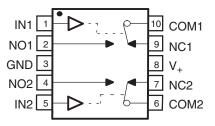


DUAL 15-Ω SPDT ANALOG SWITCH

Check for Samples: TS5A23157-Q1

FEATURES


- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: –40°C to 125°C
 - Device HBM ESD Classification Level H2
 - Device CDM ESD Classification Level C4B
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- Specified Break-Before-Make Switching
- Low ON-State Resistance (15 Ω)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-Resistance Matching

Low Total Harmonic Distortion

• 1.8-V to 5.5-V Single-Supply Operation

APPLICATIONS

- Sample-and-Hold Circuits
- Battery-Powered Equipment
- Audio and Video Signal Routing
- Communication Circuits

DESCRIPTION

The TS5A23157 is a dual, single-pole, double-throw (SPDT) analog switch designed to operate from 1.65 V to 5.5 V. This device can handle both digital and analog signals. The device can transmit signals up to 5.5 V (peak) in either direction.

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

Table 1. FUNCTION TABLE

INPUT IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Table 2. SUMMARY OF CHARACTERISTICS

Configuration	2:1 Multiplexer and Demultiplexer (2 x SPDT)
Number of channels	2
r _{on}	15 Ω
Δr_{on}	0.15 Ω
r _{on(flat)}	4 Ω
t _{ON}	8.7 ns
t _{OFF}	6.8 ns
t _{BBM}	0.5 ns
Charge injection	7 pC
Bandwidth	220 MHz
OFF isolation	-65 dB at 10 MHz
Crosstalk	-66 dB at 10 MHz
Total harmonic distortion	0.01%
I _{COM(off)} /I _{NC(OFF)}	±1 μA
Package option	10-pin DGS

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V ₊	Supply voltage range (2)	-0.5	6.5	V	
$V_{NC} \ V_{NO} \ V_{COM}$	Analog voltage range (2) (3) (4)	-0.5	V ₊ + 0.5	V	
I _{I/OK}	Analog port diode current	V_{NC} , V_{NO} , $V_{COM} < 0$ or V_{NC} , V_{NO} , $V_{COM} > V_{+}$		±50	mA
I _{NC} I _{NO} I _{COM}	On-state switch current		±50	mA	
V_{IN}	Digital input voltage range (2) (3)		-0.5	6.5	V
I _{IK}	Digital input clamp current	V _{IN} < 0		-50	mA
	Continuous current through V ₊ or C	GND		±100	mA
θ_{JA}	Package thermal impedance ⁽⁵⁾			165.36	°C/W
T _{stg}	Storage temperature range		-65	150	°C
FCD		Human-body model H2		2	kV
ESD	Electrostatic discharge rating	Charged-device model C4B		750	V

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Submit Documentation Feedback

⁽²⁾ All voltages are with respect to ground, unless otherwise specified.

⁽³⁾ The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁴⁾ This value is limited to 5.5 V maximum.

⁽⁵⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Characteristics for 5-V Supply

 $V_{+} = 4.5 \text{ V}$ to 5.5 V, $T_{A} = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	DITIONS	TA	V ₊	MIN	TYP ⁽¹⁾	MAX	UNIT	
Analog Switch										
Analog signal range	V_{COM} , V_{NO} , V_{NC}					0		V ₊	V	
ON-state resistance	r _{on}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -30 \text{ mA},$	Switch ON, See Figure 6	Full	4.5 V			15	Ω	
ON-state resistance match between channels	Δr _{on}	V_{NO} or $V_{NC} = 3.15 \text{ V}$, $I_{COM} = -30 \text{ mA}$,	Switch ON, See Figure 6	25°C	4.5 V		0.15		Ω	
ON-state resistance flatness	r _{on(flat)}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -30 \text{ mA},$	Switch ON, See Figure 6	25°C	4.5 V		4		Ω	
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch OFF,	25°C	5.5 V	-1	0.05	1		
OFF leakage current	I _{NO(OFF)}	$V_{COM} = 0$ to V_+ ,	See Figure 7	Full	5.5 V	-1		1	μΑ	
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C	5 5 V	-0.1		0.1		
ON leakage current	I _{NO(ON)}	V _{COM} = Open,	See Figure 7	Full	5.5 V	-1		1	μA	
COM		V _{NC} or V _{NO} = Open,	Switch ON,	25°C	5 5 V	-0.1		0.1		
ON leakage current	ICOM(ON)	$V_{COM} = 0$ to V_+ ,	See Figure 7	Full	5.5 V	-1		1	μA	
Digital Inputs (IN1, IN	N2) ⁽²⁾							,		
Input logic high	V _{IH}			Full		$V_{+} \times 0.7$			V	
Input logic low	V _{IL}			Full				$V_{+} \times 0.3$	V	
Input leakage		V		25°C	E E V	-1	0.05	1		
current	I _{IH} , I _{IL}	$V_{IN} = 5.5 \text{ V or } 0$	Full	5.5 V	-1		1	μΑ		

