TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VHC161F, TC74VHC161FN, TC74VHC161FT, TC74VHC161FK TC74VHC163F, TC74VHC163FN, TC74VHC163FT, TC74VHC163FK

Synchronous Presettable 4-Bit Counter
TC74VHC161F/FN/FT/FK Binary,
Asynchronous Clear

TC74VHC163F/FN/FT/FK Binary, Synchronous Clear

The TC74VHC 161 and 163 are advanced high speed CMOS SYNCHRONOUS PRESETTABLE 4 BIT BINARY COUNTERs fabricated with silicon gate C²MOS technology.

They achieve the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

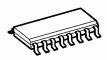
The CK input is active on the rising edge. Both $\overline{\text{LOAD}}$ and $\overline{\text{CLR}}$ inputs are active on low logic level.

Presetting of each IC's is synchronous to the rising edge of CK. The clear function of the TC74VHC163 is synchronous to CK, while the TC74VHC161 are cleared asynchronously.

Two enable inputs (ENP and ENT) and CARRY OUTPUT are provided to enable easy cascading of counters, which facilitates easy implementation of n-bit counters without using external gates.

An input protection circuit ensures that 0 to 5.5 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features


- High speed: $f_{max} = 185 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A$ (max) at $T_a = 25$ °C
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- · Power down protection is provided on all inputs.
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: V_{CC} (opr) = 2 to 5.5 V
- Low noise: VOLP = 0.8 V (max)
- Pin and function compatible with 74ALS161/163

Note: xxxFN (JEDEC SOP) is not available in Japan.

THE

TC74VHC161F, TC74VHC163F

SOP16-P-300-1.27A TC74VHC161FN, TC74VHC163FN

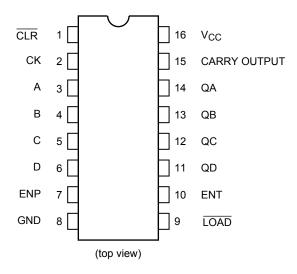
SOL16-P-150-1.27 TC74VHC161FT, TC74VHC163FT

TSSOP16-P-0044-0.65A TC74VHC161FK, TC74VHC163FK

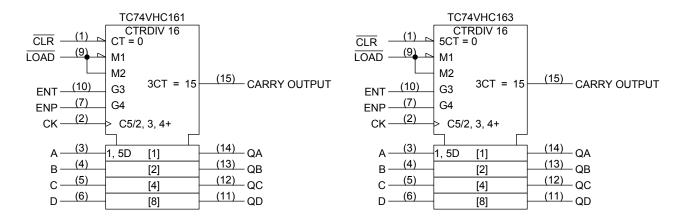
VSSOP16-P-0030-0.50

Weight

 SOP16-P-300-1.27A
 : 0.18 g (typ.)


 SOL16-P-150-1.27
 : 0.13 g (typ.)

 TSSOP16-P-0044-0.65A
 : 0.06 g (typ.)


 VSSOP16-P-0030-0.50
 : 0.02 g (typ.)

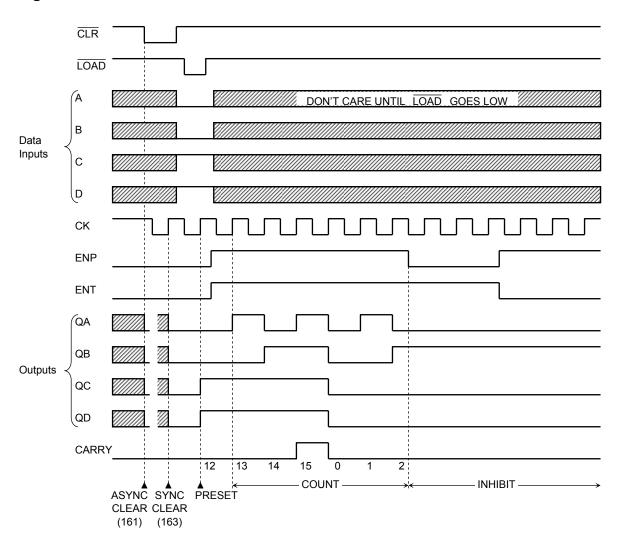
Pin Assignment

IEC Logic Symbol

Truth Table (Note)

