

Applications Note: SY5881 Single Stage Buck And PFC Controller With Primary Side Control For LED Lighting And Mutiple Dimming Option Advanced Design Specification

General Description

The SY5881 is a single stage Buck and PFC controller targeting at LED lighting applications with PWM or Analog dimming. It is a primary side controller without applying any secondary feedback circuit for low cost, and drives the Buck converter in the quasi-resonant mode to achieve higher efficiency. It keeps the Buck converter in constant on time operation to achieve high power factor.

Ordering Information

Ordering Number	Package type	Note
SY5881FAC	SO8	

Features

- High dimming accuracy
- Dimming Range from 5.5% to 100.0%
- CV mode for Bias supply at <2.5% Dimming Signal
- Valley turn-on of the primary MOSFET to achieve low switching losses
- 300mV primary current sense reference voltage leads to a lower sense resistance thus a lower conduction loss
- Internal high current MOSFET driver: 200mA sourcing and 650mA sinking
- Low start up current: 34µA typical
- Reliable short LED and Open LED protection
- Power factor >0.90
- Compact package: SO8

Applications

• LED lighting

Typical Applications

Figure.1a Analog dimming with PWM signal input

Figure.1b Dimming curve of analog dimming

Figure.1c Actual curve of analog dimming VS. PWM input

Pinout (top view)

Top Mark: BEH*xyz* (device code: BEH, *x=year code*, *y=week code*, *z= lot number code*)

Pin Name	Pin number	Pin Description
COMP	1	Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control loop.
ZCS	2	Inductor current zero-crossing detection pin. This pin receives the auxiliary winding voltage by a resister divider and detects the inductor current zero crossing point. This pin also provides over voltage protection and line regulation modification function simultaneously. If the voltage on this pin is above V _{ZCS,OVP} , the IC would enter over voltage protection mode. Good line regulation can be achieved by adjusting the upper resistor of the divider.
ISEN	3	Current sense pin. Connect this pin to the source of the primary switch. Connect the sense resistor across the source of the primary switch and the GND pin. (current sense resister R : R = $\frac{V_{REF}}{Z \times I}$) s s OUT
GND	4	Ground pin
DRV	5	Gate driver pin. Connect this pin to the gate of primary MOSFET.
VIN	6	Power supply pin. This pin also provides output over voltage protection along with ZCS pin.
ADIM	7	Bypass this pin to GND with enough capacitance to hold on internal voltage reference.
PWM	8	PWM dimming input pin, this pin detects the PWM dimming signal

3

Absolute Maximum Ratings (Note 1)

VIN, DRV	-0.3V~25V
Supply current IVIN	7mA
ZCS, PWM	-0.3V~23V
ADIM	-0.3V~15V
ISEN, COMP	-0.3~ 3.6V
Power Dissipation, @ TA = 25°C SO8	1.1W
Package Thermal Resistance (Note 2)	
SO8, θ JA	88°C/W
SO8, θ JC	45°C/W
Temperature Range	40°C to 150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C

Recommended Operating Conditions (Note 3)

