

TLC59211

SCLS712A - MARCH 2009 - REVISED JUNE 2015

TLC59211 8-Bit DMOS Sink Driver

Features

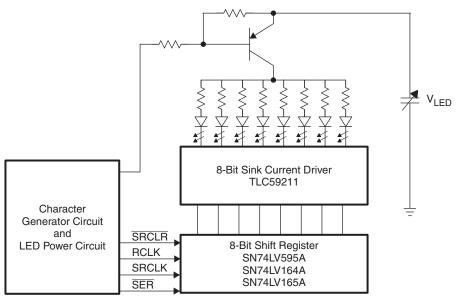
- **DMOS Process**
- High Voltage Output $(V_{ds} = 30 \text{ V})$
- Output Current on Each Channel $(I_{ds} Max = 200 mA)$
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- ESD Protection Exceeds JESD 22
 - 2000-V Human Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged Device Model (C101)
- **LED Driver Application**
- Output Clamp Diode (Parasitic)

2 Applications

- Lamps and Display (LED)
- Hammers
- Relay

3 Description

The TLC59211 is an 8-bit LED and solenoid driver designed for 5-V V_{CC} operation.


The TLC59211 is characterized for operation from –40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TLC59211	PDIP (20)	24.33 mm × 6.35 mm
	TSSOP (20)	6.50 mm × 4.40 mm

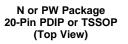
(1) For all available packages, see the orderable addendum at the end of the data sheet.

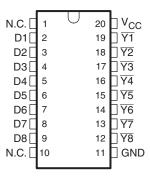
Typical Application Diagram

Table of Contents

1	Features 1		8.1 Overview	
2	Applications 1		8.2 Functional Block Diagram	8
3	Description 1		8.3 Feature Description	8
4	Revision History2		8.4 Device Functional Modes	8
5	Pin Configuration and Functions	9	Application and Implementation	9
6	Specifications4		9.1 Application Information	9
U	6.1 Absolute Maximum Ratings		9.2 Typical Application	9
	6.2 ESD Ratings	10	Power Supply Recommendations	10
	6.3 Recommended Operating Conditions	11	Layout	
	6.4 Thermal Information		11.1 Layout Guidelines	10
	6.5 Electrical Characteristics V _{CC} = 3 V to 3.6 V		11.2 Layout Example	11
	6.6 Electrical Characteristics V _{CC} = 4.5 V to 5.5 V	12	Device and Documentation Support	12
	6.7 Switching Characteristics V _{CC} = 3 V to 3.6 V		12.1 Community Resources	12
	6.8 Switching Characteristics $V_{CC} = 4.5 \text{ V}$ to 5.5 V 6		12.2 Trademarks	12
	6.9 Typical Characteristics6		12.3 Electrostatic Discharge Caution	12
7	Parameter Measurement Information 7		12.4 Glossary	12
8	Detailed Description	13	Mechanical, Packaging, and Orderable Information	12

4 Revision History


Changes from Original (April 2009) to Revision A


Page

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

5 Pin Configuration and Functions

N.C. - Not internally connected

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
N.C.	1		No Connection
N.C.	10		No Connection
D1	2		
D2	3		
D3	4		
D4	5		Input control to the current sink driver
D5	6	_	imput control to the current sink univer
D6	7		
D7	8		
D8	9		
<u>Y1</u>	19		
<u>Y2</u>	18		
Y 3	17		
Y 4	16	0	Output to load
Y 5	15		Output to load
Y 6	14		
Y 7	13		
<u> 78</u>	12		
GND	11	_	Ground
VCC	20	1	Supply voltage

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	7	V
D	Input voltage		-0.5	7	V
V_{ds}	Output voltage	H output	-0.5	32	V
I _{ds}	Output current	1 bit for output low		200	mA
I _{IK}	Input clamp current	V _I < 0 V		-20	mA
	Operating free-air temperature		-40	85	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
			Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V	(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±100	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