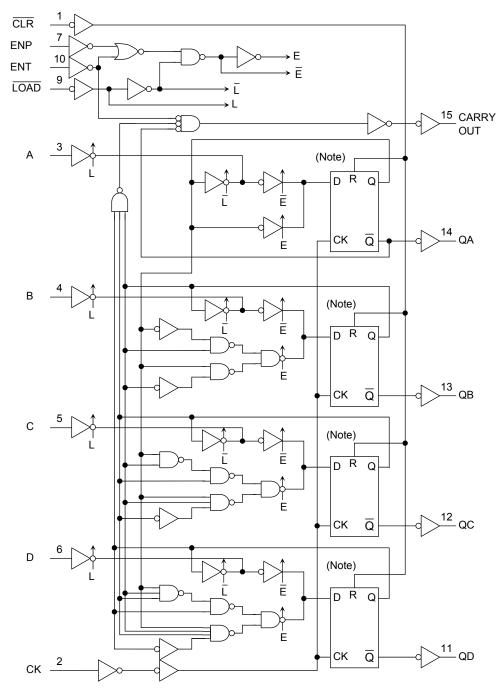
TC74VHC161				TC74VHC163				Outputs							
		Inputs					Inputs				Outputs			Function	
CLR	LD	ENP	ENT	СК	CLR	LD	ENP	ENT	СК	QA	QB	QC	QD		
L	Х	Х	Х	Х	L	Х	Х	Х		L	L	L	L	Reset to "0"	
Н	L	Х	Х		Н	L	Х	Х		A	В	С	D	Preset Data	
Н	Н	Х	L		Н	Н	Х	L		No Change			No Count		
Н	Н	L	Х		Н	Н	L	Х		No Change				No Count	
Н	Н	Н	Н		Н	Н	Н	Н		Count Up			Count		
Н	Х	Х	Х	\Box	Х	Х	Х	Х	\Box	No Change			No Count		

2


Note: X: Don't care

 $\mathsf{A},\,\mathsf{B},\,\mathsf{C},\,\mathsf{D}\text{: Logic level of data inputs}$

Carry: $CARRY = ENT \cdot QA \cdot QB \cdot QC \cdot QD$


Timing Chart

3

System Diagram

Note: Truth table of internal F/F

	TC74VHC161					TC74VHC163						
D	CK	R	Q	Q	D	CK	R	Q	IØ			
Х	Х	Н	L	Н	Х		Н	L	Н			
L		L	L	Н	L		L	L	Н			
Н		L	Н	L	Н		L	Н	L			
Х	\neg	L	No Cl	nange	Х	\neg	Х	No Cl	nange			

4

X: Don't care

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	−0.5 to 7.0	V
DC input voltage	V _{IN}	−0.5 to 7.0	V
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	-20	mA
Output diode current	lok	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±50	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	−65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Range (Note)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0 to 5.5	٧	
Input voltage	V_{IN}	0 to 5.5	>	
Output voltage	V _{OUT}	0 to V _{CC}	>	
Operating temperature	T _{opr}	−40 to 85	°C	
Input rise and fall time	dt/dv	0 to 100 (V _{CC} = 3.3 ± 0.3 V)	ns/V	
input rise and fail time	uvuv	0 to 20 (V _{CC} = 5 ± 0.5 V)		

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition						Ta −40 to	Unit	
Sharastonesis	Cymbol			V _{CC} (V)	Min	Тур.	Max	Min	Max	O.I.I.
High-level input voltage	V _{IH}		_	2.0 3.0 to 5.5	1.50 V _{CC} × 0.7	1 1	_ _	1.50 V _{CC} × 0.7	1 1	V
Low-level input voltage	V_{IL}		_	2.0 3.0 to 5.5	_ _	_ _	0.50 V _{CC} × 0.3	_ _	0.50 V _{CC} × 0.3	V
High-level output voltage	Voн	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -50 μA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5	_ _ _	1.9 2.9 4.4		V
		VIL	$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94	_ _	_ _	2.48 3.80	0.50 VCC ×	
Low-level output	V _{OL}	V _{IN} = V _{IH} or V _{IL}	Ι _{ΟL} = 50 μΑ	2.0 3.0 4.5	1 1 1	0.0 0.0 0.0	0.1 0.1 0.1		0.1	V
Ü			I _{OL} = 4 mA I _{OL} = 8 mA	3.0 4.5		1 1	0.36 0.36	1 1		
Input leakage current	I _{IN}	V _{IN} = 5.5	V _{IN} = 5.5 or GND		_	_	±0.1	ı	±1.0	μΑ
Quiescent supply current	Icc	V _{IN} = V _C	_C or GND	5.5	_	_	4.0	_	40.0	μΑ

