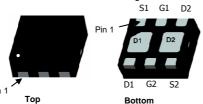


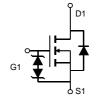
AON2800

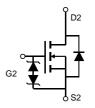
20V Dual N-Channel MOSFET

General Description

The AON2800 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$. This device is ideal for load switch and battery protection applications.


Product Summary


 $\begin{array}{lll} V_{DS} & 20V \\ I_{D} \; (at \; V_{GS} \! = \! 4.5V) & 4.5A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & < 47 m \Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 2.5V) & < 65 m \Omega \end{array}$


ESD Protected

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

ADSOIGLE MUXIMUM	realings 1 _A -200 annes	o other wise noted			
Parameter		Symbol	Maximum	Units	
Drain-Source Voltag	е	V _{DS}	20	V	
Gate-Source Voltage)	V _{GS}	±8	V	
Continuous Drain	T _A =25℃		4.5		
Current	T _A =70℃	ID	3.8	A	
Pulsed Drain Current C		I _{DM}	24		
	T _A =25℃	В	1.5	W	
Power Dissipation ^B	T _A =70℃	P _D	0.95	VV	
Junction and Storage	e Temperature Range	T _J , T _{STG}	-55 to 150	C	

Thermal Characteristics										
Parameter	Symbol	Тур	Max	Units						
Maximum Junction-to-Ambient A	t ≤ 10s	D	35	45	℃/W					
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	65	85	℃/W					
Maximum Junction-to-Ambient B	t ≤ 10s	D	120	155	C/W					
Maximum Junction-to-Ambient B	Steady-State	$R_{\theta JA}$	175	235	C/W					

Electrical Characteristics (T_J=25℃ unless otherwise noted)

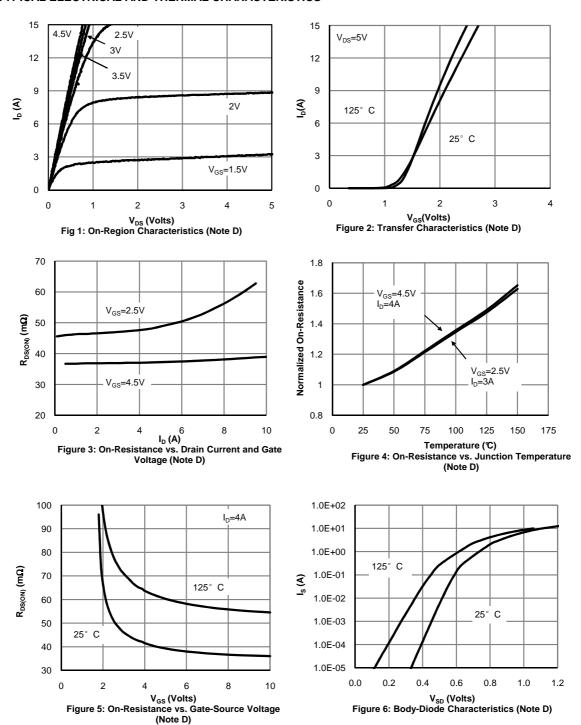
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC P	ARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V$		20			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =20V, V_{GS} =0V	T _J =55℃			1 5	μΑ
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm 8V$				20	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.4	0.8	1.2	V
I _{D(ON)}	On state drain current	V_{GS} =4.5V, V_{DS} =5V		24			Α
		V_{GS} =4.5V, I_D =4A			37	47	mO
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125℃		55	70	mΩ
		V_{GS} =2.5V, I_D =3A	-		47	65	mΩ
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=4A$			14		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V	
I _S	Maximum Body-Diode Continuous Curr			1.5	Α		
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz		285	360	435	pF
C _{oss}	Output Capacitance			45	65	85	pF
C _{rss}	Reverse Transfer Capacitance			30	50	70	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1	MHz	1.7	3.5	5.3	Ω
SWITCHII	NG PARAMETERS						
Q _g (4.5V)	Total Gate Charge				4.15	6	nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =10V,	I _D =4A		0.55		nC
Q_{gd}	Gate Drain Charge				1.15		nC
t _{D(on)}	Turn-On DelayTime				9.5		ns
t _r	Turn-On Rise Time	V_{GS} =4.5V, V_{DS} =10V, R_L =2.5 Ω ,			43		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			26		ns
t _f	Turn-Off Fall Time		•		39		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =4A, dI/dt=100A/μs			11		ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =4A, dI/dt=100A/μs			3		nC

