Applications Note: SY5802B

Single Stage Flyback and PFC Controller with Primary Side Control for LED Lighting and Multiple Dimming Mode Option Preliminary Specification

General Description

The SY5802B is a single stage Flyback and PFC controller targeting at LED Dimming applications. It is a primary side controller without applying any secondary feedback circuit for low cost, and drives the converter in the quasi-resonant mode to achieve higher efficiency. It keeps the converter in constant on time operation to achieve high power factor.

Ordering Information

Ordering Number	Package type	Note
SY5802BFAC	SO8	----

Features

- Primary side control eliminates the opto-coupler.
- Compatible with multiple dimming modes.
- Valley turn-on of the primary MOSFET to achieve low switching losses
- 0.3 V primary current sense reference voltage leads to a lower sense resistance thus a lower conduction loss.
- Internal high current MOSFET driver: 1A sourcing and 2 A sinking
- Low start up current: $15 \mu \mathrm{~A}$ typical
- Reliable short LED and Open LED protection
- Power factor >0.90 with single-stage conversion.(Analog dimming only)
- Compact package: SO8

Applications

- LED Dimming

Typical Applications

Figure.1a Dimming mode: Analog output with PWM dimming signal

AN_SY5802B

SHERGY

Figure.1b Dimming mode: Analog output with 0-1.5V dimming signal

Figure.1c Dimming curve of Analog dimming

Figure.2a Dimming mode: PWM output with PWM dimming signal

Figure.2b Dimming curve of PWM dimming

Pinout (top view)

(SO8)
Top Mark: AZW xyz (device code: AZW, $x=y$ year code, $y=$ week code, $z=$ lot number code)

Pin Name	Pin number	Pin Description
COMP	1	Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control loop.
ZCS	2	Inductor current zero-crossing detection pin. This pin receives the auxiliary winding voltage by a resister divider and detects the inductor current zero crossing point. This pin also provides over voltage protection and line regulation modification function simultaneously. If the voltage on this pin is above $\mathrm{V}_{\mathrm{ZCS}, \mathrm{OVP}}$, the IC would enter over voltage protection mode. Good line regulation can be achieved by adjusting the upper resistor of the divi er.
ISEN	3	Current sense pin. Connect this pin to the source of the primary switch. Connect the sense resistor across the source of the primary switch and the GND pin. (current sense resister R: R $\quad=\mathrm{k} \underset{\mathrm{S}}{\stackrel{\mathrm{V}}{\text { REF }}{ }_{\mathrm{l}_{\text {OUT }}} \times \mathrm{N}_{\mathrm{PS}}}, \mathrm{k}=0.167$)
GND	4	Ground pin
DRV	5	Gate driver pin. Connect this pin to the gate of primary MOSFET.
VIN	6	Power supply pin. This pin also provides output over voltage protection along with ZCS pin.
ADIM	7	Bypass this pin to GND with enough capacitance to hold on internal voltage reference.
PWM	8	PWM dimming input pin, this pin detects the PWM dimming signal

\qquad
Absolute Maximum Ratings (Note 1)

$-0.3 \mathrm{~V} \sim 19 \mathrm{~V}$
30 mA
Supply current IVIN
$-0.3 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{IN}}+0.3 \mathrm{~V}$
ISEN, COMP, PWM
$-0.3 \sim 3.6 \mathrm{~V}$
Power Dissipation, @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ SO8
1.1W

Package Thermal Resistance (Note 2)
S08, θ JA
$88^{\circ} \mathrm{C} / \mathrm{W}$
S08, θ JC
$45^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature Range
$40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)
$260^{\circ} \mathrm{C}$
Storage Temperature Range
$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

VIN, DRV \qquad
Junction Temperature Range

Block Diagram

Figure. 3 Block Diagram

AN_SY5802B

SFIERGY

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}(\right.$ Note 3$), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Power Supply Section						
Input voltage range	${ }^{\text {VIN }}$		8		15.4	V
VIN turn-on threshold	VIn,on				17.6	V
VIN turn-off threshold	VIN,OFF		6.0		7.9	V
VIN OVP voltage	${ }_{\text {VIN,OVP }}$			$\mathrm{V}_{\text {VIN,ON }}+0.85$		V
Start up Current	${ }_{\text {ST }}$	$\mathrm{VIN}^{\text {c/ }}$ VIN,OFF		15		$\mu \mathrm{A}$
Operating Current	VIN	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=15 \mathrm{kHz}$		1		mA
Shunt current in OVP mode	VIN,OVP	${ }_{\text {VIN }}{ }^{\text {c }}$	1.6	2	2.5	mA
Error Amplifier Section						
Internal reference voltage	REF		0.294	0.3	0.306	V
Current Sense Section						
Current limit reference voltage	ISEN,MAX			0.4		V
ZCS pin Section						
ZCS pin OVP voltage threshold	$\mathrm{V}_{\mathrm{zCS}, \mathrm{OVP}}$			1.42		V
Gate Driver Section						
Gate driver voltage	Gate			${ }^{\text {VIN }}$		V
Maximum source current	Source			1		A
Minimum sink current	${ }_{\text {SINK }}$			2		A
Max ON Time	ON,MAX	$\mathrm{V}_{\text {COMP }}=1.5 \mathrm{~V}$		24		$\mu \mathrm{S}$
Min ON Time	${ }_{\text {ON,MIN }}$			400		ns
Max OFF Time	Off,max			39		$\mu \mathrm{s}$
Min OFF Time	${ }_{\text {OFF,MIN }}$			2		$\mu \mathrm{S}$
Maximum switching frequency	${ }_{\text {MAX }}$			90		kHz
ADIM function Section						
ADIM Enable ON	${ }_{\text {AdIM,ON }}$			0.105		V
Analog dimming range on ADIM	ADIM,Dimming		0.105		1.35	V
Thermal Section						
Thermal Shutdown Temperature	\bar{T}			150		${ }^{\circ} \mathrm{C}$
PWM function Section						
PWM ON current	${ }_{\text {PWM,ON }}$			20		$\mu \mathrm{A}$
PWM OFF current	${ }_{\text {PWM,OFF }}$			10		$\mu \mathrm{A}$
PWM current Range	${ }_{\text {PWM }}$				1	mA

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 2: f_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2 oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.
Note 3: Increase VIN pin voltage gradually higher than $\mathrm{V}_{\mathrm{VIN}, \mathrm{ON}}$ voltage then turn down to 12 V .

SHERGY

Operation

The SY5802B is a single stage Flyback and PFC controller targeting at LED lighting applications with dimming function.

The Device provides primary side control to eliminate the opto-couplers or the secondary feedback circuits, which would cut down the cost of the system.

High power factor is achieved by constant on operation mode, with which the control scheme and the circuit structure are both simple.

SY5802B is compatible with Analog dimming and PWM dimming for different application.

In order to reduce the switching losses and improve EMI performance, Quasi-Resonant switching mode is applied, which means to turn on the power MOSFET at voltage valley; the start up current of SY5802B is rather small
($15 \mu \mathrm{~A}$ typically) to reduce the standby power loss further;
the maximum switching frequency is clamped to 120 kHz to reduce switching losses and improve EMI performance when the converter is operated at light load condition.

SY5802B provides reliable protections such as Short Circuit Protection (SCP), Open LED Protection (OLP), Over Temperature Protection (OTP), etc.

SY5802B is available with SO8 package.

Applications Information

Start up

After AC supply or DC BUS is powered on, the capacitor $\mathrm{C}_{\text {VIN }}$ across VIN and GND in is charged up by BUS voltage through a start up esistor R_{ST}. Once $\mathrm{V}_{\mathrm{VIN}}$ rises up to $\mathrm{V}_{\text {VIN-ON }}$, the internal bl cks start to work. $\mathrm{V}_{\text {VIN }}$ will be pulled down by internal consumption of IC until the auxiliary winding of transformer could supply enough energy to maintain $\mathrm{V}_{\text {VIN }}$ above $\mathrm{V}_{\text {VIN-OfF }}$.

The who e start up procedure is divided into two sections shown in Fig.4. $\mathrm{t}_{\mathrm{STC}}$ is the $\mathrm{C}_{\text {VIN }}$ charged up section, and $\mathrm{t}_{\mathrm{STO}}$ is the output voltage built-up section. The start up time t_{ST} composes of $\mathrm{t}_{\mathrm{STC}}$ and $\mathrm{t}_{\mathrm{STO}}$, and usually $\mathrm{t}_{\text {STO }}$ is much smaller than $\mathrm{t}_{\mathrm{STC}}$.

Fig. 4 Start up

The start up resistor R_{ST} and $\mathrm{C}_{\text {VIN }}$ are designed by rules below:
(a) Preset start-up resistor R_{ST}, make sure that the current through R_{ST} is larger than I_{ST} and smaller than $\mathrm{I}_{\mathrm{VIN} \text { _OVP }}$

Where $\mathrm{V}_{\text {BUS }}$ is the BUS line voltage.
(b) Select $\mathrm{C}_{\text {VIN }}$ to obtain an ideal start up time t_{ST}, and ensure the output voltage is built up at one time.

(d) If the $\mathrm{C}_{\text {VIN }}$ is not big enough to build up the output voltage at one time. Increase $\mathrm{C}_{\mathrm{VIN}}$ and decrease R_{ST}, go back to step (a) and redo such design flow until the ideal start up procedure is obtained.