Timing Requirements (input: $t_r = t_f = 3 \text{ ns}$)

Characteristics		Symbol	Test Condition		Ta = 25°C	Ta = -40 to 85°C	Unit
				V _{CC} (V)	Limit	Limit	
Minimum pulse width		t _{w (L)}	Figure 1	3.3 ± 0.3	5.0	5.0	ns
(CK)		t _{w (H)}	i igure i	5.0 ± 0.5	5.0	5.0	115
Minimum pulse width		+ a.	Figure 4	3.3 ± 0.3	5.0	5.0	ns
(CLR)	(Note1)	t _{w (L)}	Figure 4	5.0 ± 0.5	5.0	5.0	115
Minimum set-up time		•	Figure 2	3.3 ± 0.3	5.5	6.5	no
(A, B, C, D)		t _S	Figure 2	5.0 ± 0.5	4.5	4.5	ns
Minimum set-up time		4	Figure 2	3.3 ± 0.3	8.0	9.5	20
(LOAD)		t _S	Figure 2	5.0 ± 0.5	5.0	6.0	ns
Minimum set-up time		4	Figure 2	3.3 ± 0.3	7.5	9.0	20
(ENT, ENP)		t _S	Figure 3	5.0 ± 0.5	5.0	6.0	ns
Minimum set-up time		4	Figure F	3.3 ± 0.3	4.0	4.0	20
(CLR)	(Note 2)	t _S	Figure 5	5.0 ± 0.5	3.5	3.5	ns
Minimum hold time		4.	Figure 2 Figure 2	3.3 ± 0.3	1.0	1.0	20
Minimum noid time		t _h	Figure 2, Figure 3	5.0 ± 0.5	1.0	1.0	ns
Minimum hold time		4.	Figure F	3.3 ± 0.3	1.0	1.0	20
(CLR)	(Note 2)	t _h	Figure 5	5.0 ± 0.5	1.5	1.5	ns
Minimum removal time			Figure 4	3.3 ± 0.3	2.5	2.5	
(CLR)	(Note 1)	t _{rem}	Figure 4	5.0 ± 0.5	1.5	1.5	ns

7

Note 1: For TC74VHC161 only Note 2: For TC74VHC163 only

AC Characteristics (input: $t_r = t_f = 3$ ns)

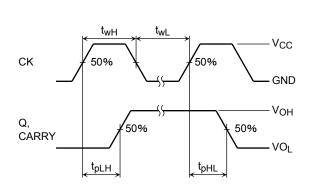
Characteristics	Symbol	Te	st Condition			Га = 25°(a = o 85°C	Unit
Characteriotics	Cymbol		V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Orme
			22.02	15	_	8.3	12.8	1.0	15.0	
Propagation delay time	t _{pLH}	Figure 1,	3.3 ± 0.3	50	_	10.8	16.3	1.0	18.5	
(CK-Q)	t_{pHL}	Figure 2	50.05	15	_	4.9	8.1	1.0	9.5	ns
(= ==,			5.0 ± 0.5	50	_	6.4	10.1	1.0	85°C Max 15.0 18.5 9.5 11.5 16.0 19.5 9.5 11.5 20.0 23.5 12.0 14.0 14.5 18.0 9.5 11.5 16.0 19.5 10.5 10.5 12.5 15.5 19.0 10.0 12.0 —	
Propagation delay			22.02	15	_	8.7	13.6	1.0	16.0	
time	t_{pLH}	Figure 1	3.3 ± 0.3	50	-	11.2	17.1	1.0	19.5	
(CK-CARRY,	t_{pHL}	Figure 1	50.05	15	_	4.9	8.1	1.0	9.5	ns
count-mode)			5.0 ± 0.5	50	-	6.4	10.1	1.0	11.5	
Propagation delay			22102	15	-	11.0	17.2	1.0	20.0	
time	lay t _{pLH}	Figure 2	3.3 ± 0.3	50	-	13.5	20.7	1.0	23.5	
(CK-CARRY,	t_{pHL}	Figure 2	5.0 ± 0.5	15	_	6.2	10.3	1.0	12.0	- ns -
preset-mode)				50	_	7.7	12.3	1.0	14.0	
			3.3 ± 0.3	15	_	7.5	12.3	1.0	14.5	- ns
Propagation delay time (ENT-CARRY)	t _{pLH} t _{pHL}	Figure 6	3.5 1 0.5	50	_	10.5	15.8	1.0	18.0	
		i iguie o	5.0 ± 0.5	15	_	4.9	8.1	1.0	9.5	
,			3.0 ± 0.3	50	_	6.4	10.1	1.0	11.5	
	.		3.3 ± 0.3	15	_	8.9	13.6	1.0	16.0	- ns
Propagation delay time		Figure 4	3.5 ± 0.5	50	I	11.2	17.1	1.0	19.5	
(CLR -Q) (Note 2)	t _{pHL}	i iguie 4	5.0 ± 0.5	15	I	5.5	9.0	1.0	10.5	113
			3.0 1 0.3	50	I	7.0	11.0	1.0	12.5	
Propagation delay			3.3 ± 0.3	15	I	8.4	13.2	1.0	15.5	
time	t	Figure 4	3.5 1 0.5	50	I	10.9	16.7	1.0	19.0	ns
(CLR -CARRY)	t _{pHL}	i iguie 4	5.0 ± 0.5	15	I	5.0	8.6	1.0	10.0	113
(Note 2)			3.0 1 0.3	50	I	6.5	10.6	1.0	12.0	
			3.3 ± 0.3	15	80	130	_	70	_	
Maximum clock	fmov		3.0 1 0.3	50	55	85	_	50	_	- MHz
frequency	[†] max		5.0 ± 0.5	15	135	185	_	115	_	
			3.0 1 0.0	50	95	125	_	85	_	
Input capacitance	C _{IN}		_		_	4	10	_	10	pF
Power dissipation capacitance	C_{PD}			(Note 1)	1	23	ı	ı	_	pF