	≜	0		
VIN, DRV			 	 8V~20V

Electrical Characteristics

 $(V_{IN} = 12V \text{ (Note 3)}, T_A = 25^{\circ}C \text{ unless otherwise specified)}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Section	•		-	•	•	
VIN turn-on threshold	V VIN_ON		19	20	22	V
VIN turn-off threshold	V VIN_OFF		7.5	8.0	8.5	V
VIN OVP voltage	V VIN_OVP			V _{IN ON} +3.0		V
Start up Current	I ST	V V VIN VIN_OFF		34		μΑ
Shunt current in OVP mode	I VIN_OVP	V V VIN VIN_OVP		7		mA
Error Amplifier Section						
Internal reference voltage	REF			300		mV
Current Sense Section						
Current limit reference voltage	V ISEN_MAX			750		mV
ZCS pin Section						
ZCS pin OVP voltage threshold	V zcs_ovp			1.5		V
Gate Driver Section						
Gate driver voltage	V Gate			12		V
Maximum source current	SOURCE			200		mA
Minimum sink current	SINK			650		mA
Max ON Time	ON_MAX	V _{COMP} =2.6V		24		μs
Min ON Time	I ON_MIN			300		ns
Max OFF Time	OFF_MAX			120		μs
Min OFF Time	OFF_MIN			0.5		μs
Maximum switching frequency	I MAX			120		kHz
ADIM function Section						
ADIM Enable ON	V ADIM_ON			75		mV
ADIM Enable OFF	ADIM_OFF			37		mV
Thermal Section						
Thermal Fold back	T			1.45		
Temperature	гв Т		_	145		°C
Thermal shut down	I SD			160		°C
PWM function Section	<u> </u>		I			-
DW/M ON voltage	V PWM ON				1.2	V
PWM OFF voltage	V PWM_OFF		0.5		1.2	V

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: f_{JA} is measured in the natural convection at $T_A = 25^{\circ}$ C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 20z copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane. **Note 3**: Increase VIN pin voltage gradually higher than $V_{VIN ON}$ voltage then turn down to 12V.

AN_SY5881

The SY5881 is a single stage Buck and PFC controller targeting at LED lighting applications with multiple dimming function.

The Device provides primary side control to eliminate the opto-couplers or the secondary feedback circuits, which would cut down the cost of the system.

High power factor is achieved by constant on operation mode, with which the control scheme and the circuit structure are both simple.

SY5881 is compatible with Analog dimming and PWM dimming for different application.

In order to reduce the switching losses and improve EMI performance, Quasi-Resonant switching mode is applied, which means to turn on the power MOSFET at voltage

valley; the start up current of SY5881 is rather small (34 μ

A typically) to reduce the standby power loss further; the maximum switching frequency is clamped to 120kHz to reduce switching losses and improve EMI performance when the converter is operated at light load condition.

SY5881 provides reliable protections such as Short Circuit Protection (SCP), Open LED Protection (OLP), Over Temperature Protection (OTP), etc.

SY5881 is available with SO8 package.

Applications Information

<u>Start up</u>

After AC supply or DC BUS is powered on, the capacitor C_{VIN} across VIN and GND pin is charged up by BUS voltage through a start up resistor R_{ST} . Once V_{VIN} rises up to V_{VIN} on, the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of Buck transformer could supply enough energy to maintain V_{VIN} above V_{VIN} OFF.

The whole start up procedure is divided into two sections shown in Fig.4. t_{STC} is the C_{VIN} charged up section, and t_{STO} is the output voltage built-up section. The start up time t_{ST} composes of t_{STC} and t_{STO} , and usually t_{STO} is much smaller than t_{STC} .

Fig.4 Start up

The start up resistor R_{ST} and $C_{VIN}\xspace$ are designed by rules below:

(a) Preset start-up resistor R_{ST} , make sure that the current through R_{ST} is larger than I_{ST} and smaller than I_{VIN_OVP}

$$\frac{V_{BUS}}{V_{VIN_OVP}} < \frac{V_{ST}}{< \frac{W_{ST}}{1}} < \frac{V_{ST}}{(1)}$$

Where V_{BUS} is the BUS line voltage.

(b) Select C_{VIN} to obtain an ideal start up time t_{ST} , and ensure the output voltage is built up at one time.

$$C_{VIN} = \frac{\left(\frac{BUS}{\kappa_{ST}} - I_{ST}\right) \times t_{ST}}{V_{VIN ON}} (2)$$

(d) If the C_{VIN} is not big enough to build up the output voltage at one time. Increase C_{VIN} and decrease R_{ST} , go back to step (a) and re-do such design flow until the ideal start up procedure is obtained.

