ALPHA SEMICO	& OMEGA NDUCTOR		AON6236 40V N-Channel MOSFET			
General Descriptior	1		Product Summa	ary		
The AON6236 uses trend uniquely optimized to pro- frequency switching performinimized due to an extr R _{DS(ON)} and Crss.In addit controlled with a "Schotth diode.	ovide the most efficie ormance.Power losse emely low combination ion,switching behavior	nt high es are on of or is well	V_{DS} I_D (at V_{GS} =10V) $R_{DS(ON)}$ (at V_{GS} =10V $R_{DS(ON)}$ (at V_{GS} = 4.5 100% UIS Tested 100% R _g Tested		40V 30A < 7mΩ < 10.5mΩ	
Top View Top View PIN1 Absolute Maximum Ratin	Bottom View	, S G	[2 7]D 3 6]D 4 5]D		D D D D D D D D D D D D D D D D D D D	
Parameter	igs T _A =25 C unless	Symbol	oleu			
Drain-Source Voltage			Maxim	um	Units	
Gate-Source Voltage			Maxim 40	um	Units	
		V _{DS}	40		V	
Continuous Drain	259		40 ±20			
	25°C	V _{DS}	40 ±20 30		V V	
Current ^G T _C =	25℃ 100℃	V _{DS} V _{GS} - I _D	40 +20 30 24		V	
Current ^G T _C =	100°C	V _{DS} V _{GS}	40 +20 30 24 120		V V	
Current G T_{C} = Pulsed Drain Current C T_A=	100°C 25°C	V _{DS} V _{GS} - I _D	40 +20 30 24 120 19		V V	
Current G T_{C} = Pulsed Drain Current C Tall Continuous Drain T_{A} = Current T_{A} =	100°C	V _{DS} V _{GS} -I _D I _{DM} -I _{DSM}	40 ±20 30 24 120 19 15		V V A A	
Current G $T_C=$ Pulsed Drain Current C Continuous Drain Continuous Drain $T_A=$ Current $T_A=$ Avalanche Current C	100°C 25°C 70°C	V _{DS} V _{GS} I _D I _{DM} I _{DSM} I _{AS}	40 ±20 30 24 120 19 15 33		V V A A A	
Current G $T_C=$ Pulsed Drain Current C Continuous Drain Continuous Drain $T_A=$ Current $T_A=$ Avalanche Current C Avalanche energy L=0.1m	100°C 25°C 70°C H [°]	V _{DS} V _{GS} -I _D I _{DM} -I _{DSM}	40 ±20 30 24 120 19 15 33 54		V V A A	
Current G T_{c} = Pulsed Drain Current C T_A= Continuous Drain Current T_A= T_A= Avalanche Current C T_A= Avalanche energy L=0.1ml T_c=	100°C 25°C 70°C H ^C 25°C	V _{DS} V _{GS} I _D I _{DM} I _{DSM} I _{AS}	40 ±20 30 24 120 19 15 33 54 39		V V A A A	
Current G T_{c} = Pulsed Drain Current C T_A= Continuous Drain Current T_A= T_A= Avalanche Current C T_A= Avalanche energy L=0.1ml T_C= Power Dissipation T_C= T_C=	100°C 25°C 70°C H [°] 25°C 100°C	V_{DS} V_{GS} I_D I_{DM} I_{AS} E_{AS} P_D	40 ±20 30 24 120 19 15 33 54 39 15.5	3	V V A A A mJ	
$\begin{array}{c c} \text{Current} & \overline{T}_{C} = \\ \hline \text{Pulsed Drain Current} & \overline{T}_{A} = \\ \hline \text{Continuous Drain} & \overline{T}_{A} = \\ \hline \text{Current} & \overline{T}_{A} = \\ \hline \text{Avalanche Current} & \overline{T}_{A} = \\ \hline \text{Avalanche energy L=0.1ml} \\ \hline \hline \text{Power Dissipation} & \overline{T}_{C} = \\ \hline \hline T_{A} = \\ \hline \hline T_{A} = \\ \hline \end{array}$	100°C 25°C 70°C H [°] 25°C 100°C 25°C	V _{DS} V _{GS} I _D I _{DM} I _{DSM} I _{AS} E _{AS}	40 ±20 30 24 120 19 15 33 54 39 15.5 4.2		V V A A A mJ	
Current G T_{C} = Pulsed Drain Current C T_A= Continuous Drain T_A = Current T_A = Avalanche Current C T_A= Avalanche energy L=0.1ml T_C= Power Dissipation B $T_C=$ Power Dissipation A $T_A=$	100°C 25°C 70°C H ^C 25°C 100°C 25°C 70°C	V _{DS} V _{GS} I _D I _{DM} I _{DSM} I _{AS} E _{AS} P _D P _{DSM}	40 ±20 30 24 120 19 15 33 54 39 15.9 4.2 2.7	5	V V A A M M W W	
Current G T_{c} = Pulsed Drain Current C T_A= Continuous Drain $T_A=$ Current $T_A=$ Avalanche Current C T_A= Avalanche energy L=0.1ml $T_C=$ Power Dissipation B $T_C=$ Power Dissipation A $T_A=$ Junction and Storage Tem $T_A=$	100°C 25°C 70°C H ^C 25°C 100°C 25°C 70°C	V_{DS} V_{GS} I_D I_{DM} I_{AS} E_{AS} P_D	40 ±20 30 24 120 19 15 33 54 39 15.5 4.2	5	V V A A M M J W	
$\begin{array}{c c} \text{Current} & & & & & \\ \hline \text{Pulsed Drain Current} & \\ \hline \text{Continuous Drain} & & \\ \hline \text{Current} & & \\ \hline \text{Avalanche Current} & \\ \hline \text{Avalanche energy L=0.1ml} \\ \hline \hline \\ \hline $	100°C 25°C 70°C H ^C 25°C 100°C 25°C 70°C	V _{DS} V _{GS} I _D I _{DM} I _{DSM} I _{AS} E _{AS} P _D P _{DSM}	40 ±20 30 24 120 19 15 33 54 39 15.9 4.2 2.7	5	V V A A M M W W	