 $T_A = 25^{\circ}C$ Hold all unused digital inputs of the device at V+ or GND to ensure proper device operation. See the TI application report, *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 5-V Supply (continued)

 V_{+} = 4.5 V to 5.5 V, T_{A} = -40°C to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDIT	TONS	T _A	V ₊	MIN	TYP ⁽¹⁾	MAX	UNIT
Dynamic	•			•	· · · · · ·				
Turnon time	t _{ON}	V_{NC} = GND and V_{NO} = V_{+} , or V_{NC} = V_{+} and V_{NO} = GND,	$R_L = 500 \Omega$, $C_L = 50 pF$, See Figure 9	Full	4.5 V to 5.5 V	1.2		8.7	ns
Turnoff time	t _{OFF}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						6.8	ns
Break-before-make time	t _{BBM}	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	C _L = 35 pF, See Figure 10	25°C	4.5 V to 5.5 V	0.5			ns
Charge injection	Q _C	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	See Figure 14	25°C	5 V		7		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch OFF, See Figure 8	25°C	5 V		5.5		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, See Figure 8	25°C	5 V		17.5		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND,	Switch ON, See Figure 8	25°C	5 V		17.5		pF
Digital input capacitance	C _{IN}	V _{IN} = V ₊ or GND,	See Figure 8	25°C	5 V		2.8		pF
Bandwidth	BW	$R_L = 50 \Omega$,	Switch ON, See Figure 11	25°C	4.5 V		220		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 12	25°C	4.5 V		-65		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 13	25°C	4.5 V		-66		dB
Total harmonic distortion	THD	$R_L = 600 \ \Omega,$ $C_L = 50 \ pF,$	f = 600 Hz to 20 kHz, See Figure 15	25°C	4.5 V		0.01		%
Supply									
Positive supply current	I ₊	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	5.5 V			1 10	μΑ
Change in supply current	ΔΙ+	V _{IN} = V ₊ - 0.6 V		Full	5.5 V			500	μΑ

Submit Documentation Feedback

Copyright © 2007–2013, Texas Instruments Incorporated

Electrical Characteristics for 3.3-V Supply

 $V_{\bullet} = 3 \text{ V to } 3.6 \text{ V}, T_{\wedge} = -40^{\circ}\text{C to } 125^{\circ}\text{C (unless otherwise noted)}$