A: The value of R $_{\text{QJA}}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{\text{A}}$ =25 $^{\circ}$ C. The Power dissipation P_{DSM} is based on R $_{\theta JA}$ and the maximum allowed junction temperature of 150 $^{\circ}$ C. The value in any given application depends on the user's specific board design, and the maximum temperature of $150^{\circ}\,$ C may be used if the PCB allows it to.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

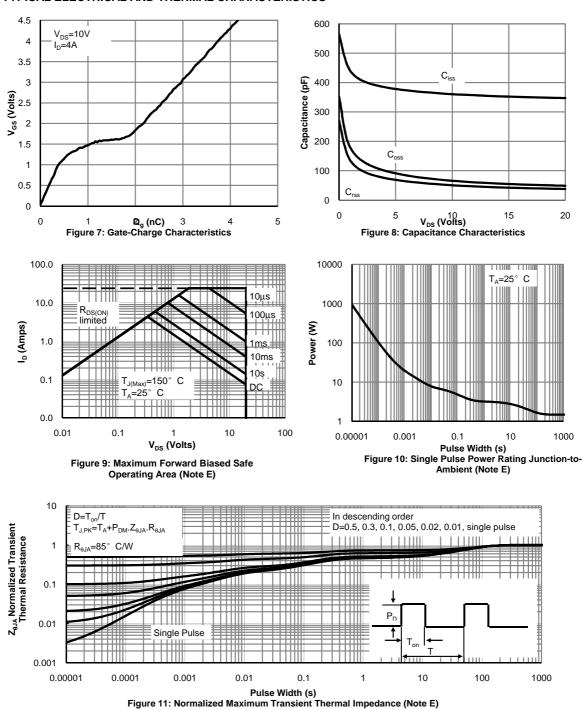
Rev 1: August 2011 Page 2 of 5 www.aosmd.com

B. The value of R $_{0.0A}$ is measured with the device mounted on a minimum pad board with 2oz. Copper, in a still air environment with T $_A$ =25 $^\circ$ C. The Power dissipation P_{DSM} is based on R $_{\theta JA}$ and the maximum allowed junction temperature of 150 $^{\circ}$ C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150° C may be used if the PCB allows it to.

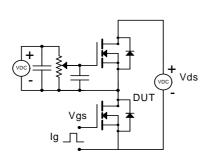

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.

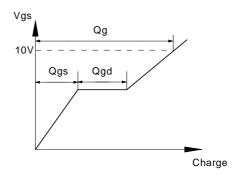
D. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

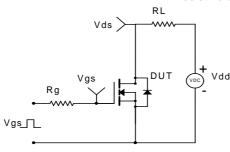
E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The SOA curve provides a single pulse rating.

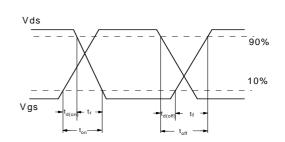


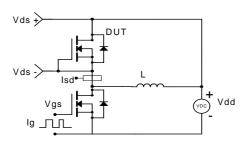
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

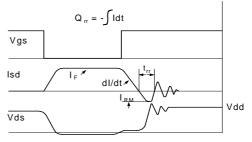



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS




Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-01396
Version	A
Title	AON2800 Marking Description