Internal pre-charge design for quick start up

After V_{VIN} exceeds V_{VIN}_{ON} , V_{ADIM} and V_{COMP} is precharged by internal current sources in turn. V_{ADIM} is precharged first, and when V_{ADIM} is over the initial voltage V_{ADIM_IC} , V_{COMP} begins to be pre-charged. The PWM block won't start to output PWM signals until V_{COMP} is over the initial voltage V_{COMP_IC} . V_{COMP_IC} can be programmed by R_{COMP} . Such design is meant to reduce the start up time shown in Fig.5.

The voltage pre-charged V_{COMP_IC} in start-up procedure can be programmed by R_{COMP}

 $V_{\text{COMP}_{\text{IC}}} = 900 \text{mV} \cdot 300 \mu \text{A} \times R_{\text{COMP}}$ (3)

The voltage pre-charged V_{ADIM_IC} in start-up procedure is fixed internally.

Fig.5 Pre-charge scheme in start up

Where V_{COMP_IC} is the pre-charged voltage of COMP pin.

Generally, a big capacitance of C_{COMP} is necessary to achieve high power factor and stabilize the system loop $(1\mu F \sim 2\mu F$ recommended).

The voltage pre-charged in start-up procedure can be programmed by R_{COMP} ; On the other hand, larger R_{COMP} can provide larger phase margin for the control loop; A small ceramic capacitor is added to suppress high frequency interruption (10pF~100pF is recommended if necessary)

Shut down

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of Buck transformer can not supply enough energy to VIN pin, V_{VIN} will drop down. Once V_{VIN} is below V_{VIN_OFF} , the IC will stop working and V_{COMP} will be discharged to zero.

Primary-side constant-current control

Primary side control is applied to eliminate secondary feedback circuit or opto-coupler, which reduces the circuit cost. The switching waveforms are shown in Fig.6.

The output current I_{OUT} can be represented by,

$$I_{OUT} = \frac{I_{PK}}{2} \frac{t_{EFF}}{t_S}$$
(4)

Where I_{PK} is the peak current of the inductor; t_{EFF} is the effective time of inductor current rising and falling; t_S is the switching period.

 I_{PK} and t_{EFF} can be detected by Source and ZCS pin, which is shown in Fig.7. These signals are processed and applied to the negative input of the gain modulator. In static state, the positive and negative inputs are equal.

Fig.6 Switching waveforms

Fig.7 Output current detection diagram

Finally, the output current I_{OUT} can be represented by

$$I = \frac{REF}{R_S \times 2}$$
(6)

Where V_{REF} is the internal reference voltage; R_S is the current sense resistor.

 V_{REF} is internal constant parameters I_{OUT} can be programmed by R_S .

$$R_{s} = \frac{V_{REF}}{I_{OUT} \times 2} (7)$$

Quasi-Resonant Operation

QR mode operation provides low turn-on switching losses for the converter.

Fig.8 QR mode operation

The voltage across drain and source of the primary MOSFET is reflected by the auxiliary winding of the Buck transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage across drain and source of the primary MOSFET is at voltage valley, the MOSFET would be turned on.

CV Mode

When PWM<2.5%, IC and MCU still need bias power , so,

(1) If Dimming signal is greater than 5.0%, IC always works at CC mode.

(2) If Dimming signal is lower than 2.5%, CV mode is triggered. IC works in CV mode to maintain VFB nearby V_{ZCS_CV} . Np:Na and R_{ZCS} could be adjusted to prevent LED flicker and bias supply enough.

Figure.9 The working process of CV mode

In CV mode,

If V_{FB} is smaller than V_{ZCS_CV} , MOSFET turned off when ISEN voltage reach $V_{CV\ ISEN_MAX}$ in every switching cycle, and turned on by QR.

If V_{FB} is greater than V_{ZCS_CV} , IC will sleep for 1.5ms, until V_{FB} is smaller than V_{ZCS_CV} .

