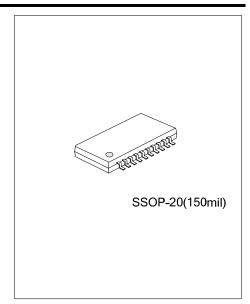


UNISONIC TECHNOLOGIES CO., LTD

L8001 Preliminary CMOS IC

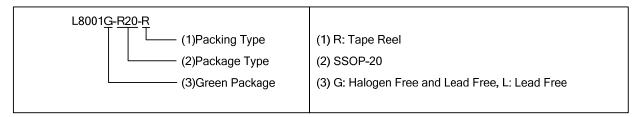

FET BIAS CONTROLLER

DESCRIPTION

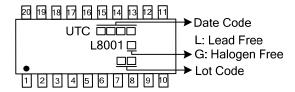
The UTC **L8001** is specially designed integrated circuit for satellite receiver front-end block. It provides stable drain and gate bias conditions for GaAs or HEMT FETs.

The UTC **L8001**, provide six FETs bias control respectively. By adjusting two external resistors, it can change the FET's bias current to optimize the satellite receiver front end block performances.

It generates the required negative voltage to bias the gate of GaAs FET, and internally provides protection circuit that can protect the FET devices during supply voltage transient. So it is very popular in satellite receiver front end block.

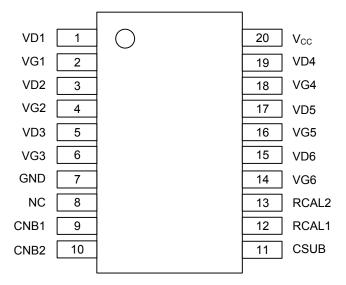


■ FEATURES


- * Built in FET device protection circuit
- * Adjustable FET device operating current
- * Stable bias control for GaAs and HEMT FETs
- * Drive up to six FETs
- * Wide supply voltage range

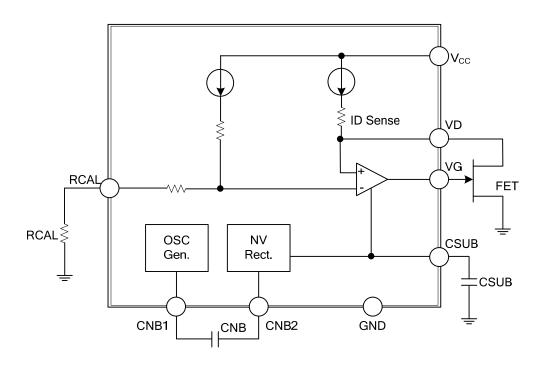
■ ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
L8001L-R20-R	L8001G-R20-R	SSOP-20	Tape Reel	



■ MARKING

www.unisonic.com.tw 1 of 6


■ PIN CONFIGURATION

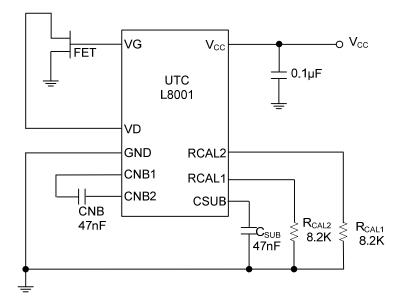
■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	VD1	1 st Drain output voltage		
2	VG1	1 st Gate output voltage		
3	VD2	2 nd Drain output voltage		
4	VG2	2 nd Gate output voltage		
5	VG3	3 rd Gate output voltage		
6	VD3	3 rd Drain output voltage		
7	GND	Ground		
8	NC	No connect		
9	CNB1	OSC output		
10	CNB2	Rectifier Input		
11	CSUB	Negative voltage output		
12	RCAL1	VD1/VD2/VD3 current set resistor connect		
13	RCAL2	VD4/VD5/VD6 current set resistor connect		
14	VG6	6 th Gate output voltage		
15	VD6	6 th Drain output voltage		
16	VG5	5 th Gate output voltage		
17	VD5	5 th Drain output voltage		
18	VG4	4 th Gate output voltage		
19	VD4	4 th Drain output voltage		
20	V _{CC}	Supply voltage		