DFN2X2 PACKAGE MARKING DESCRIPTION

2800

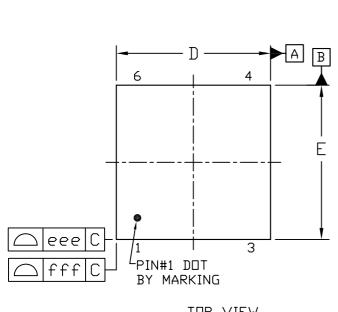
AWLT

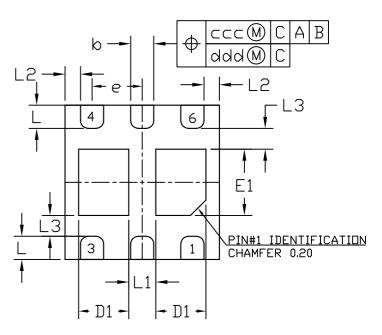
0

Green product

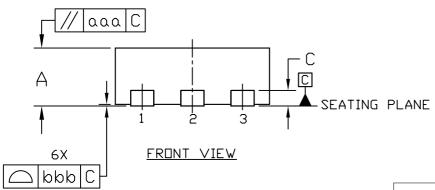
NOTE:

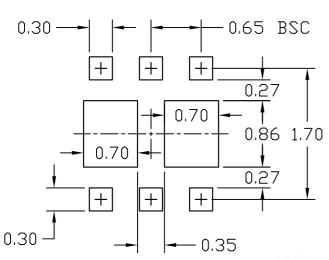
2800 - Product Number Code A - Assembly location code W - Week code & Year Code


L&T - Assembly lot code


PART NO.	DESCRIPTION	CODE
AON2800	Green product	2800
AON2800L	Green product	2800

Document No.	PO-00065
Version	В


DFN2x2_6L_EP2_S PACKAGE OUTLINE

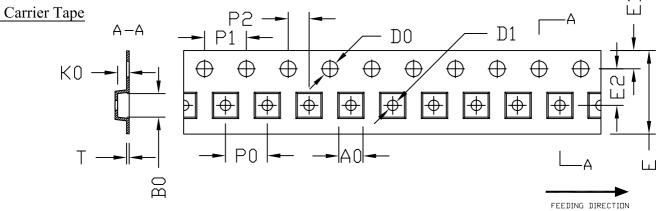


TOP VIEW

BOTTOM VIEW

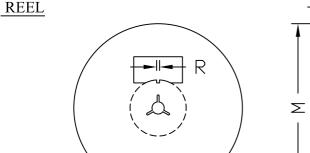
RECOMMENDED LAND PATTERN

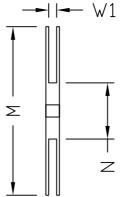
SUBBULS	DIMENS	IONS IN MIL	LIMETERS	DIMENSIONS IN INCHES		
STMBULS	MIN	NDM	MAX	MIN	NDM	MAX
Α	0.70	0.75	0.80	0.028	0.030	0.031
b	0.25	0.30	0.35	0.010	0.012	0.014
С		0.20 Ref.			0.008 Ref	
D	1.90	2.00	2.10	0.075	0.079	0.083
D1	0.620	0.650	0.680	0.024	0.026	0.027
E	1.90	2.00	2.10	0.075	0.079	0.083
E1	0.76	0.86	0.96	0.030	0.034	0.038
е		0.65 BSC		0.026 BSC		
L	0.25	0.30	0.35	0.010	0.012	0.014
L1	0.320	0.350	0.380	0.013	0.014	0.015
L2	0.170	0.200	0.230	0.007	0.008	0.009
L3	0.240	0.270	0.300	0.009	0.011	0.012
aaa		0.100			0.004	
bbb		0.080			0.003	
ccc		0.100			0.004	
ddd		0.050			0.002	
eee		0.150			0.006	
fff		0.150			0.006	