Internal pre-charge design for quick start up

After $\mathrm{V}_{\text {VIN }}$ exceeds $\mathrm{V}_{\text {VIN,ON }}, \mathrm{V}_{\text {ADIM }}$ and $\mathrm{V}_{\text {COMP }}$ is precharged by internal current sources in turn. $\mathrm{V}_{\text {ADIM }}$ is precharged first, and when $\mathrm{V}_{\text {ADIM }}$ is over the initial voltage $\mathrm{V}_{\text {ADIM,IC }}, \mathrm{V}_{\text {COMP }}$ begins to be pre-charged. The PWM block won't start to output PWM signals until $\mathrm{V}_{\text {COMP }}$ is over the initial voltage $\mathrm{V}_{\text {COMP,IC }}$. $\mathrm{V}_{\text {COMP,IC }}$ can be programmed by $\mathrm{R}_{\text {COMP. }}$. Such design is meant to reduce the start up time shown in Fig.5.

The voltage pre-charged $\mathrm{V}_{\text {COMP_IC }}$ in start-up procedure can be programmed by $\mathrm{R}_{\mathrm{COMP}}$
$\mathrm{V}_{\text {COMP_IC }}=600 \mathrm{mV}-300 \mu \mathrm{~A} \times \mathrm{R}_{\text {COMP }}$ (3)

AN_SY5802B

SHERGY

The voltage pre-charged $\mathrm{V}_{\text {ADIM,IC }}$ in start-up procedure is fixed internally.

$$
\mathrm{v}_{\text {ADIM,IC }}-/ \text { JIII v }
$$

Fig. 5 pre-charge scheme in start up

Where $\mathrm{V}_{\text {COMP-IC }}$ is the pre-charged voltage of COMP pin.

Generally, a big capacitance of $\mathrm{C}_{\text {COMP }}$ is necessary to achieve high power factor and stabilize the system loop ($1 \mu \mathrm{~F} \sim 2 \mu \mathrm{~F}$ recommended).
The voltage pre-charged in start-up procedure can be programmed by $\mathrm{R}_{\mathrm{COMP}}$; On the other hand, larger $\mathrm{R}_{\mathrm{COMP}}$ can provide larger phase margin for the control loop; A small ceramic capacitor is added to suppress high frequency interruption ($10 \mathrm{pF} \sim 100 \mathrm{pF}$ is recommended f necessary)

Shut down

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of the transformer can not supply enough energy to VIN pin, $\mathrm{V}_{\text {VIN }}$ will drop down. Once $\mathrm{V}_{\text {VIN }}$ is below $\mathrm{V}_{\text {VIN-OFF }}$, the IC will stop working and $\mathrm{V}_{\text {COMP }}$ will be discharged to zero.

Primary-side constant-current control

Primary side control is applied to eliminate secondary feedback circuit or opto-coupler, which reduces the circuit cost. The switching waveforms are shown in Fig. 6.

The output current IOUT can be represented by,
$\mathrm{I}_{\text {OUT }}=\frac{\mathrm{I}_{\mathrm{SP}}}{2} \frac{\mathrm{t}_{\text {DIS }}}{\mathrm{t}_{\mathrm{S}}}$

Where I_{SP} is the peak current of the secondary side; $\mathrm{t}_{\text {DIS }}$ is the discharge time of the transformer; t_{S} is the switching period.

The secondary peak current is related with primary peak current, if the effect of the leakage inductor is neglected.

Fig. 6 Switching waveforms
$\mathrm{I}_{\mathrm{SP}}=\mathrm{N}_{\mathrm{PS}} \times \mathrm{I}_{\mathrm{PP}}$ (5)

Where N_{PS} is the turns ratio of primary to secondary of the transformer.

Thus, IOUT can be represented by

The primary peak current $I_{P P}$ and inductor current discharge time $\mathrm{t}_{\text {DIS }}$ can be detected by Source and ZCS pin, which is shown in Fig.7.These signals are processed and applied to the negative input of the gain modulator. In static state, the positive and negative inputs are equal.

$$
\mathrm{V}=\mathrm{I}_{\text {REF }} \mathrm{PP}_{\mathrm{PP}} \times \mathrm{R}_{\mathrm{S}} \times \frac{\mathrm{t}_{\mathrm{DIS}}}{\mathrm{t}_{\mathrm{S}}} \times \mathrm{k}_{1}(7)
$$

AN_SY5802B

SHERGY

Fig. 7 Output current detection diagram
Finally, the output current $\mathrm{I}_{\mathrm{OUT}}$ can be represented by

$$
\begin{equation*}
\mathrm{I}_{\text {OUT }}=\frac{\mathrm{V}_{\mathrm{REF}} \times \mathrm{NPS}^{\mathrm{R}_{\mathrm{S}} \times 2 \times \mathrm{k}_{1}}}{} \tag{8}
\end{equation*}
$$

Where k_{1} is the output current weight coefficient; k_{2} is the output modification coefficient; $\mathrm{V}_{\mathrm{REF}}$ is the internal reference voltage; R_{S} is the current sense resistor.
k_{1} and $\mathrm{V}_{\text {REF }}$ are all internal constant parameters, I IOUT can be programmed by N_{PS} and R_{S}.

Then

$$
\mathrm{R}_{\mathrm{s}=}^{\mathrm{k} \times \mathrm{V}_{\mathrm{REF}} \times \mathrm{N}_{\mathrm{PS}}} \underset{\mathrm{I}_{\text {oUT }}}{ }, \mathrm{k}=\frac{1}{2 \mathrm{k}_{1}}(10)
$$

Quasi-Resonant Operation

QR mode operation provides low turn-on switching losses for the converter.

Fig. 8 QR mode operation
The voltage across drain and source of the primary MOSFET is reflected by the auxiliary winding of the Flyback transformer. ZCS pin detects the voltage across
the auxiliary winding by a resistor divider. When the voltage across drain and source of the primary MOSFET is at voltage valley, the MOSFET would be turned on.

Over Voltage Protection (OVP) \& Open LED Protection (OLP)

Fig. 9 OVP\& LP

The output voltage is reflected by the auxiliary winding voltage of the Flyback t ansformer, and both ZCS pin and VIN pin provide over v ltage protection function. When the load is null or large transient happens, the output voltage will xceed the rated value. When $\mathrm{V}_{\text {VIN }}$ exceeds $\mathrm{V}_{\text {VIN,OVP }}$ or $\mathrm{V}_{\mathrm{ZCS}}$ exceeds $\mathrm{V}_{\mathrm{ZCS}, \mathrm{OVP}}$, the over voltage protection is triggered and the IC will discharge $\mathrm{V}_{\text {VIN }}$ by an int rnal current source $\mathrm{I}_{\text {VIN,OVp. }}$. Once $\mathrm{V}_{\text {VIN }}$ is below $\mathrm{V}_{\text {VIN,OFF, }}$, the IC will shut down and be charged again by BUS voltage through start up resistor. If the over voltage condition still exists, the system will operate in hiccup mode.

Thus, the turns of the auxiliary winding $\mathrm{N}_{\mathrm{AUX}}$ and the resistor divider is related with the OVP function.

Where $\mathrm{V}_{\mathrm{OVP}}$ is the output over voltage specification; $\mathrm{R}_{\text {ZCSU }}$ and $\mathrm{R}_{\text {ZCSD }}$ compose the resistor divider. The turns ratio of N_{S} to $\mathrm{N}_{\mathrm{AUX}}$ and the ratio of $\mathrm{R}_{\mathrm{ZCSU}}$ to $\mathrm{R}_{\mathrm{ZCSD}}$ could be induced from equation (11) and (12).

Short Circuit Protection (SCP)

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so $\mathrm{V}_{\mathrm{VIN}}$ will drop down without auxiliary winding supply. Once $\mathrm{V}_{\text {VIN }}$ is below $\mathrm{V}_{\mathrm{VIN}, \mathrm{OFF}}$, the IC will shut down and be charged
again by the BUS voltage through the start up resistor. If the short circuit condition still exists, the system will operate in hiccup mode.

In order to guarantee SCP function not effected by voltage spike of auxiliary winding, a filter resistor $\mathrm{R}_{\mathrm{AUX}}$ is needed (10Ω typically) shown in Fig.9.

Line regulation modification

The IC provides line regulation modification function to improve line regulation performance.

Due to the sample delay of ISEN pin and other internal delay, the output current increases with increasing input BUS line voltage. A small compensation voltage $\Delta \mathrm{V}_{\text {ISEN- }}$ C is added to ISEN pin during ON time to improve such performance. This $\Delta \mathrm{V}_{\text {ISEN-C }}$ is adjusted by the upper resistor of the divider connected to ZCS pin.

$$
\begin{equation*}
\Delta \mathrm{V}=\mathrm{ISEV,C}, ~ V \mathrm{~V}_{\text {BUS }} \times \frac{\mathrm{N}_{\text {AUX }}}{\mathrm{N}_{\mathrm{P}}} \times \frac{1}{\mathrm{~K}} \times \mathrm{k}_{2} \tag{13}
\end{equation*}
$$

Where $\mathrm{R}_{\text {ZCSU }}$ is the upper resistor of the divider ; k_{2} is an internal constant as the modification coefficient.

The compensation is mainly related with $\mathrm{R}_{\text {ZCSU }}$, larger compensation is achieved with smaller $\mathrm{R}_{\mathrm{ZCSU}}$. Normally, $\mathrm{R}_{\mathrm{ZCS}}$ ranges from $100 \mathrm{k} \Omega \sim 1 \mathrm{M} \Omega$.

Then $\mathrm{R}_{\text {ZCSD }}$ can be selected by,

And,

$$
\mathbf{K}_{\text {ZCSD }}=\frac{\frac{\mathrm{V}_{\text {ZCS_ovp }}}{\mathrm{v}_{\text {OVP }}} \times \frac{\mathrm{N}_{\mathrm{S}}}{\mathrm{~N}_{\text {AUX }}}}{1-\frac{\mathrm{V}_{\text {ZCS_OVP }}}{\mathbf{v}_{\text {OVP }}} \times \frac{\mathrm{N}_{\mathrm{S}}}{1 \mathbf{v}_{\text {AUX }}}} \times \mathrm{R}_{\text {ZCSU }}(1 コ)
$$

Where $\mathrm{V}_{\mathrm{OVP}}$ is the output over voltage protection specification; $\mathrm{V}_{\text {OUT }}$ is the rated output voltage; $\mathrm{R}_{\text {ZCSU }}$ is the upper esistor of the divider; N_{S} and $\mathrm{N}_{\mathrm{AUX}}$ are the turns of s condary winding and auxiliary winding separately.