The output of CV is decided by OVP.

$$V_{OUT}_{CV} = \frac{V_{OUT}}{3}, \text{ over}$$

Over Voltage Protection (OVP) & Open LED Protection (OLP)

Fig.10 OVP&OLP

The output voltage is reflected by the auxiliary winding voltage of the Buck transformer, and both ZCS pin and VIN pin provide over voltage protection function. When the load is null or large transient happens, the output voltage will exceed the rated value. When V_{VIN} exceeds V_{VIN} over voltage protection is triggered and the IC will discharge V_{VIN} by an internal current source I_{VIN} OVP. Once V_{VIN} is below V_{VIN} OFF, the IC will shut down and be charged again by BUS voltage through start up resistor. If the over voltage condition still exists, the system will operate in hiccup mode.

Thus, the turns of the auxiliary winding $N_{\rm AUX}$ and the resistor divider is related with the OVP function.

Where V_{OVP} is the output over voltage specification; R_{ZCSU} and R_{ZCSD} compose the resistor divider. The turns ratio of N_S to N_{AUX} and the ratio of R_{ZCSU} to R_{ZCSD} could be induced from equation (8) and (9).

8

Short Circuit Protection (SCP)

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so V_{VIN} will drop down without auxiliary winding supply. Once V_{VIN} is below V_{VIN_OFF} , the IC will shut down and be charged again by the BUS voltage through the start up resistor. If the short circuit condition still exists, the system will operate in hiccup mode.

In order to guarantee SCP function not effected by voltage spike of auxiliary winding, a filter resistor R_{AUX} is needed (5 Ω typically) shown in Fig.10.

Line regulation modification

The IC provides line regulation modification function to improve line regulation performance.

Due to the sample delay of ISEN pin and other internal delay, the output current increases with increasing input BUS line voltage. A small compensation voltage ΔV_{ISEN_C} is added to ISEN pin during ON time to improve such performance. This ΔV_{ISEN_C} is adjusted by the upper resistor of the divider connected to ZCS pin.

$$\Delta V_{\text{ISEN_C}} = V \qquad N_{\text{AUX}} \times \frac{1}{N} \times \frac{1}{K} \times$$

Where R_{ZCSU} is the upper resistor of the divider ; k_2 is an internal constant as the modification coefficient.

The compensation is mainly related with R_{ZCSU} , larger compensation is achieved with smaller R_{ZCSU} . Normally, R_{ZCS} ranges from 100k Ω ~1M Ω .

Then R_{ZCSD} can be selected by,

$$\frac{V}{\frac{V_{OUT} \times N_{S}}{1 - \frac{V_{ZCS_{OVP}} \times N_{S}}{V_{OUT}} \times N_{S}}}_{OUT} \times R_{ZCSU} > R_{ZCSD}} (11),$$
And,

$$K_{zCSD} \geq \frac{\frac{V_{zCS_{oVP}}}{V_{oVP}} \times \frac{N_{S}}{N_{AUX}}}{1 - \frac{ZCS_{oVP}}{V} \times \frac{N_{S}}{N}} \times R_{ZCSU} (12)$$

Where V_{OVP} is the output over voltage protection specification; V_{OUT} is the rated output voltage; R_{ZCSU} is the upper resistor of the divider; N_S and N_{AUX} are the turns of secondary winding and auxiliary winding separately.

Dimming Mode

SY5881 supports two dimming modes: PWM dimming and analog dimming. The dimming signal is given as PWM square waveform and the output current is up to the duty cycle of the dimming signal.

Analog Dimming Mode

In Analog dimming mode, SY5881 is compatible with two dimming signal: PWM signal and 0-1.5Vdimming signal, the output current is regulated by the voltage on ADIM pin.