Inermal Characteristics					
Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient ^A t ≤ 10s		D	24	30	°C/W
Maximum Junction-to-Ambient AD	Steady-State	κ _{θJA}	53	64	°C/W
Maximum Junction-to-Case	Steady-State	$R_{ ext{ hetaJC}}$	2.6	3.2	°C/W

Γ

Electrical Characteristics (T_J=25[°]C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS	- -					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		40			V
I	Zero Coto Voltogo Droin Current	V _{DS} =40V, V _{GS} =0V				1	۵
IDSS	Zero Gate Voltage Drain Current		T_=55℃			5	μA
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V, V_{GS}=\pm 20V$				±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1.4	1.85	2.4	V
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V		120			А
		V _{GS} =10V, I _D =20A			5.6	7	
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125℃		8.4	10.5	mΩ
		V _{GS} =4.5V, I _D =20A			8	10.5	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =20A			80		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.72	1	V
I _S Maximum Body-Diode Continuous Current ^G						30	А
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance				1225		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =20V, f=	=1MHz		318		pF
C _{rss}	Reverse Transfer Capacitance				26.5		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1	MHz		1.7	3.0	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge				18.5	26	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =20V,	-204		8.2	12	nC
Q _{gs}	Gate Source Charge	$v_{GS} = 10^{\circ}, v_{DS} = 20^{\circ},$	D-20A		3.5		nC
Q _{gd}	Gate Drain Charge				2.5		nC
t _{D(on)}	Turn-On DelayTime				6		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =20V,	$R_L=1\Omega$,		2.8		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			23.5		ns
t _f	Turn-Off Fall Time]			3		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/µ	lS		14		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dl/dt=500A/µ	lS		32.5		nC

A. The value of R_{eJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The Power dissipation P_{DSM} is based on R _{eJA} and the maximum allowed junction temperature of 150° C. The value in any given application depends

Power dissipation P_{DSM} is based on R _{6JA} and the maximum allowed junction temperature of 150°°C. The value in any given application depends on the user's specific board design.

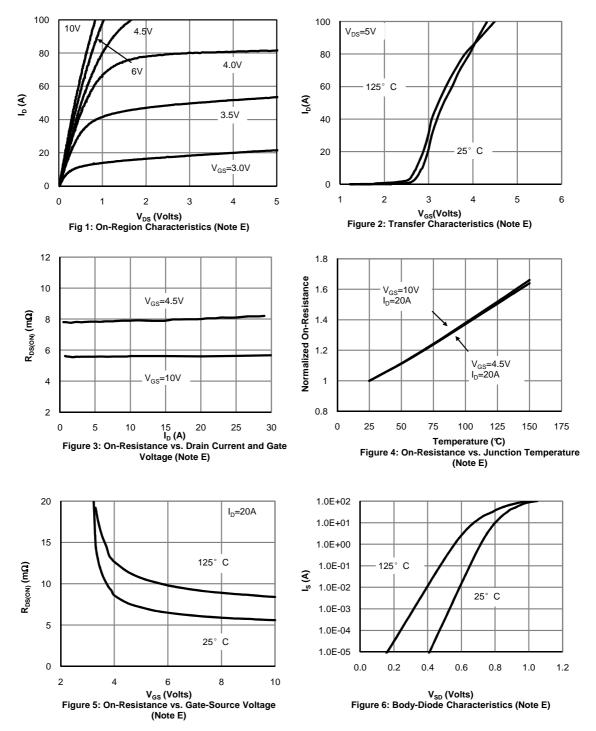
B. The power dissipation P_D is based on $T_{J(MAX)}=150^{\circ}$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.