Dimming Mode

SY5802B supports two dimming modes: Analog dimming and PWM dimming.

Analog Dimming Mode

In Analog dimming mode, SY5802B is compatible with two dimming signal: PWM dimming signal and $0-1.5 \mathrm{~V}$ dimming signal, the output current is regulated by the voltage on ADIM pin.

If the dimming signal is PWM signal, it is given to PWM pin. PWM pin detects PWM signal by the current through this pin. When the current is higher than $\mathrm{I}_{\mathrm{PWM}, \mathrm{ON}}$, the dimming signal is sensed as high logic level, and ADIM pin is pulled up to 1.5 V by a $300 \mathrm{k} \Omega$ resistor; when the current is lower than $\mathrm{I}_{\mathrm{PWM}, \mathrm{OFF}}$, the dimming signal is sensed as low logic level, and ADIM pin is pulled down to GND by a $300 \mathrm{k} \Omega$ resistor. The duty cycle of the dimming signal $\mathrm{D}_{\text {DIM }}$ is reflected by the voltage on ADIM pin $\mathrm{V}_{\text {ADIM }}$.

$$
\mathrm{V}_{\mathrm{ADIM}}=\mathrm{D}_{\mathrm{DIM}} \times 1.5 \mathrm{~V}
$$

When $\mathrm{V}_{\mathrm{ADIM}}$ is lower than 0.105 V ($\mathrm{D}_{\text {DIM }}$ is 7%), the output current is zero; When $\mathrm{V}_{\text {ADIM }}$ is from $\mathrm{V}_{\text {ADIM,ON }}$ to 0.15 V ($\mathrm{D}_{\text {DIM }}$ is from 7% to 10%), the output current is 10% of r ted output current; When $\mathrm{V}_{\text {ADIM }}$ is higher than $1.35 \mathrm{~V}\left(\mathrm{D}_{\text {DIM }}\right.$ is over $\left.90 \%\right)$, the output current is 100% of rat d output current; When $\mathrm{V}_{\text {ADIM }}$ is in the range from 0.15 V to 1.35 V ($\mathrm{D}_{\mathrm{DIM}}$ is from 10% to 90%), I IUUT increases with $\mathrm{D}_{\text {DIM }}$ linearly from 10% to 100% of rated output current.

The dimming curve between output current $\mathrm{I}_{\text {OUT }}, \mathrm{V}_{\text {ADIM }}$ and duty cycle of dimming signal is shown as below.

Fig. 10 Dimming curve of analog dimming
A capacitor C $_{\text {ADIM }}$ need be connected across ADIM and GND pin to obtain a smooth voltage waveform of the dimming signal duty cycle. $\mathrm{C}_{\mathrm{ADIM}}$ is selected by

AN_SY5802B

SHERGY

Where $\mathrm{f}_{\text {DIM }}$ is the frequency of PWM dimming signal.

If the dimming signal is analog voltage, the dimming signal is given to ADIM pin directly. PWM pin should be pulled up to VIN by a resistor RPWM or pulled down to GND.

Fig. 11 Connection of Analog dimming with $0-1.5 \mathrm{~V}$ dimming signal

PWM Dimming Mode

In PWM dimming mode, the output current is chopped by the dimming signal directly, the dimming function is shown as below.

100\%

Fig. 12 PWM dimming curve

In PWM dimming mode, the dimming sig al is given to ADIM pin. The logic voltage level of the Dimming signal is limited by

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{VIN}}>\mathrm{V}_{\mathrm{DimH}}>1.35 \mathrm{~V}(17) \\
& \mathrm{V}_{\text {DimL }}<\mathrm{V}_{\text {ADIM }, \text { ON }}
\end{aligned}
$$

Where $V_{\text {DimH }}$ is logic high level of the Dimming signal, $\mathrm{V}_{\text {DimL }}$ is logic low level of the Dimming signal.

And a resistor R $_{\text {ADIM, up }}$ need be connected across ADIM and VIN pin ($1 \mathrm{M} \Omega$ recommeded).

Power Device Design

Power Device Design for Analog Dimming

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized;

$$
\begin{aligned}
& \mathrm{V}_{\text {MOS_DS_MAX }}={\sqrt{2} \mathrm{~V}_{\text {AC_MAX }}+\mathrm{N}_{\mathrm{PS}} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{DF}}\right)+\Delta \mathrm{V}_{\mathrm{S}}(19)}_{\mathrm{V}_{\text {D.e.eax }}}=\frac{\sqrt{2 \mathrm{~V}_{\text {AC_MAX }}}}{\mathrm{V}_{\mathrm{PS}}}+\mathrm{V}_{\text {ar }}(20)
\end{aligned}
$$

Where $\mathrm{V}_{\mathrm{AC}, \mathrm{MAX}}$ is maximum input AC RMS voltage; N_{PS} is the turns ratio of the Flyback transformer; $\mathrm{V}_{\text {OUT }}$ is the rated output voltage; $V_{D, F}$ is the forward voltage of secondary power diode; $\Delta \mathrm{V}_{S}$ is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

$$
\begin{align*}
& I^{\text {MOSAK MAX }}=I{ }^{\text {PFK MAX }} \tag{23}
\end{align*}
$$

Where $\mathrm{I}_{\text {P-PK-MAX }}$ and $\mathrm{I}_{\text {P-RMS-MAX }}$ are maximum primary peak current and RMS current, which will be introduced later.

Transformer ($\mathbf{N P S}_{\text {ps }}$ and L_{M})

N_{PS} is limited by the electrical stress of the power MOSFET:

Where $\mathrm{V}_{\text {MOS,(BR)DS }}$ is the breakdown voltage of the power MOSFET.

In Quasi-Resonant mode, each switching period cycle ts consists of three parts: current rising time t_{1}, current

AN_SY5802B

falling time t_{2} and quasi-resonant time t_{3} shown in Fig. 13 .

Fig. 13 switching waveforms

The system operates in the constant on time mode to achieve high power factor. The ON time increases with the input AC RMS voltage decreasing and the load increasing. When the operation condition is with minimum input AC RMS voltage and full load, the ON time is maximized. On the other hand, when the input voltage is at the peak value, the OFF time is maximized. Thus, the minimum switching frequency $\mathrm{f}_{\mathrm{S} \text {-MIN }}$ happe s at the peak value of input voltage with minimum input AC RMS voltage and maximum load condition; Meanwhile, the maximum peak current through MOSFET and the transformer happens.

Once the minimum frequency $f_{S-M I N}$ is set, the inductance of the transformer could be induced. The design flow is shown as below:
(a)Select $N_{P S}$

(b) Preset minimum frequency fS-MIN
(c) Compute relative $\mathrm{t}_{\mathrm{S}}, \mathrm{t}_{1}\left(\mathrm{t}_{3}\right.$ is omitted to simplify the design here)

$$
\mathrm{t}_{\mathrm{S}}=\frac{1}{\mathrm{t}_{\mathrm{s} \text { S_MIN }}}(27)
$$

$$
\mathrm{t}_{1}=\frac{\mathrm{t}_{\mathrm{S}} \times \mathrm{N}_{\mathrm{PS}} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{DF}}\right)}{\sqrt{2 \mathrm{~V}_{\text {AC_MIN }}}+\underset{\text { PS }}{\mathrm{N}_{\text {PUT }} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}, \mathrm{~F}}\right)}}
$$

(d) Design inductance L_{M}
$\mathrm{L}_{\mathrm{M}}=\frac{\mathrm{V}_{\mathrm{AC}}{ }^{2} \times \mathrm{MIN}^{2} \times \mathrm{t}_{1}^{2} \times \eta}{2 \mathrm{P}_{\text {OUT }} \times \mathrm{t}_{\mathrm{S}}}$
(e) Compute t_{3}

Where $\mathrm{C}_{\text {Drain }}$ is the parasitic capacitance at drain of MOSFET.
(f) Compute primary maximum peak current $\mathrm{I}_{\mathrm{P}-\mathrm{PK}-\mathrm{MAX}}$ and RMS current $I_{P-R M S-M A X ~}$ for the transformer fabrication.

