typical Operating Characteristics (Cont.)


Refer to the typical application circuit, $V_{IN}=5V$, $T_A=25^{\circ}C$, unless otherwise specified.



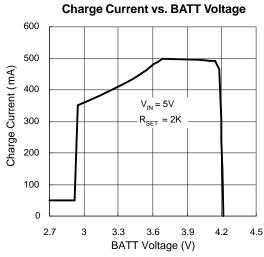


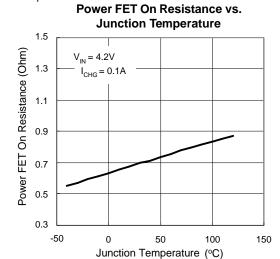
Pre-charge Current vs. VIN Supply Voltage

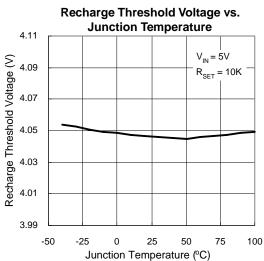


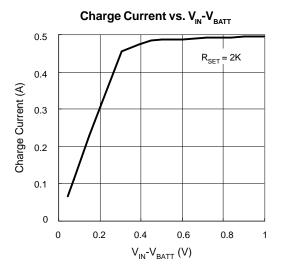
Pre-charge Current vs. Junction

Pre-charge Threshold Voltage vs.

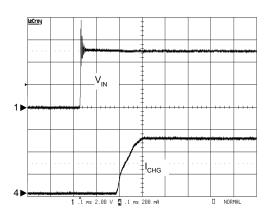



Rev. A.1 - Feb., 2008



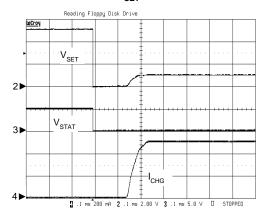

Typical Operating Characteristics (Cont.)

Refer to the typical application circuit, V_{IN} =5V, T_{A} = 25°C, unless otherwise specified.

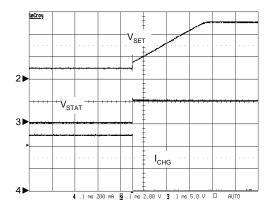


Operating Waveforms

Refer to the typical application circuit, $V_{IN}=5V$, $T_A=25^{\circ}C$, unless otherwise specified.


V_{IN} Power On

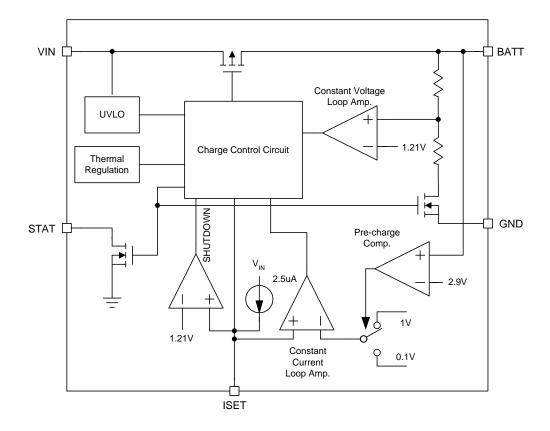
 $R_{SET} = 2K$, $V_{BATT} = 3.8V$ CH1: V_{IN} , 2V/div, DC CH4: I_{CHG}, 0.2A/div, DC


TIME: 0.1ms/div

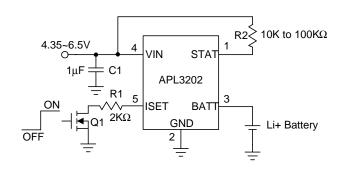
Start-up (Reconnecting R_{SET} to GND)

 $R_{SET} = 2K$, $V_{BATT} = 3.8V$ CH2: V_{SET}, 2V/div, DC CH3: V_{STAT}, 5V/div, DC CH4: I_{CHG}, 0.2A/div, DC TIME: 0.1ms/div

Shutdown (Disconnecting R_{SET} from GND)


 $R_{SET} = 2K$, $V_{BATT} = 3.8V$ CH2: V_{SET}, 2V/div, DC CH3: V_{STAT}, 5V/div, DC CH4: I_{CHG}, 0.2A/div, DC TIME: 0.1ms/div