PARAMETER	SYMBOL	TEST CONDIT	IONS	T _A	V ₊	MIN	TYP ⁽¹⁾	MAX	UNIT
Analog Switch									
Analog signal range	V_{COM} , V_{NO} , V_{NC}					0		V ₊	V
ON-state resistance	r _{on}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, See Figure 6	Full	3 V			23	Ω
ON-state resistance match between channels	Δr _{on}	V_{NO} or $V_{NC} = 2.1 \text{ V}$, $I_{COM} = -24 \text{ mA}$,	Switch ON, See Figure 6	25°C	3 V		0.2		Ω
ON-state resistance flatness	r _{on(flat)}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, See Figure 6	25°C	3 V		9		Ω
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = 0$ to V_+ ,	Switch OFF, See Figure 7	25°C Full	3.6 V	-1 -1	0.05	1	μA
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = Open$,	Switch ON, See Figure 7	25°C Full	3.6 V	-0.1 -1		0.1	μA
COM ON leakage current	I _{COM(ON)}	V_{NC} or V_{NO} = Open, V_{COM} = 0 to V_{+} , See Figure 7 Switch ON, V_{COM} = 0 to V_{+} , V_{COM} = 0 to V_{+}							
Digital Inputs (IN1, IN	N2) ⁽²⁾	 							-
Input logic high	V _{IH}			Full		V ₊ × 0.7			V
Input logic low	V _{IL}			Full				V ₊ × 0.3	V
Input leakage current	I _{IH} , I _{IL}	V _{IN} = 5.5 V or 0		25°C Full	3.6 V	-1 -1	0.05	1	μΑ
Dynamic									
Turnon time	t _{ON}	V_{NC} = GND and V_{NO} = V_{+} , or V_{NC} = V_{+} and V_{NO} = GND,	$R_L = 500 \Omega$, $C_L = 50 pF$, See Figure 9	Full	3 V to 3.6 V	2.0		10.6	ns
Turnoff time	t _{OFF}	V_{NC} = GND and V_{NO} = V_{+} , or V_{NC} = V_{+} and V_{NO} = GND,	$R_L = 500 \Omega,$ $C_L = 50 pF,$ See Figure 9	Full	3 V to 3.6 V	1.0		8.3	ns
Break-before-make time	t _{BBM}	$\begin{aligned} V_{NC} &= V_{NO} = V_{+}/2, \\ R_{L} &= 50 \ \Omega, \end{aligned}$	$C_L = 35 \text{ pF},$ See Figure 10	25°C	3 V to 3.6 V	0.5			ns
Charge injection	Q_{C}	$R_L = 50 \ \Omega,$ $CL = 0.1 \ nF,$	See Figure 14	25°C	3.3 V		3		pC
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 11	25°C	3 V		220		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 12	25°C	3 V		-65		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 13	25°C	3 V		-66		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 600 Hz to 20 kHz, See Figure 15	25°C	3 V		0.015		%
Supply	1			1				,	
Positive supply current	I ₊	$V_{IN} = V_{+} \text{ or GND},$	Switch ON or OFF	25°C Full	3.6 V			1 10	μA
Change in supply current	ΔΙ+	V _{IN} = V ₊ - 0.6 V		Full	3.6 V			500	μΑ

 ⁽¹⁾ T_A = 25°C
 (2) Hold all unused digital inputs of the device at V+ or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Electrical Characteristics for 2.5-V Supply

 $V_{+} = 2.3 \text{ V}$ to 2.7 V, $T_{\triangle} = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted)

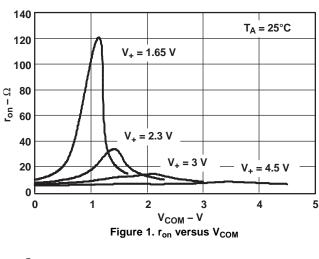
PARAMETER	SYMBOL	TEST CONDIT	IONS	TA	V ₊	MIN	TYP ⁽¹⁾	MAX	UNIT
Analog Switch									
Analog signal range	V_{COM} , V_{NO} , V_{NC}					0		V ₊	V
ON-state resistance	r _{on}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 6	Full	2.3 V			50	Ω
ON-state resistance match between channels	Δr _{on}	V_{NO} or $V_{NC} = 1.6 \text{ V}$, $I_{COM} = -8 \text{ mA}$,	Switch ON, See Figure 6	25°C	2.3 V		0.5		Ω
ON-state resistance flatness	r _{on(flat)}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 6	25°C	2.3 V		27		Ω
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = 0$ to V_+ ,	Switch OFF, See Figure 7	25°C Full	2.7 V	-1 -1	0.05	1	μA
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = Open$,	Switch ON, See Figure 7	25°C Full	2.7 V	-0.1 -1		0.1	μA
COM ON leakage current	I _{COM(ON)}	V_{NC} or V_{NO} = Open, V_{COM} = 0 to V_{+} ,	Switch ON, See Figure 7	25°C Full	2.7 V	-0.1 -1		0.1	μΑ
Digital Inputs (IN1, IN	N2) ⁽²⁾	<u> </u>		1	l	· · · · · · · · · · · · · · · · · · ·		•	
Input logic high	V _{IH}			Full		V ₊ × 0.7			V
Input logic low	V _{IL}			Full				V ₊ × 0.3	V
Input leakage current	I _{IH} , I _{IL}	V _{IN} = 5.5 V or 0		25°C Full	2.7 V	-1 -1	0.05	1	μA
Dynamic				Full				1	
Turnon time	t _{ON}	V_{NC} = GND and V_{NO} = V_{+} , or V_{NC} = V_{+} and V_{NO} = GND,	$R_L = 500 \Omega$, $C_L = 50 pF$, See Figure 9	Full	2.3 V to 2.7 V	2.5		17	ns
Turnoff time	t _{OFF}	V_{NC} = GND and V_{NO} = V_{+} , or V_{NC} = V_{+} and V_{NO} = GND,	$R_L = 500 \Omega$, $C_L = 50 pF$, See Figure 9	Full	2.3 V to 2.7 V	1.5		10.5	ns
Break-before-make time	t _{BBM}	$\begin{aligned} &V_{NC} = V_{NO} = V_{+}/2, \\ &R_{L} = 50 \ \Omega, \end{aligned}$	C _L = 35 pF, See Figure 10	25°C	2.3 V to 2.7 V	0.5			ns
Bandwidth	BW	$R_L = 50 \Omega$,	Switch ON, See Figure 11	25°C	2.3 V		220		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 12	25°C	2.3 V		-65		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 13	25°C	2.3 V		-66		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 600 Hz to 20 kHz, See Figure 15	25°C	2.3 V		0.025		%
Supply									
Positive supply current	I ₊	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	2.7 V			1 10	μA
Change in supply current	ΔΙ+	V _{IN} = V ₊ - 0.6 V		Full	2.7 V			500	μA