If the dimming signal is PWM signal, it is given to. PWM pin. When the voltage of PWM pin is higher than V_{PWM_ON} , the dimming signal is sensed as high logic level, and ADIM pin is pulled up to 1.5V by a 10k Ω resistor; when the voltage is lower than V_{PWM_OFF} , the dimming signal is sensed as low logic level, and ADIM pin is pulled down to GND by a 10k Ω resistor. The duty cycle of the dimming signal D_{DIM} is reflected by the voltage on ADIM pin V_{ADIM} .

$$V_{ADIM} = D_{DIM} \times 1.5 V (13)$$

When V_{ADIM} is lower than 37mV (D_{DIM} is 2.5%), the output current is zero; When V_{ADIM} is from V_{ADIM_ON} to 75mV (D_{DIM} is from 2.5% to 5.0%), the output current is 5.5% of rated output current; When V_{ADIM} is higher than 1.35V (D_{DIM} is over 90.0%), the output current is 100% of rated output current; When V_{ADIM} is in the range from 75mV to 1.35V (D_{DIM} is from 5.0 % to 90.0%), I_{OUT} increases with D_{DIM} linearly from 5.5% to 100% of rated output current.

The dimming curve between output current I_{OUT} , V_{ADIM} and duty cycle of dimming signal is shown as below.

A capacitor C_{ADIM} need be connected across ADIM and GND pin to obtain a smooth voltage waveform of the dimming signal duty cycle. C_{ADIM} is selected by

$$C_{ADIM} \geq \frac{10^{-3}}{f} F \cdot H_z (14)$$

Where f_{DIM} is the frequency of PWM dimming signal.

If the dimming signal is analog voltage, the dimming signal is given to ADIM pin directly. PWM pin should be pulled up to VIN by a resistor R_{PWM} or pulled down to GND.

with 0-1.5V dimming signal

Power Device Design

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and output power diode is maximized;

$$V = \sqrt{2V} (17)$$
$$V = \sqrt{2V} (17)$$
$$V = \sqrt{2V} (18)$$
$$U_{\text{D_R_MAX}} = \sqrt{2V} (18)$$

Where V_{AC_MAX} is maximum input AC RMS voltage. When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

Inductor (L)

Fig.13 Input waveforms

The power is transferred from AC input to output only when the input voltage is larger than output voltage in Buck converter. The input voltage and inductor current

waveforms are shown in Fig.13, where $\boldsymbol{\theta}_1$ and $\boldsymbol{\theta}_2$ are the time that input voltage is equal to output voltage.

In Quasi-Resonant mode, each switching period cycle t_S consists of three parts: current rising time t_1 , current falling time t_2 and quasi-resonant time t_3 shown in Fig.15.

The system operates in the constant on time mode to achieve high power factor. The ON time increases with the input AC RMS voltage decreasing and the load increasing. When the operation condition is with minimum input AC RMS voltage and full load, the ON time is maximized. On the other hand, when the input voltage is at the peak value, the OFF time is maximized. Thus, the minimum switching frequency f_{S_MIN} happens at the peak value of input voltage with minimum input AC

RMS voltage and maximum load condition; Meanwhile, the maximum peak current through MOSFET and the transformer happens.

Fig.14 Switching waveforms

Once the minimum frequency $f_{S MIN}$ is set, the inductance of the transformer could be calculated. The design flow is shown as below:

(a) Preset minimum frequency $f_{S MIN}$

(b) Compute relative t_S , t_1

$$t_{S} = \frac{1}{t_{S_{MIN}}} (19)$$

$$t_{T} = \frac{t_{S} \times (V_{OUT} + V_{DF})}{(\sqrt{2}V_{AC_{MIN}} + V_{DF})} (20)$$

$$t_{T} = t_{S} - t_{1} (21)$$

Where V_{DF} is the forward voltage of the diode (c) Design inductance L

$$\theta_{1} = \arcsin\left(\frac{\nabla UT}{\sqrt{2V_{AC_{MIN}}}}\right) \times \frac{1}{\pi} \times \frac{1}{2 \times f_{AC}} \quad (22)$$

$$\theta_{2} = \frac{1}{2 \times f_{AC}} - \theta_{1} \quad (23)$$

$$L = \frac{\eta \times f_{AC} \times V_{0UT} \times t_{1}}{r_{OUT}} \times \frac{\cos(2\pi f_{AC} \times \theta_{1}) - \cos(2\pi f_{AC} \times \theta_{2})}{(\theta^{2} - \theta_{1})^{2\pi f_{AC}}} \quad (24)$$