Pin Descriptions


	PIN	FUNCTION
NO.	NAME	FUNCTION
1	STAT	Open-Drain Charge Status Output Pin. When the battery is charging, the STAT pin is pulled low by an internal switch. In other states the STAT pin is in a high impedance state.
2	GND	Ground.
3	BATT	Charger Output Pin. Connect this pin to the positive terminal of a Li+ battery.
4	VIN	Input Supply Pin. Provides power to the charger, V_{IN} can range from 4.35V to 6.5V and should be bypassed with a $1\mu\text{F}$ capacitor.
5	ISET	Charging Current Setting and Shutdown Pin. Connecting a resistor from this pin to GND to set the charge current. Disconnecting the R_{SET} from GND allows an internal 2.5uA current to pull the ISET pin high, and when the ISET pin voltage exceeds the shutdown threshold voltage, the IC enters shutdown mode.

Block Diagram

Typical Application Circuit

Designation	Description
C1	1μF, 10V, X5R, 0402 Murata GRM155R61A105K
Q1	SOT-23, N-Channel MOSFET ANPEC APM2300CA

Murata website: www.murata.com

Function Description

Charge Cycle

When the APL3202 is powered with a battery connected, the IC firstly detects if the cell voltage is ready for full charge current. If the battery voltage is below pre-charge threshold (2.9V typ.), the device supplies 1/10 the programmed charge current. On the contrary, when the battery voltage is over the pre-charge threshold, the device supplies the full charge current, as programmed by R $_{\rm SET}$ from ISET pin to GND. When the battery voltage approaches the 4.2V termination voltage, the device enters constant-voltage mode and the full charge current gradually decreases until the charge current drops to the termination current threshold, which is equal to 1/10 full charging current, and the IC stops charging (see Figure 1).

Full Charge Current Setting

The full charge current is programmed by connecting a resistor from the ISET pin to ground. The full charge current is 1000 times of the current flowing out of the ISET pin and can be calculated by the following equation:

$$I_{CHG} = \frac{K_{SET} \times V_{SET}}{R_{SET}}$$

where

V_{SET} is ISET regulation voltage (1V, typical).

 \mathbf{K}_{SET} is the charging current set factor (1000, typical).

The charging current set factor and the ISET regulation voltage are shown in the Electrical Characteristics. The ISET regulation voltage is reduced by thermal regulation function.

Charge Termination Detection and Recharge

Charging is terminated when I_{CHG} falls to 10% of the full charge current set by R_{SET} and the charger is in voltage mode (V_{BATT} is nearly 4.2V). The charge termination is detected by monitoring the ISET pin. When the ISET pin voltage falls below 0.1V and takes longer than T_{TERM} (1ms, typical), charging is terminated. The STAT output keeps high state when the charger operates in standby mode. After charge termination, the battery voltage is monitored by the APL3202 continuously. If the battery voltage drops below 4.05V and takes longer than $T_{RECHARGE}$ (2ms, typical), a new charge cycle starts to recharge the battery.

Manual Shutdown

The ISET pin provides two functions: connecting the resistor R_{SET} from the ISET pin to ground to set the full charge current; and disconnecting the R_{SET} from GND to shut down the device. Once the R_{SET} is disconnected, an internal 2.5 μA current pulls the ISET pin high. When the ISET pin voltage reaches the 1.21V shutdown threshold voltage, the device enters shutdown mode. In shutdown mode, the charging stops, the VIN supply current drops to 25 μA and the battery drain current is below 1 μA . Reconnecting R_{SET} to ground enables the charger to operation normally. The STAT output keeps high state when the charger is turned to shutdown mode.

Thermal Regulation

The APL3202 is thermally regulated to keep the junction temperature at 120°C. When the junction temperature

Function Description (Cont.)

Thermal Regulation (Cont.)

reaches 120°C, the charger does not shut down but reduces charge current to keep the junction temperature at 120°C. This feature protects the APL3202 from excessive temperature and allows the charger to operate with maximum power dissipation by reudcing the charge current and optimizes the board design for compact size and typical thermal conditions.

Charge Status Output (STAT)

The STAT is an open-drain output. When the charger is in charge mode, the STAT output is in pull-low state. Until the charge current drops to the termination current threshold, the charging stops, and the STAT output is in high impedance state.