D. The $R_{\rm eJA}$ is the sum of the thermal impedance from junction to case $R_{\rm eJC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.


G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

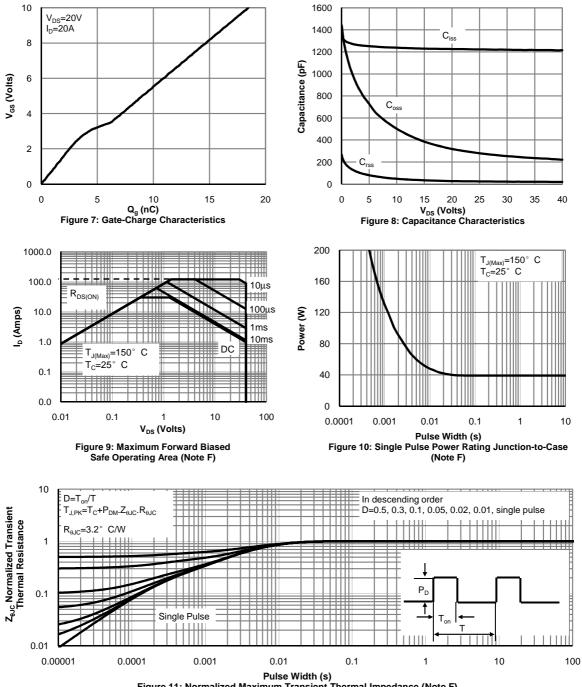
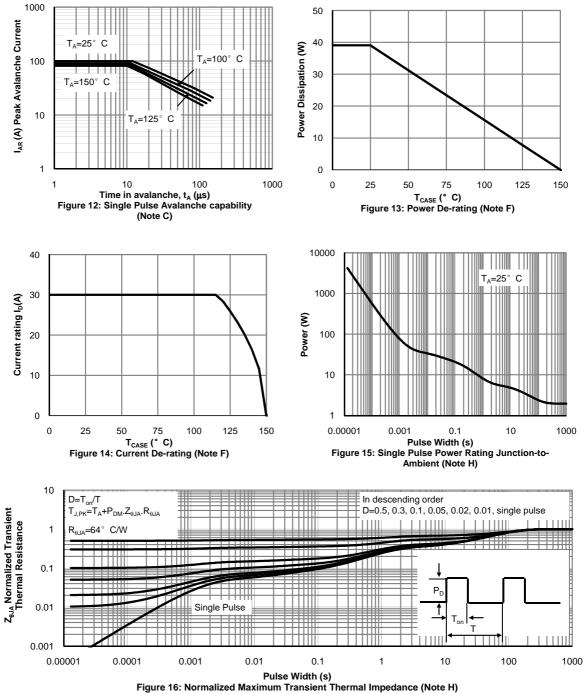
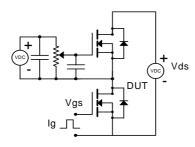
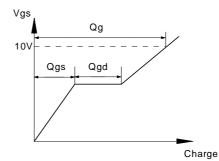
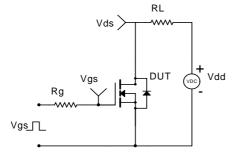
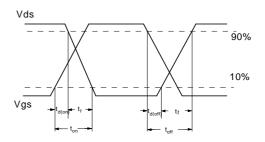



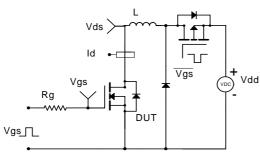
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

