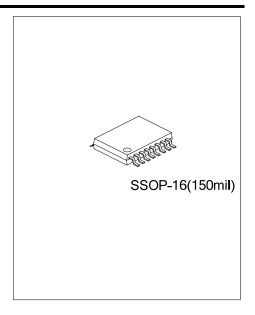
UNISONIC TECHNOLOGIES CO.,LTD

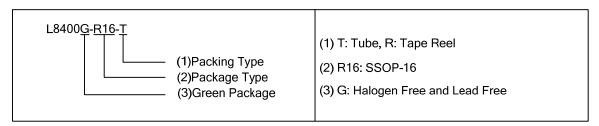
L8400

LINEAR INTEGRATED CIRCUIT

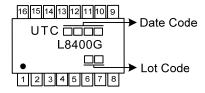

FET BIAS CONTROLLER

DESCRIPTION

The UTC L8400 is designed to bias the MOSFETs that are commonly used in LNBs that can implies minimum external components requires.

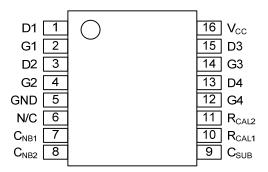

FEATURES

- * Can Bias up to 4 FETs
- * Drain Current Adjustable by Two External Resistors.
- * Two Sets of Drain Current can be Setted.

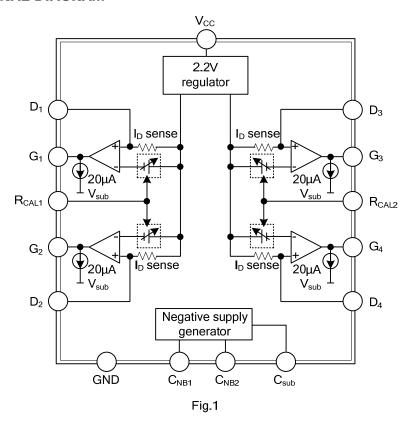


ORDERING INFORMATION

Ordering Number	Package	Packing	
L8400G-R16-R	SSOP-16	Tape Reel	
L8400G-R16-T	SSOP-16	Tube	



MARKING



www.unisonic.com.tw 1 of 6 QW-R123-010.C

■ PIN CONFIGURATION

■ FUNCTIONAL DIAGRAM

■ FUNCTIONAL DESCRIPTION

The UTC **L8400** includes one negative supply required for gate biasing from the single supply voltage, and all the other bias requirements for external FETs. As fig.1

A low current negative supply voltage includes an internal OSC and two 47nF external cap. The negative rail generator is common to all devices. This negative supply voltage used to drive the FET's gate to obtain the required drain current because of he FET is a depletion mode transistor.

There are for stages in the IC to baising the four external FETS. The drain voltage of the external FET FET1~4 is 2.2 volts set by the UTC **L8400**.

The drain current of external FET is determined by the external resist R_{CAL1} or R_{CAL2} . External resistor R_{CAL1} sets the drain current of FET1 and FET 2, and resistor R_{CAL2} sets the drain current of FET3 and FET4.

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.6 ~ 15	V
Supply Current	Icc	100	mA
Drain Current (per FET)(set by R _{CAL1} and R _{CAL2})	I _D	0 ~ 15	mA
Output Current	lo	100	mA
Power Dissipation(T _A =25°C)	P _D	500	mW
Operating Temperature	T _{OPR}	-40 ~ +70	°C
Storage Temperature	T _{STG}	-50 ~ +85	°C

■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{CC}=5V, I_D=10mA, R_{CAL1}=R_{CAL2}=33K\Omega, unless otherwise specified.)$

(, ,	-D	O/ LLL					
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage		V _{CC}		5		12	V
Supply Current		loc.	I _{D1} to I _{D4} =0			15	mA
			I _{D1} to I _{D4} =10mA			75	
Substrate Voltage (Internally generated)		V _{SUB}	I _{SUB} =0	-3.5	-3	-2	V
			I _{SUB} = -200μA			-2	
Output Noise	Gate Voltage	E _{NG}	C _G =4.7nF, C _D =10nF			0.005	V _{PKPK}
	Drain Voltage	E _{ND}	C _G =4.7nF, C _D =10nF			0.02	
Oscillator Freq.		f _O		200	350	800	kHz

■ GATE CHARACTERISTICS

PARAME [*]	TER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Current Range		I_{GO}		-30		2000	μΑ
Output Voltage	Output Low	V _{OL}	I _{D1} to I _{D4} =12mA	-3.5		-2	V
			I _{G1} to I _{G4} =0				V
			I _{D1} to I _{D4} =12mA	-3.5		-2	V
			I _{G1} to I _{G4} = -10μA				V
	Output High	\/	I _{D1} to I _{D4} =8mA	0		1	V
		V_{OH}	I _{G1} to I _{G4} =0				V

Note: Noise voltage measurement would be ignored in production.

