WJOULWATT

JW1758A/B/C/D

Offline Step-down LED Driver With PFC and No Auxiliary Winding

Parameters Subject to Change Without Notice

DESCRIPTION

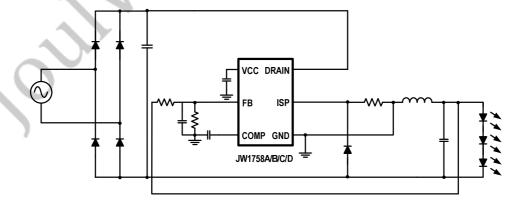
The JW[®]1758A/B/C/D is a constant current LED driver with high current accuracy which applies to single stage step-down power factor corrected LED drivers. High voltage power MOS is integrated, which can significantly simplify the design of LED lighting system.

JW1758A/B/C/D integrates high voltage power source, and can be supplied by line voltage directly, and auxiliary winding is not needed.

High accuracy of output current is achieved by sampling the output current directly. Critical conduction mode operation reduces the switching losses and largely increases the efficiency.

JW1758A/B/C/D has multi-protection functions which largely enhance the safety and reliability of the system, including VCC over-voltage protection, VCC UVLO, LED open protection, pulse-by-pulse current limit, inductor short protection and over-temperature protection.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc.


FEATURES

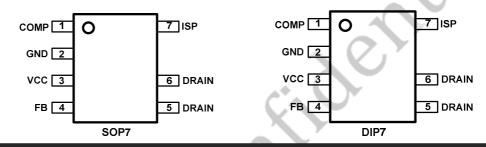
- No auxiliary winding
- Supplied from line voltage directly
- High voltage MOSFET integrated
- High current accuracy of line and load regulation
- High power factor
- Critical conduction mode
- High efficiency over wide operating range
- Cycle-by-cycle current limit
- LED open protection
- Inductor short protection
- ISP short protection
- Internal over-temperature protection
- SOP7 and DIP7 package

APPLICATIONS

Non-isolation Offline LED driver

TYPICAL APPLICATION

ORDER INFORMATION


LEAD EDEC CINICIL	TARE AND REEL	DACKACE	ТОР
LEAD FREE FINISH	TAPE AND REEL	PACKAGE	MARKING
JW1758ASOPA#PBF	JW1758ASOPA#TRPBF	SOP7	JW1758A
JW1758BSOPA#PBF	JW1758BSOPA#TRPBF	SOP7	JW1758B
JW1758BDIPA#PBF		DIP7	JW1758B
JW1758CSOPA#PBF	JW1758CSOPA#TRPBF	SOP7	JW1758C
JW1758DSOPA#PBF	JW1758DSOPA#TRPBF	SOP7	JW1758D

Note:

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATING1)

VCC Voltage	40V
	0.3V to 4.5V
	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
ESD Susceptibility (Human Body Model)	2kV

RECOMMENDED OPERATING CONDITIONS

THEDMAI DEDECOMANCE4)	0	0
Operating Junction Temp (T _J)	40°C to	o 125°C
FB PIN	V8.0	to 1.2V
VCC Voltage		13V

SOP7......96.....95°C/W

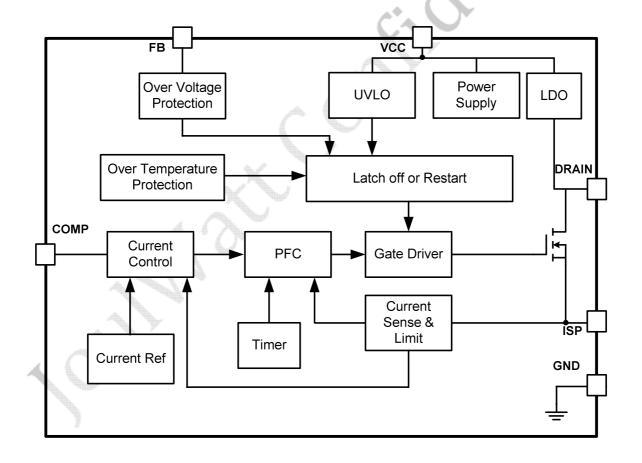
DIP78045°C/W

Note:

- 1) Exceeding these ratings may damage the device.
- 2) Guarantees robust performance from -40°C to 150°C junction temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls.
- 3) The JW1758A/B/C/D includes thermal protection that is intended to protect the device in overload conditions. Thermal protection is active when junction temperature exceeds the maximum operating junction temperature. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 4) Measured on JESD51-7, 4-layer PCB.