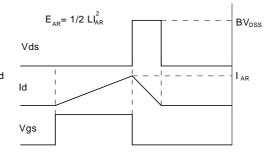


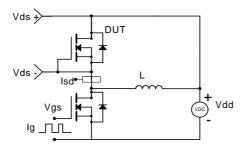

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

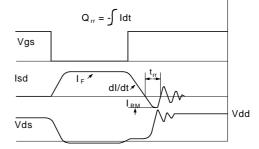



Gate Charge Test Circuit & Waveform



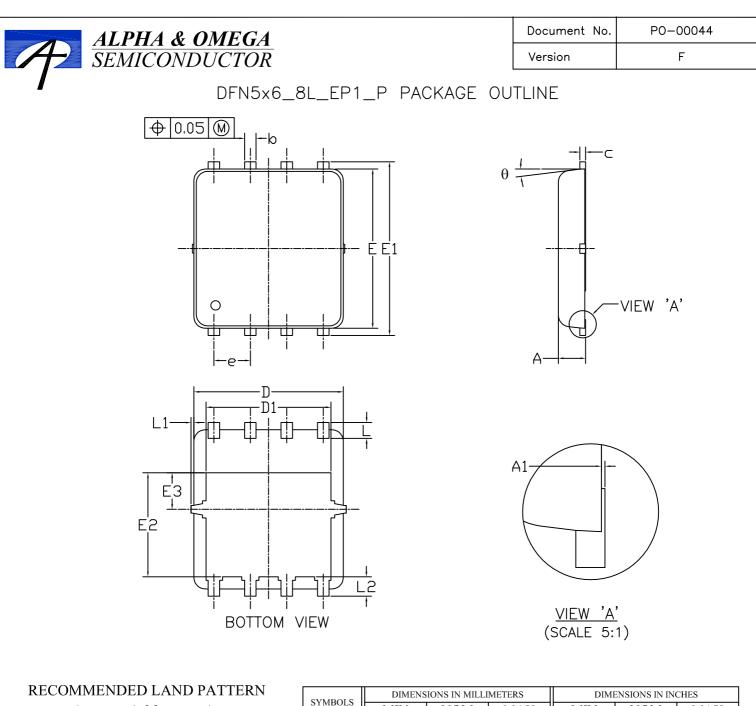

Resistive Switching Test Circuit & Waveforms

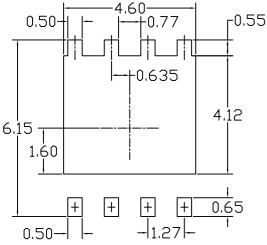



Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-01541
Version	А
Title	AON6236 Marking Description


DFN5X6 PACKAGE MARKING DESCRIPTION



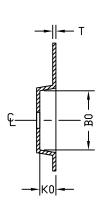
Green product

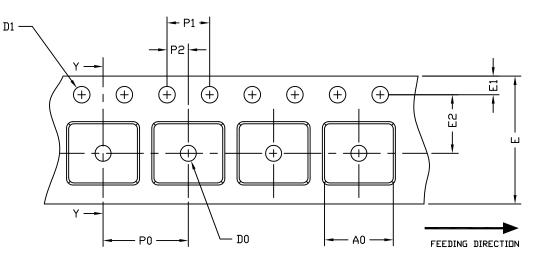
NOTE:	
LOGO	- AOS Logo
6236	- Part number code
F	- Fab code
А	- Assembly location code
Y	- Year code
W	- Week code
L&T	- Assembly lot code

PART NO.	DESCRIPTION	CODE		
AON6236	Green product	6236		
AON6236L	Green product	6236		