■ DRAIN CHARACTERISTICS

PARAME	TER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Current		I _D		8	10	12	mA
Current Change	With V _{CC}	$\triangle I_{DV}$	V _{CC} =5 ~ 12V		0.02		%/V
	With T _J	$\triangle I_{DT}$	T _J =-40 ~ +70°C		0.05		%/℃
Voltage		V_D		2	2.2	2.4	V
Voltage Change	With V _{CC}	$\triangle V_{DV}$	V _{CC} =5 ~ 12V		0.5		%/V
	With T _J	$\triangle V_{DT}$	T _J =-40 ~ +70°C		50		ppm

■ TYPICAL APPLICATION CIRCUIT

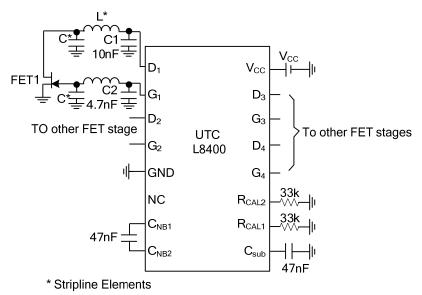
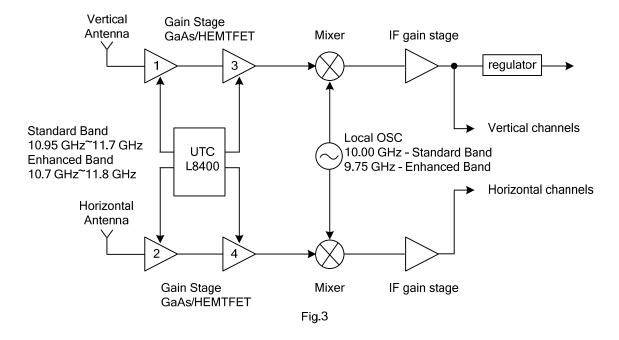


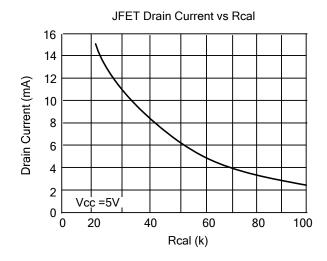
Fig.2

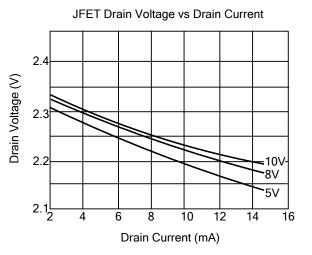
■ APPLICATIONS INFORMATION

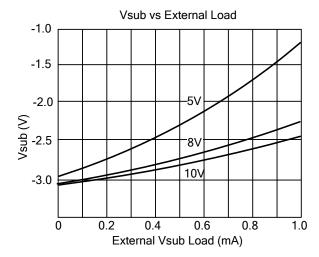
It is application circuit of UTC L8400 in figure 2, the bias circuits is stable fully in -40°C ~70°C.


CNB and C_{SUB} are used to generated the negative supply on pin C_{SUB} (about -3V), which can be used to power other external circuits, but it is low load current is noticeable.

C1 and C2 are used to suppress noise or RF interference in each stage of the IC or other external circuits in application circuit system. Value of C1 and C2 could be used in 1nF to 100nF as design dependent.


 R_{CAL1} and R_{CAL2} are used to set the drain current of FETs 1 & 2 and FETS 3 & 4. If the same drain current is required for all FETs on UTC **L8400**, then the pin R_{CAL1} and R_{CAL2} can be connected to GND through only one res of half normal value.


There are full protection for external FETs on chip: The gate output voltage is limitted in -3.5V~0.7V in any conditions including powerup and powerdown transients; If the negative bias generator be shorted or overloaded, the drain supply to FETs is shut down to avoid damage to the FETs by excessive drain current.


The fig.3 is typical applications of UTC **L8400** in LNB.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.