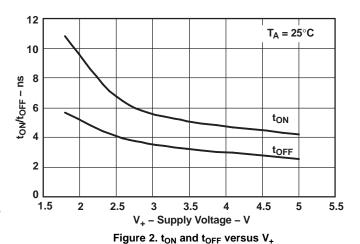
Submit Documentation Feedback

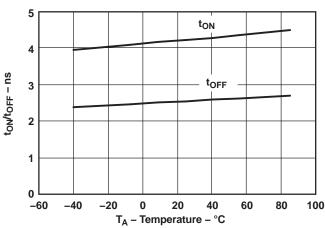
Copyright © 2007–2013, Texas Instruments Incorporated

 ⁽¹⁾ T_A = 25°C
 (2) Hold all unused digital inputs of the device at V+ or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Electrical Characteristics for 1.8-V Supply


 $V_{+} = 1.65 \text{ V}$ to 1.95 V, $T_{A} = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted)


PARAMETER	SYMBOL	TEST CONDIT	TONS	TA	V ₊	MIN	TYP ⁽¹⁾	MAX	UNIT
Analog Switch									
Analog signal range	V_{COM} , V_{NO} , V_{NC}					0		V ₊	V
ON-state resistance	r _{on}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -4 \text{ mA},$	Switch ON, See Figure 6	Full	1.65 V			180	Ω
ON-state resistance match between channels	Δr_{on}	V_{NO} or $V_{NC} = 1.15 \text{ V}$, $I_{COM} = -4 \text{ mA}$,	Switch ON, See Figure 6	25°C	1.65 V		1		Ω
ON-state resistance flatness	r _{on(flat)}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -4 \text{ mA},$	Switch ON, See Figure 6	25°C	1.65 V		110		Ω
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = 0$ to V_+ ,	Switch OFF, See Figure 7	25°C Full	1.95 V	-1 -1	0.05	1	μΑ
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V_{NC} or $V_{NO} = 0$ to V_{+} , $V_{COM} = Open$,	Switch ON, See Figure 7	25°C Full	1.95 V	-0.1 -1		0.1	μΑ
COM ON leakage current	I _{COM(ON)}	V_{NC} or V_{NO} = Open, V_{COM} = 0 to V_{+} ,	Switch ON, See Figure 7	25°C Full	1.95 V	-0.1 -1		0.1	μΑ
Digital Inputs (IN1, II	N2) ⁽²⁾				1			<u> </u>	
Input logic high	V _{IH}			Full		V ₊ × 0.75			V
Input logic low	V _{IL}			Full				V ₊ × 0.25	V
Input leakage current	I _{IH} , I _{IL}	V _{IN} = 5.5 V or 0		25°C Full	1.95 V	-1 -1	0.05	1	μΑ
Dynamic				1 dii					
Turnon time	t _{ON}	V_{NC} = GND and V_{NO} = V_{+} , or V_{NC} = V_{+} and V_{NO} = GND,	$R_L = 500 \Omega$, $C_L = 50 pF$, See Figure 9	Full	1.65 V to 1.95 V	5.5		27	ns
Turnoff time	t _{OFF}	V_{NC} = GND and V_{NO} = V_{+} , or V_{NC} = V_{+} and V_{NO} = GND,	$R_L = 500 \Omega$, $C_L = 50 pF$, See Figure 9	Full	1.65 V to 1.95 V	2		16	ns
Break-before-make time	t _{BBM}	$\begin{aligned} V_{NC} &= V_{NO} = V_{+}/2, \\ R_{L} &= 50 \ \Omega, \end{aligned}$	C _L = 35 pF, See Figure 10	25°C	1.65 V to 1.95 V	0.5			ns
Bandwidth	BW	$R_L = 50 \Omega$,	Switch ON, See Figure 11	25°C	1.8 V		220		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 12	25°C	1.8 V		-60		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 13	25°C	1.8 V		-66		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 600 Hz to 20 kHz, See Figure 15	25°C	1.8 V		0.015		%
Supply									
Positive supply current	I ₊	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	1.95 V			10	μΑ
Change in supply current	ΔΙ+	V _{IN} = V ₊ - 0.6 V		Full	1.95 V			500	μΑ