 $V_{CC} = 3 \text{ V to } 5.5 \text{ V}$

100				MIN	MAX	UNIT
V_{CC}	Supply voltage				5.5	V
V_{IH}	High-level input voltage			$V_{CC} \times 0.7$	V_{CC}	V
V_{IL}	Low-level input voltage			0	$V_{CC} \times 0.3$	V
V_{ds}	Output voltage				30	V
		N. nookogo	Duty cycle < 42%		200	
	Output ourrent	N package	Duty cycle < 100%		130	mA
I _{ds}	Output current	DW pookogo	Duty cycle < 24%		200	
		PW package	Duty cycle < 100%		95	
T _A	Operating free-air temperature	•		-40	85	°C

6.4 Thermal Information

		TLC		
	THERMAL METRIC ⁽¹⁾	N (PDIP)	PW (TSSOP)	UNIT
		20 PINS	20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	54.4	94.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	46.6	28.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	35.4	45.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	23.0	1.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	35.3	45.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	_	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics $V_{cc} = 3 \text{ V to } 3.6 \text{ V}$

over recommended operating free-air temperature range, $V_{CC} = 3 \text{ V}$ to 3.6 V, $T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDIT	MIN	TYP	MAX	UNIT	
V _{t+}	Positive-going input threshold	D				2.52	V
V _{t-}	Negative-going input threshold	D		0.9			V
V _t	Hysteresis	D		0.33		1.32	V
I _{IH}	High-level input current	$V_{CC} = 3.6 \text{ V}, V_{I} = 3.6 \text{V}$			0	1	μΑ
I _{IL}	Low-level input current	$V_{CC} = 3.6 \text{ V}, V_{I} = 0 \text{ V}$			0	-1	μΑ
loz	Leakage current	V _{ds} = 30 V				5	μA
I _{off}	Leakage current	$V_1 = 0$ to 3.6 V, $V_0 = 0$ to 30 V, V_0	_{CC} = 0		0	5	μA
	•	V 0. 00V V 00V	Output = all OFF		0	5	
I _{CC}	Supply current	$V_{I} = 0 \text{ to } 3.6 \text{ V}, V_{CC} = 3.6 \text{ V}$	Output = all ON		0	5	μΑ
.,	Lave lavel autout vallage	V 0 V 1 100 m A				0.7	V
V _{OL}	Low-level output voltage	$V_{CC} = 3 \text{ V}, I_{OL} = 100 \text{ mA}$			0.35	0.7	V
r _{ON}	ON-state resistance	V _{CC} = 3 V, I _O = 100 mA			3.5	7	Ω
Ci	Input capacitance	V _I = V _{CC} or GND			5		pF

6.6 Electrical Characteristics $V_{CC} = 4.5 \text{ V}$ to 5.5 V

over recommended operating free-air temperature range, V_{CC} = 4.5 V to 5.5 V, T_A = -40°C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITION	S	MIN	TYP	MAX	UNIT
V_{t+}	Positive-going input threshold	D, CLR, CLK				3.5	V
V_{t-}	Negative-going input threshold	D, CLR, CLK		1.5			V
V _t	Hysteresis	D, CLR, CLK		0.5		2	V
I _{IH}	High-level input current	V _{CC} = 5.5 V, V _I = 5.5 V			0	1	μΑ
$I_{\rm IL}$	Low-level input current	$V_{CC} = 5.5 \text{ V}, V_{I} = 0 \text{ V}$	$V_{CC} = 5.5 \text{ V}, V_{I} = 0 \text{ V}$		0	-1	μΑ
l _{OZ}	Leakage current	V _{ds} = 30 V				5	μΑ
I _{off}	Leakage current	$V_1 = 0 \text{ to } 5 \text{ V}, V_0 = 0 \text{ to } 30 \text{ V}, V_{CC} = 0$			0	5	μΑ
	Complete accompany	V 045 5 V V 045 20 V V 0	Output = all OFF		0	5	
Icc	Supply current	$V_1 = 0 \text{ to } 5 \text{ V}, V_0 = 0 \text{ to } 30 \text{ V}, V_{CC} = 0$	Output = all ON		0	5	μΑ
\/	Low lovel output voltage	V _{CC} = 4.5 V, I _O = 100 mA			0.2	0.35	V
V _{OL}	Low-level output voltage	V _{CC} = 4.5 V, I _O = 200 mA			0.5	0.7	V
r _{ON}	ON-state resistance	V _{CC} = 4.5 V, I _O = 100 mA			2	3.5	Ω
C _i	Input capacitance	V _I = V _{CC} or GND			5		pF