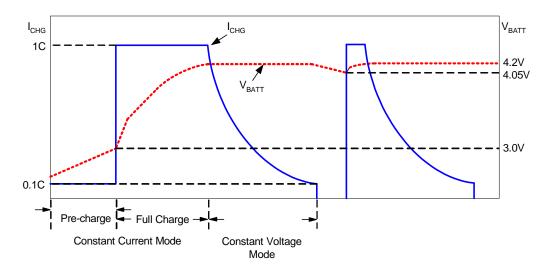


Figure 1. Typical Charging Profile

STAT Output	Mode	V _{IN}	V _{BATT}	V _{SET}
Low	Charge Mode	V _{IN} >V _{UVLO} & V _{IN} >V _{BATT} +V _{ASD}	V _{BATT} <4.2V	0.1V <v<sub>SET<1.2V</v<sub>
	Shutdown Mode	V _{IN} >V _{UVLO} &	-	V _{SET} >1.2V
High	Standby Mode	V _{IN} >V _{BATT} +V _{ASD}	V _{BATT} >4.2V	-
. g	Sleep Mode	V _{IN} <v<sub>UVLO or V_{IN}<v<sub>BATT+V_{ASD}</v<sub></v<sub>	Battery is connected	-

Table1. STAT Pin Summary

Application Information

Input and Output Capacitors

Typically, a $1\mu F$ ceramic capacitor is used to connect from VIN to GND. Place the capacitor as close as possible to the VIN pin and GND pin for well operation. In some start-up conditions, it maybe necessary to protect the device against a hot plug input voltage. Adding a 6V input zener diode between the VIN pin and GND clamps the input voltage peak. In most applications, it is also recommended to connect an X5R ceramic capacitor ($1\mu F$, typical) from BATT to GND for proper stability.

STAT Pin

The STAT pin can be used to drive a LED or communicate with the host processor to show the charge status. When the status is displayed by a LED, which has a current rating less than 5mA, a resistor should be selected to connect the LED in series, for programming at the desired current value. The resistor is calculated by the following equation:

$$R_{LED} = \frac{(V_{IN} - V_{LED-ON})}{I_{I-ED}}$$

When STAT pin is monitored by a processor, there should be a $10K\Omega$ to $100K\Omega$ pull-up resistor to connect the STAT pin and the supply voltage of the processor.

Thermal Consideration

The most common measure of package thermal performance is thermal resistance measured from the device junction to the air surrounding the package surface (θ_{JA}). The θ_{JA} can be calculated by the following equation:

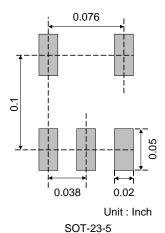
$$\theta_{JA} = \frac{T_J - T_A}{P_D}$$

where:

T_j= device junction temperature, maximum T_j=120°C

T_A= ambient temperature

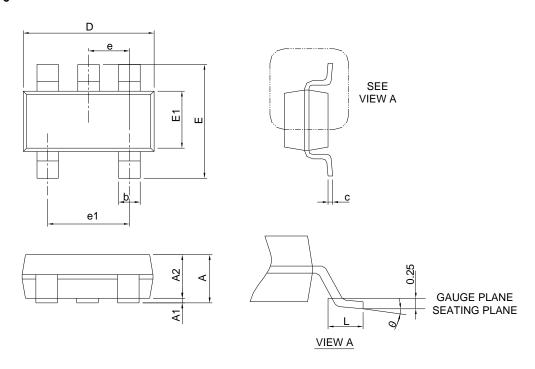
P_D= device power dissipation


The device power dissipation, P_D , is a function of the charge rate and the voltage drop across the internal FET. It can be calculated by the following equation:

$$P_D = (V_{IN} - V_{BATT}) \times I_{CHG}$$

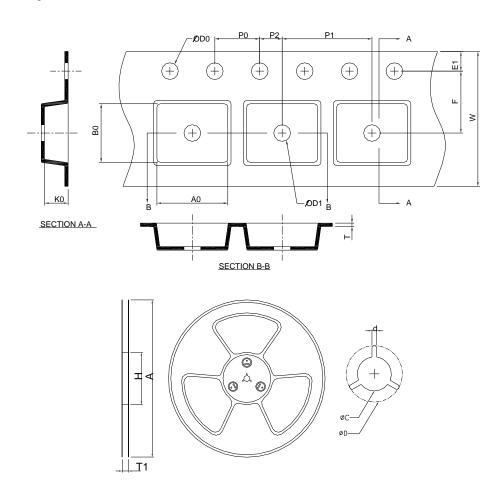
PCB Layout Consideration

Connect the battery to BATT as close as possible to provide accurate battery voltage sensing. The input and output decoupling capacitors and the programmed resistor R_{SET} should be placed as close as possible to the device. The high-current charge paths into VIN and from the BATT pins must be short and wide to minimize voltage drops.