(31)

Where η is the efficiency; $P_{\text {OUT }}$ is rated full load power
Adjust t_{1} and t_{S} to t_{1} 'and t_{S} ' considering the effect of t_{3}

$$
\begin{align*}
& t_{s}=\frac{\eta \times \mathrm{L}_{\mathrm{M}} \times \mathrm{I}_{\mathrm{P}}{ }^{2} \text { PK MAX }}{4 \mathrm{P}_{\text {out }}} \\
& 1 \\
& \mathrm{t}_{1}=\frac{\mathrm{L}_{\mathrm{M}} \times \text { P_PK_MAX }^{\sqrt{2} \mathrm{~V}_{\text {AC_MIN }}} \text { (33) }{ }^{\text {AC }}}{} \\
& \mathrm{I}_{\text {P_RMS_MAX }} \approx \sqrt{\frac{\mathrm{t}_{1}^{\prime}}{\mathrm{tt}_{\mathrm{s}}^{\prime}}} \times \mathrm{I}_{\text {P_PK_MAX }} \tag{34}
\end{align*}
$$

(g) Compute secondary maximum peak current $\mathrm{I}_{\mathrm{S}-\mathrm{PK}-\mathrm{MAX}}$ and RMS current $\mathrm{I}_{\text {S-RMS-MAX }}$ for the transformer fabrication.
$\mathrm{I}_{\text {S_PK_MAX }}=\mathrm{N}_{\text {PS }} \times \mathrm{I}_{\text {P_PK_MAX }}$
$\mathrm{t}_{2}^{\prime}=\mathrm{t}_{\mathrm{S}}{ }^{\prime}-\mathrm{t}_{1}{ }^{\prime}-\mathrm{t}_{3}(36)$
$\mathrm{I}_{\text {S_RMS_MAX }}$
$\approx \sqrt{\frac{\mathrm{t}_{2}^{\prime} 2}{6 \mathrm{t}_{\mathrm{s}}^{\prime}}} \times \mathrm{I}_{\text {S_PK_MAX }}$

AN_SY5802B

Transformer design ($\mathbf{N}_{\underline{P}} \underline{N_{S}} \underline{N}_{\left.\underline{N_{A U X}}\right)}$

The design of the transformer is similar with ordinary Flyback transformer. the parameters below are necessary:

Necessary parameters	
Turns ratio	$\mathrm{N}_{\text {PS }}$
Inductance	L_{M}
Primary maximum current	I $_{\text {P-PR-MAX }}$
Primary maximum RMS current	I $_{\text {P-RMS-MAX }}$
Secondary maximum RMS current	I $_{\text {S-RMS-MAX }}$

The design rules are as followed:
(a) Select the magnetic core style, identify the effective area A_{e}.
(b) Preset the maximum magnetic flux $\Delta \mathrm{B}$
$\Delta \mathrm{B}=0.22 \sim 0.26 \mathrm{~T}$
(c) Compute primary turn N_{P}

$$
N_{P}=\frac{L_{M} \times I_{\text {P_PK_MAX }}}{\Delta B \times \mathrm{A}_{\mathrm{e}}}
$$

(d) Compute secondary turn N_{S}

$$
\mathrm{N}_{\mathrm{s}}=\frac{\mathrm{N}_{\mathrm{P}}}{\mathbf{N}_{\mathrm{PS}}}
$$

(e) Compute auxiliary turn $\mathrm{N}_{\mathrm{AUX}}$

Where $\mathrm{V}_{\mathrm{VIN}}$ is the working voltage of VIN pin (10V~11V is recommended).

(f) Select an appropriate wire diameter

With $\mathrm{I}_{\text {P-RMS-MAX }}$ and $\mathrm{I}_{\text {S-RMS-MAX }}$, select appropriate wire to make sure the current density ranges from $4 \mathrm{~A} / \mathrm{mm}^{2}$ to $10 \mathrm{~A} / \mathrm{mm}^{2}$.
(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Output capacitor Cout

Preset the output current ripple Δ IOUT, COUT is induced by

Where $\mathrm{I}_{\text {OUT }}$ is the rated output current; $\Delta \mathrm{I}_{\text {OUT }}$ is the demanded current ripple; f_{AC} is the input AC supply
frequency; $\mathrm{R}_{\text {LED }}$ is the equivalent series resistor of the LED load.

RCD snubber for MOSFET

The power loss of the snubber $\mathrm{P}_{\mathrm{RCD}}$ is evaluated first
$\operatorname{PRCD}=\frac{\mathrm{N}_{\text {PS }} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}_{-} \mathrm{F}}\right)}{\Delta \mathrm{V}_{\mathrm{S}}}+\Delta \mathrm{V}_{\mathrm{S}_{\mathrm{S}}} \mathrm{L}_{\mathrm{K} \times \operatorname{PoUT}(42}^{\mathrm{L}_{\mathrm{M}}}$
Where N_{PS} is the turns ratio of the Flyback transformer; $\mathrm{V}_{\text {OUT }}$ is the output voltage; $\mathrm{V}_{\mathrm{D} \text {-F }}$ is the forward voltage of the power diode; $\Delta \mathrm{V}_{\mathrm{S}}$ is the overshoot voltage clamped by RCD snubber; L_{K} is the leakage inductor; L_{M} is the inductance of the Flyback transformer; $\mathrm{P}_{\text {OUT }}$ is the output power.

The $\mathrm{R}_{\mathrm{RCD}}$ is related with the power loss:
$\mathrm{R}_{\mathrm{RCD}}=\frac{\left(\mathrm{N}_{\mathrm{PS}} \times\left(\mathrm{V}_{\text {aUT }}+\mathrm{V}_{\mathrm{DE}}\right)+\Delta \mathrm{V}_{\mathrm{S}}\right)_{2}, \mathrm{P}_{\mathrm{RCD}}}{}$

Power Device Design for PWM Dimming

Input BUS Capacitor (CBUS)

The input BUS capacitor is selected by

Where $P_{\text {IN }}$ is the input power, $\mathrm{V}_{\mathrm{AC}, \mathrm{MIN}}$ is the minimum input $A C$ voltage, $f_{\text {in }}$ is the input $A C$ frequency, $\Delta V_{\text {IN }}$ is the input voltage ripple ratio.

As general engineering application, the input BUS Capacitor can also be selected simply by

$$
\mathrm{C}_{\text {BUS }}=\mathrm{P}_{\mathrm{IN}} \times(2 \sim 3) \mu \mathrm{F} / \mathrm{W}(46)
$$

AN_SY5802B

SHEERGY

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized;

$$
\begin{align*}
& \mathrm{V}_{\text {MOS_D__MAX }}={\sqrt{2} 2 V_{\text {AC_MAX }}+\mathrm{N}_{\text {PS }} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {D_F }}\right)+\Delta \mathrm{V}_{\mathrm{S}}}_{\mathrm{V}_{\mathrm{DR} \text { max }}}=\frac{\sqrt{Z} \mathrm{~V}_{\text {AC_MAX }}}{\mathrm{V}_{\mathrm{PS}}}+\mathrm{V}_{\text {OUT }}(48) \tag{47}
\end{align*}
$$

Where $\mathrm{V}_{\mathrm{AC}, \mathrm{MAX}}$ is maximum input AC RMS voltage; N_{PS} is the turns ratio of the Flyback transformer; V rated output voltage; $\mathrm{V}_{\mathrm{D}, \mathrm{F}}$ is the forward voltage of secondary power diode; $\Delta \mathrm{V}_{\mathrm{S}}$ is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

$$
\begin{align*}
& \text { I } \quad=I \tag{49}
\end{align*}
$$

$$
\begin{align*}
& \text { D_pK_MAX } \quad \text { PS }{ }^{\text {P_PK_max }} \tag{51}\\
& \mathrm{davg}_{\text {out }} \text { (52) }
\end{align*}
$$

Where $\mathrm{I}_{\mathrm{P} \text {-PK-MAX }}$ and $\mathrm{I}_{\mathrm{P} \text {-RMS-MAX }}$ are maximum primary peak current and RMS current, which will be introduced later.

Transformer ($\mathbf{N P S}_{\text {PS }}$ and $\mathrm{LM}_{\mathbf{M}}$)

N_{PS} is limited by the electrical stress of the power MOSFET:

Where $\mathrm{V}_{\text {MOS,(BR)DS }}$ is the b eakdown voltage of the power MOSFET.

In Quasi-Resonant mode, each switching period cycle t_{S} consists of three parts: current rising time t_{1}, current falling time t_{2} and quasi-resonant time t_{3} shown in Fig. 14 .

Fig. 14 switching waveforms
Once the minimum frequency $f_{S-M I N}$ is set, the inductance of the transformer could be induced. The design flow is shown as below:
(a)Select N_{PS}

(b) Preset minimum frequency $\mathrm{f}_{\mathrm{S}-\mathrm{MIN}}$
(c) Compute relative $\mathrm{t}_{\mathrm{S}}, \mathrm{t}_{1}$ (t_{3} is omitted to simplify the design here)
$\mathrm{t}_{\mathrm{S}}=\frac{1}{\mathrm{~S}_{\text {SMIN }}}(55)$
$\mathrm{t}_{1}=\frac{\mathrm{t}_{\mathrm{S}} \times \mathrm{N}_{\mathrm{PS}} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{v}_{\mathrm{D}_{-} \mathrm{F}}\right)}{\sqrt{2} \underset{\text { AC_MIN }}{ }+\underset{\text { PS }}{\mathrm{N}_{\text {PS }} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}-\mathrm{F}}\right)}}(56)$
(d) Design inductance L_{M}

$$
\begin{equation*}
\mathrm{L}_{\mathrm{M}}=\frac{\mathrm{V}_{\mathrm{AC}}^{2} \mathrm{MIN} \times \mathrm{t}_{1}^{2} \times \eta}{2 \mathrm{P}_{\mathrm{OUT}} \times \mathrm{t}_{\mathrm{S}}} \tag{57}
\end{equation*}
$$

(e) Compute t_{3}
$\mathrm{t}_{3}=\pi \times \sqrt{\mathrm{L}_{\mathrm{M}} \times \mathrm{C}_{\text {Drain }}}(58)$

Where $\mathrm{C}_{\text {Drain }}$ is the parasitic capacitance at drain of MOSFET.

AN_SY5802B

SHEERGY

(f) Compute primary maximum peak current $\mathrm{I}_{\mathrm{P}-\mathrm{PK}-\mathrm{MAX}}$ and RMS current IP-RMS-MAX for the transformer fabrication.