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

When the outputs drive a capacitive load, total current consumption is the sum of C_{PD} , and ΔI_{CC} which is obtained from the following formula:

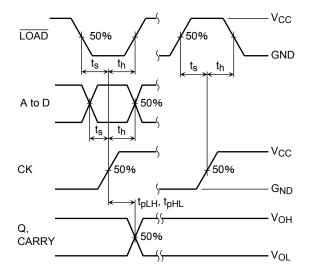
$$\Delta I_{CC} = \ f_{CK} \cdot V_{CC} \left(\frac{C_{QA}}{2} + \frac{C_{QB}}{4} + \frac{C_{QC}}{8} + \frac{C_{QD}}{16} + \frac{C_{CO}}{16} \right)$$


CQA to CQD and CCO are the capacitances at QA to QD and CARRY OUT, respectively.

 f_{CK} is the input frequency of the CK.

Note 2: For TC74VHC161 only

-V_{CC}


Switching Characteristics Test Waveform

CLR t_{WL} t_{WL} t_{WL} t_{rem} t_{rem} t_{rem} t_{O} t_{O}

Figure 1 Count Mode

Figure 4 Clear Mode (TC74VHC161)

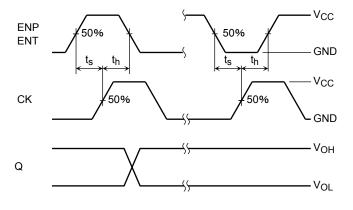



Figure 2 Preset Mode

Figure 5 Clear Mode (TC74VHC163)

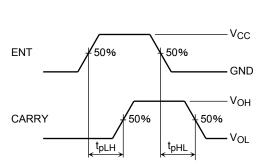
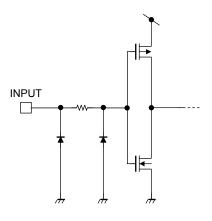
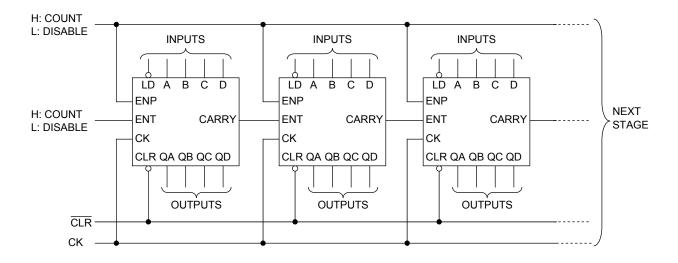