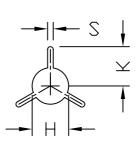

NOTE

1. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

DFN 2x2/DFN2x2A/DFN2x2B/DFN2x2C Tape and Reel Data

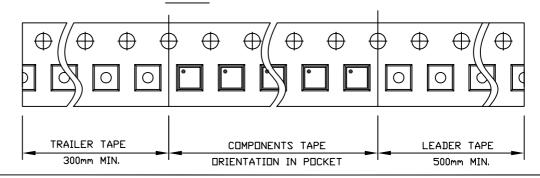





UNIT: MM

OPTION	PACKAGE	Α0	В0	K0	D0	D1	E	E1	E2	P0	P1	P2	Т
1	DFN 2X2 DFN 2X2A	2.25 ±0.05	2.25 ±0.05	1.00 ±0.05	1.50 +0.10 -0	1.00 +0.25 -0	8.00 +0.30 -0.10	1.75 ±0.10	3.50 ±0.05	4.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.254 ±0.02
2	DFN 2X2B DFN 2X2C	2.30 ±0.20	2.30 ±0.20	1.00 ±0.20	1.50 +0.10 -0	1.00 MIN.	8.00 +0.30 -0.10	1.75 ±0.10	3.50 ±0.05	4.00 ±0.20	4.00 ±0.20	2.00 ±0.05	0.30 ±0.05

DFN2X2/DFN2X2A/DFN2X2B/DFN2X2C


UNIT: MM

TAPE SIZE	REEL SIZE	М	Z	W1	Ή	S	К	R
8	Ø180	ø180.0 ±0.50	60.0 ±0.50	8.4 +1.5 -0.0	13.0 ±0.20	1.5 MIN.	13.5 MIN.	3.0 ±0.50

DFN2X2/DFN2X2A/DFN2X2B/DFN2X2C TAPE

Unit Per Reel: 3000pcs

AOS Semiconductor Product Reliability Report

AON2800, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AON2800. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AON2800 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation

I. Product Description:

The AON2800 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\rm DS(ON)}$. This device is ideal for load switch and battery protection applications.

- -RoHS Compliant
- -Halogen Free

Detailed information refers to datasheet.

II. Die / Package Information:

AON2800

Process Standard sub-micron

Low voltage N channel

Package Type DFN 2x2
Lead Frame Copper
Die Attach Silver epoxy
Bonding Wire Au wire

Mold Material Epoxy resin with silica filler MSL (moisture sensitive level) Level 1 based on J-STD-020

Note * based on information provided by assembler and mold compound supplier

III. Result of Reliability Stress for AON2800

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures	Standard
MSL Precondition	168hr 85℃ /85%RH +3 cycle reflow@260℃	-	11 lots	1815pcs	0	JESD22- A113
HTGB	Temp = 150°c, Vgs=100% of Vgsmax	168hrs 500 hrs 1000 hrs	1 lot	77pcs	0	JESD22- A108
			(Note A*)	77pcs / lot		
HTRB	Temp = 150°c, Vds=80% of Vdsmax	168hrs 500 hrs 1000 hrs	1 lot	77pcs	0	JESD22- A108
			(Note A*)	77pcs / lot		
HAST	130 +/- 2°c, 85%RH, 33.3 psi, Vgs = 100% of	100 hrs	11 lots (Note A*)	605pcs 55pcs / lot	0	JESD22- A110
Pressure Pot	Vgs max 121°c, 29.7psi,	96 hrs	11 lots	605pcs	0	JESD22-
i lessure i ot	RH=100%	30 1113	111013	ооорез		A102
			(Note A*)	55pcs / lot		
Temperature Cycle	-65°c to 150°c, air to air	250 / 500 cycles	11 lots	605pcs	0	JESD22- A104
			(Note A*)	55pcs / lot		

Note A: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 137 MTTF = 833 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AON2800). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 \text{/} [2 \text{ (N) (H) (Af)}] = 1.83 \times 10^9 \text{/} [2x2x77x168 x258] = 137 \text{MTTF} = <math>10^9 \text{/} \text{FIT} = 7.30 \times 10^6 \text{hrs} = 833 \text{ years}$

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u = The use junction temperature in degree (Kelvin), K = C+273.16

 $\mathbf{K} = \text{Boltzmann's constant}, 8.617164 \text{ X } 10^{-5} \text{eV} / \text{K}$