$+\frac{\sqrt{\left.\operatorname{PouT}^{2} \times\left[\frac{L_{M}}{\sqrt{Z} V_{A C M N}}+\frac{L_{M}}{V_{\text {PS }} \times\left(V_{\text {OUT }}+V_{D}\right.}\right]^{2}\right)} \mathrm{L}_{M} \times \eta \times \mathrm{P}_{\text {OUT }} \times t}{L_{M} \times \eta}$,
(59)

Where η is the efficiency; $P_{\text {OUT }}$ is rated full load power
Adjust t_{1} and t_{S} to $t_{1}{ }^{\prime}$ and t_{S} ' considering the effect of t_{3}

$$
\begin{equation*}
\mathrm{t}_{\mathrm{s}}^{\prime}=\frac{\eta \times \mathrm{L}_{\mathrm{M}} \times \mathrm{IP}_{\mathrm{P}}^{2}{ }_{\mathrm{PK} \text { MAX }}}{2 \mathrm{P}} \tag{60}
\end{equation*}
$$

1
$t_{1}^{\prime}=\frac{L_{M} \times \text { P_PK_MAX }}{\sqrt{2}} \underset{\text { AC_MIN }}{ }(61)$

$$
\begin{equation*}
\mathrm{I}_{\text {P_RMS_MAX }} \approx \sqrt{\frac{\mathrm{t}_{1}^{\prime}}{3 \mathrm{t}_{\mathrm{S}}^{\prime}}} \times \mathrm{I}_{\text {P_PK_MAX }} \tag{62}
\end{equation*}
$$

(g) Compute secondary maximum peak current $\mathrm{I}_{\mathrm{S}-\mathrm{PK}-\mathrm{MAX}}$ and RMS current $\mathrm{I}_{\text {S-RMS-MAX }}$ for the transformer fabrication.

$$
\begin{align*}
& \mathrm{I}_{\text {S_PK_MAX }}=\mathrm{N}_{\mathrm{PS}} \times \mathrm{I}_{\text {P_PK_MAX }}(6 \tag{63}\\
& \mathrm{t}_{2}^{\prime}=\mathrm{t}_{\mathrm{s}}^{\prime}-\mathrm{t}_{1}^{\prime}-\mathrm{t}_{3}(64) \\
& \mathrm{I}_{\text {S_RMS_MAX }} \approx \sqrt{\sqrt{\mathrm{t}_{2}^{\prime}}} \times \mathrm{I}_{\text {S_PKMAX }} \tag{65}
\end{align*}
$$

$\underline{\left.\text { Transformer design (} \mathbf{N}_{\underline{p}} \mathbf{N}_{\underline{S}}, \mathbf{N}_{\underline{A U X}}\right)}$

The design of the transformer is similar with ordinary Flyback transformer. the parameters below are necessary:

Necessary parameters	
Turns ratio	$\mathrm{N}_{\text {PS }}$
Inductance	L_{M}
Primary maximum current	$\mathrm{I}_{\text {P-PK-MAX }}$
Primary maximum RMS current	I $_{\text {P-RMS-MAX }}$
Secondary maximum RMS current	$\mathrm{I}_{\text {S-RMS-MAX }}$

The design rules are as followed:
(a) Select the magnetic core style, identify the effective area A_{e}.
(b) Preset the maximum magnetic flux $\Delta \mathrm{B}$
$\Delta \mathrm{B}=0.22 \sim 0.26 \mathrm{~T}$
(c) Compute primary turn N_{P}

$$
N_{P}=\frac{L_{M} \times I_{\text {P_PK_MAX }}}{\Delta B \times A_{e}}
$$

(d) Compute secondary turn N_{S}
$N_{S}=\frac{N_{P}}{N}$
(e) Compute auxiliary turn $\mathrm{N}_{\mathrm{AUX}}$
$\mathrm{N}_{\text {aUX }}=\underset{\mathrm{s}}{\mathrm{N}} \times \underset{\mathrm{v}_{\text {out }}}{\mathrm{V}} \mathrm{V}_{\text {VIN }}$
Where $\mathrm{V}_{\text {VIN }}$ is the working voltage of VIN pin $(10 \mathrm{~V} \sim 11 \mathrm{~V}$ is recommended).
(f) Select an appropriate wire diameter

With Ip-RMS-MAX and IS-RMS-MAX, select appropriate wire to make sure the current density ranges from $4 \mathrm{~A} / \mathrm{mm}^{2}$ to $10 \mathrm{~A} / \mathrm{mm}^{2}$.
(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Output capacitor Cout

Generally, the output voltage ripple is up to the ESR of the output capacitor CouT.
Preset the qutput current ripple, $\mathrm{C}_{\text {OUT }}$ is induced by

Where $\mathrm{R}_{\text {Cout,ESR }}$ is the ESR of Cout .

RCD snubber for MOSFET

The power loss of the snubber $\mathrm{P}_{\mathrm{RCD}}$ is evaluated first
$\operatorname{PrCD}=\frac{\mathrm{N}_{\mathrm{PS}} \times\left(\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{DF}}\right)+\Delta \mathrm{V}_{\mathrm{S}}}{\Delta \mathrm{V}_{\mathrm{S}} \mathrm{L}_{\mathrm{M}}} \mathrm{L}_{\mathrm{K}} \times \operatorname{Pout}(70)$
Where N_{PS} is the turns ratio of the Flyback transformer; $\mathrm{V}_{\text {OUT }}$ is the output voltage; $\mathrm{V}_{\mathrm{D}-\mathrm{F}}$ is the forward voltage of the power diode; $\Delta \mathrm{V}_{\mathrm{S}}$ is the overshoot voltage clamped by RCD snubber; L_{K} is the leakage inductor; L_{M} is the

AN_SY5802B

SHERGY

inductance of the Flyback transformer; P PUT is the output power.
The $\mathrm{R}_{\mathrm{RCD}}$ is related with the power loss:

The $\mathrm{C}_{\mathrm{RCD}}$ is related with the voltage ripple of the snubber
$\Delta \mathrm{V} \quad$:
${ }^{\text {C-RCD }} \mathrm{N} \times(\mathrm{V}+\mathrm{V} \quad)+\Delta \mathrm{V}$
$\mathrm{CRCD}=\underset{\mathrm{RCD}}{\mathrm{R}_{\mathrm{S}} \mathrm{f} \Delta \mathrm{V}} \underset{\mathrm{CRCD}}{\mathrm{DFF}}$

Layout

(a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit.
(b) The circuit loop of all switching circuit should be kept small: primary power loop, secondary loop and auxiliary power loop.
(c) The connection of ground is recommended as:

Ground (1): ground of BUS line capacitor
Ground (2): ground of bias supply capacitor and GND pin
Ground (3): ground node of auxiliary winding
Ground (4): ground of signal trace except GND pin
Ground (5): primary ground node of Y capacitor.
Ground (6): ground node of current sample resistor.
(d) Bias supply trace should be connected to the bias supply capacitor first instead of GND pin. The bias supply capacitor should be put beside the IC.
(f) Loop of 'Source pin - current sample resistor - GND pin' .should be kept as small as possible.
(f) The resistor divider is recommended to be put beside the IC.

Fig. 15 Ground connection recommended

Design Example

A design example of typical application is shown below step by step.

1. Analog dimming design Example

\#1. Identify design specification

Design Specification			
$\mathrm{V}_{\mathrm{AC}}(\mathrm{RMS})$	$90 \mathrm{~V} \sim 264 \mathrm{~V}$	out	
out	320 mA	η	38 V

\#2. Transformer design ($\mathrm{N}_{\mathrm{PS}}, \mathrm{L}_{\mathrm{M}}$)
Refer to Power Device Design

Conditions			
AC,MIN	90 V	AC-MAX	264V
$\Delta \mathrm{V}_{\mathrm{S}}$	50 V	${ }_{\text {MOS-(BR)DS }}$	600 V
${ }_{\text {O }}{ }_{\text {out }}$	12W	D,F	1 V
${ }_{\text {Drain }}$	100 pF	${ }_{\text {S-MIN }}$	75 kHz

(a)Compute turns ratio N_{PS} first

N_{PS} is set to
$N_{\text {PS }}=2.67$
(b) $\mathrm{f}_{\mathrm{S}, \mathrm{MIN}}$ is preset
$\mathrm{f}_{\mathrm{S}_{-} \mathrm{MIN}}=75 \mathrm{kHz}$
(c) Compute the switching period t_{S} and ON time t_{1} at the peak of input voltage.

$$
\begin{aligned}
\mathrm{t}_{\mathrm{S}} & =\frac{1}{\mathrm{t}_{\text {SMIN }}}=13.3 \mu \mathrm{~s} \\
\mathrm{t}_{1} & =\frac{\mathrm{t}_{\mathrm{S}} \times \mathrm{N}_{\text {PS }} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D} \mathrm{~F}}\right)}{\sqrt{\mathrm{V}^{\mathrm{ACMIN}}+\mathrm{N}_{\text {PS }} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{v}_{\text {DIF }}\right)}} \\
& =\frac{13.3 \mu \mathrm{~s} \times 2.67 \times(38 \mathrm{~V}+1 \mathrm{~V})}{\sqrt{2} \times 90 \mathrm{~V}+2.67 \times(38 \mathrm{~V}+1 \mathrm{~V})} \\
& =6 \mu \mathrm{~s}
\end{aligned}
$$

(d) Compute the inductance L_{M}

$$
\begin{aligned}
\mathrm{L}_{\mathrm{M}} & =\frac{\mathrm{V}_{\mathrm{AC}}{ }^{2} \mathrm{MIN}^{\times 1} \mathrm{t}_{1}^{2} \times \eta}{2 \mathrm{P}_{\text {OUT }} \times \mathrm{t}_{\mathrm{S}}} \\
& =\frac{90 \mathrm{~V}^{2} \times 6 \mu \mathrm{~s}^{2} \times 0.87}{2 \times 12 \mathrm{~W} \times 13.3 \mu \mathrm{~s}} \\
& =780 \mu \mathrm{H}
\end{aligned}
$$

Set

$$
\mathrm{L}_{\mathrm{M}}=750 \mu \mathrm{H}
$$

(e) Compute the quasi-resonant time t_{3}

$$
\begin{aligned}
\mathrm{t}_{3} & =\pi \times \sqrt{\mathrm{L}_{\mathrm{M}} \mathrm{XC} \mathrm{Drain}} \\
& =\pi \times \sqrt{750 \mu \mathrm{H} \times 100 \mathrm{pF}} \\
& =860 \mathrm{~ns}
\end{aligned}
$$

(f) Compute primary maximum peak current $\mathrm{I}_{\mathrm{P}-\mathrm{PK} \text {-MAX }}$

Adjust switching period $t{ }_{S}$ and $O N$ time t to t^{\prime} and t^{\prime}.