Where η is the efficiency; P_{OUT} is rated full load power;

(d) Compute inductor maximum peak current IL PK MAX.

$$I_{L_{PK_{MAX}}} = \frac{\sqrt{-2V_{AC_{MIN}} - V_{OUT} + t}}{L} (25)$$

Where $I_{L PK MAX}$ is the maximum inductor peak current;

(f) Compute the RMS current of Buck inductor

 $I_{L_RMS_MAX}$ is inductor RMS current of whole AC period

$$I_{L_{RMS}MAX} = \frac{t_{1}}{\sqrt{3} \times L} \sqrt{V_{AC MIN}^{2} + V_{0UT}^{2} - \frac{\sqrt{2V_{AC}MIN} \times V_{0UT}}{\pi}}$$
(26)

(g) Compute RMS current of the MOSFET

$$I_{L_{RMS_{MAX}}} = \sqrt{\frac{t_{1}}{3t_{s}}} \frac{t_{1}}{\times L} \sqrt{V_{AC MIN}^{2} + V_{OUT}^{2} - \frac{2\sqrt{-2V_{AC_{MIN}} \times V_{OUT}}}{\pi}}$$
(27)

Inductor design (N, NAUX)

These parameters below are necessary:

Necessary parameters	
Inductance	L
inductor maximum current	L_PK_MAX
inductor maximum RMS current	L_RMS_MAX

The design rules are as followed:

(a) Select the magnetic core style, identify the effective area $\boldsymbol{A}_{e.}$

(b) Preset the maximum magnetic flux ΔB

ΔB=0.22~0.26T

(c) Compute the primary turns N

$$N = \frac{L \times I}{\Delta B \times A_e} (28)$$

(d)Compute the auxiliary turns N_{AUX}

$$N_{AUX} = N \times \frac{V_{VIN}}{V_{OUT}}$$
 (29)

Where V_{VIN} is the working voltage of VIN pin (10V~11V is recommended).

(e) Select an appropriate wire diameter

With $I_{L_RMS_MAX}$, select appropriate wire to make sure the current density ranges from $4A/mm^2$ to $10A/mm^2$

(f) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Output capacitor Cout

Preset the output current ripple $\Delta I_{OUT},\,C_{OUT}$ is induced by

$$C_{\text{OUT}} = \frac{\sqrt{\frac{2I}{\frac{OUT}{\Delta I}}^{2} - 1}}{4\pi f R_{\text{AC} LED}} (30)$$

Where I_{OUT} is the rated output current; ΔI_{OUT} is the demanded current ripple; f_{AC} is the input AC supply frequency; R_{LED} is the equivalent series resistor of the LED load.

11

(a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit.

(b) The circuit loop of all switching circuit should be kept small.

(c) The connection of ground is recommended as:

Ground ③: ground node of auxiliary winding Ground ④: ground of signal trace except GND pin Ground (5): ground node of current sample resistor.

(d) Bias supply trace should be connected to the bias supply capacitor first instead of GND pin. The bias supply capacitor should be put beside the IC.

(e) Loop of 'Source pin - current sample resistor - GND pin' should be kept as small as possible.

(f) The resistor divider connected to ZCS pin is recommended to be put beside the IC.

() (g) The control circuit is recommended to be put outside Ground ①: ground of BUS line

capacitor the power circuit loop. Ground 2: ground of bias supply capacitor and GND pin

Fig.16 Ground connection recommended

Design Example

A design example of typical application is shown below step by step.