6.7 Switching Characteristics $V_{CC} = 3 \text{ V}$ to 3.6 V

over operating free-air temperature range, $V_{CC} = 3 \text{ V}$ to 3.6 V, $T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ (unless otherwise noted)

	•	3 7 00	. , ,					
PARAMETER	TEST	LOAD	T	_A = 25°C		$T_A = -40$ °C to 8	35°C	UNIT
PARAMETER	CONDITIONS	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
t _{TLH}	Output = low to high	$C_L = 30 \text{ pF}, R_L = 240 \Omega,$ 24-V pullup		200	450		450	ns
t _{THL}	Output = high to low	$C_L = 30 \text{ pF}, R_L = 240 \Omega,$ 24-V pullup		300	450		480	ns
t _{PLH}	Output = low to high	$C_L = 30 \text{ pF}, R_L = 240 \Omega,$ 24-V pullup		450	650		800	ns
t _{PHL}	Output = high to low	$C_L = 30 \text{ pF}, R_L = 240 \Omega,$ 24-V pullup		450	650		800	ns

6.8 Switching Characteristics $V_{cc} = 4.5 \text{ V}$ to 5.5 V

over operating free-air temperature range, V_{CC} = 4.5 V to 5.5 V, T_A = -40°C to 85°C (unless otherwise noted)

212112	TEST	LOAD	Т	_A = 25°C		$T_A = -40$ °C to 8	85°C	
PARAMETER	CONDITIONS	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
t _{TLH}	Output = low to high	$C_L = 30 \text{ pF}, R_L = 240 \Omega,$ 24-V pullup		180	220		260	ns
t _{THL}	Output = high to low	$C_L = 30 \text{ pF}, R_L = 240 \Omega,$ 24-V pullup		290	430		460	ns
t _{PLH}	Output = low to high	$C_L = 30 \text{ pF}, R_L = 240 \Omega,$ 24-V pullup		320	470		510	ns
t _{PHL}	Output = high to low	$C_L = 30 \text{ pF}, R_L = 240 \Omega,$ 24-V pullup		320	470		510	ns

6.9 Typical Characteristics

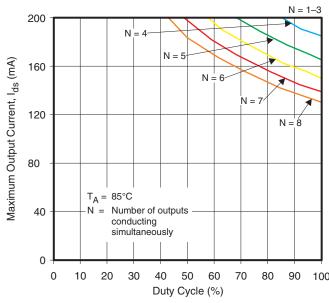
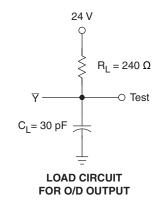
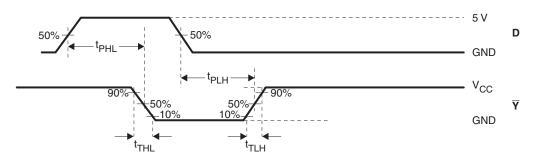




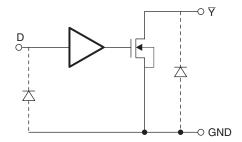
Figure 1. Maximum Output Currents vs Duty Cycle in PDIP (N) Package

7 Parameter Measurement Information

VOLTAGE WAVEFORMS

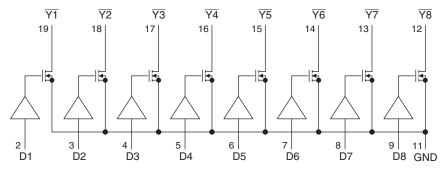
- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50~\Omega$, $t_r \leq$ 3 ns, and $t_f \leq$ 3 ns.
- C. The outputs are measured one at a time with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Test Circuit and Voltage Waveforms



8 Detailed Description

8.1 Overview


The TLC59211 is an 8-bit parallel LED and solenoid driver designed for 5-V V_{CC} operation. Each channel is individually controlled by its input.

8.2 Functional Block Diagram

8.3 Feature Description

Each of the 8 channels is controlled by its input Dn. When Dn is logic high, the current sink is enabled, output is low. When Dn is logic low, the current sink is disabled, output is pulled high.

(1) This symbol is in accordance with ANSI/IEEE Standard 91-1984 and IEC Publication 617-12.