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}^{\prime}=\frac{\eta \times \mathrm{L}_{\mathrm{M}} \times \mathrm{IP}^{2}{ }^{2}{ }_{\text {PK MAX }}}{4 \mathrm{I}} \\
& =\frac{0.87 \times 750 \mu \mathrm{H} \times 1.038 \mathrm{~A}^{2}}{4 \times 12 \mathrm{~W}} \\
& =14.45 \mu \mathrm{~s} \\
& \text { L } \times \mathrm{I} \\
& t_{1}^{\prime}=\frac{M^{\text {P_PK_MAX }}}{\sqrt{Z}{ }_{\text {AC_MIN }}} \\
& =750 \mu \mathrm{H} \times 1.038 \mathrm{~A} \\
& 1 / 2 \times 90 \mathrm{~V} \\
& =6.12 \mu \mathrm{~s}
\end{aligned}
$$

Compute primary maximum RMS current $\mathrm{I}_{\mathrm{P} \text {-RMS-MAX }}$

$$
\mathrm{I}_{\text {P_RMS_MAX }} \approx \sqrt{\frac{{\frac{t_{1}^{\prime}}{}}_{6 \mathrm{t}_{\mathrm{S}}^{\prime}}}{} \times \mathrm{I}_{\text {P_PK_MAX }}=\sqrt{\frac{6.12 \mu \mathrm{~S}}{6 \times 14.45 \mu \mathrm{~S}}} \times 1.038 \mathrm{~A}=0.289 \mathrm{~A}}
$$

(g) Compute secondary maximum peak current and the maximum RMS current.
$\mathrm{I}_{\text {S_PK_MAX }}=\mathrm{N}_{\text {PS }} \times \mathrm{I}_{\text {P_PK_MAX }}=2.67 \times 1.038 \mathrm{~A}=2.77 \mathrm{~A}$

AN_SY5802B

SHEERGY

$\mathrm{t}_{2}=\mathrm{t}-\mathrm{t}-\mathrm{t}=14.45 \mu \mathrm{~s}-6.12 \mu \mathrm{~s}-0.86 \mu \mathrm{~s}=7.47 \mu \mathrm{~s}$

$$
\mathrm{I}_{\text {S,RMS,MAX }} \approx \sqrt{\frac{t_{2}^{\prime} 2}{6 t_{\mathrm{S}}^{\prime}}} \times \mathrm{I}_{\text {S_P_K_MAX }=\sqrt{\frac{7.47 \mu \mathrm{~S}}{6 \times 14.45 \mu \mathrm{~S}}} \times 2.77 \mathrm{~A}=0.81 \mathrm{~A}}
$$

\#3. Select power MOSFET and secondary power diode
Refer to Power Device Design

Known conditions at this step			
$V_{\text {AC-MAX }}$	264 V	$\mathrm{~N}_{\text {PS }}$	2.67
$\mathrm{~V}_{\text {OUT }}$	36 V	$\stackrel{V}{\text { D-F }}$	1 V
$\mathrm{~V}_{\mathrm{S}}$	50 V	η	87%

(a) Compute the voltage and the current stress of MOSFET:

$$
\begin{aligned}
& \mathrm{V}_{\text {Mos_ds_max }}=\overline{\mathrm{V}} / 2 \mathrm{~V}_{\text {AC_Max }}+\mathrm{N}_{\text {PS }} \times\left(\mathrm{V}_{\text {out }}+\mathrm{V}_{\text {D_F }}\right)+\Delta \mathrm{V}_{\text {S }} \\
& =\sqrt{2} \times 264 \mathrm{~V}+2.67 \times(38 \mathrm{~V}+1 \mathrm{~V})+50 \mathrm{~V} \\
& =527 \mathrm{~V} \\
& \mathrm{I}_{\text {MOS__P__MAX }}=\mathrm{I}_{\text {P_PK_MAX }}=1.038 \mathrm{~A} \\
& \mathrm{I}_{\text {MOS_RMS_MAX }}=\underset{\text { P_RMS_max }}{ }=0.289 \mathrm{~A}
\end{aligned}
$$

(b) Compute the voltage and the current stress of secondary power diode

$\mathrm{I}_{\text {D_PK_MAX }}=\mathrm{N}_{\text {PS }} \times \mathrm{I}_{\text {P_PK_MAX }}=2.67 \times 1.038 \mathrm{~A}=2.77 \mathrm{~A}$
$I_{\text {D_AVG }}=I_{\text {OUT }}=0.32 \mathrm{~A}$
\#4. Select the output capacitor Cout
Refer to Power Device Design

Conditions			320 mA
$\mathrm{I}_{\text {OUT }}$	$\mathrm{N}_{\text {OUT }}$	$0.3 \mathrm{I}_{\text {OUT }}$	
$\mathrm{A}_{\text {AC }}$	$\mathrm{R}_{\text {LED }}$	$12 \times 1.6 \Omega$	

[^0]
AN_SY5802B

SHERGY

$$
\begin{aligned}
\mathrm{C}_{\text {out }} & =\frac{\sqrt{\left(\frac{\left.{ }_{\text {OUT }}\right)^{2}-1}{\mathrm{OUTT}^{\text {out }}}\right.}}{4 \pi \mathrm{~K}_{\text {LED }}} \\
& =\frac{\sqrt{\left.\frac{(2 \times 032 \mathrm{~A}}{0.3 \times 0.32 \mathrm{~A}}\right)^{2}-1}}{4 \pi \times 50 \mathrm{~Hz} \times 12 \times 1.6 \Omega} \\
& =546 \mu \mathrm{~F}
\end{aligned}
$$

\#5. Design RCD snubber

Refer to Power Device Design

Conditions			
$V_{\text {out }}$	38 V	$\Delta \mathrm{~V}_{\mathrm{S}}$	50 V
$\mathrm{~N}_{\mathrm{ps}}$	2.67	$\mathrm{~L}_{\mathrm{K}} / \mathrm{L}_{\mathrm{M}}$	1%
${ }_{\text {out }}$	12 W		

The power loss of the snubber is

$$
\begin{aligned}
\mathrm{P}_{\text {RCD }} & =\frac{\mathrm{N}_{\text {PS }} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{DF}}\right)+\Delta \mathrm{V}_{S}}{\Delta \mathrm{~V}_{\mathrm{S}}} \times{\frac{\mathrm{L}_{\mathrm{K}}}{\mathrm{~L}_{\mathrm{M}}} \times \mathrm{P}_{\text {OUT }}} \\
& =\frac{2.67 \times(38 \mathrm{~V}+1 \mathrm{~V})+50 \mathrm{~V} \times 0.01 \times 12 \mathrm{~W}}{50 \mathrm{~V}} \\
& =0.37 \mathrm{~W}
\end{aligned}
$$

The resistor of the snubber is

$$
\begin{aligned}
& \mathrm{RRCD}=\frac{\left(\mathrm{N}_{\mathrm{PS}} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{DE}}\right)+\Delta \mathrm{V}_{\mathrm{S}}\right)_{2}}{\mathrm{P}_{\mathrm{RCD}}} \\
&=(2.67 \times(38 \mathrm{~V}+1 \mathrm{~V})+50 \mathrm{~V})^{2} \\
& 0.37 \mathrm{~W} \\
&=64 \mathrm{k} \Omega
\end{aligned}
$$

The capacitor of the snubber is

$$
\begin{aligned}
& =2.67 \times(38 \mathrm{~V}+1 \mathrm{~V})+50 \mathrm{~V} \\
& 64 \mathrm{k} \Omega \times 100 \mathrm{kHz} \times 25 \mathrm{~V} \\
& =1 \mathrm{nF}
\end{aligned}
$$

\#6. Set VIN pin
Refer to Start up

Condit ons			
${ }^{\text {bUS-MIN }}$	$90 \mathrm{~V} \times 1.414$	BUS-MAX	$264 \mathrm{~V} \times 1.414$
${ }_{\text {ST }}$	$15 \mu \mathrm{~A}$ (typical)	IN-ON	16 V (typical)
${ }_{\text {VIN-OVP }}$	2 mA (typical)	ST	500 ms (designed by user)

(a) R_{ST} is preset

$$
\begin{aligned}
& \text { V } \\
& \mathrm{R}_{\mathrm{ST}}<\frac{\text { BUS }}{\mathrm{I}_{\text {ST }}}=\frac{90 \mathrm{~V} \times 1.414}{15 \mu \mathrm{~A}}=8.48 \mathrm{M} \Omega,
\end{aligned}
$$

