

UNISONIC TECHNOLOGIES CO., LTD

UA9287

LINEAR INTEGRATED CIRCUIT

REVERSIBLE MOTOR DRIVER

DESCRIPTION

The UTC **UA9287** is designed for driving reversible-motor with a maximum output current of 1A. There are four output modes decided by two logic inputs: forward, reverse, stop (idling), and brake. When the motor is in stop mode, the current consumption can be suppressed.

FEATURES

- * With the V_{REF} Pin, Output Voltage can be Set Arbitrarily.
- * The Current Dissipation can be Suppresses with Power Saving Circuit Built-In when in Stop Mode.
- * Thermal Shutdown Circuit Built-In.
- * Interfaces with TTL Devices.

ORDERING INFORMATION

Ordering	Number	Daakaga	Packing	
Lead Free	Halogen Free	Package		
UA9287L-D08-T	UA9287G-D08-T	DIP-8	Tube	
_	UA9287G-S08-R	SOP-8	Tape Reel	
_	UA9287G-S08-T	SOP-8	Tube	

MARKING

SOP-8	DIP-8
8 7 6 5 UTC□□□□ U A 9 2 8 7 G • □□ 1 2 3 4 Lot Code	8 7 6 5 Date Code UTC □□□□ L: Lead Free UA9287□ C: Halogen Free □□ L: Lot Code

UA9287

■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	FUNCTION
1	OUT1	Motor Output
2	VM	Motor Power Supply
3	Vcc	Power Supply
4	FIN	Logic Input
5	R _{IN}	Logic Input
6	V _{REF}	HIGH Level Output Voltage Setting
7	OUT2	Motor Output
8	GND	GND

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Power Supply Voltage		V _{CC}	18	V
Output Current		I _{O(MAX)}	1000 (Note 2, 3)	mA
Power Dissipation (Note 2)	SOP-8	PD	600	mW
	DIP-8		680	mW
Operating Temperature		T _{OPR}	-20 ~ +75	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. When mounted on a glass epoxy board (50×50×1.6mm)

3. Should not exceed P_D

■ **RECOMMENDED OPERATING CONDITIONS** (T_A=25°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Power Supply Voltage	Vcc	4.5		15	V
Motor Power Supply Voltage	VM	4.5		15	V
Output High Level Voltage Setting Pin	V _{REF}	4.5		15	V

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, V_{CC}=9V, V_M=9V, V_{REF}=9V, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
Supply Current 1	I _{CC1}	Forward or reverse mode	12	24	36	mA
Supply Current 2	I _{CC2}	Brake mode	29	48	67	mA
Standby Supply Current	I _{ST}	Standby mode			15	μA
V _{REF} Pin Sink Current	I _{REF}	Forward or reverse mode I ₀ =200mA	6	12	18	mA
Input High Level Voltage	VIH		2.0			V
Input Low Level Voltage	VIL				0.8	V
Input High Level Current	IIH	V _{IN} =2.0V	45	90	135	μA
Output Saturation Voltage	V _{CE}	I _O =200mA, Sum of output transistor high-and low-side voltages		1.0	1.5	v

TYPICAL APPLICATION CIRCUIT

Figure 1.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