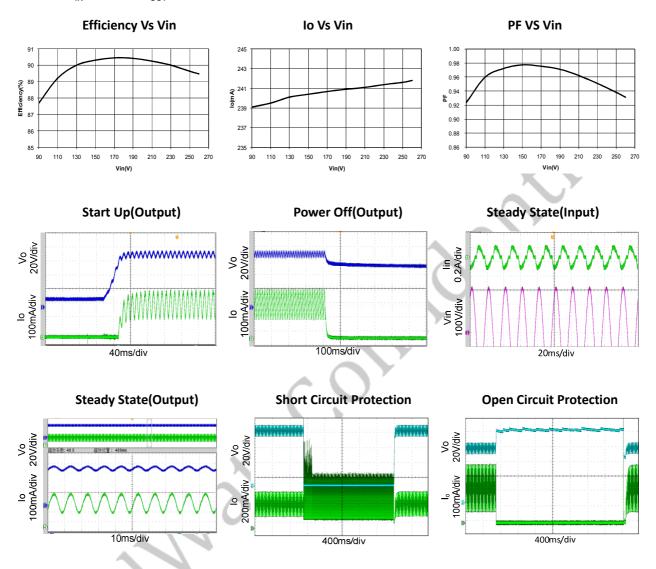
ELECTRICAL CHARACTERISTICS

VIN=20V, T_A =25 C , unless otherwise stated.							
Ite	em	Symbol	Condition	Min.	Тур.	Max.	Units
VCC Start-Up Voltag	ge	V _{CC_ST}		12	13.5	15	٧
VCC Under Voltage	Lockout	V _{CC_UVLO}		8	9.5	11	>
VCC Operational Co	urrent	I _{cco}	VCC=15.5V,FB=2V	120	150	180	μA
VCC Over Voltage	hreshold	V _{TH_OVP}			19		V
VCC Shunt Current		I _{SHUNT}	VCC=18V		5 🔷	. 47	mA
ISP Sample Referen	nce	V_{REF}		198	205	212	mV
Maximum On Time	of MOSFET	T _{ON_MAX}	COMP=2.4V	25	39	48	μs
COMP Source Curre	ent	Ісомр	1.2V <comp<2.4v, ISP=0V</comp<2.4v, 	7.5	10.5	13.5	μΑ
Maximum Switch Fr	equency	F _{MAX}	COMP<1.2V		105	155	kHz
FB High Voltage Th	reshold	V_{FB_H}	^*.	1.52	1.6	1.68	V
ISP Maximum Volta	ge	V _{ISP_MAX}	X.//	1.1	1.2	1.3	V
Over Thermal Prote	ction Threshold ⁵⁾	Temp _{OTP}			145		$^{\circ}$ C
MOS Rdson	JW1758A	Rdson	Rdson Vgs=10V		6.8		Ω
	JW1758B				1.8		
	JW1758C				3.5		
	JW1758D				1.2		
Breakdown	JW1758A/B/C	BV		600			٧
Voltage	JW1758D			650			٧


Note:

5) Guaranteed by design.

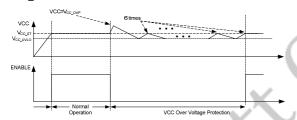
PIN DESCRIPTION


Pin No.	Name	Description	
1 COMF	COMP	Compensation pin for internal error amplifier. Connect a capacitor	
	COMP	between the pin and GND to compensate the internal feedback loop.	
2	GND	Ground.	
3	VCC	Power supply pin.	
4	FB	Output voltage feedback pin.	
5,6	DRAIN	DARIN of the MOSFET.	
7	ISP	Output Current Sense Pin.	

BLOCK DIAGRAM

TYPICAL PERFORMANCE CHARACTERISTICS

JW1758B, V_{IN} =220VAC, V_{OUT} =75V, Io=240mA, unless otherwise noted



FUNCTIONAL DESCRIPTION

The JW1758A/B/C/D is a constant current LED driver which applies to non-isolation step-down LED system with power factor correction. JW1758A/B/C/D can achieve excellent line and load regulation, high efficiency and low system cost with few peripheral components.

Start Up

JW1758A/B/C/D can be supplied by line voltage directly. When DRIAN charges VCC up to VCC Start-Up Voltage(V_{CC_ST}), the GATE driver begins to switch. An internal 16V clamp is attached to the VCC pin to prevent VCC from being too high. Once VCC exceeds V_{CC_OVP} , system shuts down and VCC is charged again after it's pulled down to V_{CC_UVLO} When VCC is charged to V_{CC_ST} for 6 times, system restarts.

Loop Compensation

An integrator configuration is applied to the output current feedback loop with a capacitor connected to the COMP pin. For offline applications, the crossover frequency should be set much less than the line frequency of 120Hz or 100Hz. A capacitor of 1µF connected to COMP pin is recommended to ensure the excellent PFC performance.

Constant Current Control

The JW1758A/B/C/D controls the output current from the information of the sensed resistor voltage. The output LED mean current can be calculated as:

$$I_{LED} = V_{REF} / R_{S}$$

Where

V_{REF} – The reference voltage;

R_{SNS} – The sensing resistor connected between ISP and GND.

Critical Conduction Mode Operation

JW1758A/B/C/D works in the critical conduction mode of the inductor current. When the internal power MOSFET is turned on, the inductor current begins to increase from zero. The turn on time of the MOSFET can be calculated as:

$$T_{ON} = I_{PK} \times L / (V_{IN} - V_{OUT})$$

Where,

L -inductance.

I_{PK} – peak current in one switch period.

 V_{IN} – input voltage after rectification and filtering.

V_{OUT} – output LED voltage.

When the power MOSFET is turned off, the inductor current begins to decrease. The power MOSFET turns on again when the inductor current is zero. The turn off time of the MOSFET can be calculated as:

$$T_{OFF} = I_{PK} \times L / V_{OUT}$$

And the inductance of the system can be calculated as:

$$L = V_{OUT} \times (V_{IN} - V_{OUT}) / (f \times I_{PK} \times V_{IN})$$

Where, f is the frequency of the step-down system. You may choose the minimum input voltage when you want to set up the minimum system working frequency.

Over Temperature Protection

When internal temperature of the chip exceeds 145°C, JW1758A/B/C/D decrease the source current of COMP to degrade LED current.

LED Open Protection

The output voltage can be detected by the FB pin. When the FB voltage is higher than FB High

Voltage Threshold(V_{FB_H}), the power MOSFET gate driver stops switching, and the HV power source is disconnected until VCC decreases to V_{CC_UVLO} . When VCC is charged to V_{CC_ST} for 6 times, system restarts. The recommended value of FB pull up resister is between 200 to $300 \text{K}\Omega$, and a capacitor, such as 68 pF, could be paralleled to FB and GND Pin if LED open protection is false triggered by unreasonable PCB layout.

ISP Short Protection and Continuous Power On/Off

There are three conditions when JW1758A/B/C/D cannot sense the inductor current. The first condition is the difference of V_{IN} and V_{OUT} is too small, and the second condition is ISP short to GND. The last condition is power off.

JW1758A/B/C/D folds the operation frequency to 10KHz if ISP voltage is lower than 25mV during the period of MOSFET turned on. It's considered that ISP is shorted connected to GND or power off if low frequency operation last 15ms. Then JW1758A/B/C/D pulls down the COMP to minimum value and the HV power source is disconnected until VCC decreases to

 $V_{\text{CC_UVLO}}$. When VCC is charged to $V_{\text{CC_ST}}$ for 6 times, system restarts.

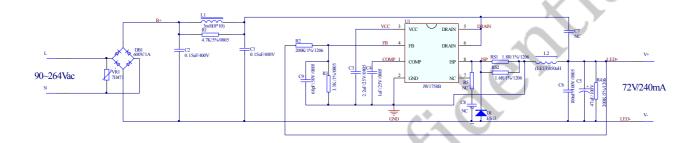
Inductor Short Protection

When inductor is short connected, ISP voltage increase sharply after MOSFET turned on. JW1757A/B/C stops switching if ISP voltage is over $V_{\text{ISP_MAX}}$ within 250ns~500ns after MOSFET turned on. Then the HV power source is disconnected until VCC decreases to $V_{\text{CC_UVLO}}$. When VCC is charged to $V_{\text{CC_ST}}$ for 6 times, system restarts.