AN_SY5802B

$\mathrm{R}_{\text {ST }}>\frac{\mathrm{V}_{\text {Bus }}}{\mathrm{I}_{\text {VIN_OVP }}}=\frac{264 \mathrm{~V} \times 1.414}{2 \mathrm{~mA}}=186 \mathrm{k} \Omega$
Set R ${ }_{\text {ST }}$
$\mathrm{R}_{\mathrm{ST}}=250 \mathrm{k} \Omega \times 3=750 \mathrm{k} \Omega$
(b) Design $\mathrm{C}_{\mathrm{VIN}}$

$$
\begin{aligned}
\mathrm{C}_{\text {VIN }} & =\frac{\mathrm{V}_{\text {BUS }}}{\left(\frac{\mathrm{n}_{\text {ST }}}{}-\mathrm{I}_{\text {ST }}\right) \times \mathrm{t}_{\text {ST }}} \\
& =\frac{\left(\frac{90 \mathrm{~V} \times 1.414}{750 \mathrm{k} \Omega}-15 \mu \mathrm{~A}\right) \times 500 \mathrm{~ms}}{16 \mathrm{~V}} \\
& =4.83 \mu \mathrm{~F}
\end{aligned}
$$

Set CVIN
$\mathrm{C}_{\mathrm{VIN}}=20 \mu \mathrm{~F}$
\#7 Set COMP pin
Refer to Internal pre-charge design for quick start up

Parameters designed			
$\mathrm{K}_{\text {comp }}$	500Ω	сомр, IC	450 mV
${ }^{\text {compl }}$	$2 \mu \mathrm{~F}$	${ }^{\text {comp2 }}$	100pF

\#8 Set current sense resistor to achieve ideal output current
Refer to Primary-side constant-current control

Known conditions at this step			
k^{N}	0.167	Ps	2.67
$\mathrm{~V}_{\text {REF }}$	0.3 V	OUT	0.32 A

The current sense resistor is

$$
\begin{aligned}
\mathrm{Rs} & =\frac{\mathrm{k} \times \mathrm{V}_{\text {RIF }} \times \mathrm{N}}{\mathrm{I}_{\text {out }}} \\
& =\frac{0.167 \times 0.3 \mathrm{~V} \times}{2.670 .32 \mathrm{~A}} \\
& =0.4 \Omega
\end{aligned}
$$

\#9 set ZCS pin
Refer to Line regulation modification and Over Voltage Protection (OVP) \& Open Loop Protection (OLP)
First identify $\mathrm{R}_{\text {ZCSU }}$ need for line regulation.

AN_SY5802B

Known conditions at this step				
R_{2}	68			
Parameters Designed				
$\mathrm{R}_{\text {ZCSU }}$	$100 \mathrm{k} \Omega$			

Then compute $\mathrm{R}_{\mathrm{ZCSD}}$

Refer to Analog Dimming Mode Design

AN_SY5802B

SHERGY

$\mathrm{R}_{\text {PWM, иp }}<\frac{\mathrm{V}_{\text {VIN }, \text { OfF }}}{\mathrm{IPWM}, \mathrm{ON}}=\frac{6 \mathrm{~V}}{20 \mu \mathrm{~A}}=300 \mathrm{k} \Omega$

So $R_{\text {PWM, up }}$ is set to
RРwм $_{\text {,ир }}=200 \mathrm{k} \Omega$
CADIM $=\frac{1.25 \times 10^{-5}}{f_{\text {PWM }}} \mathrm{F} \times \mathrm{Hz}=\frac{1.25 \times 10^{-5} \mathrm{~F}}{\mathrm{f}_{\text {PWM }}} \times \mathrm{Hz}=125 \mathrm{nF}$
Hence $\mathrm{C}_{\text {ADIM }}$ is set to
$\mathrm{C}_{\text {Adim }}=100 \mathrm{nF}$
\#11 final result

AN_SY5802B

 SHERGY
2. PWM dimming design Example

\#1. Identify design specification

Design Specification			
$\mathrm{V}_{\mathrm{AC}}(\mathrm{RMS})$	$90 \mathrm{~V} \sim 264 \mathrm{~V}$	${ }^{\text {out }}$	36 V
$\mathrm{O}_{\text {out }}$	300 mA	η	85%
$\Delta \mathrm{~V}_{\text {in }}$	0.18		

\#2. Transformer design ($\mathrm{N}_{\mathrm{PS}}, \mathrm{L}_{\mathrm{M}}$)
Refer to Power Device Design

Conditions			
$\mathrm{V}_{\text {AC,MIN }}$	90 V	$\mathrm{~V}_{\text {AC-MAX }}$	264 V
$\Delta \mathrm{~V}_{\mathrm{S}}$	50 V	MOS-(BR)DS	600 V
$\mathrm{I}_{\text {OUT }}$	10.8 W	$\mathrm{~V}_{\mathrm{D}, \mathrm{F}}$	1 V
$\mathrm{C}_{\text {Drain }}$	100 pF	S.MIN	50 kHz
$\mathrm{V}_{\text {DC,MIN }}$	104 V		

(a)Compute turns ratio N_{PS} first

$$
\begin{aligned}
\mathrm{N}_{\mathrm{PS}} & \leq \frac{\mathrm{V}_{\text {MOS_(BRDD }} \times 90 \%-\sqrt{\tau^{2}}{ }_{\text {AC_MAX }}-\Delta \mathrm{v}_{\mathrm{S}}}{\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{\text {D,F }}} \\
& =\frac{600 \mathrm{~V} \times 0.92 \sqrt{\sqrt{2}} \times 264 \mathrm{~V}-}{50 \mathrm{~V} 36 \mathrm{~V}+1 \mathrm{~V}} \\
& =2.99
\end{aligned}
$$

N_{PS} is set to
$N_{\text {PS }}=2$
(b) $\mathrm{f}_{\mathrm{S}, \mathrm{MIN}}$ is preset
$\mathrm{f}_{\text {S_MIN }=50 \mathrm{kHz}, ~(1)}$
(c) Compute the switching pe iod t_{S} and ON time t_{1} at the peak of input voltage.

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}=\frac{1}{\mathrm{t}_{\overline{\text { s.min }}}}=20 \mu \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{20 \mu \mathrm{H} \times 2 \times(36 \mathrm{~V}+1 \mathrm{~V})}{\sqrt{2} \times 90 \mathrm{~V}+2 \times(36 \mathrm{~V}+1 \mathrm{~V})} \\
& =9 \mu \mathrm{~s}
\end{aligned}
$$

(d) Compute the inductance L_{M}
$L_{M=}=\frac{V_{A C}{ }^{2} \mathrm{MIN}^{2} \times t_{1}{ }^{2} \times \eta}{2 P_{\text {OUT }} \times \mathrm{t}_{\mathrm{S}}}$

$$
\begin{aligned}
& \frac{90 \mathrm{~V}^{2} \times 9 \mu \mathrm{~s}^{2} \times 0.85}{2 \times 10.8 \mathrm{~W} \times 20 \mu \mathrm{~s}} \\
= & 1.3 \mathrm{mH}
\end{aligned}
$$

Set
$\mathrm{L}_{\mathrm{M}}=1.2 \mathrm{mH}$
(e) Compute the quasi-resonant time t_{3}

$$
\begin{aligned}
\mathrm{t}_{3} & =\pi \times \sqrt{\mathrm{L}_{\mathrm{M}} \times \mathrm{C}_{\text {Drain }}} \\
& =\pi \times \sqrt{1.2 \mathrm{mH} \times 100 \mathrm{pF}} \\
& =1.09 \mathrm{us}
\end{aligned}
$$

(f) Compute primary maximum peak current $\mathrm{I}_{\text {P-PK-MAX }}$

Adjust switching period t_{s} and ON time t_{1} to t_{s} and t^{\prime}.

$$
\begin{aligned}
\mathrm{t}_{\mathrm{s}}^{\prime} & =\frac{\eta \times \mathrm{L}_{\mathrm{M}} \times \mathrm{I}_{\mathrm{P}}^{2}{ }_{\text {PK MAX }}}{\angle \mathrm{F}}{ }_{\text {out }} \\
& =\frac{0.85 \times 1.2 \mathrm{mH} \times 0.624 \mathrm{~A}^{2}}{2 \times 10.8 \mathrm{~W}} \\
& =18.38 \mu \mathrm{~s} \\
& \frac{\mathrm{~L} \times \mathrm{I}}{\mathrm{I}_{\text {P_PK_MAX }}} \\
\mathrm{t}_{\mathrm{l}}^{\prime} & =\frac{\mathrm{V}_{\text {DC MIN }} \times(1-\Delta V \mathrm{Vin})}{1.2 \mathrm{mH} \times 0.624 \mathrm{~A}} \\
& =7.19 \mu \mathrm{~S}
\end{aligned}
$$

Compute primary maximum RMS current $\mathrm{I}_{\mathrm{P} \text {-RMS-MAX }}$

$\mathrm{I}_{\text {P_RMS_MAX }} \approx \sqrt{\frac{\mathrm{t}_{1}^{\prime}}{3 \mathrm{t}_{\mathrm{S}}^{\prime}}} \times \mathrm{I} \quad=\sqrt{\frac{7.19 \mu \mathrm{~s}}{\text { P_PK_MAX }}} \sqrt{\frac{3}{3} \times^{18.38 \mu \mathrm{~S}}} \times 0.624 \mathrm{~A}=0.225 \mathrm{~A}$
(g) Compute secondary maximum peak current and the maximum RMS current.
$\mathrm{I}_{\text {S_PK_MAX }}=\mathrm{N}_{\text {PS }} \times \mathrm{IP}_{\text {PPK_MAX }}=2 \times 0.624 \mathrm{~A}=1.248 \mathrm{~A}$

AN_SY5802B

SHERGY

$\mathrm{t}_{2}=\mathrm{t}_{\mathrm{s}}$| - $\mathrm{t}_{1}^{\prime}-\mathrm{t}$ |
| :---: |