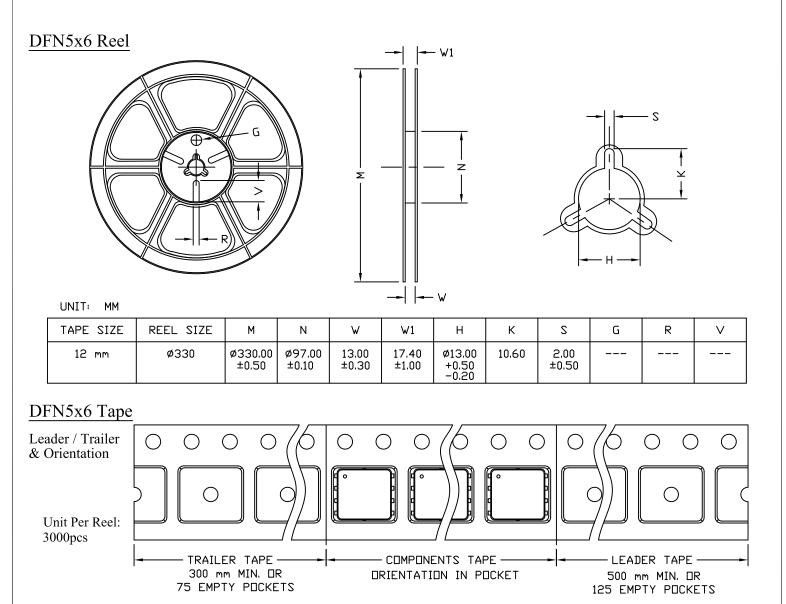
SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIMENSIONS IN INCHES				
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX		
А	0.85	0.95	1.00	0.033	0.037	0.039		
A1	0.00		0.05	0.000		0.002		
b	0.30	0.40	0.50	0.012	0.016	0.020		
с	0.15	0.20	0.25	0.006	0.008	0.010		
D	5.10	5.20	5.30	0.201	0.205	0.209		
D1	4.25	4.35	4.45	0.167	0.171	0.175		
E	5.45	5.55	5.65	0.215	0.219	0.222		
E1	5.95	6.05	6.15	0.234	0.238	0.242		
E2	3.525	3.625	3.725	0.139	0.143	0.147		
E3	1.175	1.275	1.375	0.046	0.050	0.054		
e		1.27 BSC			0.050 BSC			
L	0.45	0.55	0.65	0.018	0.022	0.026		
L1	0		0.15	0		0.006		
L2	0.68 REF			0.027 REF				
θ	0°		10°	0°		10°		

NOTE


 PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
 CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.


UNIT: mm

DFN5x6 Tape and Reel Data


DFN5x6 Carrier Tape

UNIT: MM

PACKAGE	A0	BO	K0	DO	D1	E	E1	E2	P0	P1	P2	Т
DFN5x6	6.30	5.45	1.30	1.50	1.55	12.00	1.75	5.50	8.00	4.00	2.00	0.30
(12 mm)	±0.10	±0.10	±0.10	MIN.	±0.05	±0.30	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05

AOS Semiconductor Product Reliability Report

AON6236, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

www.aosmd.com

This AOS product reliability report summarizes the qualification result for AON6236. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AON6236 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation

I. Product Description:

The AON6236 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Crss. In addition, switching behavior is well controlled with a "Schottky style" soft recovery body diode.

-RoHS and Halogen-Free Compliant

Detailed information refers to datasheet.

II. Die / Package Information:

	AON6236
Process	Standard sub-micron
	Low voltage N channel
Package Type	DFN 5x6
Lead Frame	Cu
Die Attach	Ag epoxy
Bonding Wire	Cu wire
Mold Material	Epoxy resin with silica filler
MSL (moisture sensitive level)	Level 1 based on J-STD-020

Note * based on information provided by assembler and mold compound supplier

III. Result of Reliability Stress for AON6236

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures	Standard
MSL Precondition	168hr 85℃ /85%RH +3 cycle reflow@260℃	-	11 lots	1815pcs	0	JESD22- A113
HTGB	Temp = 150 °c, Vgs=100% of Vgsmax	168hrs 500 hrs 1000 hrs	1 lot 3 lots	308pcs	0	JESD22- A108
			(Note A*)	77pcs / lot		
HTRB	Temp = 150 °c, Vds=80% of Vdsmax	168hrs 500 hrs 1000 hrs	1 lot 3 lots	308pcs	0	JESD22- A108
			(Note A*)	77pcs / lot		
HAST	130 +/- 2°c, 85%RH, 33.3 psi, Vgs = 100% of	100 hrs	11 lots	605pcs	0	JESD22- A110
	Vgs max		(Note A*)	55pcs / lot		
Pressure Pot	121°c, 29.7psi, RH=100%	96 hrs	11 lots	605pcs	0	JESD22- A102
			(Note A*)	55pcs / lot		
Temperature Cycle	-65°c to 150°c, air to air	250 / 500 cycles	11 lots	605pcs	0	JESD22- A104
			(Note A*)	55pcs / lot		

Note A: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 7 MTTF = 15704 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AON6236). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 x \ 10^9 / [2 (N) (H) (Af)]$ = 1.83 x 10⁹ / [2x (2x77x168+2x3x77x1000) x258] = 7 MTTF = 10⁹ / FIT = 1.38 x 10⁸ hrs = 15704 years

 Chi^2 = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C) Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)] Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C		
Af	258	87	32	13	5.64	2.59	1		

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u = The use junction temperature in degree (Kelvin), K = C+273.16

 $\mathbf{K} = \text{Boltzmann's constant}, 8.617164 \text{ X } 10^{-5} \text{eV} / \text{K}$