#1. Identify design specification

Design Specification			
V _{AC} (RMS)	176V~264V	V OUT	24V
OUT	300mA	η	92%

#2.Inductor design (L)

Refer to Power Device Design

Conditions			
V AC_MIN	176V	V AC_MAX	264V
POUT	7.2W	I S-MIN	46kHz

(a) $f_{S,MIN}$ is preset

 $f_{S MIN} = 46 kHz$

(**b**) Compute the switching period t_S and ON time t_1 at the peak of input voltage.

$$t_{s = \frac{1}{1}} = 21.74 \mu s$$

$$t_{s = \frac{1}{1}} = 21.74 \mu s$$

$$t_{s = \frac{1}{1}} = 21.74 \mu s$$

$$t_{s = \frac{1}{1}} = 21.74 \mu s - 2.17 \mu s$$

$$t_{z = \frac{1}{\sqrt{2} v_{AC_{MIN}} + v_{DF}}} = \frac{21.74 u s \times (24V + 1V)}{(\sqrt{2} \times 176V + 1V)} = 2.17 \mu s$$

$$t_{z = \frac{1}{5}} - t_{1} = 21.74 \mu s - 2.17 \mu s = 19.57 \mu s$$
(c) Compute the inductance L

$$t_{u} = \arcsin(\frac{v_{U}}{\sqrt{2} V_{N}}) \times \frac{1}{1} \times \frac{1}{2} = \arcsin(\frac{24V}{\sqrt{2} \times 176V}) \times \frac{1}{\pi} \times \frac{1}{2} = 3.074 \times 10^{-4} s$$

$$\theta_{z} = \frac{1}{2 \times f_{AC}} - \theta_{1} = \frac{1}{2 \times 50 Hz} - 3.074 \times 10^{-4} s = 9.693 \times 10^{-3} s$$

$$L = \frac{\eta \times f_{AC} \times V_{0UT} \times t_{1}}{v_{OUT}} \times \frac{1}{2 \times \pi \times f_{AC}} = 0.92 \times 50 Hz \times 24V \times 2.17 \mu s \times \frac{10^{-4} s}{2 \times 176V} - \frac{50 Hz}{2 \times 176V} \times \frac{10^{-4} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times \pi \times f_{AC}} = 0.92 \times 50 Hz \times 24V \times 2.17 \mu s \times \frac{10^{-4} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V} = \frac{10^{-3} s}{2 \times 176V} \times \frac{10^{-3} s}{2 \times 176V}$$

(d) Compute inductor maximum peak current $I_{L\mbox{-}PK\mbox{-}MAX}$.

$$I_{L_{pK_{MAX}}} = \frac{(\sqrt{2^{2}v_{AC_{MIN}}} - V_{OUT}) \times t_{1}}{L} = \frac{\sqrt{2} \times 176 - 24) \times 2.17 \mu s}{451 \mu H} = 1.082 A$$

AN_SY5881 Rev.0.0 Silergy Corp. Confidential- Prepared for Customer Use Only

Where $I_{L_PK_MAX}$ is the maximum inductor peak current ; (f) Compute RMS of the inductor current $I_{L_RMS_MAX}$

$$I_{L_{RMS}MAX} = \frac{t_1}{\sqrt{3} \times L} \sqrt{V_{AC_{MIN}}^2 + V_{OUT_2}} \frac{\sqrt{2V_{AC_{MIN}} \times V_{OUT}}}{\pi}$$
$$= \frac{2.17\mu s}{\sqrt{3} \times 451\mu H} \sqrt{176V^2 + 24V^2 - \frac{\sqrt{2} \times 176V \times 24V}{\pi}}$$
$$= 0.43A$$

#3. Select power MOSFET and power diode

Refer to Power Device Design

Known conditions at this step				
V AC_MAX	264V	η	92%	
V OUT	24V			

Compute the voltage and the current stress of MOSFET:

$$I_{L_{RMS}MAX} = \sqrt{\frac{1}{3t_{s}}} \frac{v_{AC_{MIN}}^{2} + v_{OUT_{2}}^{2} + \frac{4^{2}v_{AC_{MIN}} \times v_{OUT}}{\pi}$$
$$= \sqrt{\frac{2.17\mu s}{3 \times 21.74\mu s}} \times \frac{2.17\mu s}{451\mu H} \times \sqrt{176V^{2} + 24V^{2} - \frac{4\sqrt{2} \times 176V \times 24V}{\pi}}$$
$$= 0.136A$$