Recommended Minimum Footprint

Package Information

SOT-23-5

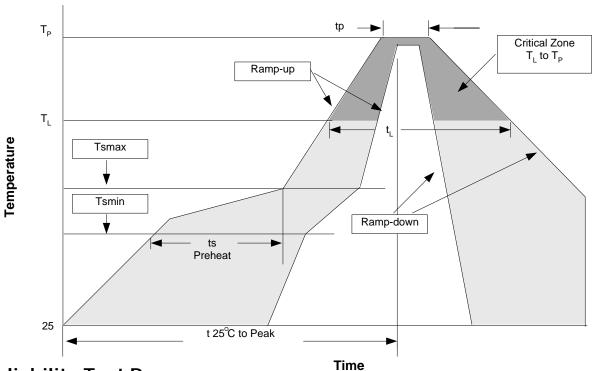

ş				
%≻ <u>×</u> BBOL	MILLIM	ETERS	INC	HES
6	MIN.	MAX.	MIN.	MAX.
Α		1.45		0.057
A1	0.00	0.15	0.000	0.006
A2	0.90	1.30	0.035	0.051
b	0.30	0.50	0.012	0.020
С	0.08	0.22	0.003	0.009
D	2.70	3.10	0.016	0.122
Е	2.60	3.00	0.102	0.118
E1	1.40	1.80	0.055	0.071
е	0.95 BSC		0.03	7 BSC
e1	1.90 BSC		0.07	5 BSC
L	0.30	0.60	0.012	0.024
θ	0°	8°	0°	8°

Note: 1. Follow JEDEC TO-178 AA.

Dimension D and E1 do not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.

Carrier Tape & Reel Dimensions

Application	Α	Н	T1	С	d	D	W	E1	F
	178.0±2.00	50 MIN.	8.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	8.0±0.30	1.75±0.10	3.5±0.05
SOT-23-5	P0	P1	P2	D0	D1	T	A0	B0	K0
	4.0±0.10	4.0±0.10	2.0±0.10	1.5+0.10 -0.00	1.5 MIN.	0.6+0.00 -0.40	3.20±0.20	3.10±0.20	1.50±0.20


(mm)

Devices Per Unit

Package Type	Unit	Quantity
SOT-23-5	Tape & Reel	3000

Reflow Condition (IR/Convection or VPR Reflow)

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	MIL-STD-883D-2003	245°C, 5 sec
HOLT	MIL-STD-883D-1005.7	1000 Hrs Bias @125°C
PCT	JESD-22-B, A102	168 Hrs, 100%RH, 121°C
TST	MIL-STD-883D-1011.9	-65°C~150°C, 200 Cycles
ESD	MIL-STD-883D-3015.7	VHBM > 2KV, VMM > 200V
Latch-Up	JESD 78	10ms, 1 _{tr} > 100mA

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Average ramp-up rate (T _L to T _P)	3°C/second max.	3°C/second max.	
Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts)	100°C 150°C 60-120 seconds	150°C 200°C 60-180 seconds	
Time maintained above: - Temperature (T _L) - Time (t _L)	183°C 60-150 seconds	217°C 60-150 seconds	
Peak/Classification Temperature (Tp)	See table 1	See table 2	
Time within 5°C of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds	
Ramp-down Rate	6°C/second max.	6°C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.	

Note: All temperatures refer to topside of the package. Measured on the body surface.

Classification Reflow Profiles (Cont.)

Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm³ ³ 350
<2.5 mm	240 +0/-5°C	225 +0/-5°C
≥2.5 mm	225 +0/-5°C	225 +0/-5°C

Table 2. Pb-free Process – Package Classification Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6 mm	260 +0°C*	260 +0°C*	260 +0°C*
1.6 mm – 2.5 mm	260 +0°C*	250 +0°C*	245 +0°C*
≥2.5 mm	250 +0°C*	245 +0°C*	245 +0°C*

^{*} Tolerance: The device manufacturer/supplier **shall** assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL level.

Customer Service

Anpec Electronics Corp.

Head Office:

No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel: 886-3-5642000

Fax: 886-3-5642050

Taipei Branch:

2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City City, Taipei County 23146, Taiwan

Tel: 886-2-2910-3838 Fax: 886-2-2917-3838