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.6 ~ 8	V
Supply Current	Icc	100	mA
Maximum Drain Current	I _D	15	mA
Maximum CSUB Sink Current	I _{CSUB}	-500	uA
Operating Temperature	T _{OPR}	-40 ~ 80	°C
Storage Temperature	T _{STG}	-50 ~ 150	°C

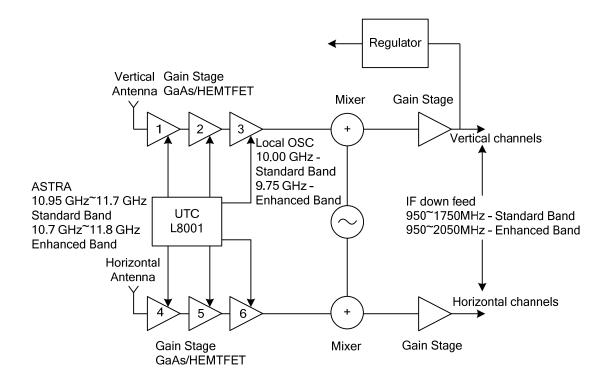

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

 $(V_{\text{CC}}\text{=}3.3\text{V}, I_{\text{D}}\text{=}10\text{mA}, R_{\text{CAL1}}\text{=}8.2\text{K}\Omega, R_{\text{CAL2}}\text{=}8.2\text{K}\Omega, T_{\text{A}}\text{=}25^{\circ}\text{C}, unless otherwise stated})$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V_{CC}		3.3		6	V
Supply Current	I _{CC}	No FET			10	mA
Negative Voltage	V_{SUB}	I _{SUB} =0uA, V _{CC} =6V	-3.0	-2.5	-1	V
Negative Voltage		I _{SUB} =-200uA			-1	V
Oscillator Freq.	f_{O}		200	350	800	KHz
Drain Current	I_{D}		8	10	12	mA
Drain Current Change with V _{CC}	ΔI_{DV}	V _{CC} =3.3~6V		0.2		%/V
VD1/VD2/VD3/VD4/VD5/VD6 Drain	٨١			0.2		m Λ
Offset Current	ΔI_{DC}			0.2		mA
Drain Current Change with Temp.	ΔI_{DT}	T=-40~80°C		0.1		%/°C
Drain Voltage	V_D	I _D =10mA	1.8	2	2.2	V
Drain Voltage Change with V _{CC}	ΔV_{DV}	V _{CC} =3.3~6V		0.5		%/V
Drain Voltage Change	ΔV_{DT}	T=-40~80°C		50		ppm
Dynamic Gate Voltage Range	V_{G}	Csub without loading	-2.5		0.7	V
Drain Output Noise Voltage	V_{dn}	With drain bypass capacitor=10nF			0.05	V_{PP}
Gate Output Noise Voltage	V_{GN}	With gate bypass capacitor=10nF			0.03	V_{PP}

TYPICAL APPLICATION CIRCUIT


There are three major functions provided by L8001G: support negative voltage, bias control circuit, and FET protesting circuit.

The negative voltage is generated using internal oscillator. It only needs an ac coupled capacitor C_{NB} 47nF and a negative voltage bypass capacitor C_{SUB} 47nF.

The bias control circuit is used to establish a stable bias current for FETs. It's bias current can be adjusted by external resistor Rcal.Rcal1 resistor is used to set I_{D1} , I_{D2} , I_{D3} in L8001G. Rcal2 resistor is used to set I_{D4} , I_{D5} , I_{D6} in L8001G. if the same drain current is required for all FETs then pins Ical1 and Ical2 can be wired together and shunted to ground by a single resistor of half normal value.

The L8001G devices have been designed to protect the external FETs from adverse operating conditions. With a JFET connected to any bias circuit, the gate output voltage of the bias circuit can not exceed the range -2.5V to 0.7V, under any conditions including powerup and powerdown transients. Should the negative bias generator be shorted or overloaded so that the drain current of the external FETs can no longer be controlled, the drain supply to FETs is shut down to avoid damage to the FETs by excessive drain current. The following diagrams show the L8001G in typical LNB applications. Within each FET gain stage the numbering system indicates how the bias stages relate to the application circuits. This is important when RCAL values are used to set differing drain currents.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.