#4. Select the output capacitor C_{OUT}

Refer to Power Device Design

Conditions			
OUT	300mA	OUT	0.3I _{OUT}
AC	50Hz	K LED	$7 \times 1.6\Omega$

The output capacitor is

$$C_{OUT} = \frac{\sqrt{\frac{21}{\Delta I}}^{2} - 1}{\frac{4\pi I}{\Lambda I}} \frac{1}{\Lambda}}{\sqrt{\frac{(2 \times 0.3A)^{2} - 1}{(5 \times 0.3A)^{2}}}} \frac{\sqrt{\frac{1}{2} \times 0.3A}}{\frac{1}{2} - 1}}{\frac{1}{2} \times 50 \text{Hz} \times 7 \times 1.6\Omega}$$

=550 \mu F

#5. Set VIN pin

Refer to Start up

٦

Conditions

Conditions			
V BUS_MIN	176V× 1.414	V BUS_MAX	264V× 1.414
I ST	15µA (typical)	V IN_ON	16V (typical)
I VIN_OVP	2mA (typical)	ST	500ms (designed by user)

(a) R_{ST} is preset

$$V_{IST} = \frac{176V \times 1.414}{15\mu A} = 16.59M\Omega,$$

$$R_{ST} > \frac{V}{I} = \frac{264V \times 1.414}{2mA} = 186.7k\Omega$$

Set R_{ST}

R $_{ST}$ =300k $\Omega \times$ 2=600k Ω

(b) Design C_{VIN}

$$C_{VIN} = \frac{(V_{BUS} - I_{ST}) \times t_{ST}}{V_{VIN_{ON}}}$$
$$= \frac{(1/6V \times 1.414}{600k\Omega} - 34\mu A) \times 500 \text{ms}}{22V}$$
$$= 8.6\mu F$$

Set C_{VIN}

 $C_{VIN} = 10 \mu F$

#6 Set COMP pin

Refer to Internal pre-charge design for quick start up

Parameters designed	ed			
COMP	1.5kQ	COMP IC	900mV	
U				
COMP1	2µF	COMP2	0	

#7 Set current sense resistor to achieve ideal output current

Refer to constant-current control

Known conditions at this step						
V REF		0.3V	I OUT	0.3A		
771	· · ·	•				

The current sense resistor is

#8 set ZCS pin

Refer to Line regulation modification and Over Voltage Protection (OVP) & Open Loop Protection (OLP)

First identify R_{ZCSU} need for line regulation.

Known conditions at this step						
Parameters Designed						
K ZCSU	200kΩ	K 1	68			

Then compute R_{ZCSD}

Conditions						
V ZCS_OVP	1.42V	V OVP	35V			
V OUT	24V					
Parameters designed						
K ZCSU	200kΩ					
Ν	100	AUX	45			

$$\frac{N_{S}}{IV} \leq \frac{V_{OVP}}{3 \times 12}$$

$$= \frac{35}{36}$$

$$\approx 1$$

$$K_{ZCSD} \sim \frac{V_{OUT}}{V_{OUT}} \times \frac{N_{S}}{N_{AUX}} \times K_{ZCSU}$$

$$= \frac{1.5V}{V} \times 1$$

$$= \frac{1.5V}{24V} \times 1 \times 200 k\Omega$$

$$= 13.3 \mathrm{k}\Omega$$

R_{ZCSD} is set to

R _{ZCSD} =13k Ω

#9 set ADIM and PWM pin

Refer to Analog Dimming Mode Design

Conditions					
V PWM_ON	0.8V				
Parameters Designed					
R _{PWM UP}	200kΩ				

 $C_{ADIM} = \frac{10}{f_{PWM}}^{-3} F \times \frac{10}{1000} F = 1 uF$

Hence C_{ADIM} is set to

C_{ADIM}=1uF

#10 final result

SO8 Package Outline & PCB Layout Design

Notes: All dimensions are in millimeters. All dimensions don't include mold flash & metal burr.