 ⁽¹⁾ T_A = 25°C
 (2) Hold all unused digital inputs of the device at V+ or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

TYPICAL CHARACTERISTICS

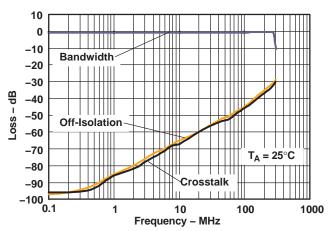
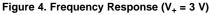



Figure 3. t_{ON} and t_{OFF} versus Temperature (V₊ = 5 V)

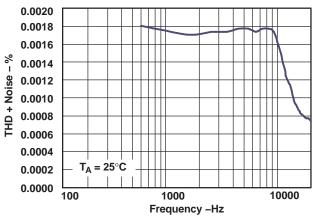


Figure 5. Total Harmonic Distortion (THD) versus Frequency (V₊ = 3 V)

PIN DESCRIPTION

NAME	PIN NO.	DESCRIPTION
COM1	10	Common
COM2	6	Common
GND	3	Digital ground
IN1	1	Digital control to connect COM to NO or NC
IN2	5	Digital control to connect COM to NO or NC
NC1	9	Normally closed
NC2	7	Normally closed
NO1	2	Normally open
NO2	4	Normally open
V ₊	8	Power supply

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NC}	Voltage at NC
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON
Δr_{on}	Difference of r _{on} between channels
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) being open
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) being open
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (NO to COM or NC to COM) in the ON state and the output (NC or NO) being open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Minimum input voltage for logic low for the control input (IN)
V _{IN}	Voltage at IN
I _{IH} , I _{IL}	Leakage current measured at IN
t _{ON}	Turnon time for the switch. Measure this parameter under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM/NC/NO) signal when the switch is turning ON.
t _{OFF}	Turnoff time for the switch. Measure this parameter under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM/NC/NO) signal when the switch is turning OFF.
t _{BBM}	Break-before-make time. Measure this parameter under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This measure is in coulombs (C) and is the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_O$, C_L is the load capacitance and ΔV_O is the change in analog output voltage.
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NC to COM) is OFF
C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NC to COM) is ON
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
C _{IN}	Capacitance of IN
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This measure is in dB at a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. OFF isolation, $O_{ISO} = 20$ LOG (V_{NC}/V_{COM}) dB, V_{COM} is the input and V_{NC} is the output.

PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This measure is at a specific frequency and in dB. Crosstalk, $X_{TALK} = 20 \log (V_{NC1}/V_{NO1})$, V_{NO1} is the input and V_{NC1} is the output.
BW	Bandwidth of the switch. This is the frequency where the gain of an ON channel is -3 dB below the dc gain. Gain is measured from the equation, 20 log (V_{NC}/V_{COM}) dB, where V_{NC} is the output and V_{COM} is the input.
I ₊	Static power-supply current with the control (IN) pin at V ₊ or GND
ΔI_{+}	This is the increase in I ₊ for each control (IN) input that is at the specified voltage, rather than at V ₊ or GND.