Figure 3 Count Enable Mode

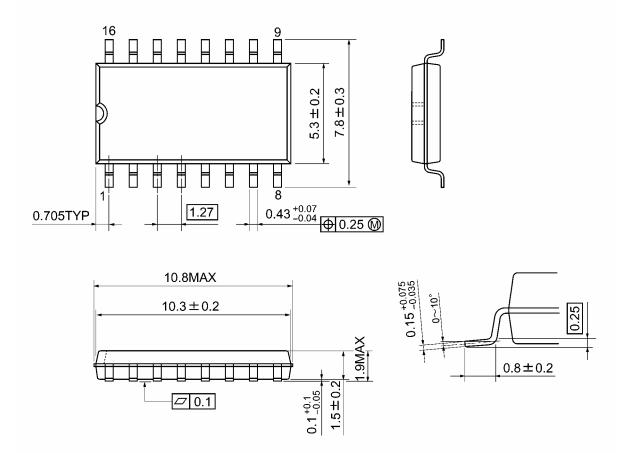

Figure 6 Cascade Mode (fix maximum count)

Noise Characteristics (input: $t_r = t_f = 3 \text{ ns}$)

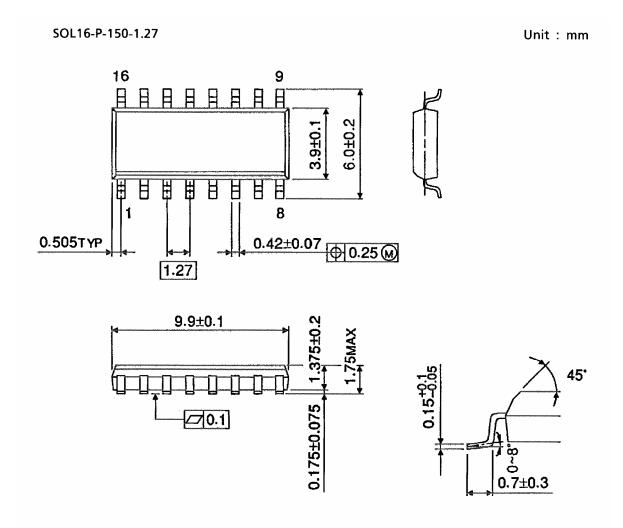

Characteristics	Symbol	Test Condition		Ta = 25°C		Unit
Characteristics	Symbol		V _{CC} (V)	Тур.	Max	Offic
Quiet output maximum dynamic V _{OL}	V_{OLP}	C _L = 50 pF	5.0	0.4	0.8	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	C _L = 50 pF	5.0	-0.4	-0.8	V
Minimum high level dynamic input voltage	V_{IHD}	C _L = 50 pF	5.0	_	3.5	V
Maximum low level dynamic input voltage	V _{ILD}	C _L = 50 pF	5.0	_	1.5	V

Input Equivalent Circuit

Typical Application

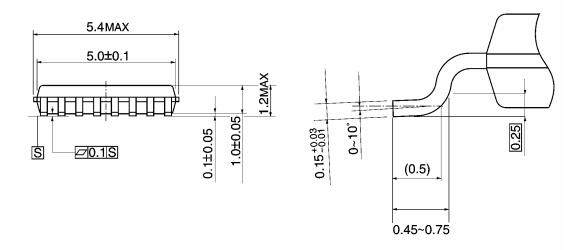

Parallel Carry N-Bit Counter

Package Dimensions


SOP16-P-300-1.27A Unit: mm

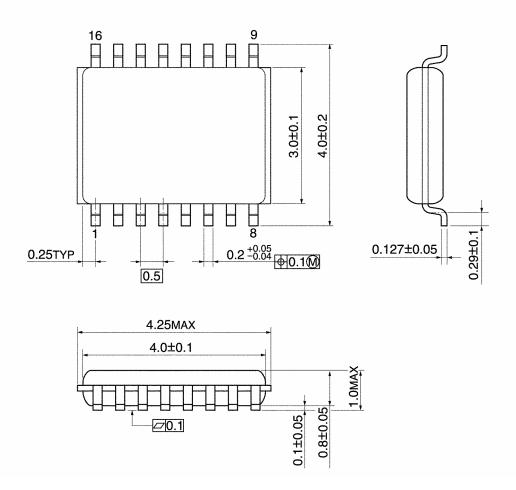
Weight: 0.18 g (typ.)

Package Dimensions (Note)


12

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)


Package Dimensions

Weight: 0.06 g (typ.)

Package Dimensions

VSSOP16-P-0030-0.50 Unit: mm

Weight: 0.02 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.