$\mathrm{I}_{\mathrm{S}, \text { RMS,MAX }} \approx \sqrt{\frac{\mathrm{t}^{\prime} 2}{3 \mathrm{t}_{\mathrm{S}}^{\prime}}} \times \mathrm{I} \mathrm{S}$ S_PK_MAX $=\sqrt{\frac{10.12 \mu \mathrm{~S}}{3 \times 18.38 \mu \mathrm{~S}}} \times 1.248 \mathrm{~A}=0.534 \mathrm{~A}$
\#3. Select power MOSFET and secondary power diode
Refer to Power Device Design

Known conditions at this step			
$V_{\text {ac-max }}$	264 V	$\mathrm{~N}_{\text {PS }}$	2
$\mathrm{~V}_{\text {OUT }}$	36 V	$V_{\text {D-F }}$	1 V
$\mathrm{~V}_{\mathrm{S}}$	50 V	η	85%

(a) Compute the voltage and the current stress of MOSFET:

$$
\begin{aligned}
& \mathrm{V}_{\text {mos_d__max }}=/ 2 \mathrm{~V}_{\text {ac_max }}+\mathrm{N}_{\text {PS }} \times\left(\mathrm{V}_{\text {out }}+\mathrm{V}_{\text {D_F }}\right)+\Delta \mathrm{V}_{\text {s }} \\
& =\sqrt{2} \times 264 \mathrm{~V}+2 \times(36 \mathrm{~V}+1 \mathrm{~V})+50 \mathrm{~V} \\
& =497 \mathrm{~V} \\
& \mathrm{I}_{\text {MOS__﹎_MAX }}=\mathrm{I}_{\text {P__K_MAX }}=0.624 \mathrm{~A} \\
& \mathrm{I}_{\text {MOS_RMS_MAX }}=\mathrm{I}_{\text {P_RMS_MAX }}=0.224 \mathrm{~A}
\end{aligned}
$$

(b) Compute the voltage and the current stress of secondary power diode

$$
\begin{aligned}
& =\frac{\sqrt{2} \times 264 \mathrm{~V}}{2}+36 \mathrm{~V} \\
& =223 \mathrm{~V} \\
& \mathrm{I}_{\text {D_PK_MAX }}=\mathrm{I}_{\text {S_PK_MAX }=1.248 \mathrm{~A}, ~} \\
& \mathrm{I}_{\text {D_AVG }}=\mathrm{I}=0.3 \mathrm{~A}
\end{aligned}
$$

\#4. Select the output capacitor COUT
Refer to Power Device Design

Conditions			
$\Delta \mathrm{V}_{\text {OUT }}$	360 mV		

\#5. Design RCD snubber
Refer to Power Device Design

AN_SY5802B

Conditions			
$V_{\text {out }}$	36 V	$\Delta \mathrm{~V}_{\mathrm{S}}$	50 V
$\mathrm{~N}_{\mathrm{PS}}$	2	$\mathrm{~L}_{\mathrm{K}} / \mathrm{L}_{\mathrm{M}}$	1%
out 2	10.8 W		

The power loss of the snubber is

$$
\begin{aligned}
\mathrm{P}_{\text {RCD }} & =\frac{\mathrm{N}_{\mathrm{PS}} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{DF}}\right)+\Delta \mathrm{V}_{\mathrm{S}}}{\Delta \mathrm{~V}_{\mathrm{S}}} \times \frac{\mathrm{L}_{\mathrm{K}}}{\mathrm{~L}_{\mathrm{M}}} \times \mathrm{P} \\
& =\frac{2 \times(36 \mathrm{~V}+1 \mathrm{~V})+50 \mathrm{~V} \times-0.01}{50 \mathrm{~V}} \times 10.8 \mathrm{~W} \\
& =0.27 \mathrm{~W}
\end{aligned}
$$

The resistor of the snubber is

$$
\begin{aligned}
\mathrm{R}_{\mathrm{RCD}} & =\frac{\left(\mathrm{N}_{\mathrm{PS}} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{DF}}\right)+\Delta \mathrm{V}_{\mathrm{S}}\right)_{2}}{\mathrm{P}_{\mathrm{RCD}}} \\
& =(2 \times(36 \mathrm{~V}+1 \mathrm{~V})+50 \mathrm{~V})^{2} \\
& =60 \mathrm{k} \Omega
\end{aligned}
$$

The capacitor of the snubber is

$$
\begin{aligned}
\mathrm{CRCD} & =\mathrm{N}_{\mathrm{PS}}^{\mathrm{R}} \times\left(\mathrm{V}_{\mathrm{RCD}}^{\mathrm{f} \Delta \mathrm{~V}_{\mathrm{C} R \mathrm{RCD}}}+\mathrm{V}_{\mathrm{DF}}\right)+\Delta \mathrm{V}_{\mathrm{S}} \\
= & \underset{60 \mathrm{k} \Omega \times 100 \mathrm{kHz} \times 25 \mathrm{~V}}{2 \times(36 \mathrm{~V}+1 \mathrm{~V})+50 \mathrm{~V}} \\
= & 830 \mathrm{pF}
\end{aligned}
$$

\#6. Set VIN pin
Refer to Start up

(a) R_{ST} is preset

Set R_{ST}
$\mathrm{R}_{\mathrm{ST}}=250 \mathrm{k} \Omega \times 3=750 \mathrm{k} \Omega$

AN_SY5802B

SHERGY
(b) Design $\mathrm{C}_{\text {VIN }}$

$$
\begin{aligned}
\mathrm{C}_{\text {VIN }} & =\frac{\left(\frac{\left.{ }_{\mathrm{KUS}}^{\mathrm{K}_{\text {ST }}}-\mathrm{I}_{\text {ST }}\right) \times \mathrm{t}_{\mathrm{ST}}}{\mathrm{~V}}\right.}{\text { VIN_oN }} \\
& =\frac{\left(\frac{104 \mathrm{~V}}{750 \mathrm{k} \Omega}-15 \mu \mathrm{~A}\right) \times 500 \mathrm{~ms}}{16 \mathrm{~V}} \\
& =3.86 \mu \mathrm{~F}
\end{aligned}
$$

Set CVIN
$\mathrm{C}_{\text {VIN }}=20 \mu \mathrm{~F}$
\#7 Set COMP pin
Refer to Internal pre-charge design for quick start up

Parameters designed			
СомP	500Ω	${ }^{\text {comp,IC }}$	450 mV
${ }^{\text {compl }}$	10 nF	${ }^{\text {CoMP2 }}$	100pF

\#8 Set current sense resistor to achieve ideal output current
Refer to Primary-side constant-current control

Known conditions at this step			
k	0.167	PS	2
Ref	0.3 V	${ }_{\text {Out }}$	0.3A

The current sense resistor is

$$
\begin{aligned}
\mathrm{Rs} & ={\underset{\mathrm{out}}{\mathrm{k} \times \mathrm{V}_{\mathrm{REF}} \times \mathrm{N}} \mathrm{PS}}=\frac{0.167 \times 0.3 \mathrm{~V} \times}{20.3 \mathrm{~A}} \\
= & 0.334 \Omega
\end{aligned}
$$

\#9 set ZCS pin
Refer to Line regulati n modification and Over Voltage Protection (OVP) \& Open Loop Protection (OLP)
First identify $\mathrm{R}_{\text {ZCSU }}$ need for line regulation.

Known conditions at this step				
k_{2}	68			
Parameters Designed				
$\mathrm{K}_{\text {ZCSU }}$	$100 \mathrm{k} \Omega$			

Then compute $\mathrm{R}_{\mathrm{ZCSD}}$

Conditions			
$V_{\text {ZCS_OVP }}$	1.42 V	${ }^{\text {ovp }}$	48 V

AN_SY5802B
SHEERGY

$\mathrm{V}_{\text {out }}$	38 V		
Parameters designed			
$\mathrm{K}_{\text {ZCSU }}$	$100 \mathrm{k} \Omega$		
N_{S}	21	$N_{\text {AUX }}$	5

V

$=\frac{\frac{1.42 \mathrm{~V}}{38 \mathrm{~V}} \times \frac{21}{6}}{1-\frac{1.42 \mathrm{~V}}{38 \mathrm{~V}} \times \frac{21}{6}} \times 100 \mathrm{k} \Omega$
$=18.62 \mathrm{k} \Omega$
V

$$
\begin{aligned}
& =\frac{\frac{1.42 \mathrm{~V}}{48 \mathrm{~V}} \times \frac{21}{5}}{1-\frac{1.42 \mathrm{~V}}{48 \mathrm{~V}} \times \frac{21}{5}} \times 100 \mathrm{k} \Omega \\
& =14.19 \mathrm{k} \Omega
\end{aligned}
$$

$\mathrm{R}_{\text {ZCSD }}$ is set to
$\mathrm{R}_{\mathrm{ZCSD}}=15 \mathrm{k} \Omega$
\#10 set ADM and PWM pin
Refer to PWM Dimming Mode Design

Conditions			
$V_{\text {VIN,OfF }}$	6 V		
Parameters designed			
A $_{\text {ADIM,up }}$	$200 \mathrm{k} \Omega$		

\#11 set input bus capacit r
Refer to Input BUS apacitor (CBUS)

Conditions			
C_{IN}	10.8 W	${ }_{\mathrm{AC}, \mathrm{MIN}}$	90 V

$\mathrm{C}_{\text {BUS }}=\mathrm{P}_{\mathrm{IN}} \times 3 \mu \mathrm{~F} / \mathrm{W}=10.8 \mathrm{~W} \times 3 \mu \mathrm{~F} / \mathrm{W}=32.4 \mu \mathrm{~F}$
$\mathrm{C}_{\text {BUS }}$ is set to
Cbus $=33 \mu \mathrm{~F}$
\#11 final result

SO8 Package Outline \& PCB Layout Design

\mathbf{N} tes: All dimensions are in millimeters.
All dimensions don't include mold flash \& metal burr.

Silergy Corp

[^0]: The output capacitor is