Submit Documentation Feedback

PARAMETER MEASUREMENT INFORMATION

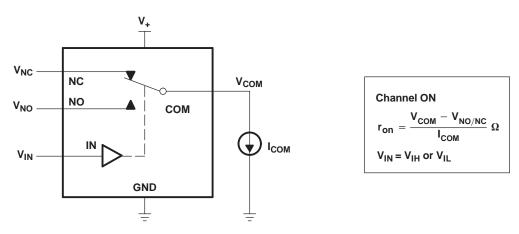


Figure 6. ON-State Resistance (Ron)

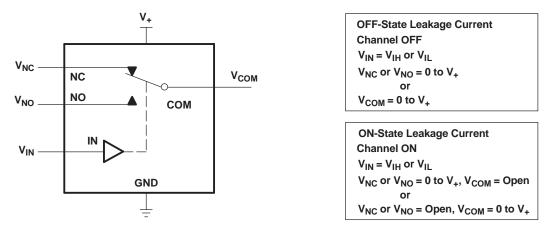


Figure 7. ON- and OFF-State Leakage Current ($I_{COM(ON)}$, $I_{NC(OFF)}$, $I_{NO(OFF)}$, $I_{NO(ON)}$)

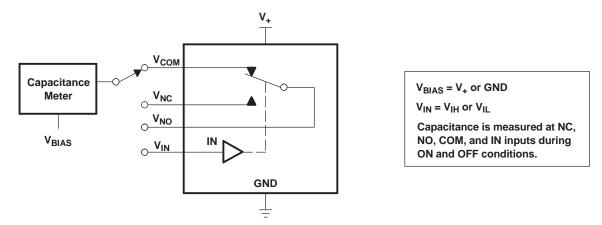


Figure 8. Capacitance (C_{IN} , $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NO(OFF)}$, $C_{NC(ON)}$, $C_{NO(ON)}$)

PARAMETER MEASUREMENT INFORMATION (continued)

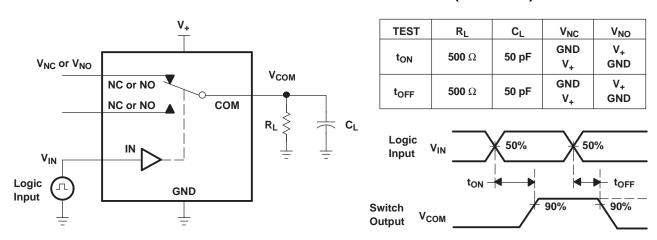


Figure 9. Turn-On Time (ton) and Turn-Off Time (toff)

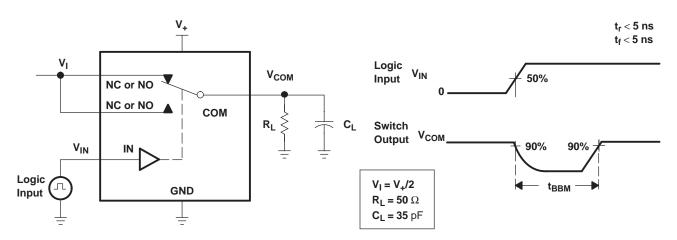


Figure 10. Break-Before-Make Time (t_{BBM})

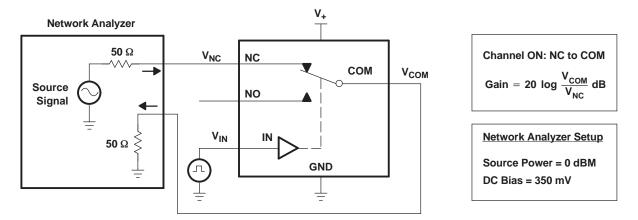


Figure 11. Frequency Response (BW)

Submit Documentation Feedback

PARAMETER MEASUREMENT INFORMATION (continued)

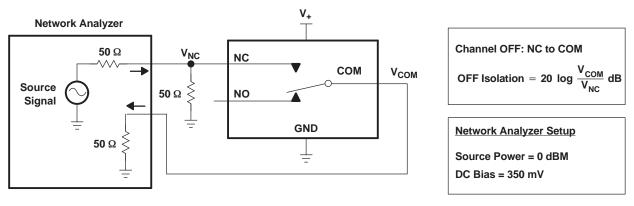


Figure 12. OFF Isolation (O_{ISO})