Figure 3. Logic Symbol

8.4 Device Functional Modes

Table 1 lists the functional modes of the TLC59211.

Table 1. Function Table (Each Latch)(1)

INPUTS	OUTPUT
D	Y
L	H*
Н	L

(1) L: Low-level

H: High-level

H*: with pullup resistor

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

In LED display application, TLC59211 is used to drive the current sink for 8 LEDs in parallel. LED display pattern can be created by providing different bit pattern. LED can be duty cycled by either duty cycling the LED supply or the control bit.

9.2 Typical Application

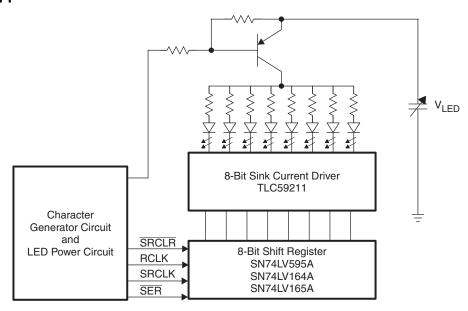


Figure 4. LED Display Implementation With TLC59211

9.2.1 Design Requirements

For LED display application, an 8-bit shift register is used to provide the input control for TLS59211. A character generator circuit and LED power circuit is used to generate the bit pattern written into the shift register and provide the power control for the entire LED array. The LED power circuit controls the total current into the array and can also power cycle the LED array. For simple implementation, LED power circuit could be eliminated. The VLED can be connected directly to the resistor and LED string.

9.2.2 Detailed Design Procedure

The combination of LED and resistor sets the current of the LED.

$$V_R + V_L = V_{LED}, I = (V_{LED} - V_L)/R$$
 (1)

The maximum current through each channel of TLC59211 is determined by the number of the LEDs that are on and the duty cycle according to Figure 5 for TSSOP package.

Typical Application (continued)

9.2.3 Application Curve

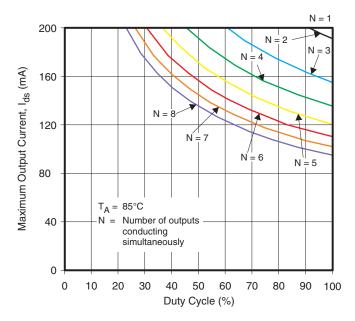
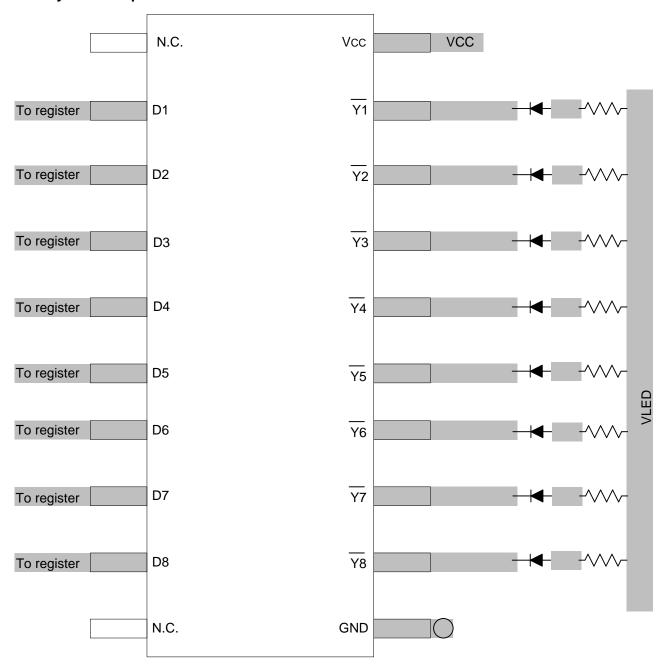


Figure 5. Maximum Output Currents vs Duty Cycle in TSSOP (PW) Package

10 Power Supply Recommendations

The supply voltage to TLC59211 is from 3.3 V to 5.5 V. The voltage at output can be up to 30 V.


11 Layout

11.1 Layout Guidelines

The traces that carry current from the LED cathodes to the OUTx pins must be wide enough to support the current (up to 200 mA).