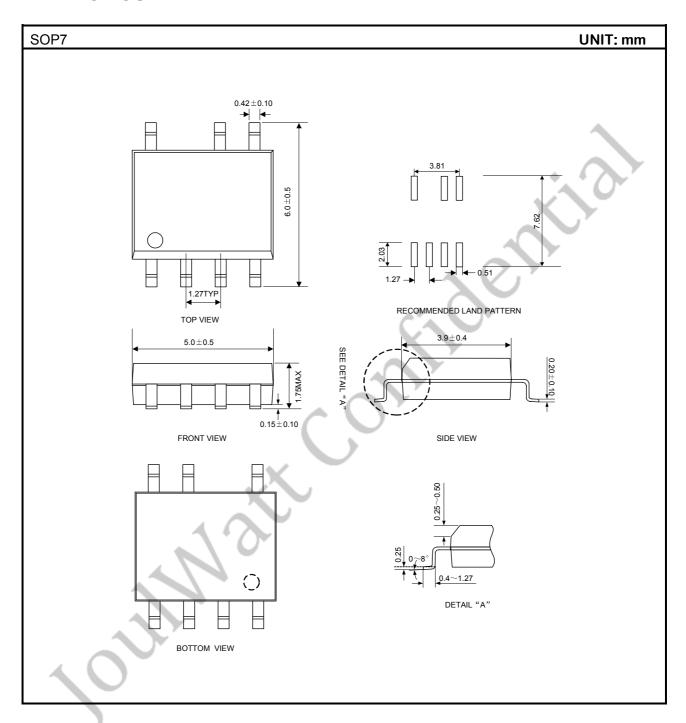
PCB Design

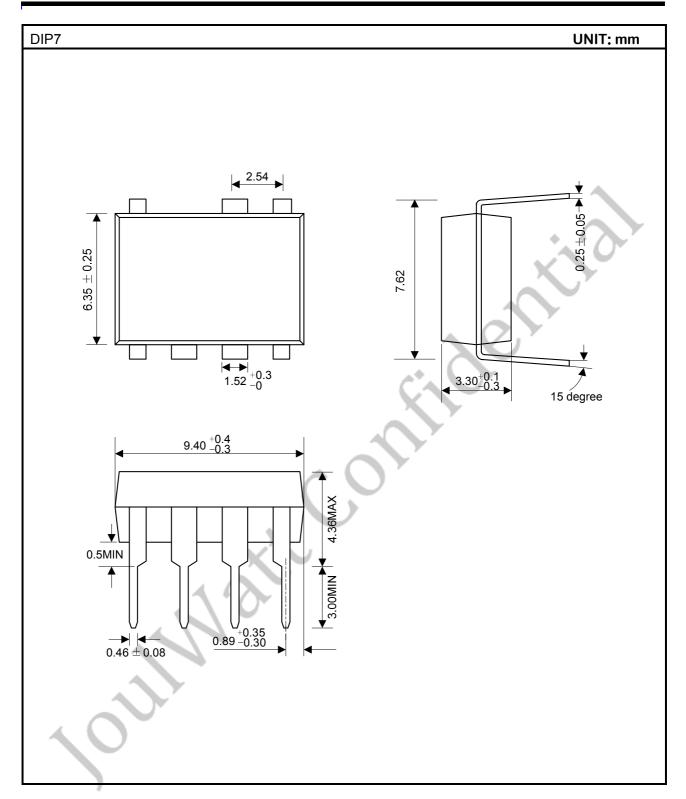
When designing the PCB of the JW1758A/B/C/D system, please follow the directions:

- 1. The VCC pin must be locally bypassed with a capacitor.
- Make the area of the power loop as small as possible in order to reduce the EMI radiation.
- The chip should be far away from the heating element, such as the inductor and the freewheel diode.
- 4. Note the chip ground is not connected to the cathode of the input capacitor as usual.


REFERENCE DESIGN

This reference design is suitable for $3 \sim 20W$ non-isolated Step-down LED driver, using JW1758A/B/C/D, with high efficiency, excellent line regulation.


Reference:


V_{IN}: 90VAC~264VAC

 V_{OUT} : 40~75V I_{OUT} : 240mA PF: >0.9

PACKAGE OUTLINE

IMPORTANT NOTICE

 Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.

- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2017 JW1758A/B/C/D Incorporated.

All rights are reserved by Joulwatt Technology Inc.