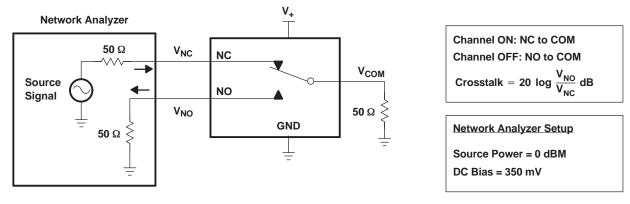


Figure 13. Crosstalk (X_{TALK)}

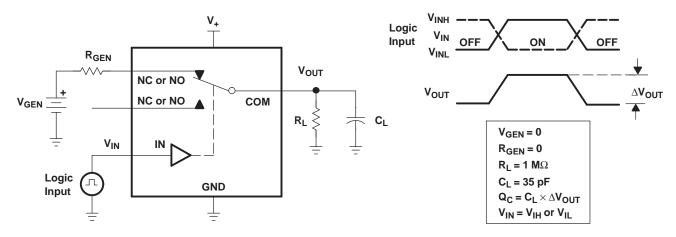


Figure 14. Charge Injection (Q_C)

PARAMETER MEASUREMENT INFORMATION (continued)

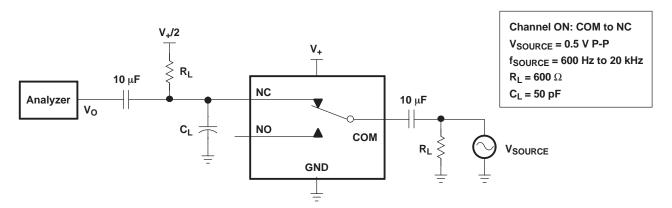


Figure 15. Total Harmonic Distortion (THD)

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
TS5A23157QDGSRQ1	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	SJC	Samples
TS5A23157TDGSRQ1	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	JBR	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

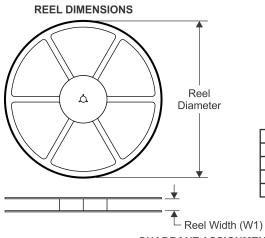
OTHER QUALIFIED VERSIONS OF TS5A23157-Q1:

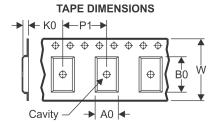
PACKAGE OPTION ADDENDUM

11-Apr-2013

• Catalog: TS5A23157

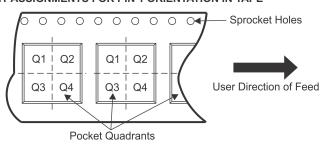
www.ti.com


NOTE: Qualified Version Definitions:

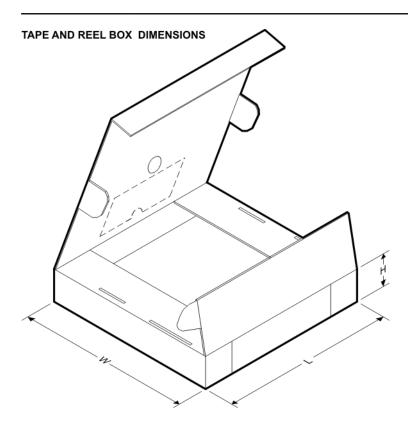

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

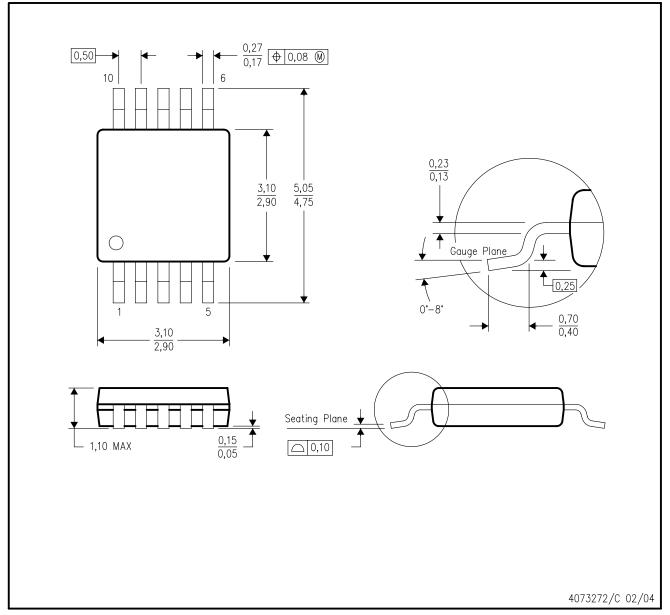
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A23157QDGSRQ1	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS5A23157TDGSRQ1	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 3-Aug-2017



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TS5A23157QDGSRQ1	VSSOP	DGS	10	2500	346.0	346.0	29.0	
TS5A23157TDGSRQ1	VSSOP	DGS	10	2500	346.0	346.0	29.0	

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation BA.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.