11.2 Layout Example

○ VIA to GND

Figure 6. Layout Example Recommendation

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

12-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC59211IN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC59211IN	Samples
TLC59211IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y59211	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

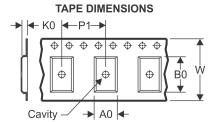
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

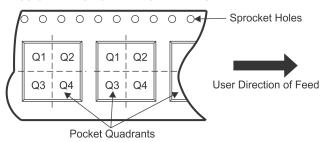
PACKAGE OPTION ADDENDUM

12-May-2015


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

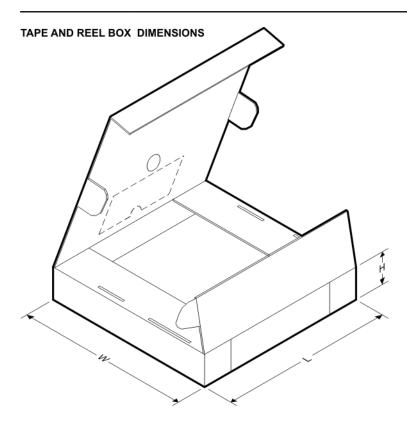
PACKAGE MATERIALS INFORMATION

www.ti.com 12-May-2015


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC59211IPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 12-May-2015

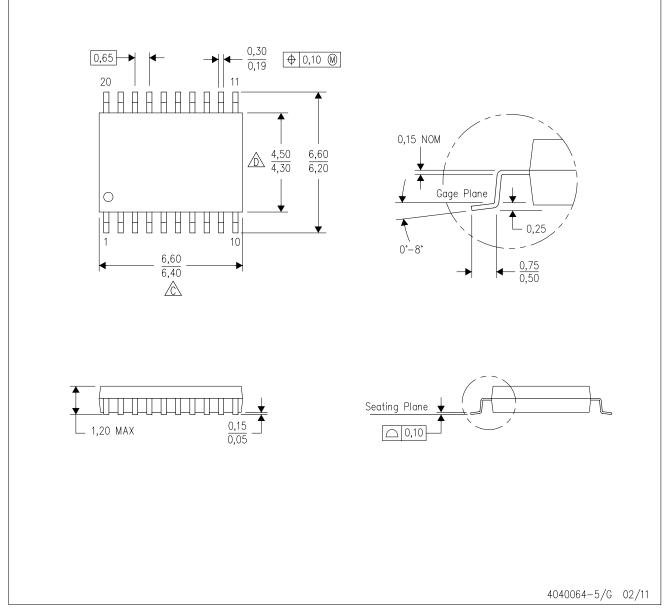
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC59211IPWR	TSSOP	PW	20	2000	367.0	367.0	38.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

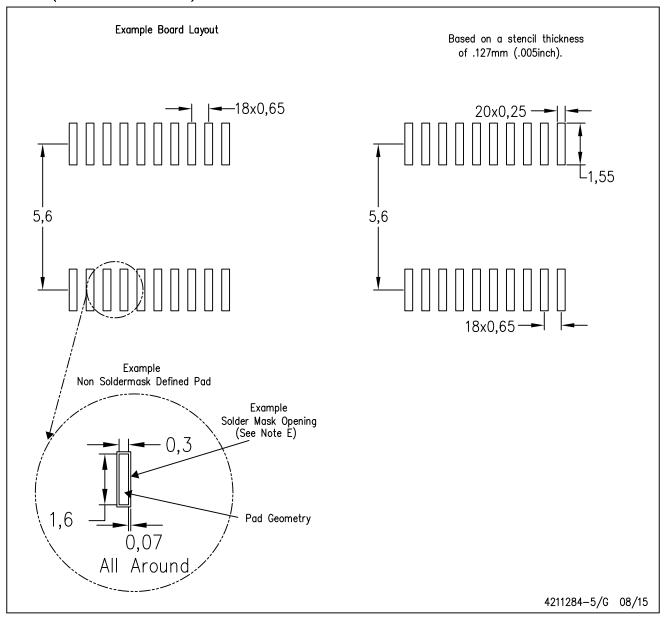
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com

Microcontrollers www.ti.com/video microcontroller.ti.com Video and Imaging

www.ti-rfid.com

OMAP Applications Processors TI E2E Community www.ti.com/omap e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity